04.02.2014 Views

Digital Controller for an Interleaved Voltage Regulator - Inst.eecs ...

Digital Controller for an Interleaved Voltage Regulator - Inst.eecs ...

Digital Controller for an Interleaved Voltage Regulator - Inst.eecs ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Digital</strong> <strong>Controller</strong> <strong>for</strong> <strong>an</strong><br />

<strong>Interleaved</strong> <strong>Voltage</strong> <strong>Regulator</strong><br />

Seth R. S<strong>an</strong>ders<br />

Angel V. Peterchev<br />

Jinwen Xiao<br />

s<strong>an</strong>ders@<strong>eecs</strong>.berkeley.edu<br />

peterch@<strong>eecs</strong>.berkeley.edu<br />

xjw@<strong>eecs</strong>.berkeley.edu<br />

EECS Department<br />

U.C. Berkeley<br />

Berkeley, CA 94720


DIGITAL PWM CONTROL<br />

— Motivation<br />

• Develop Low-Cost High-Flexibility <strong>Digital</strong><br />

<strong>Controller</strong>s <strong>for</strong> broad r<strong>an</strong>ge of PWM Control<br />

Applications (e.g. high quality power supply<br />

<strong>for</strong> next generation of Pentium CPU’s <strong>for</strong><br />

desktop <strong>an</strong>d portable computing)<br />

• Capture high frequency applications (>500<br />

KHz) not usually addressed with existing<br />

digital controllers


Why <strong>Digital</strong><br />

• Matching duty cycles among all phases in<br />

multi-phase converter, thus eliminating the<br />

need of current sensing at each phase<br />

• Immune to <strong>an</strong>alog component variations on<br />

chip<br />

• Implement sophisticated control schemes <strong>for</strong><br />

better per<strong>for</strong>m<strong>an</strong>ce<br />

• Programmable by a digital system like the<br />

CPU<br />

• Technology Scaling, shorter design period


Issues<br />

• <strong>Controller</strong> Architecture<br />

• Resolution—A/D, D/A<br />

• Development of control schemes that account<br />

<strong>for</strong> the non-linearity inherent in a qu<strong>an</strong>tized<br />

system<br />

• IC implementation of cost- <strong>an</strong>d powerefficient<br />

modules such as PWM generation<br />

<strong>an</strong>d A/D, D/A conversion functions


Application: 4-Phase Buck<br />

VRM


System Issues:<br />

Steady state limit cycling of V out resulting from qu<strong>an</strong>tization<br />

Vout<br />

1 bit error bin<br />

0 bit error bin<br />

tr<strong>an</strong>sient<br />

steady state<br />

DAC levels<br />

ADC levels<br />

-1 bit error bin


ADC <strong>an</strong>d DAC Resolution Requirements<br />

♦ Problem:<br />

Limit Cycling—Steady-state oscillations of Vout due to the<br />

qu<strong>an</strong>tization in the feedback loop.<br />

♦ Solution:<br />

— To ensure that there is a steady-state DAC (DPWM) level in<br />

the zero-error bin,<br />

resolution (DAC) > resolution (ADC)<br />

(a factor of 2 seems sufficient)<br />

—Slow Integrator to settle Vout to the zero-error bin of the ADC


Tr<strong>an</strong>sient response with res(DAC) = 2 • res(ADC) , <strong>an</strong>d<br />

<strong>an</strong> integrator<br />

Vout<br />

1 bit error bin<br />

tr<strong>an</strong>sient<br />

steady state<br />

0 bit error bin<br />

-1 bit error bin<br />

DAC levels<br />

ADC levels


Tr<strong>an</strong>sient Response without Integrator (simulation)<br />

Vin = 5 V , Vref = 2 V, res (ADC) = 8 bit , res (DAC) = 9 bit<br />

2.01<br />

2<br />

1.99<br />

1.98<br />

light load ← → heavy load<br />

↑<br />

reference voltage bin<br />

↓<br />

Limit cycling ↑<br />

in steady state<br />

V out<br />

1.97<br />

1.96<br />

1.95<br />

1.94<br />

ADC levels<br />

↓<br />

1.93<br />

1.92<br />

1.91<br />

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5<br />

time (msec)


Tr<strong>an</strong>sient Response with Integrator (simulation)<br />

Vin = 5 V , Vref = 2 V, res (ADC) = 8 bit , res (DAC) = 9 bit<br />

2.01<br />

2<br />

1.99<br />

1.98<br />

↑<br />

reference voltage bin<br />

↓<br />

↑<br />

No limit cycling<br />

light load ← → heavy load<br />

in steady state<br />

V out<br />

1.97<br />

1.96<br />

1.95<br />

1.94<br />

ADC levels<br />

↓<br />

1.93<br />

1.92<br />

1.91<br />

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5<br />

time (msec)


Introducing Sub-Bit Positioning<br />

♦ Problem:<br />

To provide accurate positioning of the output voltage at the<br />

order of 5 mV, the resolution of the DAC (DPWM) has to be 10<br />

bit with 5 V input. This resolution requires a DPWM module with<br />

a large number of stages running at a high frequency → high<br />

power dissipation.<br />

♦ Solution:<br />

Sub-Bit Positioning—use a DPWM module with lower<br />

hardware resolution (e.g. 7 or 8 bits) <strong>an</strong>d add digital dither to the<br />

duty cycle to produce finer (sub-bit) levels of Vout.


Structure <strong>for</strong> Adding Arbitrary Dither<br />

Patterns to the Duty Cycle<br />

f sw<br />

switching<br />

frequency<br />

D c<br />

duty cycle<br />

n + m<br />

m-bit<br />

counter<br />

m<br />

m (LSB’s)<br />

m x m<br />

look-up<br />

table<br />

1 (LSB)<br />

saturated<br />

n-bit<br />

adder<br />

n<br />

D c<br />

’<br />

dithered<br />

duty cycle<br />

n (MSB’s)


Dither Patterns Added To The Duty Cycle<br />

vs. Counter (Example For m = 2 Bits)<br />

counter<br />

Dc<br />

LSB’s<br />

00<br />

Sawtooth dither<br />

pattern<br />

00 01 10 11<br />

Modified dither<br />

pattern<br />

00 01 10 11<br />

Averaged<br />

sub-bit<br />

levels<br />

0<br />

01<br />

¼<br />

10<br />

½<br />

11<br />

¾<br />

T sw * 4<br />

T sw * 4<br />

♦ Modified dither patterns have higher frequency <strong>for</strong> some<br />

sub-bit levels, <strong>an</strong>d hence produce smaller ripple on Vout


Tr<strong>an</strong>sient Response with Sub-Bit Positioning<br />

Tr<strong>an</strong>sient Response with Sub-Bit Positioning<br />

11-bit ADC , 9-bit DAC + 3-bit SBP = effective effectve 12-bit DAC<br />

2.01<br />

2<br />

1.99<br />

↓<br />

↑<br />

reference voltage bin<br />

1.98<br />

V out<br />

1.97<br />

1.96<br />

1.95<br />

→ heavy load<br />

Vout finds a steady state<br />

within the reference bin due<br />

to the effective increase in<br />

DAC resolution<br />

1.94<br />

1.93<br />

1.92<br />

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6<br />

time (msec)


Optimal <strong>Voltage</strong> Positioning<br />

What is it?<br />

Io max<br />

Load Step<br />

Iout<br />

∆I o<br />

Io min<br />

Usual converter<br />

response<br />

Vout<br />

2 * ∆I o *R esr<br />

Response with<br />

optimal voltage<br />

positioning<br />

Vout<br />

∆I o *R esr


Implementation of Optimal <strong>Voltage</strong> Positioning<br />

with I L<br />

<strong>an</strong>d I C<br />

sensing<br />

Vin<br />

Vref<br />

+<br />

_<br />

Ke<br />

error<br />

amplifier<br />

digital<br />

controller<br />

-<br />

L1<br />

I L<br />

Re<br />

Re*m<br />

Vc<br />

Co/m<br />

Re<br />

Co<br />

Iout<br />

Ic<br />

Vout<br />

-<br />

-<br />

Ic estimator<br />

Vo’ = Vout + Re * Iout<br />

Re * Iout = Re * (I L<br />

+ Ic) = Re * I L<br />

+ (Vc – Vout)<br />

Vo’ = Vc + Re * I L<br />

Adv<strong>an</strong>tage: Doesn’t add a resistive current sensor <strong>for</strong> Iout after Co (the voltage drop<br />

across such sensor would add to the ESR drop during tr<strong>an</strong>sients).


Tr<strong>an</strong>sient Response with <strong>Voltage</strong> Positioning (simulation)<br />

Vin = 5 V , Vref = 2 V, res (ADC) = 8 bit , res (DAC) = 9 bit<br />

2.02<br />

2<br />

1.98<br />

↑<br />

V out<br />

+ I out<br />

• R esr<br />

↑<br />

reference bin<br />

↓<br />

volts<br />

1.96<br />

1.94<br />

→ max load<br />

1.92<br />

V out<br />

↓<br />

1.9<br />

1 2 3 4 5 6<br />

time (msec)


Pro’s <strong>an</strong>d Con’s of <strong>Voltage</strong> Positioning<br />

Pro’s:<br />

♦ Resr c<strong>an</strong> be increased by a factor of 2<br />

Output capacitor size c<strong>an</strong> be reduced by a factor of 2.<br />

♦ Simple 3-level ADC (e.g. two comparators) c<strong>an</strong> be used, since<br />

the controlled qu<strong>an</strong>tity V o ’ has small excursions from the reference<br />

bin.<br />

Con’s:<br />

♦ Output current sensing required.<br />

♦ Value of Resr should be known.


Block Diagram of Proposed <strong>Controller</strong> Architecture<br />

with I L sensing <strong>an</strong>d I C estimation<br />

5 bit VID from<br />

microprocessor<br />

Vin<br />

Vref<br />

5,6bit<br />

slow<br />

DAC<br />

digital module<br />

feed<strong>for</strong>ward<br />

L1<br />

I L<br />

= Σ I Li<br />

all phases<br />

Vout<br />

+<br />

_<br />

Ke<br />

Ve<br />

error<br />

amplifier<br />

simple<br />

3,5-level<br />

ADC<br />

PID<br />

SBP<br />

DPWM<br />

-<br />

to other<br />

phases<br />

Re<br />

-<br />

Re*m<br />

Vc<br />

Co/m<br />

-<br />

Re<br />

Co<br />

Vo’ = Vout + Re * Iout<br />

♦ This architecture avoids individual sensing of the different phase currents


Step Response with <strong>Voltage</strong> Positioning <strong>an</strong>d Sub-Bit Positioning<br />

(simulation)<br />

V in<br />

= 5V, V ref<br />

= 2V, R esr<br />

= 3.5mΩ, ∆I = 10A,<br />

res(9-Bit ADC) = 10mV, res(DAC) = 5mV (7 bit + 3 bit dither = 10 bit)<br />

2.04<br />

2.02<br />

2<br />

steady-state<br />

(no limit cycling)<br />

ESR drop<br />

Tr<strong>an</strong>sient be<strong>for</strong>e the<br />

integrator has adjusted<br />

V out<br />

(V)<br />

1.98<br />

1.96<br />

1.94<br />

1.92<br />

1.9<br />

Load step<br />

∆I = 10A<br />

550 600 650 700 750 800 850 900 950 1000<br />

time (usec)


Step Response with <strong>Voltage</strong> Positioning <strong>an</strong>d Sub-Bit Positioning<br />

(test wave<strong>for</strong>m)<br />

V in<br />

= 5V, V ref<br />

= 2V, R esr<br />

= 3.5mΩ, ∆I = 10A,<br />

res(9-Bit ADC) = 10mV, res(DAC) = 5mV (7 bit + 3 bit dither = 10 bit)<br />

steady-state<br />

(no limit cycling)<br />

ESR drop<br />

tr<strong>an</strong>sient be<strong>for</strong>e the<br />

integrator has adjusted<br />

Load step<br />

∆I = 10A


PWM Generation Scheme<br />

— A Ring-Mux Structure


Ring Oscillator <strong>an</strong>d Multiplexer<br />

Detail


Test Wave<strong>for</strong>m (1)<br />

Differential outputs in one of 128 stages(1MHz)


Test Wave<strong>for</strong>m (2)<br />

Outputs of 2 adjacent stages, showing 1 LSB phase shift<br />

Oscillation Freq. = 1MHz, 1LSB = 1µs • 1/2 8 = 4ns<br />

4ns


PWM Generation Scheme 2<br />

— Counter-Comparator Structure <strong>for</strong> Phase 1


D-PWM generation Scheme<br />

Comparison<br />

Scheme Technology Clock<br />

(MHz)<br />

Counter- .5µm 5V 200MHz<br />

Comparator 1 (4x)<br />

Ring-Mux 2 .25µm 2.5V 100K-<br />

1MHz<br />

Area<br />

(µm×µm)<br />

1200×700<br />

(normalized to<br />

600×350)<br />

Power<br />

(µW)<br />

Hardware<br />

Sharing <strong>for</strong><br />

4 Phases<br />

50,000 LOW<br />

350×240 7.5 – 87.5 HIGH<br />

1. D-PWM has 10 bit resolution.<br />

2. D-PWM has effective 11 bit resolution, 8 MSB from the Ring-Mux<br />

structure <strong>an</strong>d its accessory circuit , 3 LSB from Sub-Bit Positioning.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!