22.02.2014 Views

Design of Wind Turbines in an Area with Tropical Cyclones

Design of Wind Turbines in an Area with Tropical Cyclones

Design of Wind Turbines in an Area with Tropical Cyclones

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Design</strong> <strong>of</strong> <strong>W<strong>in</strong>d</strong> <strong>Turb<strong>in</strong>es</strong> <strong>in</strong> <strong>an</strong> <strong>Area</strong> <strong>with</strong> <strong>Tropical</strong> <strong>Cyclones</strong><br />

Niels-Erik Clausen, niels-erik.clausen@risoe.dk, Søren Ott, Niels-Jacob Tarp-Joh<strong>an</strong>sen, Per Nørgård <strong>an</strong>d<br />

Xiaoli Guo Larsén<br />

Risø National Laboratory, P.O. Box 49, DK-4000 Roskilde, Denmark.<br />

Phone +45 4677 5070, Fax +45 4677 5083.<br />

Edmund M. Pagalilaw<strong>an</strong>, pagalilaw<strong>an</strong>@energy.com.ph <strong>an</strong>d Samuel Hern<strong>an</strong>do<br />

PNOC-Energy Development Corporation Energy Center, Fort Bonifacio, Global City, Taguig, Metro<br />

M<strong>an</strong>ila, Philipp<strong>in</strong>es, Phone +632 893 6001.<br />

Summary<br />

The lifetime <strong>an</strong>d cost <strong>of</strong> w<strong>in</strong>d turb<strong>in</strong>es is <strong>in</strong>fluenced by a comb<strong>in</strong>ation <strong>of</strong> fatigue <strong>an</strong>d extreme loads <strong>an</strong>d the applied<br />

design codes. In general w<strong>in</strong>d turb<strong>in</strong>es are designed for 20 years <strong>of</strong> operation us<strong>in</strong>g design st<strong>an</strong>dards which are based<br />

largely on Europe<strong>an</strong> conditions. In areas <strong>with</strong> tropical cyclones application <strong>of</strong> these structural design codes <strong>an</strong>d the<br />

fact that <strong>in</strong>formation on external conditions is limited may result <strong>in</strong> either too high cost or too high risk. The present<br />

paper <strong>an</strong>alyses the design basis <strong>of</strong> w<strong>in</strong>d turb<strong>in</strong>es, when applied <strong>in</strong> areas <strong>of</strong> the world where tropical cyclones occur <strong>in</strong><br />

certa<strong>in</strong> parts <strong>of</strong> the year. <strong>Tropical</strong> cyclones are dist<strong>in</strong>ct different phenomena from ord<strong>in</strong>ary storms <strong>an</strong>d traditional<br />

extreme w<strong>in</strong>d statistics will not take <strong>in</strong>to account the tropical cyclones. A method is developed to characterise tropical<br />

cyclones <strong>an</strong>d to derive the structural design w<strong>in</strong>d speed (U 50 ) at a given site, based on exist<strong>in</strong>g <strong>an</strong>d publicly available<br />

cyclone data. An extreme w<strong>in</strong>d atlas <strong>with</strong> a resolution <strong>of</strong> 1° x 1° is developed for the Northern West Pacific i.e. the<br />

sea around the Philipp<strong>in</strong>es, Taiw<strong>an</strong> <strong>an</strong>d Jap<strong>an</strong>. Verification is <strong>in</strong> progress <strong>of</strong> the actual values <strong>in</strong> the atlas us<strong>in</strong>g data<br />

from ground stations. Based on a simple model <strong>of</strong> the cost <strong>of</strong> a w<strong>in</strong>d turb<strong>in</strong>e the <strong>in</strong>crease <strong>in</strong> cost is estimated at 20-<br />

30% <strong>in</strong> <strong>an</strong> area <strong>with</strong> <strong>an</strong> estimated U 50 <strong>of</strong> 60 m/s compared to a site <strong>with</strong> U 50 <strong>of</strong> 50 m/s.<br />

Introduction <strong>an</strong>d motivation<br />

Modern w<strong>in</strong>d turb<strong>in</strong>es are designed accord<strong>in</strong>g to <strong>in</strong>ternational <strong>an</strong>d national st<strong>an</strong>dards <strong>an</strong>d codes <strong>with</strong> the aim that the<br />

w<strong>in</strong>d turb<strong>in</strong>e c<strong>an</strong> resist the loads <strong>with</strong> a def<strong>in</strong>ed survival probability. These codes <strong>an</strong>d st<strong>an</strong>dards are generally based<br />

on Europe<strong>an</strong> <strong>an</strong>d North Americ<strong>an</strong> conditions <strong>an</strong>d do not <strong>in</strong>clude experience from areas <strong>with</strong> phenomena as tropical<br />

cyclones. In pr<strong>in</strong>ciple it is no problem to design w<strong>in</strong>d turb<strong>in</strong>es that c<strong>an</strong> survive at high w<strong>in</strong>d speeds – even when hit<br />

by a tropical cyclone. The challenge is to cost optimise the w<strong>in</strong>d turb<strong>in</strong>e design for sites <strong>with</strong> risk to be exposed by<br />

cyclones. For that we need data about the characteristics <strong>of</strong> cyclones expressed <strong>in</strong> a format appropriate for w<strong>in</strong>d<br />

turb<strong>in</strong>e design purposes. Moreover there is a need to modify or extend exist<strong>in</strong>g methodologies used <strong>in</strong> the w<strong>in</strong>d<br />

turb<strong>in</strong>e design codes <strong>an</strong>d st<strong>an</strong>dards so that the designs c<strong>an</strong> be optimised to the specific w<strong>in</strong>d conditions <strong>in</strong> cyclone risk<br />

areas.<br />

There is presently little experience <strong>with</strong> assessment <strong>of</strong> safety requirements for w<strong>in</strong>d turb<strong>in</strong>es situated <strong>in</strong> places where<br />

tropical cyclones are likely to occur - like <strong>in</strong> the Philipp<strong>in</strong>es. The paper aims at <strong>an</strong>alys<strong>in</strong>g the way hurric<strong>an</strong>es or<br />

typhoons are characterised <strong>an</strong>d compare that <strong>with</strong> today’s specification <strong>of</strong> the design basis for w<strong>in</strong>d turb<strong>in</strong>es <strong>in</strong> order<br />

to get a better basis for design <strong>in</strong> hurric<strong>an</strong>e areas. This paper deals only <strong>with</strong> the extreme w<strong>in</strong>d speeds experienced <strong>in</strong><br />

cyclones. In this <strong>in</strong>itial work this approach has been chosen because the experience up to date shows that fatal turb<strong>in</strong>e<br />

failures <strong>in</strong> areas <strong>with</strong> tropical cyclones are almost exclusively related to the passage <strong>of</strong> cyclones. So this is the<br />

obvious place to start <strong>in</strong> the attempt to improve structural reliability <strong>of</strong> w<strong>in</strong>d turb<strong>in</strong>es <strong>in</strong> such areas.<br />

In this paper the <strong>in</strong>ternational st<strong>an</strong>dard IEC 61400-1 [1] is used as ma<strong>in</strong> reference, as it is expected to be gradually<br />

accepted world wide. The design philosophy <strong>of</strong> IEC 61400-1 is not signific<strong>an</strong>tly different from most other current<br />

w<strong>in</strong>d turb<strong>in</strong>e st<strong>an</strong>dards. Most current w<strong>in</strong>d turb<strong>in</strong>e st<strong>an</strong>dards <strong>in</strong>clude load cases for operational conditions <strong>an</strong>d<br />

extreme environmental conditions. In order to simplify the specification <strong>of</strong> the w<strong>in</strong>d turb<strong>in</strong>es <strong>an</strong>d to make the<br />

st<strong>an</strong>dard operational a number <strong>of</strong> w<strong>in</strong>d turb<strong>in</strong>e classes are def<strong>in</strong>ed that specifies st<strong>an</strong>dardised w<strong>in</strong>d conditions. The<br />

design <strong>of</strong> w<strong>in</strong>d turb<strong>in</strong>es are determ<strong>in</strong>ed by a mix <strong>of</strong> fatigue loads, loads from extreme environmental conditions (i.e.<br />

storms), <strong>an</strong>d extreme loads dur<strong>in</strong>g operation which is expressed <strong>in</strong> terms <strong>of</strong> both determ<strong>in</strong>istic <strong>an</strong>d r<strong>an</strong>dom process<br />

w<strong>in</strong>d conditions. It might be that extreme operational gusts <strong>an</strong>d other operational conditions def<strong>in</strong>ed <strong>in</strong> the st<strong>an</strong>dards<br />

will not apply to areas <strong>with</strong> tropical cyclones. The IEC 61400-1 states clearly that, “The particular external conditions<br />

def<strong>in</strong>ed <strong>in</strong> classes I, II, <strong>an</strong>d III are neither <strong>in</strong>tended to cover <strong>of</strong>fshore conditions nor w<strong>in</strong>d conditions experienced <strong>in</strong><br />

tropical storms such as hurric<strong>an</strong>es …”. Therefore it c<strong>an</strong>not be expected that designs made accord<strong>in</strong>g to the IEC<br />

61400-1 will ensure sufficient structural reliability <strong>of</strong> turb<strong>in</strong>es <strong>in</strong> regions <strong>of</strong> the world, where tropical cyclones occur.<br />

National build<strong>in</strong>g st<strong>an</strong>dards c<strong>an</strong>not be applied to w<strong>in</strong>d turb<strong>in</strong>e design either. Local st<strong>an</strong>dards will <strong>of</strong> course account<br />

for the severity <strong>of</strong> tropical cyclones where relev<strong>an</strong>t, but they will most likely miss load cases import<strong>an</strong>t for w<strong>in</strong>d<br />

turb<strong>in</strong>e design because they are typically limited to structures that c<strong>an</strong> be assumed to behave statically <strong>in</strong> response to


Europe<strong>an</strong> <strong>W<strong>in</strong>d</strong> Energy Conference, Athens, 27 February – 2 March 2006<br />

w<strong>in</strong>d loads. The fact that w<strong>in</strong>d turb<strong>in</strong>es are equipped <strong>with</strong> a control <strong>an</strong>d safety system leads to a lot <strong>of</strong> different<br />

considerations to be made regard<strong>in</strong>g the possible malfunction <strong>of</strong> the control system, e.g. <strong>in</strong> consequence <strong>of</strong> grid loss,<br />

<strong>an</strong>d the dem<strong>an</strong>ds on structural strength <strong>in</strong> case <strong>of</strong> such malfunction<strong>in</strong>g <strong>of</strong> the control <strong>an</strong>d safety system. IEC 61400-1<br />

has several crucial load cases that address these issues.<br />

The Philipp<strong>in</strong>es lies <strong>in</strong> the northwest Pacific <strong>an</strong>d is thus prone to tropical cyclones – called typhoons <strong>in</strong> this area. On<br />

average, 19 out <strong>of</strong> 22 tropical cyclones form<strong>in</strong>g <strong>in</strong> the area <strong>an</strong>nually enter the ‘Philipp<strong>in</strong>e <strong>Area</strong> <strong>of</strong> Responsibility’.<br />

Typhoons typically hit Samar <strong>an</strong>d Bicol prov<strong>in</strong>ces <strong>in</strong> the eastern part <strong>of</strong> the country <strong>an</strong>d travel west or northwest. In<br />

cases where it takes a western path, Southern Luzon is the area mostly affected. Where it travels northwest, the areas<br />

<strong>of</strong> eastern <strong>an</strong>d north-eastern Luzon are almost always <strong>in</strong> the receiv<strong>in</strong>g end <strong>of</strong> strong w<strong>in</strong>ds <strong>an</strong>d heavy ra<strong>in</strong>fall. This is<br />

ma<strong>in</strong>ly attributed to the Cordillera mounta<strong>in</strong> r<strong>an</strong>ge divid<strong>in</strong>g eastern <strong>an</strong>d western Luzon.<br />

The National Structural Code <strong>of</strong> the Philipp<strong>in</strong>es (NSCP) has taken the frequency <strong>an</strong>d strength <strong>of</strong> the typhoons pass<strong>in</strong>g<br />

through the Philipp<strong>in</strong>es <strong>an</strong>d <strong>in</strong>tegrated this to the design limits for structures <strong>in</strong> the country. The country is divided <strong>in</strong><br />

three zones (Fig. 5 - right), where zone 1 is the most severe. Compar<strong>in</strong>g the extreme w<strong>in</strong>d speed specified <strong>in</strong> the<br />

NSCP <strong>an</strong>d IEC 61400-1, it will be noted that NSCP Zone 2 (west <strong>of</strong> the Cordillera) would require Class 1 w<strong>in</strong>d<br />

turb<strong>in</strong>es <strong>an</strong>d Class S for areas <strong>in</strong> Zone 1 (east <strong>of</strong> the Cordillera).<br />

So far, Northern Luzon is identified as hav<strong>in</strong>g the best w<strong>in</strong>d resource <strong>in</strong> the country. The first w<strong>in</strong>d farm constructed,<br />

North<strong>W<strong>in</strong>d</strong> Power Development Corporation’s 25 MW B<strong>an</strong>gui w<strong>in</strong>d farm, is located <strong>in</strong> the town <strong>of</strong> B<strong>an</strong>gui, Ilocos<br />

Norte, <strong>with</strong><strong>in</strong> Zone 2. It was commissioned between the 2 nd <strong>an</strong>d 3 rd quarter <strong>of</strong> 2005 <strong>an</strong>d has so far experienced two<br />

typhoons. PNOC Energy Development Corporation’s 40 MW Northern Luzon <strong>W<strong>in</strong>d</strong> Power Project – Phase 1<br />

(NLWPP 1) <strong>in</strong> Burgos, Ilocos Norte is about 10 kilometers west <strong>of</strong> the Northw<strong>in</strong>d project <strong>an</strong>d is similarly <strong>with</strong><strong>in</strong><br />

Zone 2. PNOC EDC is also look<strong>in</strong>g at develop<strong>in</strong>g the 46 MW NLWPP 2 (between B<strong>an</strong>gui <strong>an</strong>d NLWPP 1) <strong>an</strong>d the<br />

40 MW Pagudpud <strong>W<strong>in</strong>d</strong> Power Project <strong>in</strong> the town <strong>of</strong> Pagudpud, approximately 30 kilometers from Burgos.<br />

So far, all major w<strong>in</strong>d power projects <strong>in</strong> the Philipp<strong>in</strong>es are located <strong>in</strong> Zone 2 areas, <strong>in</strong>clud<strong>in</strong>g the S<strong>an</strong> Carlos <strong>W<strong>in</strong>d</strong><br />

Power Project <strong>in</strong> Negros Oriental <strong>an</strong>d Tr<strong>an</strong>s-Asia’s Sual <strong>W<strong>in</strong>d</strong> Power Project <strong>in</strong> P<strong>an</strong>gas<strong>in</strong><strong>an</strong>. This is generally<br />

attributed to the follow<strong>in</strong>g factors:<br />

• Lack <strong>of</strong> reliable w<strong>in</strong>d data<br />

• Expected high <strong>in</strong>vestment costs<br />

• Risks associated <strong>with</strong> typhoons<br />

A collaboration between Risoe National Laboratory, PNOC-EDC, IED <strong>an</strong>d Mercapto, is currently <strong>in</strong>vestigat<strong>in</strong>g the<br />

feasibility <strong>of</strong> develop<strong>in</strong>g w<strong>in</strong>d farms <strong>in</strong> Zone 1 areas under a gr<strong>an</strong>t provided by the EC-ASEAN Energy Facility. A<br />

meteorological mast was erected <strong>in</strong> Sta. Ana, Cagay<strong>an</strong> (Zone 1) <strong>in</strong> 2005. The conclusion from this on-go<strong>in</strong>g study<br />

aim at provid<strong>in</strong>g the parameters, at which a w<strong>in</strong>d farm project could become feasible even <strong>with</strong> the risks <strong>of</strong> typhoon.<br />

The cyclone challenges may be h<strong>an</strong>dled <strong>in</strong> different ways. One way is design the w<strong>in</strong>d turb<strong>in</strong>es to cope <strong>with</strong> the<br />

environmental conditions; <strong>an</strong>other way is to try to protect the w<strong>in</strong>d turb<strong>in</strong>e by lower<strong>in</strong>g the w<strong>in</strong>d turb<strong>in</strong>e, while the<br />

cyclone passes. This is <strong>an</strong> option for smaller w<strong>in</strong>d turb<strong>in</strong>es only, <strong>an</strong>d the procedure requires i) that the w<strong>in</strong>d turb<strong>in</strong>e is<br />

prepared for easy <strong>an</strong>d quick lower<strong>in</strong>g <strong>an</strong>d ii) that the w<strong>in</strong>d turb<strong>in</strong>e is lowered <strong>in</strong> due time before the w<strong>in</strong>d speed<br />

becomes too high for safely lower<strong>in</strong>g. There are several problems related to this procedure. In case <strong>of</strong> a cyclone<br />

warn<strong>in</strong>g, the skilled staff orig<strong>in</strong>ally appo<strong>in</strong>ted to carry out the lower<strong>in</strong>g <strong>of</strong> the w<strong>in</strong>d turb<strong>in</strong>es may have to prioritise<br />

their time <strong>an</strong>d effort between various items to secure – <strong>in</strong>clud<strong>in</strong>g their families <strong>an</strong>d personal belong<strong>in</strong>gs. Because the<br />

w<strong>in</strong>d turb<strong>in</strong>es for both personal <strong>an</strong>d equipment safety reasons must be lowered while the w<strong>in</strong>d speed is (still) low <strong>an</strong>d<br />

<strong>in</strong> order to be sure that the w<strong>in</strong>d turb<strong>in</strong>es always have been lowered <strong>in</strong> case <strong>of</strong> a cyclone pass, this will necessarily<br />

lead to some unnecessary lower<strong>in</strong>g operations <strong>an</strong>d m<strong>an</strong>y operational hours will be lost. <strong>Tropical</strong> cyclones are always<br />

accomp<strong>an</strong>ied <strong>with</strong> heavy ra<strong>in</strong>, <strong>an</strong>d access to the w<strong>in</strong>d turb<strong>in</strong>e site may become difficult. Even when the w<strong>in</strong>d turb<strong>in</strong>es<br />

are lowered <strong>an</strong>d secured they may be damaged by fly<strong>in</strong>g objects <strong>in</strong> the strong w<strong>in</strong>d.<br />

In a number <strong>of</strong> Pacific Isl<strong>an</strong>d Countries <strong>in</strong> the South Pacific Region they have experiences <strong>with</strong> the 20 kW Vergnet<br />

w<strong>in</strong>d turb<strong>in</strong>e <strong>an</strong>d this tilt-down procedure, <strong>an</strong>d the general experience is that <strong>in</strong> practice the decision <strong>of</strong> lower<strong>in</strong>g the<br />

w<strong>in</strong>d turb<strong>in</strong>es always comes too late for a safe operation <strong>an</strong>d that the skilled personal at that time are very busy <strong>with</strong><br />

secur<strong>in</strong>g other th<strong>in</strong>gs. At Viti Levu <strong>in</strong> Fiji the national utility comp<strong>an</strong>y Fiji Electricity Authority (FEA) is presently<br />

construct<strong>in</strong>g a 10 MW w<strong>in</strong>d farm consist<strong>in</strong>g <strong>of</strong> 37 <strong>of</strong> 275 kW Vergnet w<strong>in</strong>d turb<strong>in</strong>es. An org<strong>an</strong>isation <strong>with</strong> a cyclone<br />

warn<strong>in</strong>g system will be established <strong>an</strong>d teams <strong>of</strong> local staff will be tra<strong>in</strong>ed <strong>in</strong> lower<strong>in</strong>g <strong>an</strong>d secur<strong>in</strong>g the w<strong>in</strong>d turb<strong>in</strong>es.<br />

The aim is to be able to lower<strong>in</strong>g all w<strong>in</strong>d turb<strong>in</strong>es <strong>with</strong><strong>in</strong> 10 hours. This project will be <strong>an</strong> <strong>in</strong>terest<strong>in</strong>g full-scale test if<br />

the procedure is a realistic approach.<br />

The present work will focus on develop<strong>in</strong>g a method for design <strong>of</strong> large commercial w<strong>in</strong>d turb<strong>in</strong>es for areas <strong>with</strong><br />

tropical cyclones.<br />

2


Europe<strong>an</strong> <strong>W<strong>in</strong>d</strong> Energy Conference, Athens, 27 February – 2 March 2006<br />

<strong>Tropical</strong> cyclones<br />

Figure 1: Examples <strong>of</strong> satellite images <strong>of</strong> fully developed tropical cyclones.<br />

<strong>Tropical</strong> cyclones are common <strong>in</strong> the northern West Pacific, <strong>in</strong> particular around the Philipp<strong>in</strong>es <strong>an</strong>d Jap<strong>an</strong>, where<br />

they cause much damage to life <strong>an</strong>d property. In this section we outl<strong>in</strong>e a simple <strong>an</strong>d practical method to derive<br />

extreme w<strong>in</strong>d statistics from available meteorological <strong>in</strong>formation, for a more detailed discussion we refer to Ott [2].<br />

The aim is to estimate the w<strong>in</strong>d speed <strong>with</strong> a recurrence <strong>of</strong> 50 years (the fifty year w<strong>in</strong>d) U 50 at <strong>an</strong>y given location.<br />

The method is applicable to regions where extreme w<strong>in</strong>ds are caused by tropical cyclones.<br />

<strong>Cyclones</strong> are circulat<strong>in</strong>g, low pressure w<strong>in</strong>d systems. A tropical cyclones (TC) has a warm centre surrounded by<br />

relatively colder air <strong>an</strong>d, contrary to extra-tropical cyclones, there have no fronts. The energiz<strong>in</strong>g mech<strong>an</strong>ism <strong>in</strong> TCs<br />

is the condensation <strong>of</strong> water vapour supplied by sufficiently hot sea surface. Ris<strong>in</strong>g, humid air causes the formation <strong>of</strong><br />

<strong>in</strong>tense, local thunderstorms which tend to concentrate <strong>in</strong> spiral shaped ra<strong>in</strong> b<strong>an</strong>ds. In case <strong>of</strong> l<strong>an</strong>dfall the supply <strong>of</strong><br />

water vapour is cut <strong>an</strong>d the cyclone deteriorates fast, but it c<strong>an</strong> still end<strong>an</strong>ger a zone along the coastl<strong>in</strong>e several<br />

hundreds <strong>of</strong> kilometres wide. The central region is covered by a dense overcast, but just at the centre there usually is a<br />

circular spot, the 'eye', which is free <strong>of</strong> clouds. Inside the eye w<strong>in</strong>d speeds are moderate. This is <strong>in</strong> contrast to the edge<br />

<strong>of</strong> the eye, the eyewall, where maximum w<strong>in</strong>d speeds are found. Figure 1 shows a few satellite pictures <strong>of</strong> typical,<br />

fully developed tropical cyclones. The circulatory motion results from a bal<strong>an</strong>ce between the centripetal acceleration,<br />

the radial pressure gradient <strong>an</strong>d, to a lesser extent, the Coriolis force <strong>an</strong>d surface friction. The velocity generally<br />

decreases <strong>with</strong> height because the pressure gradient decreases. Near the surface the friction takes over caus<strong>in</strong>g the<br />

opposite trend so that the velocity has a maximum found typically at <strong>an</strong> elevation <strong>of</strong> about 500m. Below the velocity<br />

maximum friction makes the w<strong>in</strong>d turn towards the centre, but near the eyewall it is caught by a vertically spirall<strong>in</strong>g<br />

jet extend<strong>in</strong>g 5-10~km up <strong>in</strong>to the troposphere. At the top the jet 'spills over' <strong>an</strong>d splits <strong>in</strong>to <strong>an</strong> outgo<strong>in</strong>g jet <strong>an</strong>d a jet<br />

go<strong>in</strong>g back <strong>in</strong>to the eye. The air <strong>in</strong>side the eye is therefore generally subsid<strong>in</strong>g (descend<strong>in</strong>g) <strong>an</strong>d flow<strong>in</strong>g out towards<br />

the eyewall along the surface. This expla<strong>in</strong>s why there are no clouds <strong>in</strong> the eye.<br />

The dimensions <strong>of</strong> the primary vortex (overall circulation) c<strong>an</strong> be qu<strong>an</strong>tified by the eyewall radius R w which is<br />

typically about 50km. Occasionally the primary vortex is overlayed by smaller meso-vortices which are a few<br />

kilometres wide. Meso-vortices are found <strong>in</strong> region near the eyewall <strong>an</strong>d c<strong>an</strong> give rise to local enh<strong>an</strong>cement <strong>of</strong> the<br />

w<strong>in</strong>d speed <strong>with</strong> rapidly ch<strong>an</strong>g<strong>in</strong>g w<strong>in</strong>d direction. Some TCs even spawn tornados. These are even smaller vortices,<br />

about 100-300m <strong>in</strong> diameter, which are generated by w<strong>in</strong>d shear. Most tornados are found near the cost where a TC<br />

3


Europe<strong>an</strong> <strong>W<strong>in</strong>d</strong> Energy Conference, Athens, 27 February – 2 March 2006<br />

makes l<strong>an</strong>dfall <strong>an</strong>d they are not conf<strong>in</strong>ed to the eyewall. A tornado on top <strong>of</strong> a TC has devastat<strong>in</strong>g effects, but due to<br />

its smallness ch<strong>an</strong>ces <strong>of</strong> be<strong>in</strong>g struck by a tornado <strong>in</strong>side a TC is relatively small. Accord<strong>in</strong>g to Novl<strong>an</strong> <strong>an</strong>d Gray [3]<br />

about 25% US hurric<strong>an</strong>es spawn tornados <strong>an</strong>d <strong>in</strong> these the material damage caused by tornados amounts to less th<strong>an</strong><br />

half a percent.<br />

The mech<strong>an</strong>isms that control tropical cyclone genesis are not fully understood, <strong>an</strong>d there is no expl<strong>an</strong>ation <strong>of</strong> why<br />

typhoons are particularly frequent <strong>in</strong> the western North Pacific. It c<strong>an</strong> be shown that tropical cyclones c<strong>an</strong>not form<br />

unless the sea temperature exceeds 26°C, but this appears not to be the only condition for formation. In fact there are<br />

major parts <strong>of</strong> the tropics, <strong>with</strong> plenty <strong>of</strong> warm sea, where tropical cyclones never occur. These <strong>in</strong>clude the Eastern<br />

South Pacific, the South Atl<strong>an</strong>tic <strong>an</strong>d a ten degree wide strip around the Equator.<br />

Best tracks<br />

<strong>Tropical</strong> cyclones are monitored closely by meteorologists both at national <strong>an</strong>d <strong>in</strong>ternational levels. Regional warn<strong>in</strong>g<br />

centers are org<strong>an</strong>ized by the World Meteorological Org<strong>an</strong>ization (WMO) <strong>in</strong> the framework <strong>of</strong> the World Weather<br />

Watch (WWW) Programme. Analyses <strong>an</strong>d forecasts <strong>of</strong> tropical cyclones <strong>in</strong> the western North Pacific are provided by<br />

the RSMC Tokyo-Typhoon Center, which is operated by the Jap<strong>an</strong>ese Meteorological Agency (JMA). Independent<br />

forecasts for the region are made by the US navy at the Jo<strong>in</strong>t Typhoon Warn<strong>in</strong>g Center (JTWC) on Hawaii. Historic<br />

typhoon data are available from these two sources <strong>in</strong> the form <strong>of</strong> so-called 'best tracks'. These are constructed on the<br />

basis <strong>of</strong> all available <strong>in</strong>formation, 'h<strong>in</strong>dcast<strong>in</strong>g' rather th<strong>an</strong> forecast<strong>in</strong>g. The amount <strong>of</strong> detail given <strong>in</strong> track records<br />

vary, but as a m<strong>in</strong>imum they conta<strong>in</strong> the center position <strong>an</strong>d the central pressure (at sea level) at 6 hours <strong>in</strong>tervals.<br />

The JMA track records cover all tropical cyclones north <strong>of</strong> the equator <strong>in</strong> the region between the 100E <strong>an</strong>d 180E<br />

meridi<strong>an</strong>s (the western North Pacific <strong>an</strong>d the South Ch<strong>in</strong>a Sea) for the period 1951-2004. From 1977 onwards the<br />

'maximum susta<strong>in</strong>ed w<strong>in</strong>d' represent<strong>in</strong>g the maximum ten m<strong>in</strong>ute average w<strong>in</strong>d speed measured ten meter above<br />

surface is also given as well as the radii to 50 knot <strong>an</strong>d 30 knot w<strong>in</strong>d speeds (also ten m<strong>in</strong>utes averages at ten meter).<br />

The JTWC tracks conta<strong>in</strong> central pressures <strong>an</strong>d positions for the period 1945-2003. For 2001-2003 the follow<strong>in</strong>g data<br />

are also <strong>in</strong>cluded: ambient pressure (at the last closed isobar), radius to the last closed isobar, maximum susta<strong>in</strong>ed<br />

w<strong>in</strong>d, radius <strong>of</strong> maximum w<strong>in</strong>d <strong>an</strong>d radius <strong>of</strong> 34 knot surface w<strong>in</strong>d. Positions are given to the nearest tenths <strong>of</strong> a<br />

degree, w<strong>in</strong>d speeds are usually rounded to the nearest five knots (i.e. 35,40,55 knots) <strong>an</strong>d dist<strong>an</strong>ces to the nearest 5<br />

nautical miles. This should not be taken as <strong>an</strong> <strong>in</strong>dication <strong>of</strong> the degree <strong>of</strong> uncerta<strong>in</strong>ty <strong>of</strong> the numbers.<br />

The amount <strong>an</strong>d quality <strong>of</strong> the <strong>in</strong>formation on which the best tracks are estimated is vary<strong>in</strong>g. There are generally few<br />

conventional surface observations to rely on s<strong>in</strong>ce met stations, platforms <strong>an</strong>d buoys are relatively scarce <strong>in</strong> the<br />

oce<strong>an</strong>ic region. Velocities at ten meter elevation are therefore <strong>in</strong>ferred from other data. These <strong>in</strong>clude satellite<br />

pictures, reconnaiss<strong>an</strong>ce aircraft, radar <strong>an</strong>d radiosonde observations. Of these the reconnaiss<strong>an</strong>ce aircraft data are the<br />

most detailed, but have not available for the NW Pacific s<strong>in</strong>ce 1987, where US military reconnaiss<strong>an</strong>ce ceased. Most<br />

<strong>of</strong> the best track data is ga<strong>in</strong>ed by satellite image <strong>in</strong>terpretation us<strong>in</strong>g the Dvorak [4], [5] <strong>an</strong>d [6] method, <strong>an</strong>d listed<br />

central pressures <strong>an</strong>d the maximum susta<strong>in</strong>ed w<strong>in</strong>d speeds are <strong>in</strong> fact rarely, if ever directly measured.<br />

The JMA best tracks for the period 1977-2004 to were used for the extreme w<strong>in</strong>d <strong>an</strong>alysis s<strong>in</strong>ce they conta<strong>in</strong> size<br />

<strong>in</strong>formation.<br />

The Holl<strong>an</strong>d model<br />

Fig.2 Schematics <strong>of</strong> the Holl<strong>an</strong>d velocity pr<strong>of</strong>ile.<br />

Holl<strong>an</strong>d [7], see also Harper & Holl<strong>an</strong>d [8], proposed a simple tropical cyclone model, which we have used to<br />

<strong>in</strong>terpret best track data. The model is based on the gradient w<strong>in</strong>d V g which is def<strong>in</strong>ed so that the radial component <strong>of</strong><br />

the acceleration bal<strong>an</strong>ces the pressure gradient <strong>an</strong>d the Coriolis force:<br />

4


Europe<strong>an</strong> <strong>W<strong>in</strong>d</strong> Energy Conference, Athens, 27 February – 2 March 2006<br />

2 r ∂P<br />

Vg = − frV g<br />

ρ ∂r<br />

(1)<br />

where f is the Coriolis parameter <strong>an</strong>d ρ is taken to be const<strong>an</strong>t (=1.15kg/m 3 ). Investigations by Willoughby [9] show<br />

that gradient bal<strong>an</strong>ce <strong>in</strong>deed exists at the flight levels <strong>of</strong> reconnaiss<strong>an</strong>ce aircraft. When the surface pressure gradient<br />

is <strong>in</strong>serted, V g corresponds to a w<strong>in</strong>d that would have been <strong>in</strong> the absence <strong>of</strong> friction. In figure 3, reproduced from<br />

Fr<strong>an</strong>kl<strong>in</strong>, Black <strong>an</strong>d Valde [10], it corresponds to neglect<strong>in</strong>g the lower 500m <strong>an</strong>d extrapolate the upper part <strong>of</strong> the<br />

pr<strong>of</strong>ile to the surface. Thus the ratio K m between the surface w<strong>in</strong>d at 10m <strong>an</strong>d the gradient w<strong>in</strong>d c<strong>an</strong> be read from the<br />

plot. Very conveniently we f<strong>in</strong>d K m = 0.7 both at the eyewall <strong>an</strong>d at the outer edge, so this values is taken to be<br />

representative for the whole pr<strong>of</strong>ile. It is <strong>in</strong> reasonable agreement <strong>with</strong> Harper [11] who suggests K m = 0.7.<br />

Figure 3. Hurric<strong>an</strong>e w<strong>in</strong>d pr<strong>of</strong>iles measured <strong>with</strong> dropsondes. From Fr<strong>an</strong>kl<strong>in</strong>, Black <strong>an</strong>d Valde [10].<br />

Holl<strong>an</strong>d proceeds by prescrib<strong>in</strong>g the pressure pr<strong>of</strong>ile:<br />

P r)<br />

= P<br />

c<br />

+ ( P<br />

n<br />

⎡ ⎛<br />

− Pc<br />

) exp⎢-<br />

⎜<br />

⎣ ⎝<br />

5<br />

R 0<br />

( (2)<br />

where P c is the central pressure, P n is the ambient pressure def<strong>in</strong>ed e.g. as the pressure correspond<strong>in</strong>g to the last<br />

closed isobar, R 0 is a characteristic length that essentially co<strong>in</strong>cides <strong>with</strong> the eyewall radius R w , <strong>an</strong>d B is a<br />

dimensionless shape parameter. Holl<strong>an</strong>d found good agreement <strong>with</strong> data us<strong>in</strong>g this parametrization.<br />

The JMA track data list R 50 , the radius to 50 knots w<strong>in</strong>d speed, the central pressure P c <strong>an</strong>d the maximum susta<strong>in</strong>ed<br />

w<strong>in</strong>d V max at 10m. The ambient pressure P n is unknown, but it is conventional to adopt the value P n = 1010 hPa <strong>in</strong> the<br />

NW Pacific. Us<strong>in</strong>g ρ =1.15 kg/m 3 <strong>an</strong>d K m = 0.7 we c<strong>an</strong> determ<strong>in</strong>e the model parameters B <strong>an</strong>d R 0 .<br />

A comprehensive validation <strong>of</strong> Holl<strong>an</strong>d's model was made recently by Willoughby [12] who compared it <strong>with</strong> aircraft<br />

measurements <strong>of</strong> almost 500 hurric<strong>an</strong>e cases. Although the validation left some room for improvements, the model<br />

performed quite well. Fitted model w<strong>in</strong>d speed pr<strong>of</strong>iles reproduce measurements <strong>with</strong><strong>in</strong> <strong>an</strong> rms error <strong>of</strong> 4 m/s.<br />

Statistical methods<br />

In order to estimate the fifty year w<strong>in</strong>d U 50 at some given location we use the best track data <strong>an</strong>d the Holl<strong>an</strong>d model<br />

to estimate the maximum w<strong>in</strong>d for each <strong>of</strong> the typhoons that passed. Only w<strong>in</strong>d speeds exceed<strong>in</strong>g the cut-<strong>of</strong>f value<br />

U cut = 50 knots = 25.7 m/s are kept <strong>an</strong>d from these values a set <strong>of</strong> <strong>an</strong>nual maxima is formed. 50 knots is the w<strong>in</strong>d<br />

speed limit used by JMA to qualify a TC as a typhoon. If the maximum w<strong>in</strong>d speed is less th<strong>an</strong> 50 knots, R 50 , has no<br />

value <strong>an</strong>d a Holl<strong>an</strong>d w<strong>in</strong>d pr<strong>of</strong>ile c<strong>an</strong>not be estimated. Thus the data is censured <strong>an</strong>d there is not necessarily a<br />

maximum for each year. In case <strong>an</strong> <strong>an</strong>nual maximum is miss<strong>in</strong>g we have found it convenient to assign the cut-<strong>of</strong>f<br />

value. Follow<strong>in</strong>g convention we assume that the <strong>an</strong>nual maxima are <strong>in</strong>dependent <strong>an</strong>d follow a Gumbel distribution:<br />

⎡ ⎡ V - β ⎤⎤<br />

(V ) = exp⎢−<br />

exp<br />

⎢<br />

-<br />

⎥⎥<br />

⎣ ⎣ α ⎦⎦<br />

r<br />

F (3)<br />

Where α <strong>an</strong>d β are the two Gumbel parameters. Due to the censor<strong>in</strong>g <strong>an</strong>d the assignment <strong>of</strong> the value U cut to miss<strong>in</strong>g<br />

values we have F(V)=0 for V< U cut . It c<strong>an</strong> be shown that the fifty year w<strong>in</strong>d c<strong>an</strong> be determ<strong>in</strong>ed as<br />

⎞⎤<br />

⎟⎥<br />

⎠⎦


Europe<strong>an</strong> <strong>W<strong>in</strong>d</strong> Energy Conference, Athens, 27 February – 2 March 2006<br />

U<br />

50<br />

= β + α log 50<br />

(4)<br />

In order to determ<strong>in</strong>e α <strong>an</strong>d β from data we use a vari<strong>an</strong>t <strong>of</strong> Abild’s [13] method suitable for censored data. More<br />

details are given <strong>in</strong> Ott [2], where the method is tested by Monte Carlo simulation <strong>an</strong>d found superior to the<br />

traditional Gumbel plot method. One major adv<strong>an</strong>tage <strong>of</strong> the method is that it allows the Gumbel parameters to be<br />

estimated from <strong>an</strong>nual maxima from a group <strong>of</strong> locations rather th<strong>an</strong> all comply<strong>in</strong>g <strong>with</strong> the same Gumbel<br />

parameters, even if the <strong>an</strong>nual maxima at different locations are correlated. In practice a square mesh <strong>of</strong> observation<br />

po<strong>in</strong>ts <strong>with</strong> one-by-one degree cells is made <strong>an</strong>d groups <strong>of</strong> 9 po<strong>in</strong>ts, cover<strong>in</strong>g two-by-two degree squares, are used for<br />

the <strong>an</strong>alysis. The estimated Gumbel parameters vary smoothly <strong>with</strong> position.<br />

Figure 4 shows the result <strong>of</strong> the <strong>an</strong>alysis. It should be noted that the U 50 values correspond to ten m<strong>in</strong>utes average<br />

w<strong>in</strong>d speeds measured ten meter above a sea surface, even at locations that are actually over l<strong>an</strong>d. Much <strong>of</strong> the red<br />

area, <strong>with</strong> U 50 ,< 35m/s, is actually never hit by typhoons so the <strong>an</strong>alysis does not apply there. The ‘typhoon ally’<br />

between Jap<strong>an</strong> <strong>an</strong>d the Philipp<strong>in</strong>es is prom<strong>in</strong>ent. Figures 5 shows a close-up <strong>of</strong> the Philipp<strong>in</strong>es (left) along <strong>with</strong> a map<br />

taken from the Philipp<strong>in</strong>e National Structural Code (right). The code def<strong>in</strong>es the fifty year w<strong>in</strong>d speed <strong>in</strong> terms <strong>of</strong> a 3<br />

second gust (10 m over l<strong>an</strong>d) so the numbers are not directly comparable. However, the general shape <strong>of</strong> the zones <strong>in</strong><br />

the two maps is consistent.<br />

Figure 4. Extreme w<strong>in</strong>d atlas for the NW Pacific from typhoon track data (left). The numbers <strong>in</strong>dicate<br />

<strong>in</strong>tervals <strong>in</strong> m/s (e.g. the green area covers 45-55 m/s). Right is shown the extreme w<strong>in</strong>d atlas derived<br />

from NCEP/NCAR data.<br />

Figure 5. Left: close-up <strong>of</strong> the <strong>W<strong>in</strong>d</strong> atlas (as <strong>in</strong> Fig. 4-left). Right: <strong>W<strong>in</strong>d</strong> zones accord<strong>in</strong>g to the<br />

Philipp<strong>in</strong>e National Structural Code [16].<br />

6


Europe<strong>an</strong> <strong>W<strong>in</strong>d</strong> Energy Conference, Athens, 27 February – 2 March 2006<br />

Impact on design basis<br />

The fundamental question to <strong>an</strong>swer when decid<strong>in</strong>g what should be the consequence <strong>of</strong> tropical cyclone conditions on<br />

design requirements is if it is at all economically feasible to design turb<strong>in</strong>es to survive such cyclones. In this paper<br />

this question is not addressed <strong>in</strong> detail, however a simple model for construction costs is put up that would be helpful<br />

<strong>in</strong> the evaluation <strong>of</strong> feasibility. There are two ma<strong>in</strong> concerns regard<strong>in</strong>g extreme loads <strong>in</strong> tropical cyclones:<br />

What should be the safety factor to associate <strong>with</strong> the 50-yr w<strong>in</strong>d speed?<br />

What should be the dem<strong>an</strong>ds to the control <strong>an</strong>d safety system?<br />

To take the later first; should that case occur that the eye <strong>of</strong> the cyclone passes over the turb<strong>in</strong>e site the dem<strong>an</strong>ds on<br />

yaw speed c<strong>an</strong> potentially be high because <strong>of</strong> the possibly steep descent <strong>of</strong> the w<strong>in</strong>d speed as one crosses though the<br />

eyewall <strong>in</strong>to the eye. After that follows a 180° ch<strong>an</strong>ge <strong>of</strong> w<strong>in</strong>d direction as the eyewall on the other side <strong>of</strong> the eye<br />

approaches. The ch<strong>an</strong>ge <strong>in</strong> w<strong>in</strong>d direction c<strong>an</strong> be rather drastic if the w<strong>in</strong>d speed grows rapidly close to the eyewall.<br />

Initial <strong>in</strong>vestigations <strong>of</strong> the issue has been made that seem to <strong>in</strong>dicate that the controls <strong>of</strong> modern w<strong>in</strong>d turb<strong>in</strong>es c<strong>an</strong><br />

keep up <strong>with</strong> the w<strong>in</strong>d direction ch<strong>an</strong>ge as long as they are powered.<br />

The first concern listed relates to the level <strong>of</strong> structural safety provided that the control <strong>an</strong>d safety system performs as<br />

required. This is ensured through the specification <strong>of</strong> the characteristic w<strong>in</strong>d speed, which is the 50-yr w<strong>in</strong>d speed <strong>in</strong><br />

the IEC 61400-1, <strong>in</strong> comb<strong>in</strong>ation <strong>with</strong> the safety factor. The safety factor is needed to provide higher reliability th<strong>an</strong><br />

what is implied simply by design<strong>in</strong>g to survive the 50-w<strong>in</strong>d speed. Said heuristically the purpose <strong>of</strong> the safety factor<br />

is to ensure design c<strong>an</strong> survive loads <strong>of</strong> a longer return period th<strong>an</strong> 50 yrs, say 1500 yrs. That it, said quite<br />

simplistically that the load factor is <strong>in</strong> a certa<strong>in</strong> sense the ratio <strong>of</strong> the 1500-y r load to the 50-yr load. Hav<strong>in</strong>g this<br />

simplistic underst<strong>an</strong>d<strong>in</strong>g <strong>in</strong> m<strong>in</strong>d it is obvious that climates <strong>with</strong> higher variability <strong>of</strong> extreme w<strong>in</strong>d speeds th<strong>an</strong> others<br />

must have higher safety factors if the same reliability is desired. In the follow<strong>in</strong>g we will demonstrate that this is<br />

<strong>in</strong>deed the case for the typhoons pass<strong>in</strong>g the Philipp<strong>in</strong>es relative to the North Europe<strong>an</strong> climate <strong>an</strong>d similar climate<br />

which have been prime concern <strong>in</strong> the formulation <strong>of</strong> IEC 61400-1. So, there are two parameters that govern design<br />

loads: 50-yr w<strong>in</strong>d speed that signifies the level <strong>of</strong> extreme w<strong>in</strong>d speeds <strong>an</strong>d the load factor that accounts for the<br />

<strong>in</strong>herent variability <strong>of</strong> the extreme w<strong>in</strong>d speeds. The variability will <strong>in</strong> the follow<strong>in</strong>g also be termed uncerta<strong>in</strong>ty,<br />

because it represents the uncerta<strong>in</strong>ty the designer has regard<strong>in</strong>g the likel<strong>in</strong>ess that the structure will not survive<br />

extreme w<strong>in</strong>d speeds. In the follow<strong>in</strong>g sections a prelim<strong>in</strong>ary <strong>in</strong>vestigation <strong>of</strong> the need for ch<strong>an</strong>ge <strong>of</strong> safety factors if<br />

a level <strong>of</strong> reliability level similar to that <strong>in</strong>tended <strong>in</strong> the IEC 61400-1 should be dem<strong>an</strong>ded <strong>in</strong> the Philipp<strong>in</strong>es. It is<br />

stressed that this work rests on the approach to extreme value statistics <strong>in</strong> typhoons described <strong>in</strong> the previous parts <strong>of</strong><br />

the paper. This work must be verified aga<strong>in</strong>st ground measurements before the conclusions reach below c<strong>an</strong> be<br />

considered to be solid. For <strong>in</strong>st<strong>an</strong>ce it is noted that the uncerta<strong>in</strong>ty <strong>in</strong> determ<strong>in</strong>ation <strong>of</strong> pressure etc. from satellite<br />

images is considerable, <strong>an</strong>d may well exceed what c<strong>an</strong> be covered by safety factors. First a simple reliability<br />

assessment for a typical North Europe<strong>an</strong> environment is considered. Next the Philipp<strong>in</strong>e typhoon environment is<br />

considered lead<strong>in</strong>g to the calibration <strong>of</strong> the load safety factor.<br />

The reliability assessment consists <strong>in</strong> <strong>an</strong> evaluation <strong>of</strong> the probability <strong>of</strong> structural failure. To this end one needs <strong>an</strong><br />

equation for the failure limit state, a probability model describ<strong>in</strong>g the probability distributions <strong>of</strong> all relev<strong>an</strong>t variables<br />

<strong>in</strong>fluenc<strong>in</strong>g the reliability, i.e. w<strong>in</strong>d speeds, material strengths, <strong>an</strong>d model uncerta<strong>in</strong>ties. Further one need to def<strong>in</strong>e<br />

characteristic values for materials <strong>an</strong>d for loads (i.e. the 50-yr me<strong>an</strong> w<strong>in</strong>d speed), <strong>an</strong>d one needs the relev<strong>an</strong>t load <strong>an</strong>d<br />

strength safety factors. The model assumption made here has been adopted from [14] (<strong>of</strong> which a short presentation is<br />

given <strong>in</strong> [15]). The reader is referred to these references on the details <strong>of</strong> the model. Apply<strong>in</strong>g this so-called<br />

Davenport model the failure limit state is expressed as<br />

2<br />

fy = c<strong>in</strong>fUhub (1+<br />

2 kpIcamp<br />

)<br />

1 42443<br />

c<br />

dyn<br />

(5)<br />

where the factor c <strong>in</strong>f is <strong>an</strong> <strong>in</strong>fluence number relat<strong>in</strong>g the load to the product U 2 c dyn <strong>of</strong> the me<strong>an</strong> w<strong>in</strong>d pressure <strong>an</strong>d the<br />

dynamic response factor. The <strong>in</strong>fluence number depends on the design <strong>of</strong> the turb<strong>in</strong>e; among others c <strong>in</strong>f depends on<br />

the geometry <strong>of</strong> tower <strong>an</strong>d the blades, <strong>an</strong>d the lift <strong>an</strong>d drag coefficients. It also accounts for the air density ρ. The<br />

factor c dyn is the dynamic response factor given by the peak factor k p , the along w<strong>in</strong>d turbulence <strong>in</strong>tensity I 1 , <strong>an</strong>d the<br />

factor c amp which accounts for dynamic amplification <strong>an</strong>d for admitt<strong>an</strong>ce. Because the admitt<strong>an</strong>ce depends on lift <strong>an</strong>d<br />

drag coefficients, c amp depends on the design <strong>of</strong> the turb<strong>in</strong>e just like c <strong>in</strong>f does. F<strong>in</strong>ally the peak factor depends on the<br />

response frequency f 0 imply<strong>in</strong>g that k p depends on the design too. The expression <strong>in</strong> Eq. (5) is believed to represent<br />

well the tower bottom response but it is not necessarily well-suited for blades. F<strong>in</strong>ally f y denotes a generic material<br />

strength. It turns out after some m<strong>an</strong>ipulations that the reliability c<strong>an</strong> be expressed by<br />

1+<br />

X T<br />

Pr{survival} = Pr{ γ γ ≥<br />

}<br />

2<br />

2<br />

dyn<br />

m fFX<br />

%<br />

y m<br />

U% XEa<br />

(6)<br />

7


Europe<strong>an</strong> <strong>W<strong>in</strong>d</strong> Energy Conference, Athens, 27 February – 2 March 2006<br />

In this expression the material strength has been substituted by its r<strong>an</strong>dom variable counterpart <strong>an</strong>d normalised by its<br />

characteristic value. Likewise <strong>of</strong> the me<strong>an</strong> w<strong>in</strong>d speed U. An additional three uncerta<strong>in</strong>ty variables, X m , X Ea , <strong>an</strong>d X dyn<br />

have been <strong>in</strong>troduced to account for uncerta<strong>in</strong>ty <strong>in</strong> modell<strong>in</strong>g <strong>of</strong> material strength, uncerta<strong>in</strong>ty <strong>in</strong> modell<strong>in</strong>g <strong>of</strong> w<strong>in</strong>d<br />

loads, <strong>an</strong>d uncerta<strong>in</strong>ty <strong>in</strong> modell<strong>in</strong>g <strong>of</strong> dynamic response, respectively. Further the uncerta<strong>in</strong>ty related to the statistical<br />

estimation <strong>of</strong> extreme w<strong>in</strong>d speeds etc. has been <strong>in</strong>cluded <strong>in</strong> the me<strong>an</strong> w<strong>in</strong>d speed variable U. F<strong>in</strong>ally the safety factor<br />

γ f <strong>an</strong>d γ m for loads <strong>an</strong>d material strengths, respectively, are there too. The distributional assumptions are listed <strong>in</strong><br />

Table 1. It is noted that for the Europe<strong>an</strong> environment it is the distribution <strong>of</strong> the me<strong>an</strong> w<strong>in</strong>d speed squared i.e. the<br />

me<strong>an</strong> w<strong>in</strong>d pressure that is assumed to be Gumbel. For the typhoon climate it is the me<strong>an</strong> w<strong>in</strong>d speed that is assumed<br />

Gumbel distributed. This may limit the possibilities <strong>of</strong> compar<strong>in</strong>g the reliabilities evaluated <strong>in</strong> the two cases, <strong>an</strong>d it<br />

may underestimate the reliability for the typhoon case. In other words the safety factor arrived at <strong>in</strong> the typhoon case<br />

may be too large. It is noted that the coefficient <strong>of</strong> vari<strong>an</strong>ce <strong>of</strong> the squared me<strong>an</strong> w<strong>in</strong>d speed for the Europe<strong>an</strong><br />

environment is similar to the coefficient <strong>of</strong> vari<strong>an</strong>ce for the me<strong>an</strong> w<strong>in</strong>d speed <strong>in</strong> the typhoon case. This reflects the<br />

higher uncerta<strong>in</strong>ty <strong>of</strong> the extreme w<strong>in</strong>ds generated by typhoons.<br />

Table 1: Distribution assumptions for uncerta<strong>in</strong>ty model<br />

Name Description Type Bias CoV<br />

U %<br />

Europe: Annual max 10-m<strong>in</strong> me<strong>an</strong> w<strong>in</strong>d squared<br />

<strong>an</strong>d normalized by characteristic value<br />

The Philipp<strong>in</strong>es: Annual max 10-m<strong>in</strong> me<strong>an</strong> w<strong>in</strong>d<br />

normalized by characteristic value<br />

Char.<br />

value<br />

Gumbel 1.00 32% 98%<br />

Gumbel 1.00 31% 98%<br />

X Ea Model uncerta<strong>in</strong>ty, aerodynamic loads Lognormal 1.00 10% Me<strong>an</strong><br />

T Normalized extreme turbulent response Gumbel 1.00 10% Me<strong>an</strong><br />

X<br />

dyn Model uncerta<strong>in</strong>ty Lognormal 1.00 5% Me<strong>an</strong><br />

F % y<br />

Normalized yield strength Lognormal 1.13 5% 5%<br />

X m Model uncerta<strong>in</strong>ty, resist<strong>an</strong>ce Lognormal 1.11 8.5% Me<strong>an</strong><br />

Calibrat<strong>in</strong>g now leads to the conclusion that a load safety factor <strong>of</strong> 2 is required if the same reliability shall be<br />

obta<strong>in</strong>ed <strong>in</strong> the typhoon case as <strong>in</strong> the case <strong>of</strong> a Europe<strong>an</strong> climate. As expla<strong>in</strong>ed, the fundamental differences <strong>in</strong> the<br />

uncerta<strong>in</strong>ty models applied for the Europe<strong>an</strong> <strong>an</strong>d the Philipp<strong>in</strong>e environment implies that it may be assumed that a<br />

safety factor for the typhoon condition may be <strong>in</strong> the r<strong>an</strong>ge from 1.7 to 2.0.<br />

If it is decided to aim at survival <strong>of</strong> turb<strong>in</strong>es <strong>in</strong> cyclones up to certa<strong>in</strong> strengths a special w<strong>in</strong>d turb<strong>in</strong>e class should be<br />

devised that def<strong>in</strong>es 50-yr w<strong>in</strong>d speed <strong>an</strong>d safety factors. The authors are aware that steps are taken <strong>in</strong> Jap<strong>an</strong> to<br />

address problems similar to those discussed here – also <strong>in</strong> the framework <strong>of</strong> IEC 61400-1. The Jap<strong>an</strong>ese code<br />

committee seems to aim at <strong>in</strong>creas<strong>in</strong>g 50-yr w<strong>in</strong>d speed <strong>an</strong>d probably the load factor as well <strong>an</strong>d def<strong>in</strong>e a special<br />

Jap<strong>an</strong>ese w<strong>in</strong>d turb<strong>in</strong>e class. They are also consider<strong>in</strong>g <strong>in</strong>clud<strong>in</strong>g effects from strong lighten<strong>in</strong>g <strong>in</strong> Jap<strong>an</strong>.<br />

The paper provides a very simple cost model for <strong>an</strong> evaluation <strong>of</strong> the cost <strong>in</strong>crease <strong>in</strong> relation to <strong>an</strong> <strong>in</strong>crease <strong>in</strong><br />

extreme w<strong>in</strong>d speed. It is assumed that the consequence <strong>of</strong> failure will be purely monetary, i.e. it is assumed that there<br />

will be no hum<strong>an</strong> fatalities <strong>an</strong>d no pollution related to a turb<strong>in</strong>e collapse. The assumption <strong>of</strong> no hum<strong>an</strong> fatalities<br />

seems fair, s<strong>in</strong>ce it is unlikely that people should deliberately come close to w<strong>in</strong>d turb<strong>in</strong>es <strong>in</strong> case <strong>of</strong> typhoons. Such a<br />

simplified model may be used <strong>in</strong> a consequence-<strong>of</strong>-failure assessment relev<strong>an</strong>t <strong>in</strong> e.g. feasibility studies. If grid<br />

connection costs are disregarded, the substructure <strong>an</strong>d foundation contribute about one sixth <strong>of</strong> the total costs <strong>an</strong>d the<br />

turb<strong>in</strong>e is responsible for the rema<strong>in</strong>der. For the turb<strong>in</strong>e; the rotor, the nacelle, <strong>an</strong>d the tower each contribute about<br />

one third <strong>of</strong> the costs. The rotor-nacelle-assembly is basically limited by fatigue, while approximately one half <strong>of</strong> the<br />

tower costs are assumed driven by extreme loads, <strong>an</strong>d half <strong>of</strong> the substructure/foundation costs are assumed driven by<br />

extreme loads. The extreme load driven costs are assumed proportional to the load which is proportional to the square<br />

<strong>of</strong> the me<strong>an</strong> w<strong>in</strong>d speed <strong>an</strong>d the load factor. With these simplify<strong>in</strong>g assumptions the relative cost ch<strong>an</strong>ge due to<br />

ch<strong>an</strong>ges <strong>in</strong> extreme me<strong>an</strong> w<strong>in</strong>d speed becomes approximately<br />

2<br />

3 1 V γ<br />

f<br />

+ (7)<br />

4 4V<br />

γ<br />

2<br />

ref<br />

8<br />

f ,ref


Europe<strong>an</strong> <strong>W<strong>in</strong>d</strong> Energy Conference, Athens, 27 February – 2 March 2006<br />

2<br />

The product V ref γ f,ref is the typical me<strong>an</strong> w<strong>in</strong>d speed <strong>an</strong>d safety factor currently used <strong>in</strong> design <strong>of</strong> Class IA turb<strong>in</strong>es,<br />

i.e. 50 m/s <strong>an</strong>d 1.35. The alternative me<strong>an</strong> w<strong>in</strong>d speed <strong>an</strong>d load factor are denoted V <strong>an</strong>d γ f , respectively.<br />

In Northern Luzon the <strong>in</strong>crease <strong>in</strong> 50-yr w<strong>in</strong>d speed from 50 m/s to 60 m/s <strong>an</strong>d the <strong>in</strong>crease <strong>of</strong> the load factor from<br />

1.35 to 1.7-2.0 yields <strong>with</strong> the model <strong>in</strong> Eq. (7) a relative cost <strong>in</strong>crease <strong>in</strong> the r<strong>an</strong>ge from 20% to 30%. Though it is<br />

well-known that O&M costs are import<strong>an</strong>t <strong>in</strong> the estimation <strong>of</strong> the lifetime costs, <strong>an</strong> <strong>in</strong>vestment <strong>in</strong>crease <strong>of</strong> 20% to<br />

30% is a challenge. These prelim<strong>in</strong>ary results have to be treated <strong>in</strong> a more detailed <strong>in</strong>vestigation, where also the<br />

uncerta<strong>in</strong>ty model is updated.<br />

Conclusions<br />

A systematic <strong>an</strong>d detailed <strong>an</strong>alysis <strong>of</strong> 28 years <strong>of</strong> typhoon tracks leads to signific<strong>an</strong>tly higher U 50 values th<strong>an</strong> the<br />

traditional estimation from NCEP/NCAR database <strong>in</strong> the Northern West Pacific (Fig. 4). This is <strong>in</strong> l<strong>in</strong>e <strong>with</strong> the<br />

general underst<strong>an</strong>d<strong>in</strong>g that tropical cyclones (<strong>in</strong> this area called typhoons) is a unique phenomena different from the<br />

normal w<strong>in</strong>d climate, but attributes also to the course resolution <strong>of</strong> the NCEP/NCAR database.<br />

Comparison <strong>of</strong> track data from JMA <strong>an</strong>d JTWC reveals differences <strong>of</strong> more th<strong>an</strong> 40% <strong>in</strong> the maximum w<strong>in</strong>d speeds<br />

for the most severe typhoons dur<strong>in</strong>g the three years (2001 to 2003), where data are available from both sources for the<br />

same typhoons <strong>in</strong> the Northern West Pacific [2].<br />

A design philosophy is applied that aims at ensur<strong>in</strong>g the same structural reliability <strong>in</strong> typhoon areas as is implied by<br />

the IEC 61400-1 for north Europe<strong>an</strong> environmental conditions. The result is <strong>an</strong> <strong>in</strong>crease <strong>in</strong> load safety factor from<br />

1.35 <strong>in</strong> Europe to about 1.7 to 2.0 <strong>in</strong> typhoon areas. Together <strong>with</strong> the <strong>in</strong>crease <strong>in</strong> the 50-yr w<strong>in</strong>d speed from 50 m/s<br />

to 60 m/s the <strong>in</strong>creased load factor leads - <strong>with</strong> the model <strong>in</strong> Eq.(7) - to a relative cost <strong>in</strong>crease <strong>in</strong> the r<strong>an</strong>ge from 20%<br />

to 30%. Though it is well-known that O&M costs are import<strong>an</strong>t <strong>in</strong> the calculation <strong>of</strong> the lifetime costs <strong>an</strong> <strong>in</strong>crease <strong>of</strong><br />

20% to 30% c<strong>an</strong> be a challenge. This will be the topic <strong>of</strong> a more detailed <strong>in</strong>vestigation, where also the uncerta<strong>in</strong>ty<br />

model is updated. It is emphasised that verification aga<strong>in</strong>st ground measurements <strong>of</strong> the extreme w<strong>in</strong>d statistics<br />

applied here is crucial for the validation <strong>of</strong> the results presented. The <strong>in</strong>herent uncerta<strong>in</strong>ty <strong>in</strong> the <strong>in</strong>terpretation <strong>of</strong><br />

satellite images used to determ<strong>in</strong>e the typhoon characteristics used here c<strong>an</strong> be considerable compared to the load<br />

safety factor. Prelim<strong>in</strong>ary <strong>in</strong>vestigation <strong>of</strong> the best track data <strong>an</strong>d the ch<strong>an</strong>ges <strong>in</strong> w<strong>in</strong>d direction dur<strong>in</strong>g the passage <strong>of</strong><br />

a typhoon suggests that ch<strong>an</strong>ges <strong>in</strong> the w<strong>in</strong>d direction c<strong>an</strong> be h<strong>an</strong>dled by today’s yaw controls. This me<strong>an</strong>s that<br />

backup power to the w<strong>in</strong>d turb<strong>in</strong>e control <strong>an</strong>d yaw systems is essential to cope <strong>with</strong> the ch<strong>an</strong>ge <strong>in</strong> w<strong>in</strong>d direction<br />

dur<strong>in</strong>g passage <strong>of</strong> the typhoon, where the grid connection is <strong>of</strong>ten lost.<br />

If on the other h<strong>an</strong>d it could be accepted that w<strong>in</strong>d turb<strong>in</strong>es should not survive a severe typhoon it might be that a load<br />

safety factor below 1.35 as recommended <strong>in</strong> IEC 61400-1 is feasible. This should be a subject <strong>of</strong> further research.<br />

This <strong>in</strong>itial study considers the <strong>in</strong>fluence <strong>of</strong> extreme loads under st<strong>an</strong>dstill only. It must still be kept <strong>in</strong> m<strong>in</strong>d that<br />

fatigue <strong>an</strong>d operational loads are design driv<strong>in</strong>g too.<br />

Acknowledgements<br />

The work presented is part <strong>of</strong> the project Feasibility Assessment <strong>an</strong>d Capacity Build<strong>in</strong>g for <strong>W<strong>in</strong>d</strong> Energy<br />

Development <strong>in</strong> Cambodia, the Philipp<strong>in</strong>es <strong>an</strong>d Vietnam. The project is f<strong>in</strong><strong>an</strong>cially supported by the Europe<strong>an</strong> Union<br />

through the EU-ASEAN Energy Facility <strong>in</strong> Jakarta.<br />

References<br />

[1] International Electro-technical Commission (IEC), IEC 61400-1 Ed. 3, <strong>W<strong>in</strong>d</strong> turb<strong>in</strong>es - Part 1: <strong>Design</strong><br />

requirements, August 2005.<br />

[2] Ott, S.: Extreme w<strong>in</strong>ds <strong>in</strong> the northern West Pacific. Risø National Laboratory report Risø-R-1544(EN), 2005<br />

URL: www.risoe.dk .<br />

[3] Novl<strong>an</strong>, D.J. <strong>an</strong>d W. M. Gray: Hurric<strong>an</strong>e--Spawn Tornados. Mon. Wea. Rev., 102, pp 476-488, 1974.<br />

[4] Dvorak, V., 1975: <strong>Tropical</strong> cyclone <strong>in</strong>tensity <strong>an</strong>alysis <strong>an</strong>d forecast<strong>in</strong>g from satellite imagery. Mon. Wea. Rev.,<br />

103, pp 420-430.<br />

[5] Dvorak, V., 1984: <strong>Tropical</strong> cyclone <strong>in</strong>tensity <strong>an</strong>alysis us<strong>in</strong>g satellite data. NOAA Tech. Report NESDIS 11.<br />

Available from NOAA/NESDIS, 5200 Auth Rd., Wash<strong>in</strong>gton DC, 20233, 47pp.<br />

[6] Dvorak, V., 1995: <strong>Tropical</strong> clouds <strong>an</strong>d cloud systems observed <strong>in</strong> satellite imagery: <strong>Tropical</strong> cyclones.<br />

Workbook volume 2. Available from NOAA/NESDIS, 5200 Auth Rd., Wash<strong>in</strong>gton DC, 20233.<br />

[7] Holl<strong>an</strong>d, G.J.: An <strong>an</strong>alytic model <strong>of</strong> the w<strong>in</strong>d <strong>an</strong>d pressure pr<strong>of</strong>iles <strong>in</strong> hurric<strong>an</strong>es. Mon. Wea. Rev., 108, 1212-<br />

1218, 1980.<br />

9


Europe<strong>an</strong> <strong>W<strong>in</strong>d</strong> Energy Conference, Athens, 27 February – 2 March 2006<br />

[8] Harper, B.A. <strong>an</strong>d G. J. Holl<strong>an</strong>d: An updated parametric Model <strong>of</strong> the <strong>Tropical</strong> Cyclone, Proc. 23rd Conf.<br />

Hurric<strong>an</strong>es <strong>an</strong>d Trop. Meteo.,10--15 J<strong>an</strong>, Dallas, Texas, 1999, AMS, pp 104-115.<br />

[9] Willoughby, H.E.,1990: Gradient Bal<strong>an</strong>ce <strong>in</strong> <strong>Tropical</strong> <strong>Cyclones</strong>, Journal <strong>of</strong> the Atmospheric Sciences, 47, p.<br />

265-274.<br />

[10] Fr<strong>an</strong>kl<strong>in</strong>, J.L., Black, M.L. <strong>an</strong>d Valde, K.: Eyewall w<strong>in</strong>d pr<strong>of</strong>iles <strong>in</strong> hurric<strong>an</strong>es determ<strong>in</strong>ed by GPS<br />

dropw<strong>in</strong>dsondes, Proc. 24 th Conf Hurric<strong>an</strong>es <strong>an</strong>d <strong>Tropical</strong> Meteorology, AMS, Fort Lauderdale, pp 448-449,<br />

2000. See also http://www.nhc.noaa.gov/aboutw<strong>in</strong>dpr<strong>of</strong>ile.html<br />

[11] Harper, B.A. 2002: <strong>W<strong>in</strong>d</strong>-Pressure Relations <strong>an</strong>d Related Issues for Eng<strong>in</strong>eer<strong>in</strong>g Pl<strong>an</strong>n<strong>in</strong>g <strong>an</strong>d <strong>Design</strong>,<br />

Systems Eng<strong>in</strong>eer<strong>in</strong>g Australia Pty Ltd., Report J0106-PR003E, URL:<br />

http://www.uq.net.au/seng/download/<strong>W<strong>in</strong>d</strong>-Pressure_Discussion_Paper_Rev_E.pdf<br />

[12] Willoughby, H.E. <strong>an</strong>d M. E. Rahn: Parametric Representation <strong>of</strong> the Primary Hurric<strong>an</strong>e Vortex. Part I:<br />

Observations <strong>an</strong>d Evaluation <strong>of</strong> the Holl<strong>an</strong>d (1980) Model, Monthly Weather Review, 132, 3033-3058, 2004.<br />

[13] Abild, J. (1994): Application <strong>of</strong> the <strong>W<strong>in</strong>d</strong> Atlas Method to Extremes <strong>of</strong> <strong>W<strong>in</strong>d</strong> Climatology, Risø National<br />

Laboratory report Risø-R-722(EN).<br />

[14] Tarp-Joh<strong>an</strong>sen N.J., Madsen P.H., <strong>an</strong>d Fr<strong>an</strong>dsen S.T., 2004, “Partial Safety Factors for Extreme Load Effects<br />

<strong>in</strong> <strong>W<strong>in</strong>d</strong> <strong>Turb<strong>in</strong>es</strong>”, Risø report R-1319(EN), Risø National Laboratory, Roskilde.<br />

[15] Tarp-Joh<strong>an</strong>sen, N.J., Madsen P.H., <strong>an</strong>d Fr<strong>an</strong>dsen S.T., 2003, “Calibration <strong>of</strong> Partial Safety Factors for<br />

Extreme Loads on <strong>W<strong>in</strong>d</strong> <strong>Turb<strong>in</strong>es</strong>,” proceed<strong>in</strong>gs CD-ROM <strong>of</strong> the Europe<strong>an</strong> <strong>W<strong>in</strong>d</strong> Energy Conference &<br />

Exhibition 2003.<br />

[16] National Structural Code <strong>of</strong> the Philipp<strong>in</strong>es 5 th ed. 2001, Association <strong>of</strong> Structural Eng<strong>in</strong>eers <strong>of</strong> the<br />

Philipp<strong>in</strong>es, Inc.<br />

Abbreviations<br />

JMA<br />

JTWC<br />

NCEP/NCAR<br />

RSMC<br />

TC<br />

U 50<br />

Jap<strong>an</strong>ese Meteorological Agency, Tokyo<br />

Jo<strong>in</strong>t Typhoon Warn<strong>in</strong>g Centre, Hawaii<br />

Database <strong>of</strong> re<strong>an</strong>alysis weather data by National Centres<br />

for Environmental Prediction <strong>an</strong>d National Centre for<br />

Atmospheric Research<br />

Regional Specialised Meteorological Centre<br />

<strong>Tropical</strong> cyclone<br />

Extreme w<strong>in</strong>d <strong>with</strong> a recurrence period <strong>of</strong> 50 years<br />

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!