25.02.2014 Views

Indifference Pricing in a One-period Binomial Model - City University ...

Indifference Pricing in a One-period Binomial Model - City University ...

Indifference Pricing in a One-period Binomial Model - City University ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Indifference</strong> <strong>Pric<strong>in</strong>g</strong> <strong>in</strong> a <strong>One</strong>-<strong>period</strong> B<strong>in</strong>omial <strong>Model</strong><br />

Hong-Kun Xu<br />

Department of Applied Mathematics<br />

National Sun Yat-sen <strong>University</strong><br />

Kaohsiung 80424, Taiwan<br />

E-mail: xuhk@math.nsysu.edu.tw<br />

March 10, 2012<br />

Abstract<br />

In a complete model such as the Black-Scholes model, each option payoff can be perfectly<br />

replicated by a dynamic self-f<strong>in</strong>anc<strong>in</strong>g trad<strong>in</strong>g strategy, and the option price is the cost of this<br />

replication. However, due to stochastic factors, realistic models are usually <strong>in</strong>complete: not all<br />

risk of every option can be elim<strong>in</strong>ated by dynamic hedg<strong>in</strong>g. <strong>Pric<strong>in</strong>g</strong> <strong>in</strong> an <strong>in</strong>complete model gives<br />

also rise to another difficulty which is the nonuniqueness: different mart<strong>in</strong>gale measures may<br />

lead to different (no-arbitrage) prices. In this lecture, we will consider a one-<strong>period</strong> b<strong>in</strong>omial<br />

model which consists of a riskless asset and two risky assets of which one is traded and the<br />

other is nontraded (<strong>in</strong>completeness thus arises). We will systematically <strong>in</strong>troduce the so-called<br />

utility <strong>in</strong>difference pric<strong>in</strong>g theory, <strong>in</strong>clud<strong>in</strong>g properties of <strong>in</strong>difference prices and strategies of<br />

risk monitor<strong>in</strong>g.<br />

1


1 Introduction<br />

In a complete market, every cont<strong>in</strong>gent claim can be perfectly replicated by trad<strong>in</strong>g <strong>in</strong> the traded<br />

assets. That is, the payoff of the claim can be reproduced by a portfolio which consists of the<br />

underly<strong>in</strong>g stocks and bonds, and the unique price of the claim is given by the law of one price,<br />

namely, the <strong>in</strong>itial wealth of fund<strong>in</strong>g the replicat<strong>in</strong>g portfolio. However, due to frictions such as<br />

transaction costs, nontraded assets and portfolio constra<strong>in</strong>ts, most markets are <strong>in</strong>complete and<br />

complete markets are an approximation to <strong>in</strong>complete ones. In an <strong>in</strong>complete market, not every<br />

claim can be perfectly hedged. Many different option prices are consistent with the arbitrage-free<br />

pr<strong>in</strong>ciple, each correspond<strong>in</strong>g to a different mart<strong>in</strong>gale measure. Prices are no longer unique.<br />

<strong>Pric<strong>in</strong>g</strong> <strong>in</strong> an <strong>in</strong>complete is complicated. There are several approaches, for example, superreplication,<br />

m<strong>in</strong>imal mart<strong>in</strong>gale measure, and convex risk measures. Utility <strong>in</strong>difference pric<strong>in</strong>g is a<br />

powerful valuation method <strong>in</strong> <strong>in</strong>complete markets which orig<strong>in</strong>ates from the premium pr<strong>in</strong>ciple of<br />

equivalent utility of actuarial mathematics.<br />

“The advantages of utility <strong>in</strong>difference pric<strong>in</strong>g <strong>in</strong>clude its economic justification and <strong>in</strong>corporation<br />

of risk aversion. It leads to a price which is non-l<strong>in</strong>ear <strong>in</strong> the number of units of claim,<br />

which is <strong>in</strong> contrast to prices <strong>in</strong> complete markets and some of the alternatives mentioned above.<br />

The <strong>in</strong>difference price reduces to the complete market price which is a necessary feature of any<br />

good pric<strong>in</strong>g mechanism. <strong>Indifference</strong> prices can also <strong>in</strong>corporate wealth dependence. This may<br />

be desirable as the price an <strong>in</strong>vestor is will<strong>in</strong>g to pay could well depend on the current position of<br />

his derivative book. Although we concentrate on pric<strong>in</strong>g issues here, utility <strong>in</strong>difference also gives<br />

an explicit identification of the hedge position. This is found naturally as part of the optimization<br />

problem. Limitations of <strong>in</strong>difference pric<strong>in</strong>g methodology <strong>in</strong>clude the fact that explicit calculations<br />

may be done <strong>in</strong> only a few concrete models, ma<strong>in</strong>ly for exponential utility. Exponential utility<br />

has the feature that the wealth or <strong>in</strong>itial endowment of the <strong>in</strong>vestor factors out of the problem<br />

which makes the mathematics tractable but is also a strong assumption. Different <strong>in</strong>vestors with<br />

vary<strong>in</strong>g <strong>in</strong>itial wealths are unlikely to assign the same value to a claim. Practically, users may not<br />

be satisfied with the concept of utility functions and unable to specify the required risk aversion<br />

coefficient.” (Quoted from [1].)<br />

The purpose of this lecture is to <strong>in</strong>troduce the basics of the exponential utility <strong>in</strong>difference<br />

pric<strong>in</strong>g methodology for a one-<strong>period</strong> <strong>in</strong>complete model which is composed of one riskless asset<br />

(referred to as bond) and two risky assets (one is referred to as stock and the other is nontraded).<br />

The contents <strong>in</strong>clude<br />

• Def<strong>in</strong>ition of utility <strong>in</strong>difference prices and properties.<br />

• A nonl<strong>in</strong>ear <strong>in</strong>difference price valuation formula.<br />

• Risk monitor<strong>in</strong>g strategies.<br />

• Relative <strong>in</strong>difference prices.<br />

• Wealth, preferences and numeraires.<br />

[The notes presented below are primarily based on and adapted from [5].]<br />

2


2 Complete <strong>One</strong>-Period <strong>Model</strong><br />

We briefly recall the basics of the complete one-<strong>period</strong> b<strong>in</strong>omial model.<br />

The model consists of two tradable assets: <strong>One</strong> riskless, called bond or money market account<br />

(MMA) and which is denoted as B , and one risky, referred to as stock and which is denoted as S.<br />

The two assets are traded at times 0 and T > 0. The bond has a unit <strong>in</strong>itial value (i.e., B 0 = 1)<br />

and offers <strong>in</strong>terest rate of r ≥ 0 for the horizon [0, T ] so that B T = 1 + r. For simplicity, we assume<br />

that r = 0 thus, B T = 1.<br />

The randomness of the risky S is described through a probability space (Ω, P, F), where Ω =<br />

{ω 1 , ω 2 } with p := P(ω 1 ) > 0 and q := 1 − p = P(ω 2 ) > 0, and F = 2 Ω . S T is a random variable on<br />

Ω and S T = S 0 ξ, with<br />

{ u, if ω = ω1 ,<br />

ξ(ω) =<br />

d, if ω = ω 2 ,<br />

where 0 < d < 1 < u which are the no-arbitrage conditions for this model.<br />

Let now C be a cont<strong>in</strong>gent claim written on S and with payoff C T . For example, C T = (S T −K) +<br />

if C represents a European call option with expiration time T and strike price of K.<br />

<strong>One</strong> of the pric<strong>in</strong>g methods is replication, and every claim <strong>in</strong> a complete model can be replicated.<br />

As a matter of fact, let ϕ = (α, β) be a portfolio, where α is the number of shares of the stock S<br />

and β units of the bond B. In order that ϕ replicate the claim, we must have<br />

αS T (ω) + β = C T (ω), ω = ω 1 , ω 2 .<br />

Solv<strong>in</strong>g this system yields the unique replicat<strong>in</strong>g portfolio<br />

α = C T (ω 1 ) − C T (ω 2 )<br />

S T (ω 1 ) − S T (ω 2 ) = C T (ω 1 ) − C T (ω 2 )<br />

,<br />

S 0 (u − d)<br />

β = uC T (ω 2 ) − dC T (ω 1 )<br />

.<br />

u − d<br />

By the law of one price, we get the price of the claim, C 0 , is the cost of the portfolio, that is,<br />

C 0 = αS 0 + β = (u − 1)C T (ω 1 ) + (1 − d)C T (ω 2 )<br />

. (2.1)<br />

u − d<br />

This shows that the claim C T can uniquely be hedged by the portfolio (α, β) determ<strong>in</strong>ed above, and<br />

the risk of writ<strong>in</strong>g the claim C T can completely by elim<strong>in</strong>ated by follow<strong>in</strong>g this hedg<strong>in</strong>g portfolio.<br />

If we set<br />

˜p = 1 − d<br />

u − d , ˜q = u − 1<br />

u − d ,<br />

then we can rewrite C 0 <strong>in</strong> the form<br />

C 0 = ˜pC T (ω 1 ) + ˜qC T (ω 2 ) = Ẽ[C T ]. (2.2)<br />

Here Ẽ is the expectation under the probability ˜P def<strong>in</strong>ed by ˜P(ω 1 ) = ˜p and ˜P(ω 2 ) = ˜q. Formula<br />

(2.2) is referred to as the risk-neutral valuation. That is, price is equal to expected payoff under<br />

the risk-neutral probability measure (under the assumption that the <strong>in</strong>terest rate is zero).<br />

3


3 Incomplete <strong>One</strong>-<strong>period</strong> <strong>Model</strong><br />

In an <strong>in</strong>complete market, not all risk can be elim<strong>in</strong>ated. In other words, not every claim can be<br />

replicated by a (dynamic) portfolio. This is the case of most practical markets due to market<br />

frictions and nontraded assets.<br />

3.1 <strong>Model</strong> Set-up<br />

This is a one-<strong>period</strong> b<strong>in</strong>omial model <strong>in</strong> which the trad<strong>in</strong>g dates are 0 and T . There are two traded<br />

assets B and S as <strong>in</strong> the complete model. However, there is another asset Y which is nontraded<br />

and which causes the <strong>in</strong>completeness of the model. The riskless asset offers no <strong>in</strong>terest rate so that<br />

B 0 = B T = 1. The risky assets S and Y are given by<br />

S T = S 0 ξ, ξ = ξ u , ξ d , 0 < ξ d < 1 < ξ u ;<br />

Y T = Y 0 η, η = η u , η d , 0 < η d < η u .<br />

The randomness of S and Y are described by the probability space (Ω, P, F), where<br />

Ω = {ω 1 , ω 2 , ω 3 , ω 4 ), P(ω i ) > 0 (1 ≤ i ≤ 4), F = 2 Ω ,<br />

S T (ω 1 ) = S 0 ξ u , Y T (ω 1 ) = S 0 η u , S T (ω 3 ) = S 0 ξ d , Y T (ω 3 ) = Y 0 η u<br />

S T (ω 2 ) = S 0 ξ u , Y T (ω 2 ) = S 0 η d , S T (ω 3 ) = S 0 ξ d , Y T (ω 3 ) = Y 0 η d .<br />

The filtration F co<strong>in</strong>cides with the filtration F S T ,Y T<br />

generated by S T and y T . We use F S T<br />

to<br />

denote the filtration generated by S T .<br />

3.2 Utility <strong>Indifference</strong> Prices<br />

Let C T be a claim written on S and Y . Due to <strong>in</strong>completeness, C T may, <strong>in</strong> general, have different<br />

(no-arbitrage) prices if different valuation methods are applied. Here we are to <strong>in</strong>troduce utility<br />

<strong>in</strong>difference prices under the exponential utility:<br />

U(x) = −e −γx , x ∈ R,<br />

where γ > 0. Note that U is twice cont<strong>in</strong>uously differentiable, U ′ > 0 and U ′′ < 0 so that U is<br />

strictly <strong>in</strong>creas<strong>in</strong>g and strictly concave (these are the def<strong>in</strong>ition of a utility function).<br />

Let ϕ = (α, β) be a portfolio consist<strong>in</strong>g of α shares of the traded risky asset S and β units of<br />

the riskless asset B. Its current value X 0 = x is given by x = αS 0 + β, and its value at time T is<br />

given by<br />

X T = αS T + β = x + α(S T − S 0 ).<br />

[X T is a wealth that can be generated from the <strong>in</strong>itial fortune x.] The value function of the claim<br />

C T (<strong>in</strong> terms of the exponential utility function U) is def<strong>in</strong>ed as<br />

V C T<br />

(x) = sup<br />

α<br />

[ ]<br />

E P [U(X T − C T )] = sup E P −e −γ(X T −C T )<br />

α<br />

[ ]<br />

= e −γx sup E P −e −γα(S T −S 0 )+γC T<br />

. (3.1)<br />

α<br />

4


Def<strong>in</strong>ition 3.1. The <strong>in</strong>difference price of the claim C T = c(S T , Y T ) is def<strong>in</strong>ed as the amount ν(C T )<br />

for which the two values V C T<br />

and V 0 , respectively def<strong>in</strong>ed <strong>in</strong> (3.1) for C T and 0, co<strong>in</strong>cide. That<br />

is, ν(C T ) is a solution to the equation<br />

V 0 (x) = V C T<br />

(x + ν(C T )) (3.2)<br />

for all <strong>in</strong>itial wealth x. This def<strong>in</strong>ition actually says that the <strong>in</strong>vestor is <strong>in</strong>different between pay<strong>in</strong>g<br />

noth<strong>in</strong>g and not hav<strong>in</strong>g the claim C T and pay<strong>in</strong>g ν(C T ) now to receive the claim C T at time T .<br />

Remark 3.2. The classical no-arbitrage pric<strong>in</strong>g theory <strong>in</strong> a complete model gives the price of a<br />

claim C T as C(C T ) = E˜P[C T ] (assum<strong>in</strong>g zero rate of <strong>in</strong>terest), where ˜P is the risk-neutral measure.<br />

That is, price is a l<strong>in</strong>ear functional of the expected (discounted) payoff under the (unique) riskneutral<br />

equivalent mart<strong>in</strong>gale measure. This is however no longer true <strong>in</strong> an <strong>in</strong>complete model:<br />

Prices of claims <strong>in</strong> an <strong>in</strong>complete market are no longer l<strong>in</strong>ear functional of the expected discounted<br />

payoff under a unique equivalent mart<strong>in</strong>gale measure. The valuation functional is nonl<strong>in</strong>ear and<br />

the pric<strong>in</strong>g equivalent measure is not unique. We will look for possible formula as follows (recall<br />

we assume zero rate of <strong>in</strong>terest):<br />

ν(C T ) = E Q [C T ], (3.3)<br />

where E Q is a nonl<strong>in</strong>ear valuation functional and Q is an equivalent mart<strong>in</strong>gale measure. An<br />

advantage of this formula is that prices are expressed <strong>in</strong> one measure. However, for (3.3) to hold,<br />

some regularity property must hold.<br />

Remark 3.3. Consider two special cases: (a) C T = c(S T ); (b) C T = c(Y T ). In the case of (a), the<br />

randomness of the nontraded asset Y has no affects on the claim C T at all. Therefore, the classical<br />

risk-neutral valuation method rema<strong>in</strong>s applicable and ν(c(S T )) = E˜P[c(S T )]. So the <strong>in</strong>difference<br />

price is reduced to the no-arbitrage price.<br />

In the case of (b), we further assume that S T and Y T are <strong>in</strong>dependent under P so that the value<br />

function V C T<br />

= V c(Y T ) is reduced to<br />

It is also straightforward from (3.1) that<br />

Comb<strong>in</strong><strong>in</strong>g (3.4) and (3.5) gives that<br />

[ ]<br />

V c(Y T ) (x) = e −γx E P [e γc(Y T ) ] sup E P −e −γα(S T −S 0 )<br />

. (3.4)<br />

α<br />

[ ]<br />

V 0 (x) = e −γx sup E P −e −γα(S T −S 0 )<br />

. (3.5)<br />

α<br />

By Def<strong>in</strong>ition 3.1, ν(c(Y T ) is the solution to the follow<strong>in</strong>g system:<br />

V c(Y T ) (x) = V 0 (x)E P [e γc(Y T ) ]. (3.6)<br />

V 0 (x) = V c(Y T ) (x + ν(c(Y T ))<br />

= V 0 (x + ν(c(Y T ))E P [e γc(Y T ) ]<br />

= V 0 (x)e −γν(c(Y T )) E P [e γc(Y T ) ].<br />

It turns out that<br />

e −γν(c(Y T )) E P [e γc(Y T ) ] = 1.<br />

5


Consequently, we get<br />

ν(c(Y T )) = 1 γ log EP [e γc(Y T ) ]. (3.7)<br />

The <strong>in</strong>difference price is reduced to the classical actuarial valuation pr<strong>in</strong>ciple, the so-called certa<strong>in</strong>ty<br />

equivalent value, which is nonl<strong>in</strong>ear <strong>in</strong> the payoff and uses the historical measure P as the pric<strong>in</strong>g<br />

measure.<br />

Remark 3.4. Consider the case where the claim is decomposed as<br />

C T = c 1 (S T ) + c 2 (Y T ).<br />

In this case, one could be led to a wrongful idea to price this claim as first pric<strong>in</strong>g the claim c 1 (S T )<br />

by the classical no-arbitrage risk-neutral valuation method, and then pric<strong>in</strong>g the claim c 2 (Y T ) by<br />

the actuarial certa<strong>in</strong>ty equivalent value pr<strong>in</strong>ciple, and f<strong>in</strong>ally put them together as the price of the<br />

claim C T = c 1 (S T ) + c 2 (Y T ). In general,<br />

unless S T and Y T are <strong>in</strong>dependent.<br />

3.3 A Nonl<strong>in</strong>ear <strong>Pric<strong>in</strong>g</strong> Formula<br />

ν(c 1 (S T ) + c 2 (Y T )) ≠ ν(c 1 (S T )) + ν(c 2 (S T ))<br />

Theorem 3.5. Let Q be a equivalent measure under which the traded asset S is a mart<strong>in</strong>gale,<br />

and at the same time, the conditional distribution of the nontraded asset, given the traded one, is<br />

preserved with respect to the historical measure P, that is,<br />

Q[Y T |S T ] = P[Y T |S T ]. (3.8)<br />

Let C T = c(S T , Y T ) be the claim to be priced under the exponential preferences with risk aversion<br />

coefficient γ. Then the <strong>in</strong>difference price of C T is given by<br />

[ ]<br />

1<br />

ν(C T ) = E Q [C T ] = E Q γ log EQ [e γC T<br />

|S T ] . (3.9)<br />

Proof. We prove the formula (3.9) by comput<strong>in</strong>g the price ν(C T ) from its def<strong>in</strong>ition (3.1) and then<br />

verify<strong>in</strong>g it equal to the right side of (3.9). Set<br />

By def<strong>in</strong>ition of the value function, we get<br />

c i = C T (ω i ) = c(S T (ω i ), Y T (ω i )), i = 1, 2, 3, 4.<br />

[ ]<br />

V C T<br />

(x) = e −γx sup E P −e −γα(S T −S 0 )+γC T<br />

α<br />

4∑<br />

= e −γx sup −p i e −γα(S T (ω i )−S 0 )+γC T (ω i )<br />

α<br />

i=1<br />

{<br />

= e −γx sup −e −γαS 0(ξ u−1) (p 1 e γc 1<br />

+ p 2 e γc 2<br />

)<br />

α<br />

}<br />

−e −γαS 0(ξ d−1) (p 3 e γc 3<br />

+ p 4 e γc 4<br />

)<br />

≡ e −γx sup g(α).<br />

α<br />

6


We have<br />

g ′ (α) = γS 0 (ξ u − 1)e −γαS 0(ξ u −1) (p 1 e γc 1<br />

+ p 2 e γc 2<br />

)<br />

The unique solution to the equation g ′ (α) = 0 is<br />

Putt<strong>in</strong>g<br />

and notic<strong>in</strong>g<br />

we get the value function<br />

It turns out that<br />

α ∗ =<br />

+ γS 0 (ξ d − 1)e −γαS 0(ξ d −1) (p 3 e γc 3<br />

+ p 4 e γc 4<br />

).<br />

1<br />

γS 0 (ξ u − ξ d ) log (ξu − 1)(p 1 e γc 1<br />

+ p 2 e γc 2<br />

)<br />

(1 − ξ d )(p 3 e γc 3 + p4 e γc . (3.10)<br />

4 )<br />

q = 1 − ξd<br />

ξ u − ξ d , thus 1 − q = ξu − 1<br />

ξ u − ξ d , (3.11)<br />

γα ∗ S 0 (ξ u − 1) = ξu − 1<br />

ξ u − ξ d log (ξu − 1)(p 1 e γc 1<br />

+ p 2 e γc 2<br />

)<br />

(1 − ξ d )(p 3 e γc 3 + p4 e γc 4 )<br />

,<br />

γα ∗ S 0 (ξ d − 1) = ξd − 1<br />

ξ u − ξ d log (ξu − 1)(p 1 e γc 1<br />

+ p 2 e γc 2<br />

)<br />

(1 − ξ d )(p 3 e γc 3 + p4 e γc 4 )<br />

,<br />

V C T<br />

(x) = e −γx g(α ∗ )<br />

{<br />

= e −γx −e −γα∗ S 0 (ξ u−1) (p 1 e γc 1<br />

+ p 2 e γc 2<br />

)<br />

}<br />

−e −γα∗ S 0 (ξ d−1) (p 3 e γc 3<br />

+ p 4 e γc 4<br />

)<br />

(<br />

= e<br />

{−(p −γx 1 e γc 1<br />

+ p 2 e γc 2 (ξ u − 1)(p 1 e γc 1<br />

+ p 2 e γc 2<br />

)<br />

) −(1−q)<br />

)<br />

(1 − ξ d )(p 3 e γc 3 + p4 e γc 4 )<br />

(<br />

−(p 3 e γc 3<br />

+ p 4 e γc 4 (ξ u − 1)(p 1 e γc 1<br />

+ p 2 e γc 2<br />

)<br />

) q }<br />

)<br />

(1 − ξ d )(p 3 e γc 3 + p4 e γc 4 )<br />

= −e −γx (p 1 e γc 1<br />

+ p 2 e γc 2<br />

) q (p 3 e γc 3<br />

+ p 4 e γc 4<br />

) 1−q<br />

[ ( ) q 1−q ( ) ]<br />

1 − q<br />

q<br />

×<br />

+<br />

.<br />

1 − q<br />

q<br />

V C T<br />

(x) = −e −γx 1<br />

q q (1 − q) 1−q (p 1e γc 1<br />

+ p 2 e γc 2<br />

) q (p 3 e γc 3<br />

+ p 4 e γc 4<br />

) 1−q . (3.12)<br />

When C T = 0 (i.e., c 1 = · · · = c 4 = 0), we get<br />

V 0 (x) = −e −γx (<br />

p1 + p 2<br />

q<br />

To determ<strong>in</strong>e ν(C T ), we solve the equation<br />

) q ( )<br />

p3 + p 1−q<br />

4<br />

. (3.13)<br />

1 − q<br />

V 0 (x) = V C T<br />

(x + ν(C T )) (3.14)<br />

7


which is reduced to (via (3.12) and (3.13))<br />

Consequently,<br />

(p 1 + p 2 ) q (p 3 + p 4 ) 1−q = e −γν(C T ) (p 1 e γc 1<br />

+ p 2 e γc 2<br />

) q (p 3 e γc 3<br />

+ p 4 e γc 4<br />

) 1−q .<br />

ν(C T ) = q 1 γ log p 1e γc 1<br />

+ p 2 e γc 2<br />

p 1 + p 2<br />

+ (1 − q) 1 γ log p 3e γc 3<br />

+ p 4 e γc 4<br />

p 3 + p 4<br />

. (3.15)<br />

Note that the terms <strong>in</strong>side the log functions of (3.15) can be expressed as the conditional expectations<br />

of e γC T<br />

under the measure P as follows.<br />

and<br />

where<br />

p 1 e γc 1<br />

+ p 2 e γc 2<br />

p 1 + p 2<br />

= E P [e γC T<br />

|A] (3.16)<br />

p 3 e γc 3<br />

+ p 4 e γc 4<br />

p 3 + p 4<br />

= E P [e γC T<br />

|A c ], (3.17)<br />

A = {ω 1 , ω 2 } = {ω : S T (ω) = S 0 ξ u },<br />

A c = {ω 3 , ω 4 } = {ω : S T (ω) = S 0 ξ d }.<br />

Next we are go<strong>in</strong>g to seek the desired measure Q with distributions<br />

Q(ω i ) = q i , i = 1, 2, 3, 4.<br />

That is, we must designate the values of q i for i = 1, 2, 3, 4 <strong>in</strong> such a way that q 1 + q 2 = q and<br />

q 3 + q 4 = 1 − q, where q is given <strong>in</strong> (3.11).<br />

Consider the conditional probability P(Y T = Y 0 η u |S T = S 0 ξ u ). Us<strong>in</strong>g condition (3.8), we get<br />

Q(Y T = Y 0 η u |S T = S 0 ξ u ) = P(Y T = Y 0 η u |S T = S 0 ξ u )<br />

which is reduced to<br />

Similarly, we have<br />

Q(ω 1 , ω 3 |ω 1 , ω 2 ) = P(ω 1 , ω 3 |ω 1 , ω 2 )<br />

⇒<br />

q 1<br />

q 1 + q 2<br />

= p 1<br />

p 1 + p 2<br />

.<br />

q 2<br />

q 1 + q 2<br />

= p 2<br />

p 1 + p 2<br />

,<br />

These can be rewritten as (not<strong>in</strong>g q = q 1 + q 2 )<br />

q 3<br />

q 3 + q 4<br />

= p 3<br />

p 3 + p 4<br />

,<br />

q 4<br />

q 3 + q 4<br />

= p 4<br />

p 3 + p 4<br />

.<br />

Next we have<br />

p i<br />

q i = q (i = 1, 2), q i = (1 − q) (i = 3, 4). (3.18)<br />

p 1 + p 2 p 3 + p 4<br />

p i<br />

log E Q [e γC T<br />

|S T ] = (log E Q [e γC T<br />

|S T ])I A + (log E Q [e γC T<br />

|S T ])I A c<br />

= (log E P [e γC T<br />

|S T ])I A + (log E P [e γC T<br />

|S T ])I A c<br />

(<br />

= log p 1e γc 1<br />

+ p 2 e γc ) (<br />

2<br />

I A + log p 3e γc 3<br />

+ p 4 e γc )<br />

4<br />

I A c.<br />

p 1 + p 2 p 3 + p 4<br />

8


It turns out that<br />

[ ]<br />

1<br />

E Q γ log EQ [e γC T<br />

|S T ]<br />

[ ( 1<br />

= E Q log p 1e γc 1<br />

+ p 2 e γc )<br />

2<br />

I A + 1 (<br />

γ p 1 + p 2 γ<br />

= 1 (<br />

log p 1e γc 1<br />

+ p 2 e γc )<br />

2<br />

Q(A) + 1 γ p 1 + p 2 γ<br />

= q 1 (<br />

log p 1e γc 1<br />

+ p 2 e γc )<br />

2<br />

+ (1 − q) 1 γ p 1 + p 2 γ<br />

= ν(C T ).<br />

The proof is complete.<br />

log p 3e γc 3<br />

+ p 4 e γc )<br />

4<br />

I A c<br />

p 3 + p 4<br />

(<br />

log p 3e γc 3<br />

+ p 4 e γc )<br />

4<br />

p 3 + p 4<br />

(<br />

log p 3e γc 3<br />

+ p 4 e γc )<br />

4<br />

p 3 + p 4<br />

]<br />

Q(A c )<br />

Remark 3.6. From the formula (3.9), one f<strong>in</strong>ds that the <strong>in</strong>difference valuation is carried out <strong>in</strong> a<br />

two-step nonl<strong>in</strong>ear procedure and under a s<strong>in</strong>gle measure. The first step takes risk preference <strong>in</strong>to<br />

the valuation procedure: the orig<strong>in</strong>al payoff is distorted to the preference adjusted payoff, known<br />

as the conditional certa<strong>in</strong>ty equivalent:<br />

˜C T = 1 γ log EQ [e γC T<br />

|S T ]. (3.19)<br />

The second step is of the classical no-arbitrage pric<strong>in</strong>g nature: the price of the claim is obta<strong>in</strong>ed<br />

by apply<strong>in</strong>g the measure Q to the distorted payoff ˜C T ; that is,<br />

ν(C T ) = E Q [ ˜C T ] = E Q [C T ].<br />

Another feature of the formula (3.9) is its s<strong>in</strong>gle pric<strong>in</strong>g measure: Only one measure is used<br />

throughout the whole pric<strong>in</strong>g procedure.<br />

3.4 Comparison to Another <strong>Pric<strong>in</strong>g</strong> Formula<br />

Recall that the m<strong>in</strong>imal relative entropy measure ˜Q is def<strong>in</strong>ed as the m<strong>in</strong>imizer of the relative<br />

entropy, that is,<br />

H(˜Q|P) = m<strong>in</strong> H(Q|P), (3.20)<br />

Q∈Q e<br />

where Q e is the set of equivalent (to P) mart<strong>in</strong>gale measures and<br />

[ ]<br />

dQ<br />

H(Q|P) = E P dQ<br />

log . (3.21)<br />

dP dP<br />

The follow<strong>in</strong>g is a formula of <strong>in</strong>difference price of a claim C T <strong>in</strong> terms of Q e .<br />

Theorem 3.7. The <strong>in</strong>difference price of a claim C T is given by<br />

(<br />

ν(C T ) = sup E Q [C T ] − 1 )<br />

[H(Q|P) − H(˜Q|P)] . (3.22)<br />

Q∈Q e<br />

γ<br />

9


The formula (3.22) has some advantages. For <strong>in</strong>stance, it is valid for general models and arbitrary<br />

payoffs. It however has some shortcom<strong>in</strong>gs. For <strong>in</strong>stance, it needs to solve a new optimization<br />

problem which is not required <strong>in</strong> its arbitrage-free counterpart. It also yields a pric<strong>in</strong>g measure<br />

that undesirably depends on the specific payoff. Moreover, this formula considerably obstructs the<br />

analysis and study of certa<strong>in</strong> important aspects of <strong>in</strong>difference valuation.<br />

We next look at the relation between pric<strong>in</strong>g measure Q used <strong>in</strong> the formula (3.9) and the m<strong>in</strong>imum<br />

entropy measure ˜Q used <strong>in</strong> the formula (3.22). To see this, consider an arbitrary mart<strong>in</strong>gale<br />

measure ̂Q ∈ Q e def<strong>in</strong>ed by ̂Q(ω i ) = ˆq i for i = 1, 2, 3, 4. Then<br />

H( ̂Q|P) =<br />

4∑<br />

i=1<br />

ˆq i log ˆq i<br />

p i<br />

.<br />

We must m<strong>in</strong>imize H( ̂Q|P) over the set<br />

{(ˆq 1 , ˆq 2 , ˆq 3 , ˆq 4 ) :<br />

4∑<br />

ˆq i = 1, ˆq i ≥ 0}.<br />

i=1<br />

Apply<strong>in</strong>g the Lagrangian method, we f<strong>in</strong>d that the m<strong>in</strong>imiz<strong>in</strong>g elementary probabilities ˜q i for<br />

i = 1, 2, 3, 4 satisfy the conditions<br />

˜q 1<br />

= ˜q 2 ˜q 3<br />

, = ˜q 4<br />

.<br />

p 1 p 2 p 3 p 4<br />

If we set q = ˜q 1 + ˜q 2 , then ˜q 3 + ˜q 4 = 1 − q and we arrive at<br />

p i<br />

˜q i = q , i = 1, 2, ˜q i = (1 − q) , i = 3, 4.<br />

p 1 + p 2 p 3 + p 4<br />

These are the same as given <strong>in</strong> (3.18). Therefore, ˜Q = Q, that is, the pric<strong>in</strong>g measure Q used <strong>in</strong><br />

the formula (3.9) and the m<strong>in</strong>imum entropy measure ˜Q used <strong>in</strong> the formula (3.22) co<strong>in</strong>cide.<br />

However note that the maximizer <strong>in</strong> the formula (3.22), denoted ̂Q, is not equal to the m<strong>in</strong>imum<br />

entropy measure ˜Q. As matter of fact, if ̂Q = ˜Q, then ν(C T ) = E Q [C T ]. That is, the price of the<br />

claim C T is the expected (discounted) payoff of the claim. This is however untrue <strong>in</strong> general <strong>in</strong> an<br />

<strong>in</strong>complete market.<br />

Theorem 3.8. Let ν(C T ) be the <strong>in</strong>difference price of the claim C T , let Q be the pric<strong>in</strong>g measure<br />

used <strong>in</strong> the formula (3.9), and let H(Q|P) be its associated relative entropy as given <strong>in</strong> (3.21).<br />

(i) The m<strong>in</strong>imal relative entropy measure ˜Q satisfies ˜Q = Q.<br />

(ii) The value functions V 0 and V C T<br />

are represented by<br />

V 0 (x) = −e −γx−H(Q|P) = U<br />

(x + 1 )<br />

γ H(Q|P) , (3.23)<br />

V C T<br />

(x) = −e −γx−H(Q|P)+γν(C T ) = U<br />

where U(x) = −e −γx is the utility function.<br />

p i<br />

(<br />

x + 1 )<br />

γ H(Q|P) − γν(C T ) , (3.24)<br />

10


(iii) The <strong>in</strong>difference price ν(C T ) satisfies<br />

(<br />

ν(C T ) = sup E Q [C T ] 1 )<br />

Q∈Q e<br />

γ (H(Q|P) − H(Q|P) = E Q [C T ], (3.25)<br />

where the nonl<strong>in</strong>ear pric<strong>in</strong>g measure E Q is given by<br />

[ ]<br />

1<br />

E Q [C T ] = E Q γ log EQ [e γC T<br />

|S T ] . (3.26)<br />

3.5 Properties of <strong>Indifference</strong> Prices<br />

Put<br />

˜C T = 1 γ log EQ [e γC T<br />

|S T ]<br />

so that we have rewrite<br />

ν(C T ) = E Q [C T ] = E Q [ ˜C T ].<br />

Sometimes, we will explicitly <strong>in</strong>dicate the dependence of the price ν(C T ) on the risk aversion<br />

coefficient γ by writ<strong>in</strong>g ν(C T ) = ν(C T , γ).<br />

Proposition 3.9. The price ν(C T , γ) is an <strong>in</strong>creas<strong>in</strong>g and cont<strong>in</strong>uous function of γ ∈ (0, ∞).<br />

Moreover, if, for all claims C T , there holds<br />

then γ = 1.<br />

ν(C T , γ) = ν(C T , 1), (3.27)<br />

Proof. Recall<br />

[ ]<br />

1<br />

ν(C T , γ) = E Q γ log EQ [e γC T<br />

|S T ]<br />

from which the cont<strong>in</strong>uity of ν(C T , γ) <strong>in</strong> γ ∈ (0, ∞) follows.<br />

To see that ν(C T , γ) is <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> γ, let 0 < γ 1 < γ 2 . Then Holder’s <strong>in</strong>equality yields<br />

It turns out that<br />

E Q [e γ 1C T<br />

|S T ] ≤<br />

(<br />

) γ<br />

E Q [e γ 1<br />

2C γ T<br />

|S T ] 2<br />

.<br />

1<br />

γ 1<br />

log E Q [e γ 1C T<br />

|S T ] ≤ 1 γ 2<br />

log E Q [e γ 2C T<br />

|S T ].<br />

Tak<strong>in</strong>g expectation w.r.t. Q yields that ν(C T , γ 1 ) ≤ ν(C T , γ 2 ).<br />

To prove the second part, we recall (3.15); namely,<br />

ν(C T , γ) = q 1 γ log p 1e γc 1<br />

+ p 2 e γc 2<br />

p 1 + p 2<br />

+ (1 − q) 1 γ log p 3e γc 3<br />

+ p 4 e γc 4<br />

p 3 + p 4<br />

.<br />

We also have<br />

ν(C T , 1) = q log p 1e c 1<br />

+ p 2 e c 2<br />

p 1 + p 2<br />

+ (1 − q) log p 3e c 3<br />

+ p 4 e c 4<br />

p 3 + p 4<br />

.<br />

11


Now the condition (3.27) implies that<br />

q 1 γ log p 1e γc 1<br />

+ p 2 e γc 2<br />

+ (1 − q) 1 p 1 + p 2 γ log p 3e γc 3<br />

+ p 4 e γc 4<br />

p 3 + p 4<br />

= q log p 1e c 1<br />

+ p 2 e c 2<br />

+ (1 − q) log p 3e c 3<br />

+ p 4 e c 4<br />

.<br />

p 1 + p 2 p 3 + p 4<br />

Tak<strong>in</strong>g a particular claim, for <strong>in</strong>stance, a claim C T such that c 1 = C T (ω 1 ) > 0 and c i = C T (ω i ) = 0<br />

for i = 2, 3, 4, we get from the last relation that, for all c 1 > 0,<br />

Differentiat<strong>in</strong>g c 1 yields<br />

It turns out that<br />

Hence γ = 1.<br />

1<br />

γ log p 1e γc 1<br />

+ p 2<br />

p 1 + p 2<br />

= log p 1e c 1<br />

+ p 2<br />

p 1 + p 2<br />

.<br />

e γc 1<br />

p 1 e γc 1 + p2<br />

=<br />

e c 1<br />

p 1 e c 1 + p2<br />

.<br />

e c 1<br />

(p 1 e c 1<br />

+ p 2 ) = e c 1<br />

(p 1 e γc 1<br />

+ p 2 ) ⇒ e γc 1<br />

= e c 1<br />

.<br />

Proposition 3.10. There hold the follow<strong>in</strong>g limit<strong>in</strong>g relations:<br />

Proof. Recall aga<strong>in</strong> the pric<strong>in</strong>g formula<br />

lim ν(C<br />

γ→0 + T , γ) = E Q [C T ], (3.28)<br />

[ ]<br />

lim ν(C T , γ) = E Q ‖C T ‖ L ∞<br />

γ→∞ Q{·|ST<br />

. (3.29)<br />

}<br />

ν(C T , γ) = q 1 γ log p 1e γc 1<br />

+ p 2 e γc 2<br />

p 1 + p 2<br />

+ (1 − q) 1 γ log p 3e γc 3<br />

+ p 4 e γc 4<br />

p 3 + p 4<br />

. (3.30)<br />

Tak<strong>in</strong>g the limit as γ → 0 + <strong>in</strong> (3.30) and observ<strong>in</strong>g the fact<br />

p i<br />

q i = q , i = 1, 2, q i = (1 − q) , i = 3, 4<br />

p 1 + p 2 p 1 + p 2<br />

p i<br />

we obta<strong>in</strong><br />

(<br />

lim ν(C p1 c 1<br />

γ→0 + T , γ) = q<br />

=<br />

+ p )<br />

2c 2<br />

p 1 + p 2 p 1 + p 2<br />

+ (1 − q)<br />

4∑<br />

q i c i = E Q [C T ].<br />

i=1<br />

(<br />

p3 c 3<br />

+ p )<br />

4c 4<br />

p 3 + p 4 p 3 + p 4<br />

12


Next tak<strong>in</strong>g the limit as γ → ∞ <strong>in</strong> (3.30) by us<strong>in</strong>g the L’Hospital’s rule, we arrive at<br />

lim ν(C c 1 p 1 e γc 1<br />

+ c 2 p 2 e γc 2<br />

T , γ) = q lim<br />

γ→∞ γ→∞ p 1 e γc 1 + p2 e γc 2<br />

+ (1 − q) lim<br />

γ→∞<br />

c 3 p 3 e γc 3<br />

+ c 4 p 4 e γc 4<br />

p 3 e γc 3 + p4 e γc 4<br />

= q max{c [ 1 , c 2 } + (1 − q) max{c 3 , c 4 }<br />

]<br />

= E Q ‖C T ‖ L ∞<br />

Q{·|ST<br />

.<br />

}<br />

Proposition 3.11. The <strong>in</strong>difference price ν(C T , γ) satisfies<br />

∂ν(C T , γ)<br />

lim<br />

= 1<br />

γ→0 + ∂γ 2 EQ [Var Q (C T |S T )] . (3.31)<br />

Thus,<br />

ν(C T , γ) = E Q [C T ] + 1 2 EQ [Var Q (C T |S T )] + o(γ).<br />

Proof. Recall the formula<br />

[ ]<br />

1<br />

ν(C T , γ) = E Q γ log EQ [e γC T<br />

|S T ] . (3.32)<br />

From this we compute the partial derivative<br />

∂ν(C T , γ)<br />

∂γ<br />

It turns out that, by us<strong>in</strong>g L’Hospital’s rule,<br />

This gives that<br />

∂ν(C T , γ)<br />

lim<br />

γ→0 + ∂γ<br />

1<br />

= lim<br />

γ→0 + γ<br />

[<br />

= E Q − 1 γ 2 log EQ [e γC T<br />

|S T ] + 1 E Q [C T e γC T<br />

|S T ]<br />

γ E Q [e γC T |ST ]<br />

= 1 ( [ E<br />

E Q Q [C T e γC ] )<br />

T<br />

|S T ]<br />

γ E Q [e γC − ν(C T , γ) .<br />

T |ST ]<br />

(<br />

E Q [ E Q [C T e γC T<br />

|S T ]<br />

E Q [e γC T |ST ]<br />

] )<br />

− ν(C T , γ)<br />

[ E Q [C<br />

= lim<br />

γ→0 EQ T 2 eγC T<br />

|S T ]E Q [e γC T<br />

|S T ] − (E Q [C T e γC T<br />

|S T ]) 2 ]<br />

+ (E Q [e γC T |ST ]) 2<br />

∂ν(C T , γ)<br />

− lim<br />

.<br />

γ→0 + ∂γ<br />

∂ν(C T , γ)<br />

lim<br />

= 1 [<br />

γ→0 + ∂γ 2 EQ E Q (CT 2 |S T )] − (E Q (C T |S T )) 2]<br />

= 1 2 EQ [Var Q (C T |S T )] .<br />

]<br />

13


Proposition 3.12. The <strong>in</strong>difference price is consistent with the no-arbitrage pr<strong>in</strong>ciple, that is, for<br />

γ > 0,<br />

<strong>in</strong>f E Q [C T ] ≤ ν(C T , γ) ≤ sup E Q [C T ], (3.33)<br />

Q∈Q e Q∈Q e<br />

where Q e is the set of equivalent mart<strong>in</strong>gales.<br />

Proof. S<strong>in</strong>ce ν(C T , γ) is <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> γ, we f<strong>in</strong>d<br />

lim ≤ ν(C<br />

γ→0 + T , γ) ≤ lim ≤ ν(C T , γ).<br />

γ→∞<br />

By Proposition 3.10, we get<br />

E Q [C T ] ≤ ν(C T , γ) ≤ E Q [ ‖C T ‖ L ∞<br />

Q{·|ST }<br />

]<br />

.<br />

Tak<strong>in</strong>g <strong>in</strong>fimum gives us that<br />

<strong>in</strong>f E Q [C T ] ≤ E Q [C T ] ≤ ν(C T , γ).<br />

Q∈Q e<br />

This is the left side of (3.33). To see the right side, it is suffices to observe the relations (we assume<br />

c 1 < c 2 and c 3 < c 4 )<br />

[ ]<br />

E Q ‖C T ‖ L ∞<br />

Q{·|ST<br />

= q max{c<br />

}<br />

1 , c 2 } + (1 − q) max{c 3 , c 4 } = E ¯Q[C T ],<br />

where ¯Q is the mart<strong>in</strong>gale measure with elementary probabilities<br />

¯Q(ω 1 ) = 0, ¯Q(ω2 ) = q, ¯Q(ω3 ) = 0, ¯Q(ω4 ) = 1 − q.<br />

Hence,<br />

ν(C T , γ) ≤ E Q [ ‖C T ‖ L ∞<br />

Q{·|ST }<br />

]<br />

= E ¯Q[C T ] ≤ sup<br />

Q∈Q e<br />

E Q [C T ].<br />

Proposition 3.13. The <strong>in</strong>difference price ν(C T ) is an <strong>in</strong>creas<strong>in</strong>g and convex function of the payoff,<br />

that is,<br />

(i) if C 1 T ≤ C2 T , then ν(C1 T ) ≤ ν(C2 T ),<br />

(ii) for α ∈ (0, 1), ν(αC 1 T + (1 − α)C2 T ) ≤ αν(C1 T ) + (1 − α)ν(C2 T ).<br />

Proof. Recall the pric<strong>in</strong>g formula<br />

[ ]<br />

1<br />

ν(C T ) = E Q γ log EQ [e γC T<br />

|S T ] .<br />

From this formula, it is trivial to f<strong>in</strong>d that ν(C T ) is an <strong>in</strong>creas<strong>in</strong>g function of the payoff C T .<br />

14


We next show the convexity of ν(C T ). Apply<strong>in</strong>g Holder’s <strong>in</strong>equality, we derive that<br />

The convexity of ν(C T ) follows.<br />

ν(αCT 1 + (1 − α)CT 2 )<br />

[ ]<br />

1<br />

= E Q γ log EQ [e γ(αC1 T +(1−α)C2 T ) |S T ]<br />

[ ]<br />

1<br />

≤ E Q γ log(EQ [e γC1 T |ST ]) α (E Q [e γC2 T |ST ]) 1−α<br />

[ ]<br />

[ ]<br />

1 1<br />

= αE Q γ log(EQ [e γC1 T |ST ] + (1 − α)E Q γ log EQ [e γC2 T |ST ] .<br />

Proposition 3.14. The <strong>in</strong>difference price ν(C T ) satisfies the properties:<br />

(i) ν(αC T ) ≤ αν(C T ) for α ∈ (0, 1),<br />

(ii) ν(αC T ) ≥ αν(C T ) for α ≥ 1.<br />

Proof. We have<br />

[ ]<br />

1<br />

ν(αC T ) = E Q γ log EQ [e γαC T<br />

|S T ] .<br />

If α ∈ (0, 1), then sett<strong>in</strong>g ¯γ = γα < γ, we get<br />

[ ]<br />

ν(αC T ) = ν(αC T , γ) = αE 1¯γ Q log EQ [e¯γC T<br />

|S T ] = αν(C T ), ¯γ).<br />

S<strong>in</strong>ce ν(αC T , γ) is <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> γ, we derive from the last relation that<br />

ν(αC T ) = αν(C T ), ¯γ) ≤ αν(C T ), γ) = αν(C T ).<br />

If α > 1, then ¯γ > γ. Hence it follows aga<strong>in</strong> from the <strong>in</strong>creas<strong>in</strong>gness of ν(αC T , γ) that<br />

ν(αC T ) = αν(C T ), ¯γ) ≥ αν(C T ), γ) = αν(C T ).<br />

Proposition 3.15. The <strong>in</strong>difference pric<strong>in</strong>g operator is additively <strong>in</strong>variant w.r.t. hedgeable risks;<br />

that is, if C T = C 1 T + C2 T , with C1 T = C1 (S T ) and C 2 T = C2 (S T , Y T ), then<br />

ν(C T ) = E Q [C 1 (S T )] + ν(C 2 (S T , Y T )) = ν(C 1 (S T )) + ν(C 2 (S T , Y T )). (3.34)<br />

Proof. Recall the pric<strong>in</strong>g formula<br />

[ ]<br />

1<br />

ν(C T ) = E Q (C T ) = E Q γ log EQ [e γC T<br />

|S T ] .<br />

15


Now ifC T = CT 1 + C2 T , with C1 T = C1 (S T ) and CT 2 = C2 (S T , Y T ), then we get<br />

[ ]<br />

1<br />

ν(C T ) = E Q γ log EQ [e γ(C1 T (S T )+CT 2 (S T ,Y T )) |S T ]<br />

[ ]<br />

1<br />

= E Q [CT 1 (S T )] + E Q γ log EQ [e γC2 T (S T ,Y T ) |S T ]<br />

= E Q [CT 1 (S T )] + ν(CT 2 (S T , Y T )).<br />

Remark 3.16. (i) If C T = C 1 (S T ) + C 2 (S T , Y T ), where Y T is functionally dependent on S T , then<br />

CT 2 = C2 (S T , Y T ) is F S T<br />

T<br />

-measurable. It turns out that<br />

and, from (3.34), that<br />

C 2 (S T , Y T ) = ˜C 2 (S T , Y T ) = 1 γ log EQ [e γC2 T |ST ]<br />

ν(C T ) = E Q [C 1 (S T )] + ν(C 2 (S T , Y T )) = E Q [C 1 (S T )] + E Q [C 2 (S T , Y T )].<br />

Therefore, the <strong>in</strong>difference price simplifies to the no-arbitrage price and the pric<strong>in</strong>g measure is<br />

co<strong>in</strong>cides with the risk-neutral measure.<br />

(ii) If C T = C 1 (S T ) + C 2 (Y T ), where S T and Y T are <strong>in</strong>dependent under P, then<br />

˜C 2 (Y T ) = 1 γ log EQ [e γC2 T (Y T ) |S T ] = 1 γ log EP [e γC2 T (Y T ) ]<br />

and the formula (3.34) becomes<br />

ν(C T ) = E Q [C 1 (S T )] + 1 γ log EP [e γC2 T (Y T ) ].<br />

Namely, the <strong>in</strong>difference price ν(C T ) is the sum of the arbitrage-free price of the first claim and the<br />

traditional certa<strong>in</strong>ty equivalent price of the second claim.<br />

Def<strong>in</strong>ition 3.17. A mapp<strong>in</strong>g ρ : F T → R is said to be a convex risk measure if it satisfies the<br />

follow<strong>in</strong>g conditions, for all C T , CT 1 , C2 T ∈ F T ,<br />

(a) Convexity: ρ(αCT 1 + (1 − α)C2 T ) ≤ αρ(C1 T ) + (1 − α)ρ(C2 T<br />

) for all α ∈ (0, 1),<br />

(b) Monotonicity: If C 1 T ≤ C2 T , then ρ(C1 T ) ≥ ρ(C2 T ),<br />

(c) Translation <strong>in</strong>variance: If m ∈ R, then ρ(C T + m) = ρ(C T ) − m.<br />

Def<strong>in</strong>e a mapp<strong>in</strong>g on F T by<br />

[ ]<br />

1<br />

ρ(C T ) = ν(−C T ) = E Q γ log EQ [e −γC T<br />

|S T ] . (3.35)<br />

From the above properties of the <strong>in</strong>difference price, we immediately get the follow<strong>in</strong>g result.<br />

Proposition 3.18. The mapp<strong>in</strong>g ρ def<strong>in</strong>ed by (3.35) is a convex risk measure.<br />

16


4 Risk Monitor<strong>in</strong>g Strategies<br />

In a complete market, the payoff of every claim can be replicated by a self-f<strong>in</strong>anc<strong>in</strong>g portfolio and<br />

thus any risk associated with the claim is elim<strong>in</strong>ated. However, <strong>in</strong> an <strong>in</strong>complete market, not all<br />

risk associated with (some) claim can not be elim<strong>in</strong>ated completely. Therefore, manag<strong>in</strong>g risk<br />

generated by derivative contracts is an important issue for an <strong>in</strong>complete market.<br />

For this one-<strong>period</strong> model, if a claim C T is F S T<br />

T<br />

-measurable, then its <strong>in</strong>difference price co<strong>in</strong>cides<br />

with the arbitrage-free price; it is also replicable and there holds the formula<br />

with<br />

C T = ν(C T ) + ∂ν(C T )<br />

∂S 0<br />

(S T − S 0 ) (4.1)<br />

ν(C T ) = E Q [C T ],<br />

∂ν(C T )<br />

∂S 0<br />

= ∂EQ [C T ]<br />

∂S 0<br />

. (4.2)<br />

For a general claim C T = c(S T , Y T ), (4.1) does not hold <strong>in</strong> general.<br />

Let ν(C T ) be the <strong>in</strong>difference price of a claim C T . Recall that the value function of C T is<br />

V C T<br />

(x) = sup<br />

α<br />

E P [−e −γ(X T −C T ) ] = e −γx sup E P [−e −γα(S T −S 0 )+γC T<br />

]. (4.3)<br />

α<br />

Let α C T ,∗ denote the optimal solution to the optimal problem (4.3).<br />

Recall also the relative entropy of the measure Q w.r.t. P:<br />

H(Q|P) =<br />

4∑<br />

i=1<br />

q i log q i<br />

p i<br />

.<br />

Proposition 4.1. The optimal number of shares, α C T ,∗ , <strong>in</strong> the the optimal <strong>in</strong>vestment problem<br />

(4.3) satisfies<br />

α C T ,∗ = α 0,∗ + ∂ν(C T )<br />

, (4.4)<br />

∂S 0<br />

where<br />

α 0,∗ = − 1 ∂H(Q|P)<br />

γ ∂S 0<br />

represents the number of shares held optimally <strong>in</strong> the absence of the claim. Both optimal controls<br />

α C T ,∗ and α 0,∗ are wealth <strong>in</strong>dependent.<br />

Proof. We have computed α C T ,∗ :<br />

α C T ,∗ =<br />

Sett<strong>in</strong>g c 1 = c 2 = c 3 = c 4 = 0, we get<br />

Recall (S u = S 0 ξ u , S d = S 0 ξ d )<br />

α 0,∗ =<br />

1<br />

γS 0 (ξ u − ξ d ) log (ξu − 1)(p 1 e γc 1<br />

+ p 2 e γc 2<br />

)<br />

(1 − ξ d )(p 3 e γc 3 + p4 e γc 4 )<br />

. (4.5)<br />

1<br />

γS 0 (ξ u − ξ d ) log (ξu − 1)(p 1 + p 2 )<br />

(1 − ξ d )(p 3 + p 4 ) . (4.6)<br />

q = 1 − ξd<br />

ξ u − ξ d = S 0 − S d<br />

S u − S d , thus 1 − q = ξu − 1<br />

ξ u − ξ d .<br />

17


We can rewrite<br />

and<br />

Note that we have<br />

S<strong>in</strong>ce (not<strong>in</strong>g q = q 1 + q 2 )<br />

α C T ,∗ =<br />

q i<br />

p i<br />

=<br />

1<br />

γ(S u − S d ) log (1 − q)(p 1e γc 1<br />

+ p 2 e γc 2<br />

)<br />

q(p 3 e γc 3 + p4 e γc . (4.7)<br />

4 )<br />

α 0,∗ 1<br />

=<br />

γ(S u − S d ) log (1 − q)(p 1 + p 2 )<br />

. (4.8)<br />

q(p 3 + p 4 )<br />

∂q<br />

∂S 0<br />

=<br />

q<br />

p 1 + p 2<br />

, i = 1, 2,<br />

we can express H(Q|P) as a function of q as follows:<br />

Consequently, we get<br />

H(Q|P) =<br />

∂H(Q|P)<br />

∂S 0<br />

2∑<br />

i=1<br />

= q log<br />

q i log q i<br />

p i<br />

+<br />

1<br />

S u − S d<br />

. (4.9)<br />

q i<br />

p i<br />

=<br />

4∑<br />

i=3<br />

q<br />

p 3 + p 4<br />

, i = 3, 4,<br />

q i log q i<br />

p i<br />

q<br />

p 1 + p 2<br />

+ (1 − q) log 1 − q<br />

p 3 + p 4<br />

.<br />

= ∂H(Q|P) ∂q<br />

∂q ∂S<br />

(<br />

0<br />

= log<br />

q<br />

− log 1 − q ) ∂q<br />

p 1 + p 2 p 3 + p 4 ∂S 0<br />

= − log (1 − q)(p 1 + p 2 )<br />

q(p 3 + p 4 )<br />

Comb<strong>in</strong><strong>in</strong>g (6.45), (4.9) and (4.10), we get α 0,∗ = − 1 γ<br />

To prove (4.4), recall we have proved that<br />

It follows that<br />

·<br />

∂H(Q|P)<br />

∂S 0<br />

.<br />

∂q<br />

∂S 0<br />

. (4.10)<br />

ν(C T ) = q 1 γ log p 1e γc 1<br />

+ p 2 e γc 2<br />

p 1 + p 2<br />

+ (1 − q) 1 γ log p 3e γc 3<br />

+ p 4 e γc 4<br />

p 3 + p 4<br />

.<br />

∂ν(C T )<br />

= ∂ν(C T ) ∂q<br />

∂S 0 ∂q ∂S 0<br />

= 1 γ log (p 3 + p 4 )(p 1 e γc 1<br />

+ p 2 e γc 2<br />

)<br />

(p 1 + p 2 )(p 3 e γc 3 + p4 e γc 4 ) ·<br />

Comb<strong>in</strong><strong>in</strong>g (4.10) and (4.11) yields that, us<strong>in</strong>g (4.7),<br />

α 0,∗ + ∂ν(C T )<br />

= 1 ∂S 0 γ log (1 − q)(p 1e γc 1<br />

+ p 2 e γc 2<br />

) 1<br />

q(p 3 e γc 3 + p4 e γc ·<br />

4 ) S u − S d<br />

= α C T ,∗ .<br />

∂q<br />

∂S 0<br />

. (4.11)<br />

18


Consider the agent’s optimal wealths X C T ,∗ with the claim and X 0,∗ without the claim. In the<br />

first case, the agent starts with the <strong>in</strong>itial wealth x + ν(C T ) and buys α C T ,∗ shares of stock; while<br />

<strong>in</strong> the latter case, the agent starts with the wealth x and follows the strategy α 0,∗ . Namely,<br />

X C T ,∗ = x + ν(C T ) + α C T ,∗ (S T − S 0 ) (4.12)<br />

X 0,∗ = x + α 0,∗ (S T − S 0 ). (4.13)<br />

Def<strong>in</strong>ition 4.2. The residual optimal wealth process is def<strong>in</strong>ed as<br />

By def<strong>in</strong>ition, we get<br />

L t = X C T ,∗<br />

t − X 0,∗<br />

t , t = 0, T. (4.14)<br />

L 0 = X C T ,∗<br />

0 − X 0,∗<br />

0 = x + ν(C T ) − x = ν(C T ), (4.15)<br />

L T = X C T ,∗<br />

T<br />

− X 0,∗<br />

T<br />

= ν(C T ) + (α C T ,∗ − α 0,∗ )(S T − S 0 ). (4.16)<br />

In a complete model, the residual optimal wealth is exactly the value of perfectly replicat<strong>in</strong>g<br />

portfolio, and is therefore a mart<strong>in</strong>gale under the unique risk-neutral measure, and generates the<br />

claim’s payoff at the expiration time T . However, <strong>in</strong> an <strong>in</strong>complete model, the situations are<br />

different. The residual term<strong>in</strong>al optimal wealth L T reproduces the claim only partially. In addition,<br />

it is FT S -measurable and rema<strong>in</strong>s to be a mart<strong>in</strong>gale under all mart<strong>in</strong>gale measures. Its most<br />

important property lies <strong>in</strong> its co<strong>in</strong>cidence with the conditional certa<strong>in</strong>ty equivalent.<br />

Proposition 4.3. The residual optimal wealth process satisfies the follow<strong>in</strong>g properties:<br />

(i) L 0 = ν(C T ),<br />

(ii) L T = ν(C T ) + ∂ν(C T )<br />

∂S 0<br />

(S T − S 0 ),<br />

(iii) L T equals the conditional certa<strong>in</strong>ty equivalent: L T = ˜C T ,<br />

(iv) L t is a mart<strong>in</strong>gale under all equivalent mart<strong>in</strong>gale measures: E Q [L T ] = L 0 = ν(C T ) for all<br />

Q ∈ Q e .<br />

Proof. (i) and (ii) follows from (4.15) and (ii) follows from (4.16) together with Proposition 4.1.<br />

To see (iii), recall that<br />

From (ii) we get<br />

ν(C T ) = E Q [ ˜C T ], ˜CT = 1 γ log EQ [e γC T<br />

|S T ].<br />

L T = E Q [ ˜C T ] + ∂EQ [ ˜C T ]<br />

∂S 0<br />

(S T − S 0 ).<br />

On the other hand, s<strong>in</strong>ce ˜C T is FT S -measurable, it is replicable and decomposed as the form<br />

˜C T = E Q [ ˜C T ] + ∂EQ [ ˜C T ]<br />

∂S 0<br />

(S T − S 0 ). (4.17)<br />

Consequently, L T = ˜C T .<br />

(iv) follows from (i) and (ii) as for each Q ∈ Q e , E Q [S T ] = S 0 .<br />

19


Def<strong>in</strong>ition 4.4. The <strong>in</strong>difference price process ν t (C T ), t = 0, T , is def<strong>in</strong>ed as<br />

ν 0 (C T ) = ν(C T ), ν T (C T ) = C T . (4.18)<br />

Def<strong>in</strong>ition 4.5. The residual risk process R t , t = 0, T , is def<strong>in</strong>ed as the difference between the<br />

<strong>in</strong>difference price and the residual optimal wealth, that is,<br />

R t = ν t (C T ) − L t .<br />

In other words,<br />

R 0 = ν(C T ) − L 0 , R T = C T − L T . (4.19)<br />

If perfect replication is viable, then the residual risk R = 0 throughout. In general, it represents<br />

the component of the claim that is not replicable.<br />

Proposition 4.6. The residual risk process satisfies the follow<strong>in</strong>g properties:<br />

(i) R 0 = 0 and R T = C T − ˜C T ,<br />

(ii) its conditional certa<strong>in</strong>ty equivalent is zero: ˜RT = 0,<br />

(iii) its <strong>in</strong>difference price is zero: ν(R T ) = 0,<br />

(iv) it is a supermart<strong>in</strong>gale under the pric<strong>in</strong>g measure Q: E Q [R T ] ≤ R 0 = 0,<br />

(v) its expected certa<strong>in</strong>ty equivalent under the historical measure P is zero: log E P [e γR T<br />

] = 0.<br />

Proof. (i) follows from Proposition 4.3(i) and (iii).<br />

(ii) We compute, as ˜C T is F S T -measurable,<br />

˜R T = 1 γ log EQ [e γ(C T − ˜C T ) |S T ]<br />

= 1 γ log e−γ ˜C T<br />

E Q [e γ(C T ) |S T ]<br />

= 1 γ log EQ [e γ(C T ) |S T ] − ˜C T<br />

= ˜C T − ˜C T = 0.<br />

(iii) ν(R T ) = E Q [ ˜R T ] = 0.<br />

(iv) E Q [R T ] = E Q [C T − ˜C T ] = E Q [C T ] − E Q [ ˜C T ] = E Q [C T ] − ν(C T ) ≤ 0.<br />

(v) By (ii) and (3.8) we obta<strong>in</strong><br />

0 = ˜R T = 1 γ log EQ [e γR T<br />

|S T ] = 1 γ log EP [e γR T<br />

|S T ].<br />

Hence<br />

and the result of (v) follows.<br />

E P [e γR T<br />

|S T ] = 1 ⇒ E P [e γR T<br />

] = 1<br />

By the Doob-Meyer decomposition theorem, the supermart<strong>in</strong>gale R t can be decomposed.<br />

20


Proposition 4.7. The residual risk R t admits the Doob-Meyer decomposition<br />

R t = R m t<br />

+ R d t<br />

where<br />

and<br />

R m 0 = 0 and R m T = R T − E Q [R T ] (4.20)<br />

R d 0 = 0 and R d T = E Q [R T ] (4.21)<br />

Moreover, R m t is F (S,Y )<br />

T<br />

-measurable, and R d t is decreas<strong>in</strong>g and adapted to the trivial filtration F (S,Y )<br />

0 .<br />

The next result is the payoff decomposition result which is central to the study of risks of<br />

associated with the <strong>in</strong>difference valuation method s<strong>in</strong>ce it provides with an analog of the arbitragefree<br />

payoff decomposition (4.1).<br />

Theorem 4.8. Let ˜C T and R T be the conditional certa<strong>in</strong>ty equivalent and the residual risk associated<br />

with the claim C T , respectively. Let (R m t , R d t ) be the Doob-Meyer decomposition of the residual<br />

risk R t . Def<strong>in</strong>e a process M ˜C<br />

t , t = 0, T , by<br />

M ˜C<br />

0 = ν(C T ), M ˜C<br />

T = ν(C T ) + ∂ν(C T )<br />

∂S 0<br />

(S T − S 0 ). (4.22)<br />

(i) The Claim C T admits a unique payoff decomposition under the measure Q:<br />

C T = ˜C T + R T<br />

= ν(C T ) + ∂ν(C T )<br />

∂S 0<br />

(S T − S 0 ) + R T (4.23)<br />

= M ˜C<br />

T + R m T + R d T .<br />

(ii) The <strong>in</strong>difference price process ν t , def<strong>in</strong>ed <strong>in</strong> Def<strong>in</strong>ition 4.4, is an F (S,Y )<br />

T<br />

-supermart<strong>in</strong>gale under<br />

the measure Q. It admits the unique decomposition<br />

where<br />

ν t (C T ) = M t + R d t , (4.24)<br />

M t = M ˜C<br />

t + R m t .<br />

The components M t and R d t represent the associated mart<strong>in</strong>gale and respectively, the non<strong>in</strong>creas<strong>in</strong>g<br />

parts of the price process ν t .<br />

Proof. (i) S<strong>in</strong>ce nu(C T ) = E Q [ ˜C T ] and us<strong>in</strong>g Proposition 4.6(i), (4.17) and the def<strong>in</strong>ition of M ˜C<br />

T<br />

,<br />

we immediately get<br />

C T = ˜C T + R T<br />

= ν(C T ) + ∂ν(C T )<br />

(S T − S 0 ) + R T<br />

∂S 0<br />

= M ˜C<br />

T + R m T + R d T .<br />

21


(ii) That (4.24) holds trivially when t = 0 s<strong>in</strong>ce, by def<strong>in</strong>ition, ν 0 (C T ) = ν(C T ) and<br />

M 0 + R d 0 = M ˜C<br />

0 + R 0 = ν(C T )<br />

for M ˜C<br />

0 = ν(C T ) and R 0 = 0.<br />

When t = T , by def<strong>in</strong>ition of M ˜C<br />

T<br />

, we f<strong>in</strong>d that the relation ν T (C T ) = M T + RT d<br />

relation (4.23).<br />

is precisely the<br />

Proposition 4.9. The expected residual risk satisfies<br />

E Q [R T ] = − 1 2 γEQ [Var(C T |S T )] + o(γ),<br />

E Q [R T ] = − 1 2 γEQ [Var(R T |S T )] + o(γ).<br />

Proof. By Propositions 4.6 and 3.11, we get<br />

E Q [R T ] = E Q [C T ] − E Q [ ˜C T ] = E Q [C T ] − ν(C T )<br />

= − 1 2 γEQ [Var(C T |S T )] + o(γ).<br />

S<strong>in</strong>ce R T = C T − ˜C T and s<strong>in</strong>ce ˜C T is F S T<br />

T<br />

-measurable, it follows that<br />

[ ]<br />

Var(R T |S T ) = E Q (R T − E Q [R T |S T ]) 2 |S T<br />

= E Q [ (C T − ˜C T − E Q [C T − ˜C T |S T ]) 2 |S T<br />

]<br />

= E Q [ (C T − E Q [C T |S T ]) 2 |S T<br />

]<br />

= Var(C T |S T ).<br />

The second equality now follows from the last relation and the first equality.<br />

22


5 Relative <strong>Indifference</strong> Prices<br />

The <strong>in</strong>difference price ν(C T ) is nonl<strong>in</strong>ear. It is not homogeneous: for α ≠ 0, 1,<br />

It is not additive: for two claims CT i , i = 1, 2,<br />

More generally, for claims CT i , 2 ≤ i ≤ n,<br />

( n∑<br />

ν<br />

i=1<br />

ν(αC T ) ≠ αν(C T ).<br />

ν(C 1 T + C 2 T ) ≠ ν(C 1 T ) + ν(C 2 T ).<br />

C i T<br />

)<br />

≠<br />

n∑<br />

ν(CT i ).<br />

The nonhomogeneity reflects the fact that the agents are not will<strong>in</strong>g to expose herself to double<br />

risk when she sells or buys two units of a claim. The nonadditivity <strong>in</strong>terprets the nondiversity of<br />

risks <strong>in</strong> this nonl<strong>in</strong>ear valuation mechanism.<br />

In a complete market, the valuation function is both homogeneous and additive (i.e., l<strong>in</strong>ear).<br />

The <strong>in</strong>troduction of the concept of relative <strong>in</strong>difference price remedies the nonl<strong>in</strong>ear <strong>in</strong>difference<br />

valuation method <strong>in</strong> some sense. It helps twofold.<br />

Def<strong>in</strong>ition 5.1. Let CT 1 = C1 (S T , Y T ) and CT 2 = C2 (S T , Y T ) be two claims that have <strong>in</strong>difference<br />

prices ν(CT 1 ) and ν(C2 T ), respectively. Let V C1 T , V C2 T and V C1 T +C2 T be the value functions<br />

correspond<strong>in</strong>g to CT 1 , C2 T and C1 T + C2 T , respectively.<br />

The relative <strong>in</strong>difference price ν(CT 2 |C1 T ) and ν(C1 T |C2 T<br />

) are def<strong>in</strong>ed, respectively, as the amounts<br />

satisfy<strong>in</strong>g, for all wealth levels x ∈ R,<br />

and<br />

i=1<br />

V C1 T (x) = V<br />

C 1 T +C2 T (x + ν(C<br />

2<br />

T |C 1 T )) (5.1)<br />

V C2 T (x) = V<br />

C 1 T +C2 T (x + ν(C<br />

1<br />

T |C 2 T )). (5.2)<br />

Proposition 5.2. Let the claims CT 1 = C1 (S T , Y T ) and CT 2 = C2 (S T , Y T ) have <strong>in</strong>difference prices<br />

ν(CT 1 ) and ν(C2 T ), and relative <strong>in</strong>difference prices ν(C1 T |C2 T ) and ν(C2 T |C1 T<br />

), respectively. Then the<br />

<strong>in</strong>difference price of the claim CT 1 + C2 T satisfies<br />

Proof. By Theorem 3.8,<br />

It turns out that<br />

ν(C 1 T + C 2 T ) = ν(C 1 T ) + ν(C 2 T |C 1 T ), (5.3)<br />

ν(C 1 T + C 2 T ) = ν(C 2 T ) + ν(C 1 T |C 2 T ).<br />

V C1 T (x) = −e<br />

−γx−H(Q|P)+γν(C 1 T ) ,<br />

V C1 T +C2 T (x) = −e<br />

−γx−H(Q|P)+γν(C 1 T +C2 T ) .<br />

V C1 T +C2 T (x + ν(C<br />

2<br />

T |C 1 T )) = −e −γ(x+ν(C2 T |C1 T ))−H(Q|P)+γν(C1 T +C2 T )<br />

= V C1 T (x)e<br />

−γ[ν(C 1 T )+ν(C2 T |C1 T ))−ν(C1 T +C2 T )] .<br />

23


So the def<strong>in</strong><strong>in</strong>g equation (5.1) for the relative <strong>in</strong>difference price ν(CT 1 |C2 T<br />

) is reduced to the equation:<br />

This is equation (5.3).<br />

ν(C 1 T ) + ν(C 2 T |C 1 T )) − ν(C 1 T + C 2 T ) = 0.<br />

Corollary 5.3. The <strong>in</strong>difference prices ν(CT 1 ) and ν(C2 T<br />

) and their relative <strong>in</strong>difference prices<br />

ν(CT 1 |C2 T ) and ν(C2 T |C1 T<br />

) satisfy the equation<br />

ν(C 1 T ) − ν(C 2 T ) = ν(C 1 T |C 2 T ) − ν(C 2 T |C 1 T ).<br />

Corollary 5.4. The <strong>in</strong>difference price of the claim C T := CT 1 + C2 T<br />

ν(CT 1 |C2 T ) and ν(C2 T |C1 T<br />

) satisfy the equation<br />

is given by <strong>in</strong>difference prices<br />

ν(C 1 T + C 2 T ) = 1 2 (ν(C1 T ) + ν(C 2 T )) + 1 2 (ν(C1 T |C 2 T ) + ν(C 2 T |C 1 T )).<br />

Moreover, the above relation can be rewritten as<br />

ν(C 1 T + C 2 T ) − (ν(C 1 T ) + ν(C 2 T )) = 1 2 (ν(C1 T |C 2 T ) + ν(C 2 T |C 1 T ))<br />

− 1 2 (ν(C1 T ) + ν(C 2 T )).<br />

Remark 5.5. (i) Assume C T = C 1 T + C2 T with C1 T = C1 (S T , Y T ) and C 2 T = C2 (S T ). Then by<br />

Proposition 3.15, the price is additive:<br />

ν(C T ) = ν(C 1 T ) + ν(C 2 T ).<br />

Note that ν(C 2 T ) = EQ [C 2 (S T )]. Proposition 5.2 then implies that<br />

ν(C 2 T |C 1 T ) = ν(C 2 T ) = E Q [C 2 (S T )].<br />

That is, if a claim CT<br />

2 = C2 (S T ) is F S T<br />

T<br />

-measurable, then its relative <strong>in</strong>difference price w.r.t.<br />

another F S T ,Y T<br />

T<br />

-measurable claim CT 2 = C2 (S T , Y T ) is exactly its arbitrage-free price E Q [C 2 (S T )].<br />

If, <strong>in</strong> addition, Y T functionally depends on S T so that CT 2 is F S T<br />

T<br />

-measurable, then we deduce<br />

that (as CT 1 + C2 T is F S T<br />

T<br />

-measurable)<br />

It turns out that<br />

ν(C 1 T + C 2 T ) = E Q [C 1 T ] + E Q [C 2 ]. (5.4)<br />

ν(C 1 T |C 2 T ) = ν(C 1 T ), ν(C 2 T |C 1 T ) = ν(C 2 T ).<br />

(ii) Assume C T = C 1 T (S T ) + C 2 T (Y T ) with S T and Y T be<strong>in</strong>g <strong>in</strong>dependent under the historical<br />

measure P. Then it has been shown that<br />

ν(C T ) = ν(C 1 T + C 2 T ) = ν(C 1 T ) + ν(C 2 T ),<br />

where<br />

ν(C 1 T ) = E Q [C 1 T ], ν(C 2 T ) = 1 γ log EP [e γC2 (Y T ) ].<br />

Proposition 5.2 then implies that<br />

ν(C 1 T |C 2 T ) = ν(C 1 T ), ν(C 2 T |C 1 T ) = ν(C 2 T ).<br />

24


6 Wealth, Preferences and Numeraires<br />

This section extends <strong>in</strong>difference price to the case of nonzero rate of <strong>in</strong>terest.<br />

6.1 <strong>Indifference</strong> Prices <strong>in</strong> Spot and Forward Units<br />

Consider the one-<strong>period</strong> model of a riskless bond B and two risky assets S and Y , of which only<br />

the asset S is traded. The dynamics of the risky assets rema<strong>in</strong> unchanged. However, the rate of<br />

<strong>in</strong>terest for the <strong>period</strong> is now nonzero. Thus,<br />

B 0 = 1,<br />

B T = 1 + r<br />

with the no-arbitrage conditions:<br />

ξ d < 1 + r < ξ u .<br />

S<strong>in</strong>ce we have now nonzero rate of <strong>in</strong>terest, the <strong>in</strong>difference price formula (3.9) does not apply.<br />

In order to produce mean<strong>in</strong>gful prices, one must be consistent with the units <strong>in</strong> which quantities<br />

that are used <strong>in</strong> price specifications are expressed. We thus consider the valuation problem <strong>in</strong> spot<br />

and forward units and will force the price to be <strong>in</strong>dependent of the unit price. We first consider<br />

the case of spot units.<br />

Let a portfolio ϕ be composed of α shares of stock and β amount of bond. We use X 0 to denote<br />

its <strong>in</strong>itial value and XT s its spot term<strong>in</strong>al wealth. Thus,<br />

X 0 = x = β + αS 0 ,<br />

( )<br />

XT s ST<br />

= x + α<br />

1 + r − S 0 .<br />

Note that the stock is discounted from time T to 0.<br />

The utility of the <strong>in</strong>vestor rema<strong>in</strong>s exponential and its constant absolute risk aversion coefficient<br />

is γ s . It is important to notice that for the utility to be well def<strong>in</strong>ed, the coefficient γ s needs to be<br />

expressed <strong>in</strong> the reciprocal of the spot unit. The value function of a claim C T is def<strong>in</strong>ed by<br />

[<br />

V s,C T<br />

(x) = sup E P −e −γs<br />

α<br />

X s T − C T<br />

1+r<br />

]<br />

. (6.1)<br />

[Note that the payoff of the claim, C T , is discounted from time T to 0.] The <strong>in</strong>difference price of<br />

the claim C T (<strong>in</strong> spot units) is def<strong>in</strong>ed as follows.<br />

Def<strong>in</strong>ition 6.1. The <strong>in</strong>difference price of the claim C T (<strong>in</strong> spot units) is def<strong>in</strong>ed as the amount<br />

ν s (C T ) for which the two spot value functions V s,0 and V s,C T<br />

co<strong>in</strong>cide. More precisely, ν s (C T ) is<br />

the unique solution of the equation<br />

for all wealth levels x ∈ R.<br />

V s,0 (x) = V s,C T<br />

(x + ν s (C T )) (6.2)<br />

Theorem 6.2. Let Q s be the measure such that<br />

[ ]<br />

ST<br />

E Qs = S 0 , (6.3)<br />

1 + r<br />

Q s [Y T |S T ] = P[Y T |S T ]. (6.4)<br />

25


The spot <strong>in</strong>difference price of a claim C T = C(S T , Y T ) is given by<br />

[ ]<br />

ν s CT<br />

(C T ) = E Qs 1 + r<br />

[ ( )]<br />

1<br />

= E Qs γ s log EQs e γs C T<br />

1+r ∣ ST . (6.5)<br />

[Note: (6.3) says that under Q s , the discounted stock price ˜S = S/(1 + r) is a mart<strong>in</strong>gale.]<br />

Proof. The proof follows the l<strong>in</strong>es of that of Theorem 3.5. First we work out the value function<br />

(6.1). Recall c i = C T (ω i ), i = 1, 2, 3, 4. We have<br />

[<br />

]<br />

V C T<br />

(x) = sup E P −e −γs XT s − C T<br />

1+r<br />

α<br />

[ ]<br />

= sup E P −e −γs (x−αS 0 + 1<br />

1+r (αS T −C T ))<br />

α<br />

[<br />

= e −γsx sup e γs αS 0<br />

E P −e − γs<br />

1+r (αS T −C T )<br />

α<br />

4∑<br />

= e −γsx sup e γs αS 0<br />

α<br />

= e −γsx sup<br />

α<br />

≡ e −γsx sup g(α).<br />

α<br />

i=1<br />

]<br />

−p i e − γs<br />

1+r (αS T (ω i )−c i )<br />

(<br />

{−e γs αS 0 (1− ξu<br />

1+r ) p 1 e γs c 1<br />

1+r + p2 e γs c 2<br />

1+r<br />

(<br />

−e γs αS 0 (1− ξd<br />

1+r ) p 3 e γs c 3<br />

1+r + p4 e γs c 4<br />

1+r<br />

)<br />

)}<br />

We have<br />

g ′ (α) = −γ s S 0 (1 −<br />

− γ s S 0 (1 −<br />

(<br />

)<br />

ξu αS 0 (1− ξu<br />

1 + r )eγs 1+r ) p 1 e γs c 1<br />

1+r + p2 e γs c 2<br />

1+r<br />

(<br />

ξd αS 0 (1− ξd<br />

1 + r )eγs 1+r ) p 3 e γs c 3<br />

1+r + p4 e γs c 4<br />

1+r<br />

)<br />

.<br />

The unique solution to the equation g ′ (α) = 0 is<br />

α ∗ =<br />

=<br />

1 + r<br />

γ s S 0 (ξ u − ξ d ) log (ξu − (1 + r))(p 1 e γs c 1<br />

1+r + p2 e γs c 2<br />

1+r )<br />

(1 + r − ξ d )(p 3 e γs c 3<br />

1+r + p4 e γs c 4<br />

1+r )<br />

1 + r<br />

γ s S 0 (ξ u − ξ d ) log (1 − qs )(p 1 e γs c 1<br />

1+r + p2 e γs c 2<br />

1+r )<br />

q s (p 3 e γs c 3<br />

1+r + p4 e γs c 4<br />

, (6.6)<br />

1+r )<br />

where<br />

q s = 1 + r − ξd<br />

ξ u − ξ d , 1 − qs = ξu − (1 + r)<br />

ξ u − ξ d . (6.7)<br />

26


Notic<strong>in</strong>g<br />

γ s α ∗ S 0 (1 −<br />

ξu<br />

1 + r ) = −(1 − qs ) log (1 − qs )(p 1 e γs c 1<br />

= log<br />

1+r + p2 e γs c 2<br />

1+r )<br />

q s (p 3 e γs c 3<br />

1+r + p4 e γs c 4<br />

(<br />

(q s ) 1−qs p 3 e γs c 3<br />

1+r + p4 e γs c 4<br />

1+r<br />

γ s α ∗ S 0 (1 −<br />

ξd<br />

1 + r ) = qs log (1 − qs )(p 1 e γs c 1<br />

= log<br />

1+r )<br />

) 1−q s<br />

(<br />

)<br />

(1 − q s ) 1−qs p 1 e γs c 1<br />

1+r + p2 e γs c 1−q s ,<br />

2<br />

1+r<br />

1+r + p2 e γs c 2<br />

1+r )<br />

q s (p 3 e γs c 3<br />

1+r + p4 e γs c 4<br />

1+r )<br />

(<br />

(1 − q s ) qs p 1 e γs c 1<br />

1+r + p2 e γs c 2<br />

1+r<br />

) q s<br />

(<br />

)<br />

(q s ) qs p 3 e γs c 3<br />

1+r + p4 e γs c q s ,<br />

4<br />

1+r<br />

we get<br />

− g(α ∗ )<br />

=<br />

and the value function<br />

In particular,<br />

(<br />

1<br />

(q s ) qs (1 − q s p 1 e γs c 1<br />

1+r + p2 e γs c 2<br />

1+r<br />

) 1−qs<br />

V s,C T<br />

(x) = e −γsx g(α ∗ )<br />

(<br />

e −γs x<br />

= −<br />

(q s ) qs (1 − q s ) 1−qs<br />

)<br />

p 1 e γs c 1<br />

1+r + p2 e γs c q s (<br />

2<br />

1+r<br />

e −γs x<br />

) q s (<br />

)<br />

p 3 e γs c 3<br />

1+r + p4 e γs c 1−q s<br />

4<br />

1+r<br />

p 3 e γs c 3<br />

1+r + p4 e γs c 4<br />

1+r<br />

) 1−q s<br />

. (6.8)<br />

V s,0 (x) = −<br />

(q s ) qs (1 − q s (p 1 + p 2 ) qs (p 3 + p 4 ) 1−qs . (6.9)<br />

) 1−qs<br />

It turns out that the equation (6.15) is reduced to<br />

(<br />

)<br />

e −γs ν s (C T )<br />

p 1 e γs c 1<br />

1+r + p2 e γs c q s (<br />

2<br />

1+r p 3 e γs c 3<br />

1+r + p4 e γs c 4<br />

1+r<br />

= (p 1 + p 2 ) qs (p 3 + p 4 ) 1−qs .<br />

) 1−q s<br />

Therefore,<br />

⎛<br />

⎞<br />

ν s (C T ) = q s ⎝ 1 γ s log p 1e γs c 1<br />

1+r + p2 e γs c 2<br />

1+r<br />

⎠<br />

p 1 + p 2<br />

⎛<br />

⎞<br />

+ (1 − q s ) ⎝ 1 γ s log p 3e γs c 3<br />

1+r + p4 e γs c 4<br />

1+r<br />

⎠ . (6.10)<br />

p 3 + p 4<br />

27


Now def<strong>in</strong>e the spot pric<strong>in</strong>g measure Q s by sett<strong>in</strong>g Q s (ω i ) = q s i ,<br />

i = 1, · · · , 4, where<br />

p i<br />

qi s = q s , i = 1, 2, qi s = (1 − q s ) , i = 3, 4.<br />

p 1 + p 2 p 3 + p 4<br />

Introduce the conditional certa<strong>in</strong>ty equivalent <strong>in</strong> spot units by<br />

˜C T s = 1 [<br />

]<br />

γ s log EQs e γs C T<br />

1+r<br />

∣ S T . (6.11)<br />

Then we can rewrite the formula (6.10) as<br />

This is (6.5).<br />

p i<br />

ν s (C T ) = E Qs [ ˜Cs T<br />

]<br />

. (6.12)<br />

Next we express the <strong>in</strong>difference price <strong>in</strong> terms of forward units. Consider the forward term<strong>in</strong>al<br />

wealth<br />

( ( ))<br />

X f T = ST<br />

Xs T (1 + r) = x + α<br />

1 + r − S 0 (1 + r)<br />

= x(1 + r) + α(S T − S 0 (1 + r))<br />

= f + α(F T − F 0 ), (6.13)<br />

where f = x(1 + r) is the forward value of the current value x, and F 0 = S 0 (1 + r) and F T = S T is<br />

the forward stock price process. The forward value function is def<strong>in</strong>ed as<br />

[ ]<br />

V f,C T<br />

(f) = sup E P −e −γf (X f T −C T )<br />

. (6.14)<br />

α<br />

Def<strong>in</strong>ition 6.3. The <strong>in</strong>difference price of the claim C T (<strong>in</strong> forward units) is def<strong>in</strong>ed as the amount<br />

ν f (C T ) for which the two spot value functions V f,0 and V f,C T<br />

co<strong>in</strong>cide. More precisely, ν f (C T ) is<br />

the unique solution of the equation<br />

for all wealth levels x ∈ R.<br />

Theorem 6.4. Let Q f be the measure such that<br />

Then<br />

V f,0 (x) = V f,C T<br />

(x + ν f (C T )) (6.15)<br />

E Qf [F T ] = F 0 , (6.16)<br />

Q f [Y T |f T ] = P[Y T |F T ]. (6.17)<br />

Q f = Q s .<br />

The spot <strong>in</strong>difference price of a claim C T = C(S T , Y T ) <strong>in</strong> the forward units is given by<br />

ν f (C T ) = E Qf [C T ]<br />

= E Qf [ 1<br />

γ f log EQf ( e γf C T<br />

∣ ∣ F T<br />

) ] . (6.18)<br />

28


Proof. S<strong>in</strong>ce the <strong>in</strong>terest rate is constant, the equations (6.16) and (6.17) are equivalent to the<br />

equations (6.3) and (6.4), respectively. It turns out that Q f = Q s .<br />

The value function V f,C T<br />

can be expressed [ as<br />

]<br />

V f,C T<br />

(x) = sup E P −e −γf (X f T −C T )<br />

α<br />

= sup<br />

α<br />

E P [ −e −γf (x(1+r)+α(S T −S 0 (1+r))−C T<br />

]<br />

[<br />

= sup E P −˜γ x+α<br />

−e S<br />

α<br />

= V s,C T<br />

(x),<br />

T<br />

1+r −S 0 − C T<br />

1+r<br />

where γ s = ˜γ = γ f (1 + r). The results thus follow from Theorem 6.2.<br />

In the rest of the section, we set Q = Q s = Q f .<br />

Proposition 6.5. The <strong>in</strong>difference prices, <strong>in</strong> terms of spot and forward units, are consistent with<br />

the no-arbitrage condition; that is,<br />

if and only if the spot and forward risk aversion coefficients satisfy<br />

ν f (C T ) = (1 + r)ν s (C T ) (6.19)<br />

γ f =<br />

]<br />

γs<br />

1 + r . (6.20)<br />

Proof. (i) (6.20) ⇒ (6.19). We have from (6.5) and (6.18), we get<br />

[ ( )] 1<br />

ν f (C T ) = (1 + r)E Q γ s log EQ e γs C T ∣<br />

1+r ∣S T = (1 + r)ν s (C T ).<br />

(ii) (6.19) ⇒ (6.20). From (6.19) it follows that, for all claims C T ,<br />

[<br />

1 1<br />

(<br />

1 + r EQ γ f log ∣ ) ] [ ( )]<br />

EQ e γf C T 1<br />

F T = E Q γ s log EQ e γs C T ∣<br />

1+r ∣S T .<br />

Alternatively, sett<strong>in</strong>g ĈT = γs<br />

1+r C T and ˆγ = γf (1+r)<br />

γ<br />

, we get<br />

s<br />

In other words, we have, for all claims ĈT ,<br />

[<br />

E 1ˆγ (<br />

Q log ∣ ) ]<br />

EQ eˆγĈT ∣S [ ( T = E Q log E Q ∣ )]<br />

∣S eĈT T .<br />

ν(ˆγ, ĈT ) = ν(1, ĈT ).<br />

It follows from Proposition 3.9, we get ˆγ = 1; hence (6.20) holds.<br />

Proposition 6.6. The value function V s,C T<br />

and V f,C T<br />

are given by<br />

(<br />

V s,C T<br />

= −e −γs (x−ν s (C T ))−H(Q|P) = U s x − ν s (C T )) + 1 )<br />

γ s H(Q|P) ,<br />

(<br />

V f,C T<br />

= −e −γs (x−ν f (C T ))−H(Q|P) = U f x − ν f (C T )) + 1 )<br />

γ f H(Q|P) ,<br />

where U s (x) = −e −γsx and U f (x) = −e −γf x are the spot and forward utility functions.<br />

29


6.2 <strong>Indifference</strong> Prices and State-Dependent Preferences<br />

Consider a random risk aversion coefficient which is an F S T -measurable variable γ T = γ T (S T ) tak<strong>in</strong>g<br />

values:<br />

γ u = γ(S 0 ξ u ), γ d = γ(S 0 ξ d )<br />

when the events<br />

A = {S T = S 0 ξ u } = {ω 1 , ω 2 } and A c = {S T = S 0 ξ d } = {ω 3 , ω 4 }<br />

occur. The risk tolerance is the reciprocal of the risk aversion:<br />

δ T := 1<br />

γ T<br />

.<br />

Assume we choose to work with the spot unit so that<br />

( )<br />

X T = XT s ST<br />

= x + α<br />

1 + r − S 0 .<br />

Theorem 6.7. Assume that the risk aversion coefficient γ T is of the form γ T = γ(S T ). Let Q be<br />

the measure satisfy<strong>in</strong>g<br />

Q[Y T |S T ] = P[Y T |S T ]. (6.21)<br />

Let C T = C(S T , Y T ) be a claim to be priced under exponential utility with risk aversion coefficient<br />

γ T . Then the <strong>in</strong>difference price of C T is given by<br />

[ ( )]<br />

1<br />

ν(C T , γ T ) = E Q log E Q e γ T C T ∣<br />

1+r ∣S T . (6.22)<br />

γ T<br />

Proof. We start by comput<strong>in</strong>g the value functions V C T<br />

(x, γ T ) and V 0 (x, γ T ). We have<br />

[<br />

]<br />

V C T<br />

(x, γ T ) = sup E P −e −γ T x+α S T<br />

1+r −S 0 − C T<br />

1+r<br />

. (6.23)<br />

α<br />

Put<br />

( )<br />

( )<br />

ξ<br />

β u = γ u u<br />

1 + r − 1 , β d = γ d 1 − ξd<br />

. (6.24)<br />

1 + r<br />

By comput<strong>in</strong>g the expectation <strong>in</strong> (6.23), we can express<br />

V C T<br />

(x, γ T ) = sup g(α),<br />

α<br />

where<br />

Solv<strong>in</strong>g the equation<br />

g(α) = −e αS 0β u ( e −γu (x− c 1<br />

1+r ) p1 + e −γu (x− c 2<br />

1+r ) p2<br />

)<br />

− e αS 0β d ( e −γd (x− c 3<br />

1+r ) p3 + e −γd (x− c 4<br />

1+r ) p4<br />

)<br />

.<br />

g ′ (α) = 0<br />

30


gets the maximum po<strong>in</strong>t<br />

α C T ,∗ =<br />

(<br />

1 β u e −γu x<br />

S 0 (β u + β d ) log β d e −γd x<br />

e γu c 1<br />

1+r p1 + e γu c 2<br />

1+r p2<br />

)<br />

(<br />

e γd c 3<br />

1+r p3 + e γd c 4<br />

1+r p4<br />

) . (6.25)<br />

Further calculations give that<br />

and<br />

e −αC T ,∗ S 0 β u =<br />

e −αC T ,∗ S 0 β d =<br />

( β<br />

u<br />

β d ) −<br />

( β<br />

u<br />

β d ) −<br />

β u<br />

β u +β d e βu (γ u −γ d )<br />

β u +β d<br />

β d<br />

β u +β d e βd (γ u −γ d )<br />

β u +β d<br />

It then turns out after some manipulations that<br />

V C T<br />

(x, γ T ) = sup g(α C T ,∗ )<br />

α<br />

⎛<br />

( )<br />

= − ⎝ β<br />

u −<br />

β u ( )<br />

β u +β d β<br />

u −<br />

β d +<br />

β d<br />

x<br />

(e γu c 1<br />

1+r p1 + e γu c 2<br />

1+r p2<br />

e γd c 3<br />

1+r p3 + e γd c 4<br />

x<br />

(e γu c 1<br />

1+r p1 + e γu c 2<br />

1+r p2<br />

⎞<br />

β d<br />

β u +β d<br />

e γd c 3<br />

1+r p3 + e γd c 4<br />

⎠ e − βu γ d +β d γ u )<br />

β u +β d<br />

) −<br />

β u<br />

β u +β d<br />

1+r p4<br />

) −<br />

β d<br />

β u +β d .<br />

1+r p4<br />

(<br />

)<br />

× e γu c 1<br />

1+r p1 + e γu c β d ( )<br />

2<br />

1+r<br />

β u +β d p2 e γd c 3<br />

1+r p3 + e γd c β u<br />

4<br />

1+r<br />

β u +β d p4 . (6.26)<br />

Tak<strong>in</strong>g C T = 0 gives the value function<br />

⎛<br />

( )<br />

V 0 (x; γ T ) = − ⎝ β<br />

u −<br />

β u ( )<br />

β u +β d β<br />

u −<br />

β d +<br />

β d<br />

β d<br />

βu<br />

⎞<br />

β d<br />

β u +β d<br />

x<br />

⎠ e − βu γ d +β d γ u )<br />

β u +β d<br />

× (p 1 + p 2 ) β u +β d (p 3 + p 4 ) β u +β d . (6.27)<br />

Us<strong>in</strong>g (6.26) and (6.27), and def<strong>in</strong>ition of the <strong>in</strong>difference price ν ( C T , γ T ), we get<br />

( β u γ d + β d γ u ) −1<br />

(<br />

) β u<br />

c 1<br />

ν(C T , γ T ) =<br />

β u + β d β u + β d log eγu 1+r p1 + e γu c 2<br />

1+r p2<br />

p 1 + p 2<br />

)<br />

c<br />

+ βd<br />

3<br />

β u + β d log eγd 1+r p3 + e γd c 4<br />

1+r p4<br />

. (6.28)<br />

p 1 + p 2<br />

Manipulations also show that<br />

γ u β d<br />

β u γ d + β d γ u = 1 + r − ξd<br />

ξ u − ξ d<br />

= S 0(1 + r) − S d<br />

S u − S d = q, (6.29)<br />

γ d β u<br />

β u γ d + β d γ u = ξu − (1 + r)<br />

ξ u − ξ d = Su − S 0 (1 + r)<br />

S u − S d = 1 − q, (6.30)<br />

x<br />

31


where S u = S 0 ξ u and S d = S 0 ξ d .<br />

Substitut<strong>in</strong>g (6.29) and (6.30) <strong>in</strong>to (6.28), we obta<strong>in</strong><br />

ν(C T , γ T ) = q 1<br />

c 1<br />

γ u log eγu 1+r p1 + e γu c 2<br />

1+r p2<br />

p 1 + p 2<br />

Similar to the argument used <strong>in</strong> Theorem 3.5, we can f<strong>in</strong>d that<br />

+ (1 − q) 1<br />

c 3<br />

γ d log eγd 1+r p3 + e γd c 4<br />

1+r p4<br />

. (6.31)<br />

p 1 + p 2<br />

e γu c 1<br />

1+r p1 + e γu c 2 [<br />

]<br />

1+r p2<br />

= E Q e γ T C T ∣<br />

1+r ∣S T = S u , (6.32)<br />

p 1 + p 2<br />

e γd c 3<br />

1+r p3 + e γd c 4 [<br />

]<br />

1+r p4<br />

= E Q e γ T C T<br />

1+r ∣ ST = S d . (6.33)<br />

p 3 + p 4<br />

Substitut<strong>in</strong>g (6.32) and (6.33) <strong>in</strong>to (6.31), we can rewrite (6.31) as<br />

ν(C T , γ T ) = q 1 [<br />

]<br />

γ u log EQ e γ T C T<br />

1+r ∣ ST = S u<br />

This is (6.22).<br />

+ (1 − q) 1 [<br />

]<br />

γ d log EQ e γ T C T<br />

1+r ∣ ST = S d<br />

[ ( )]<br />

1<br />

= E Q log E Q e γ T C T<br />

1+r ∣ ST .<br />

γ T<br />

Theorem 6.8. Assume that the risk aversion coefficient γ T is of the form γ T = γ(S T ). Let Q be<br />

the measure satisfy<strong>in</strong>g<br />

Q[Y T |S T ] = P[Y T |S T ]. (6.34)<br />

Let C T = C(S T , Y T ) be a claim to be priced under exponential utility with risk aversion coefficient<br />

γ T . Then the value functions V 0 (x, γ T ) and V C T<br />

(x, γ T ) have the representations<br />

(<br />

V 0 (x, γ T ) = − exp −<br />

x<br />

)<br />

E Q [δ T ] − H(Q∗ |P) , (6.35)<br />

(<br />

V C T<br />

(x, γ T ) = − exp − x − ν(C )<br />

T ; γ T )<br />

E Q − H(Q ∗ |P) , (6.36)<br />

[δ T ]<br />

where<br />

( [ ])<br />

1<br />

ν(C T ; γ T ) = E Q log E Q e γ T C T<br />

1+r ∣ ST ,<br />

γ T<br />

(6.37)<br />

dQ ∗<br />

dQ (ω) = δ T (ω)<br />

E Q [δ T ] . (6.38)<br />

32


Proof. We start with the representations (6.26) and (6.27) for V C T<br />

(x, γ T ) and V 0 (x, γ T ), respectively.<br />

Observe that<br />

Observe also that<br />

β u γ d + β d γ u ( β u + β d ) −1<br />

β u + β d =<br />

β u γ d + β d γ u )<br />

(<br />

= q 1<br />

γ u + (1 − q) 1 ) −1<br />

γ d<br />

=<br />

1<br />

E Q [δ T ] .<br />

β u<br />

β d = γu (1 − q)<br />

γ d ,<br />

q<br />

β u<br />

β u + β d =<br />

1 − q<br />

γ d E Q [δ T ] ,<br />

β d<br />

β u + β d =<br />

q<br />

γ u E Q [δ T ] .<br />

Let<br />

where<br />

q ∗ =<br />

q = 1 + r − ξd<br />

ξ u − ξ d<br />

Def<strong>in</strong>e a measure Q ∗ with elementary probabilities<br />

p i<br />

q<br />

γ u E Q [δ T ] ,<br />

= S 0(1 + r) − S d<br />

S u − S d .<br />

qi ∗ = q ∗ , i = 1, 2, qi ∗ = (1 − q ∗ ) , i = 3, 4.<br />

p 1 + p 2 p 3 + p 4<br />

Substitut<strong>in</strong>g the above <strong>in</strong>to (6.27), we obta<strong>in</strong> the representation (6.35):<br />

( )<br />

V 0 (x; γ T ) = −e − x p1 + p q ∗ ( )<br />

E Q [δ T ] 2 p3 + p 1−q ∗<br />

4<br />

q ∗ 1 − q<br />

(<br />

∗<br />

= − exp −<br />

x<br />

)<br />

E Q [δ T ] − H(Q∗ |P) .<br />

We f<strong>in</strong>d that the measure Q ∗ satisfies the properties:<br />

(i) E Q [γ T (S T − S 0 (1 + r))] = 0,<br />

(ii) E Q∗ [Y T |S T ] = E P [Y T |S T ].<br />

p i<br />

Alternatively, Q ∗ can also be constructed by its Radon-Nikodym density w.r.t.<br />

measure Q:<br />

the pric<strong>in</strong>g<br />

dQ ∗<br />

dQ (ω i) = q∗<br />

q = 1<br />

γ u E Q , i = 1, 2,<br />

[δ T ]<br />

dQ ∗<br />

dQ (ω i) = 1 − q∗<br />

1 − q = 1<br />

γ d E Q , i = 3, 4.<br />

[δ T ]<br />

33


Us<strong>in</strong>g the formulas (6.26) and (6.27) we get<br />

(<br />

)<br />

V C T<br />

(x; γ T )<br />

V 0 (x; γ T ) = e γu c 1<br />

1+r p1 + e γu c β d ( )<br />

2<br />

1+r<br />

β u +β d p2 e γd c 3<br />

1+r p3 + e γd c β u<br />

4<br />

1+r p4<br />

p 1 + p 2 p 3 + p 4<br />

= exp<br />

( ν(CT ; γ T )<br />

E Q [δ T ]<br />

This, together with (6.35), implies (6.36).<br />

)<br />

.<br />

Theorem 6.9. The writer’s optimal <strong>in</strong>vestment policy α C T ,∗ given <strong>in</strong> (6.25) has the decomposition:<br />

where<br />

Proof. Recall α C T ,∗ given <strong>in</strong> (6.25):<br />

(<br />

α C T ,∗ 1 β u e −γu x<br />

=<br />

S 0 (β u + β d ) log β d e −γd x<br />

We can thus decompose α C T ,∗ as follows:<br />

where<br />

α 0,∗ =<br />

α 1,∗ =<br />

α 2,∗ =<br />

β u +β d<br />

α C T ,∗ = α 0,∗ + α 1,∗ + α 2,∗ , (6.39)<br />

α 0,∗ = − ∂H(Q∗ |P)<br />

∂S 0<br />

E Q [δ T ], (6.40)<br />

α 1,∗ = ∂ log EQ [δ T ]<br />

x, (6.41)<br />

∂S 0<br />

( )<br />

α 2,∗ = E Q ∂ ν(CT ; γ T )<br />

[δ T ]<br />

∂S 0 E Q . (6.42)<br />

[δ T ]<br />

e γu c 1<br />

1+r p1 + e γu c 2<br />

1+r p2<br />

)<br />

(<br />

e γd c 3<br />

1+r p3 + e γd c 4<br />

1+r p4<br />

) . (6.43)<br />

α C T ,∗ = α 0,∗ + α 1,∗ + α 2,∗ , (6.44)<br />

1<br />

S 0 (β u + β d ) log βu (p 1 + p 2 )<br />

β d (p 1 + p 2 ) , (6.45)<br />

1<br />

S 0 (β u + β d ) log e−γu x<br />

e = − 1<br />

−γd x S 0 (β u + β d (γu − γ d )x, (6.46)<br />

(<br />

)<br />

1 e γu c 1<br />

1+r p1 + e γu c 2<br />

1+r p2 (p 3 + p 4 )<br />

S 0 (β u + β d ) log (<br />

) . (6.47)<br />

e γd c 3<br />

1+r p3 + e γd c 4<br />

1+r p4 (p 1 + p 2 )<br />

It rema<strong>in</strong>s to show that (6.45)-(6.47) co<strong>in</strong>cide with (6.40)-(6.42), respectively. Towards this we<br />

34


ecall<br />

Also note the follow<strong>in</strong>g computations:<br />

q = 1 + r − ξd<br />

ξ u − ξ d = S 0(1 + r) − S d<br />

S u − S d ,<br />

∂q<br />

=<br />

1 + r<br />

∂S 0 S u − S d ,<br />

β d<br />

β u + β d = q<br />

γ u E Q [δ T ] = q∗ ,<br />

β u<br />

β u + β d = 1 − q<br />

γ d E Q [δ T ] = 1 − q∗ .<br />

log βu (p 1 + p 2 )<br />

β d (p 1 + p 2 ) = log (1 − q∗ )(p 1 + p 2 )<br />

q ∗ , (6.48)<br />

(p 1 + p 2 )<br />

q ∗<br />

H(Q ∗ |P) = q ∗ log + (1 − q ∗ ) log 1 − q∗<br />

, (6.49)<br />

p 1 + p 2 p 3 + p<br />

( )<br />

4<br />

∂<br />

∂q<br />

H(Q ∗ ∗<br />

|P) = − log (1 − q∗ )(p 1 + p 2 )<br />

∂S 0 ∂S 0 q ∗ , (6.50)<br />

(p 3 + p 4 )<br />

∂q ∗<br />

= ∂q 1<br />

∂S 0 ∂S 0 γ u γ d (E Q [δ T ]) 2 , (6.51)<br />

1<br />

S 0 (β u + β d ) = ∂q 1<br />

∂S 0 γ u γ d E Q [δ T ] = ∂q∗ E Q [δ T ].<br />

∂S 0<br />

(6.52)<br />

Substitut<strong>in</strong>g (6.52), (6.48), (6.50) <strong>in</strong>to (6.45) yields<br />

We compute the partial derivative<br />

It turns out from (6.46) that<br />

α 0,∗ = − ∂H(Q∗ |P)<br />

∂S 0<br />

E Q [δ T ].<br />

∂ log E Q [δ T ]<br />

= ∂ log EQ [δ T ] ∂q<br />

∂S 0 ∂q ∂S<br />

( 0<br />

1 1<br />

=<br />

E Q [δ T ] γ u − 1 ) ∂q<br />

γ d ∂S 0<br />

1<br />

= −<br />

S 0 (β u + β d ) (γu − γ d ).<br />

α ∗,1 = ∂ log EQ [δ T ]<br />

∂S 0<br />

x.<br />

F<strong>in</strong>ally after tedious computations from (6.47), we have arrive at<br />

α ∗,2 = (E Q [δ T ]) ∂q∗<br />

∂S 0<br />

{<br />

= E Q ∂<br />

[δ T ]<br />

∂S 0<br />

(<br />

= E Q ∂ ν(CT ; γ T )<br />

[δ T ]<br />

∂S 0 E Q [δ T ]<br />

{ [ (<br />

∂<br />

∂q ∗ E Q∗ log E Q∗ e γ T C T<br />

1+r<br />

[ (<br />

∣<br />

E Q∗ log E Q∗ 1+r<br />

)<br />

.<br />

e γ T C T<br />

∣S T<br />

)]}<br />

)]}<br />

∣ ST<br />

35


7 <strong>Indifference</strong> Prices and General Numeraires<br />

The wealth<br />

( )<br />

ST<br />

X T = x + α<br />

1 + r − S 0<br />

is expressed <strong>in</strong> the spot units. If we choose the stock S as the numeraire, the wealth will be<br />

expressed as the number of shares of stock and not <strong>in</strong> the dollar amount. In other words, the<br />

current wealth x is expressed as<br />

X0 S = x =: x S<br />

S T<br />

and the term<strong>in</strong>al wealth X S T<br />

is written as<br />

X S T = x<br />

S T<br />

+ α<br />

V S,C T<br />

(x) = sup E<br />

[− P exp<br />

α<br />

( 1<br />

1 + r − S )<br />

0<br />

= x S + α<br />

S T<br />

The value function of a claim C T is then def<strong>in</strong>ed as<br />

(<br />

−γ S (S T )<br />

where γ S (S T ) is the risk aversion associated with this unit.<br />

(<br />

X S T −<br />

( 1<br />

1 + r − S )<br />

0<br />

. (7.1)<br />

S T<br />

))]<br />

C T<br />

, (7.2)<br />

S T (1 + r)<br />

Def<strong>in</strong>ition 7.1. The <strong>in</strong>difference price of a claim C T is def<strong>in</strong>ed as the number of shares of stock,<br />

ν S (C T ), such that the two value functions V S,C T<br />

and V S,0 co<strong>in</strong>cide. Namely, ν S (C T ) is the solution<br />

to the equation<br />

V S,0 (x S ) = V S,C T<br />

(x S + ν S (C T )) (7.3)<br />

for all <strong>in</strong>itial number of shares x S ∈ R.<br />

Theorem 7.2. Let Q S be a measure under which the discounted, by S T , riskless bond process B t<br />

S t<br />

(t = 0, T ) is a mart<strong>in</strong>gale, and at the same time, the conditional distribution of the nontraded asset<br />

given the traded one is preserved w.r.t. the historical measure, i.e.,<br />

Q S [Y T |S T ] = P[Y T |S T ]. (7.4)<br />

Let C T = c(S T , Y T ) be a claim to be priced under exponential preferences with state-dependence risk<br />

aversion coefficient γ S (S T ). Then the <strong>in</strong>difference price of C T is given by<br />

( [ (<br />

) ∣ ])<br />

1<br />

ν S (C T ) = E QS γ S (S T ) log EQS exp γ S C T ∣∣∣<br />

(S T )<br />

S T (7.5)<br />

S T (1 + r)<br />

Proof. The elementary probabilities of Q S are given by<br />

where<br />

qi S = q S p i<br />

, i = 1, 2, qi S = (1 − q S ) , i = 3, 4,<br />

p 1 + p 2 p 3 + p 4<br />

q S =<br />

( 1<br />

ξ d − 1 ) ξ u ξ d<br />

1 + r ξ u − ξ d .<br />

p i<br />

36


We can also use the Radon-Nikodym density w.r.t. Q to specify Q S :<br />

Indeed, we have<br />

Set<br />

[ ] 1 + r<br />

E QS S T<br />

dQ S<br />

dQ =<br />

= E Q [<br />

Then we can rewrite the value function V S,C T<br />

V S,C T<br />

(x) = sup E<br />

[− P exp<br />

α<br />

S T<br />

(1 + r)S 0<br />

.<br />

S T<br />

· 1 + r<br />

(1 + r)S 0<br />

λ T = γT (S T )<br />

S T<br />

.<br />

(−λ T<br />

(<br />

x + α<br />

]<br />

= 1 .<br />

S T S 0<br />

def<strong>in</strong>ed by (7.2) as<br />

(<br />

ST<br />

1 + r − S 0<br />

)<br />

−<br />

C ))]<br />

T<br />

,<br />

1 + r<br />

Similar to the proof of Theorem 6.8, we f<strong>in</strong>d<br />

(<br />

)<br />

V S,C T<br />

(x S ) = V C T<br />

(x; λ T ) = − exp − x − ν(C T ; λ T )<br />

E Q [λ −1<br />

T ] − H(˜Q|P) ,<br />

where<br />

d˜Q<br />

dQ =<br />

λ−1 T<br />

Q[λ −1<br />

T ].<br />

S<strong>in</strong>ce the wealth argument x <strong>in</strong> V C T<br />

(x; λ T ) and <strong>in</strong> the price<br />

( [ ])<br />

1<br />

ν(C T ; λ T ) = E Q log E Q e λ T C T<br />

1+r ∣ ST<br />

λ T<br />

are expressed <strong>in</strong> the spot units, it turns out that for all claims C T ,<br />

which implies that<br />

ν(C T ; γ T ) = ν(C T ; λ T )<br />

γ T = λ T ⇒ γ S (S T ) = γ T S T .<br />

Now recall, that for any payoff G which is dependent only on S T ,<br />

[ ] [ ]<br />

E Q G(ST )<br />

G(ST )<br />

= S 0 E QS .<br />

1 + r<br />

S T<br />

Therefore,<br />

It turns out that<br />

[ ( )]<br />

1<br />

ν(C T ; γ T ) = E Q log E Q e γ T C T<br />

1+r ∣ ST<br />

γ T<br />

E QS [ 1<br />

γ T S T<br />

log E QS (<br />

= (1 + r)S 0 E QS [ 1<br />

γ T S T<br />

log E QS (<br />

e γ C<br />

S(S T ) T<br />

S T (1+r)<br />

)]<br />

∣ ST<br />

e γ C<br />

S(S T ) T<br />

S T (1+r)<br />

)]<br />

∣ ST .<br />

= ν(C T ; γ T )<br />

(1 + r)S 0<br />

= ν S (C T ).<br />

37


References<br />

[1] V. Henderson and D. Hobson, Utility <strong>Indifference</strong> <strong>Pric<strong>in</strong>g</strong>: An Overview, <strong>in</strong> “<strong>Indifference</strong><br />

<strong>Pric<strong>in</strong>g</strong>: Theory and Applications” Edited by R. Carmona, Pr<strong>in</strong>ceton <strong>University</strong> Press, 2009,<br />

pp. 44-74.<br />

[2] J. Kallsen, J. Muhle-Karbey, and R. Vierthauer, Asymptotic power utility-based pric<strong>in</strong>g and<br />

hedg<strong>in</strong>g. (Prepr<strong>in</strong>t.)<br />

[3] S. Malamud, E. Trubowitz and M. V. Wüthrich, <strong>Indifference</strong> pric<strong>in</strong>g for power utilities.<br />

(Prepr<strong>in</strong>t.)<br />

[4] M. Monoyios, Utility <strong>in</strong>difference pric<strong>in</strong>g with market <strong>in</strong>completness. (Prepr<strong>in</strong>t.)<br />

[5] M. Musiela and T. Zariphopoulou, The s<strong>in</strong>gle <strong>period</strong> b<strong>in</strong>omial model, <strong>in</strong> “<strong>Indifference</strong> <strong>Pric<strong>in</strong>g</strong>:<br />

Theory and Applications” Edited by R. Carmona, Pr<strong>in</strong>ceton <strong>University</strong> Press, 2009, pp. 1-42.<br />

38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!