06.03.2014 Views

Design of Gas Transport Systems - NTNU

Design of Gas Transport Systems - NTNU

Design of Gas Transport Systems - NTNU

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Design</strong> <strong>of</strong> <strong>Gas</strong> <strong>Transport</strong> <strong>Systems</strong><br />

11 September 2013<br />

Elin Kristin Dale<br />

ekrd@statoil.com<br />

1 -<br />

TPG4140 – NATURGASS, <strong>NTNU</strong>


<strong>Design</strong> <strong>of</strong> gas transport systems<br />

• Part 1:<br />

− Intro Pipeline <strong>Transport</strong> Technology<br />

− <strong>Gas</strong>/condensate fields- and infrastructure development<br />

− System design <strong>of</strong> pipelines – terms and definitions<br />

• Part 2:<br />

− <strong>Design</strong> premises included examples<br />

− System design <strong>of</strong> multiphase pipelines<br />

− Pipeline pressure protection and leak detection<br />

2 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Part 1<br />

Intro Pipeline <strong>Transport</strong> technology<br />

3 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Pipeline <strong>Transport</strong> Technology<br />

“Development <strong>of</strong> total transport solutions - from Reservoir to Market”<br />

4 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Reservoir<br />

conditions<br />

Pipeline <strong>Transport</strong> Technology<br />

Market<br />

conditions<br />

‣ System definition<br />

‣ Hydraulic analysis<br />

‣ Optimisation <strong>of</strong> flow in pipeline network wrt<br />

capacity and gas quality management<br />

‣ Principles for pressure control and pressure<br />

protection<br />

‣ Interface management<br />

‣ Supervision, consultation and daily operation <strong>of</strong><br />

leak detection system (PM-vakt)<br />

PLEM<br />

5 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


The Norwegian Continental Shelf<br />

• Statoil has developed the world’s largest<br />

<strong>of</strong>fshore gas pipeline network<br />

• Technical services are provided by Statoil for<br />

the world's most extensive submarine gas<br />

pipeline system:<br />

− 7800 km pipelines (30” – 44”)<br />

− Long term transport capacity approx.<br />

365 MSm 3 /d<br />

• Statoil is the leader in the construction <strong>of</strong><br />

large-diameter pipelines in deep water.<br />

• On 1 st January 2002, <strong>Gas</strong>sco became the<br />

operator for most <strong>of</strong> the gas pipeline systems<br />

from the Norwegian continental shelf.<br />

• On 1 st January 2003, <strong>Gas</strong>sled became the<br />

owner for most <strong>of</strong> the gas pipeline systems<br />

(Statoil share 5%, Statoil+Petoro share 50,8<br />

%).<br />

6 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


7 -<br />

<strong>Gas</strong>/condensate fields- and infrastructure<br />

development


<strong>Gas</strong> transport technology<br />

Volume<br />

50<br />

BCM<br />

20<br />

10<br />

5<br />

PIPELINE<br />

(North sea)<br />

CNG<br />

LNG<br />

(Barents sea)<br />

Floating LNG<br />

GTL/Methanol<br />

2<br />

1<br />

.50<br />

Electricity<br />

(HVDC)<br />

UNECONOMIC<br />

1000 2000 3000 4000 5000<br />

Distance to market - Km<br />

8 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


<strong>Transport</strong> analysis<br />

New fields:<br />

• Volume pr<strong>of</strong>iles<br />

• Type gas<br />

• Pr<strong>of</strong>itability<br />

• Geography<br />

• Owners<br />

<strong>Transport</strong><br />

Solutions<br />

Cost<br />

estimation<br />

Economical<br />

analyse<br />

Infrastructure<br />

• Spare capacity<br />

• Liquid recov.<br />

• Tariffs<br />

• Owners<br />

• Distance<br />

• Capacity<br />

• Tie-ins<br />

• Processing<br />

• Liquid recov..<br />

• CO2 removal<br />

• CAPEX<br />

• OPEX<br />

• NPV<br />

• IRR<br />

• Pr<strong>of</strong>it index<br />

• Investment<br />

equivalent 7%<br />

after tax.<br />

Overall<br />

evaluation<br />

• SDA/SØA economy<br />

• Strategic fit<br />

• Stakeholders<br />

• Flexibility<br />

Market:<br />

• Supply situation<br />

• Geography<br />

• Pricing<br />

9 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


<strong>Gas</strong>/condensate fields- and infrastructure<br />

development<br />

• <strong>Gas</strong> supply<br />

− Production pr<strong>of</strong>ile<br />

− Build-up and plateau level<br />

• Market scenarios<br />

− Volume<br />

− Market opportunities (and flexibility)<br />

− Company based sales<br />

• Existing infrastructure<br />

− Platforms<br />

• Tie-ins and functional<br />

requirements<br />

− Pipelines<br />

• Capacity and ullage<br />

• New infrastructure requirements<br />

10 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Dry gas pipelines<br />

Reference: Flow <strong>of</strong> oil and gas in<br />

pipelines<br />

• What are needed to find pipeline capacity?<br />

− Pipeline length<br />

− Bulk temperature<br />

− Inlet pressure<br />

− Outlet pressure<br />

− Molar weight <strong>of</strong> the gas<br />

− Roughness <strong>of</strong> the pipeline<br />

− Diameter <strong>of</strong> the pipeline<br />

Q<br />

SC<br />

=<br />

2<br />

− p<br />

2<br />

)<br />

1 2<br />

T ( p<br />

137.2<br />

SC<br />

D<br />

P zMTL<br />

SC<br />

− Deposits in the pipeline<br />

2.666<br />

11<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Existing infrastructure - capacity<br />

• The pipeline between X and Y is<br />

the main link between the<br />

production at A and B and the<br />

terminal E.<br />

• Utilisation <strong>of</strong> the XY link affects the<br />

capacity towards E, creating a<br />

bottleneck and a gap between the<br />

actual delivery and the demand.<br />

• Routing <strong>of</strong> the gas will determine<br />

the possible transportation capacity<br />

at a given scenario.<br />

• The sum <strong>of</strong> exit capacity in a<br />

transport system is not necessarily<br />

equal the actual transport capacity.<br />

• <strong>Transport</strong> capacity is dependent on<br />

volume scenario, bottlenecks and<br />

dependencies.<br />

A B C<br />

D<br />

Tie-in new field – increased production<br />

from 10 to 30 MSm3/d<br />

14,7 20 20 10<br />

15<br />

X<br />

Producers<br />

19,7<br />

Production scenario 1 [MSm 3 /d]<br />

Exit terminals<br />

A B C D E<br />

Y<br />

Gap: ~15<br />

49,7<br />

E<br />

10 -> 30 40 10 15 65<br />

12 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Overall field architecture case – Johan Sverdrup<br />

• Example <strong>of</strong> business case:<br />

− New field discovery Johan Sverdrup, largest<br />

finding in the world in 2010/2011<br />

− 0,9-1,5 Bill barrels oil equivalents, 140 km<br />

<strong>of</strong>fshore, 110 meter depth, 1900 meter below<br />

the seabed<br />

− Production horizon to 2050<br />

− Which field architecture will you recommend to<br />

your management ?<br />

• Some <strong>of</strong> the parameters to be evaluated :<br />

− Technical: Choice <strong>of</strong> installation (floater, fixed structure), store or transport, processing,<br />

naval architecture, sensitivity to weather/sea conditions (hurricane, waves, tide,<br />

temperature etc), fluid properties (wax, hydrates, corrosion etc.), pigging, ship transport<br />

path, design codes, infrastructure (helicopter base, logistics, storage equipment/fluids,<br />

accommodation) and pressure protection and leak detection.<br />

− Economic analyses: availability in marked, location <strong>of</strong> construction, rent or own,<br />

distance from field to market, pipeline transport fee, country laws and regulations,<br />

personnel availability, company philosophy.<br />

13 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Pipeline system design<br />

Terms and definitions<br />

14<br />

-


Pipeline system design – terms and definitions<br />

• Pipeline system<br />

• Pipeline<br />

− A pipeline with compressors or pump stations<br />

− Pressure reduction stations<br />

− Metering<br />

− Tankage<br />

− Supervisory control and data acquisition system (SCADA)<br />

− Safety systems<br />

− Corrosion protection systems<br />

Petroleum and natural gas industries<br />

Pipeline transportation systems, ISO<br />

13623<br />

− And other equipment, facility or building used in the transportation <strong>of</strong> fluids<br />

− Those facilities through which fluids are conveyed, including pipe, pig traps,<br />

components and appurtenances, up to and including the isolation valve.<br />

15 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Pipeline system design – system definition<br />

• The extent <strong>of</strong> the pipeline system, its functional requirements and applicable legislation<br />

should be defined and documented.<br />

• The extent <strong>of</strong> the system should be defined by describing the system, including the<br />

facilities with their general locations and demarcations and interfaces with other facilities.<br />

• The functional requirements should define the required design life and design conditions.<br />

Foreseeable normal, extreme and shut-in operating conditions with their possible ranges<br />

in flow rates, pressures, temperatures, fluid compositions and fluid qualities should be<br />

identified and considered when defining the design conditions.<br />

Petroleum and natural gas industries<br />

Pipeline transportation systems, ISO 13623<br />

OS F-101: Submarine Pipeline<br />

<strong>Systems</strong><br />

16 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Pipeline systems<br />

Subsea Production <strong>Systems</strong> (ISO 13628) and<br />

Pipeline <strong>Transport</strong>ation <strong>Systems</strong> (ISO 13623)<br />

ESV<br />

Platform/Floater<br />

PIG TRAP<br />

Subsea<br />

Production<br />

HIPPS<br />

SUBSEA<br />

PROCESSING<br />

UNIT<br />

Subsea isolation<br />

SSIV<br />

ESV<br />

PIG TRAP<br />

MANIFOLD<br />

X-MAS<br />

TREE<br />

PWV<br />

PMV<br />

CHOKE<br />

BRANCH<br />

RISER BASE<br />

SSIV<br />

CHECK<br />

SCSSV<br />

CHOKE<br />

MODULE<br />

TEMPLATE AND<br />

MANIFOLD<br />

LANDFALL<br />

ESV<br />

Onshore<br />

PIG TRAP<br />

Pipeline <strong>Systems</strong>: Subsea connection<br />

Single phase; <strong>Gas</strong>, Oil, condensate<br />

TEE<br />

CHECK + BLOCK<br />

Multiphase;<br />

PLEM<br />

17 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Pipeline Project Organisation (Typical)<br />

Project Manager<br />

Project Control<br />

Authority<br />

Procurement<br />

HSE<br />

Upstream<br />

Downstream<br />

Platform/Terminal<br />

Platform/Terminal<br />

Administration<br />

EIA<br />

Pipeline<br />

Engineering<br />

System/RFO<br />

Pipeline<br />

Construction<br />

Landfall<br />

Preparation for<br />

Operation<br />

18 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


" I draw lines, I don't move trees"<br />

19 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Pipeline system design – work process<br />

Thermohydraulic<br />

analysis<br />

Functional<br />

requirements;<br />

gas routing,<br />

regularity,<br />

gas quality,<br />

agreements<br />

Overall<br />

Operational<br />

Philosophy;<br />

Control and<br />

Safety<br />

System,<br />

Environment,<br />

etc.<br />

System design<br />

concept<br />

Internal diameter,<br />

capacity, pressure<br />

and temperature<br />

pr<strong>of</strong>ile, etc.<br />

Functional<br />

requirements,<br />

Regularity,<br />

Deliverability<br />

Control and Safety<br />

Philosophy<br />

Pipeline System<br />

Diagram, Process<br />

Flow Diagram<br />

P&ID’s<br />

QA<br />

Boundary conditions and technical interface between platform – pipeline – terminal<br />

20 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Part 2<br />

<strong>Design</strong> premises<br />

Hydraulic capacity and gas quality<br />

21 -<br />

Photo credit: Manfred Jarisch / StatoilHydro<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Pipeline system design – Hydraulic analysis 1/2<br />

• The objective <strong>of</strong> the system design<br />

− develop overall transport solutions for the gas chain from the field<br />

to the market which will maximize the value <strong>of</strong> the liquid- and gas<br />

products and without any unreasonable external conditions for<br />

any third party (fields or transport systems).<br />

− deliver gas quantities nominated by the buyers within the desired<br />

quality specifications.<br />

− ensure high availability and regularity within reasonable technical<br />

and economical limits and relevant agreements.<br />

22 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Pipeline system design – Hydraulic analysis 2/2<br />

• The hydraulics <strong>of</strong> the pipeline system should be analysed to demonstrate that the<br />

system can safely transport the fluids for the design conditions specified by the<br />

system definition, and to identify and determine the constraints and requirements for<br />

its operation. This analysis should cover steady-state and transient operating<br />

conditions.<br />

• Describe the function loads for the pipeline design<br />

− Pressure pr<strong>of</strong>ile<br />

− Temperature pr<strong>of</strong>ile<br />

− Density pr<strong>of</strong>ile (fluid)<br />

− Velocity pr<strong>of</strong>ile<br />

• <strong>Design</strong> cases:<br />

− Normal operation, start-up, planned shut-down, etc.<br />

− Not planned operation, emergency shut-down, depressurisation, etc.<br />

− Emergency preparedness analysis; accidents, pipe rupture, leakage etc.<br />

23 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Pipeline system design – <strong>Design</strong> premises 1/3<br />

• Pipeline Route<br />

− Length<br />

− Bathymetric pr<strong>of</strong>ile<br />

• Environmental Conditions<br />

− Air temperature<br />

− Sea bottom temperature<br />

− Ground temperature<br />

− Geo-technical data (soil conditions)<br />

Temperature, °C<br />

Area B - Åsgard <strong>Transport</strong>, Kårstø temp.<br />

High Rough Likely Rough Low Rough<br />

5<br />

3<br />

1<br />

-1<br />

-3<br />

66 68 70 72 74 76 78 80 82 84 86<br />

Hydraulic capacity, MSm³/d<br />

Area B - Åsgard <strong>Transport</strong>, Kårstø pressure<br />

High Rough Likely Rough Low Rough<br />

Pressure, barg<br />

130<br />

125<br />

120<br />

115<br />

110<br />

105<br />

100<br />

95<br />

90<br />

85<br />

80<br />

66 68 70 72 74 76 78 80 82 84 86<br />

Hydraulic capacity, MSm³/d<br />

24 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Hydraulic capacity – Sensitivity analysis<br />

Variation <strong>of</strong> parameters and hydraulic capacity compared to basis<br />

Zeebrugge 69.5 MSm³/d (october)<br />

5<br />

Trenching -200 Km<br />

Length +/-10 Km<br />

4<br />

3<br />

Temperature<br />

10 micron<br />

2<br />

Roughness 1- 3 micron<br />

1<br />

<strong>Gas</strong> Composition<br />

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3<br />

25 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Pipeline system design – <strong>Design</strong> premises 2/3<br />

• Pipeline Data<br />

− <strong>Design</strong> pressure<br />

− <strong>Design</strong> temperature<br />

− Internal diameter<br />

− Wall thickness<br />

− Internal coating<br />

− Concrete coating<br />

− Insulation<br />

− Trenching/dredging<br />

− Gravel/rock dumping<br />

26 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Langeled Bredero Shaw i Farsund Sept. 2004<br />

Concrete coating<br />

(330 000 m 3 )<br />

= 1,5 Troll A GBS<br />

Total pipeline steel<br />

(962 000 t)<br />

= 40 Troll A deck<br />

Coating<br />

(25 000 t)<br />

= 3 Eiffel Towers<br />

Total coating “wire”:<br />

(51 900km)<br />

= 1.3 times<br />

around the equator<br />

1200 km a 12m pipes:<br />

Per pipe:<br />

Ca 25 tonns<br />

27 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


The largest laying vessels<br />

Solitaire:<br />

The worlds largest pipeline laying<br />

vessel at Nyhamna<br />

Acergy Piper:<br />

At Sleipner T at start-up <strong>of</strong> the laying<br />

process<br />

28 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Pipeline system design – <strong>Design</strong> premises 3/3<br />

• <strong>Gas</strong> properties<br />

− Equation <strong>of</strong> state<br />

• <strong>Gas</strong> composition<br />

• Friction equation<br />

− Internal roughness<br />

• <strong>Transport</strong> specification<br />

• Sales gas specifications<br />

• Pressure Control System<br />

− Pressure regulating<br />

− Pressure safety<br />

• Pig trap arrangement<br />

− Pigging philosophy<br />

• Pipeline valve philosophy<br />

• Future requirements<br />

29 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


<strong>Transport</strong> <strong>of</strong> 42” subsea pipeline<br />

valve<br />

• Double expanding gate<br />

• Weight <strong>of</strong> valve: 80 tons (60 cars..)<br />

• 10m high including activator:<br />

• Total <strong>of</strong> 100 tons<br />

30 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Why gas quality specifications?<br />

• Ensure interoperability /interchangeability (WI)<br />

• Ensure unproblematic transport <strong>of</strong> gas<br />

− Max/min temperature and pressure<br />

• Prevent corrosion and erosion <strong>of</strong> equipment<br />

− Water, CO 2 , H 2 S content<br />

• Prevent condensation <strong>of</strong> liquid (HC dew point)<br />

• Prevent gas hydrates (Water dew point)<br />

Hydrocarbon dew-point (-3 C, 69 barg)<br />

Water dew-point (-12 C, 69 barg)<br />

CO2 content (max 2.5 % mol)<br />

H2S content (5 mg/Nm3)<br />

GCV (Gross calorific value)<br />

Wobbe index (WI)<br />

Max/min pressure and temperature<br />

31 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Hydrates – main reason for temperature<br />

control in multiphase pipelines<br />

32 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


33<br />

-<br />

System design <strong>of</strong> multiphase pipelines


The diameter dilemma <strong>of</strong> long gas-condensate<br />

pipelines<br />

Pressure drop (bara)<br />

50<br />

40<br />

30<br />

20<br />

Technical feasibility – for how long can reservoir drive production to shore?<br />

• Minimize pressure drop ⇒ large pipe diameter<br />

Operational acceptability – will system availability be high enough?<br />

• Minimize liquid inventory in pipeline ⇒ small pipe diameter<br />

Large<br />

ID<br />

Small<br />

ID<br />

<strong>Design</strong><br />

rate<br />

20 22 24 26 28 30 32 34<br />

<strong>Gas</strong> rate (MSm 3/ d)<br />

Liquid content (m 3 )<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Large<br />

ID<br />

Small<br />

ID<br />

<strong>Design</strong><br />

rate<br />

24 26 28 30 32 34<br />

<strong>Gas</strong> rate (MSm 3 /d)<br />

34 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Conventional design <strong>of</strong> gas-condensate pipelines<br />

Pressure drop (bara)<br />

50<br />

40<br />

30<br />

20<br />

Pipeline diameter: small<br />

• Minimize liquid inventory<br />

‣ Accept moderate/high pressure drop<br />

Slug-catcher size set by:<br />

• Rate increase:<br />

‣From maximum turndown to design<br />

rate<br />

• Pigging<br />

‣ Liquid inventory prior to pigging<br />

Maximum<br />

turndown<br />

<strong>Design</strong> pressure<br />

drop<br />

<strong>Design</strong><br />

rate<br />

20 22 24 26 28 30 32 34<br />

<strong>Gas</strong> rate (MSm 3/ d)<br />

Liquid content (m 3 )<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

Slug-catcher<br />

0<br />

volume<br />

Troll slug-catcher<br />

Maximum<br />

turndown<br />

Steady state<br />

liquid content<br />

<strong>Design</strong><br />

rate<br />

24 26 28 30 32 34<br />

<strong>Gas</strong> rate (MSm 3 /d)<br />

35 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


New design <strong>of</strong> gas-condensate pipelines<br />

Pipeline diameter: large<br />

• Minimize pressure drop<br />

‣ Accept relatively large liquid inventory<br />

• If possible, alleviate liquid load<br />

‣ Multi-diameter pipelines/dual lines<br />

• Exploit pipeline’s slow response to transients<br />

‣ Operational procedures<br />

Pressure drop (bara)<br />

50<br />

40<br />

30<br />

20<br />

Large<br />

ID<br />

Small<br />

ID<br />

20 22 24 26 28 30 32 34<br />

<strong>Gas</strong> rate (MSm 3/ d)<br />

Slug-catcher design<br />

• Exploit pipeline’s slow response to transients<br />

‣ Reduce slug-catcher size<br />

• Onshore reception system routes liquid to<br />

<strong>of</strong>f-spec tank<br />

‣ Optimise slug-catcher design<br />

Volume rate (m 3 /h)<br />

300<br />

200<br />

100<br />

0<br />

Liquid flow into slug-catcher<br />

0 2 4 6 8 10 12 14<br />

Time (days)<br />

36 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Pipeline integrity and leak detection<br />

37<br />

-<br />

Classification: Internal 2011-02-21<br />

Deepwater horizon


Pipeline integrity and leak detection<br />

Probability reduction<br />

Consequence reduction<br />

Robust<br />

design<br />

Safe<br />

operation<br />

Integrity<br />

management<br />

Leak<br />

detection<br />

Emergency<br />

response<br />

38 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


PPS and PPC<br />

39 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Risk reduction<br />

Allocations <strong>of</strong> risk reducing measures<br />

Achieved freq <strong>of</strong><br />

overpressure<br />

Acceptable risk<br />

( Frequency <strong>of</strong><br />

overpressure )<br />

Frequency <strong>of</strong><br />

overpressure<br />

Without risk reduction<br />

1x10 - 5<br />

1 times pr year<br />

•Facilities regulation §33<br />

•ISO 10418 (API 14 C)<br />

•IEC 61508<br />

•IEC 61511<br />

Required risk reduction<br />

Actual risk reduction<br />

PPS - 2 PPS - 1 PPC<br />

Manuel<br />

actions<br />

Frequency <strong>of</strong><br />

overpressure<br />

PPC: Independent <strong>of</strong> the PSS<br />

Achieved risk reduction from safety functions<br />

PPS: Two independent systems activated at different pressure levels, and<br />

with a redundant and fail safe instrumentation and signal transfer system<br />

40 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Shut down <strong>of</strong> receiving facility<br />

Kollsnes export is stopped 0.5 hour later<br />

44" Den Helder. SOP at 2% Opflex. October<br />

Pressure, barg<br />

210<br />

200<br />

190<br />

180<br />

170<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

Time, hrs<br />

0 2 4 6 8 10 12 14 16 18<br />

Kollsnes<br />

Den Helder<br />

Norwegian<br />

sector<br />

203 barg (+10m)<br />

Danish<br />

sector<br />

German<br />

sector<br />

156.8 barg (+10m)<br />

Dutch<br />

sector<br />

0 100 200 300 400 500 600 700 800 900<br />

Distance, km<br />

41 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Multi design pressure concept<br />

Normal <strong>Design</strong><br />

Multi <strong>Design</strong> Pressure<br />

PD<br />

PD1<br />

Low utilisation <strong>of</strong> pipe material<br />

PD2<br />

Normal pressure pr<strong>of</strong>ile<br />

Settle out pressure<br />

PD3<br />

Upstream end<br />

Downstream end<br />

Normal pressure pr<strong>of</strong>ile<br />

• The settle out pressure in a “normal” shut-in situation shall not exceed the lower design<br />

pressure<br />

• The pipeline hydraulics during normal, upset and packing conditions are analysed to<br />

demonstrate that the pressure control and pressure protection system will act satisfactory<br />

• Cost saving material<br />

42 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Pipeline pressure protection<br />

43 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Pipeline integrity and leak detection<br />

Probability reduction<br />

Consequence reduction<br />

Robust<br />

design<br />

Safe<br />

operation<br />

Integrity<br />

management<br />

Leak<br />

detection<br />

Emergency<br />

response<br />

protecting<br />

what?<br />

robustness<br />

need<br />

reliability<br />

technology<br />

solution<br />

pressure loss<br />

mass balance<br />

pipeline or<br />

zone?<br />

sensitivity<br />

point sensor<br />

acoustic<br />

44 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


The risk picture…<br />

Probability<br />

Acceptable risk, but extra<br />

barriers?<br />

30” Kvitebjørn gas pipeline damage Consequence and leak, 2007<br />

45 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Key learning points<br />

• Complexity <strong>of</strong> field architecture development<br />

• Parameters influencing pipeline infrastructure development<br />

• Pipeline design premises<br />

• How the hydraulic <strong>of</strong> the pipeline system influence pipeline design<br />

• Pressure protection and leak detection <strong>of</strong> pipeline systems<br />

46 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>


Thank you<br />

<strong>Design</strong> <strong>of</strong> gas transport systems<br />

Elin Kristin Dale<br />

Senior Engineer Pipeline <strong>Transport</strong> Optimisation and <strong>Design</strong><br />

ekrd@statoil.com , tel: +47 99 15 73 34<br />

www.statoil.com<br />

47 -<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!