18.03.2014 Views

The Lotka-Volterra predator-prey model

The Lotka-Volterra predator-prey model

The Lotka-Volterra predator-prey model

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Lotka</strong>-<strong>Volterra</strong> <strong>predator</strong>-<strong>prey</strong> <strong>model</strong><br />

Vlastimil Krivan<br />

Biology Center<br />

Academy of Sciences<br />

and<br />

Faculty of Sciences<br />

University of South Bohemia<br />

Ceske Budejovice<br />

Czech Republic<br />

vlastimil.krivan@gmail.com<br />

www.entu.cas.cz/krivan


Talk outline:<br />

1. Some historical background on foundations of mathematical ecology (U.<br />

Ancona, V. <strong>Volterra</strong>, etc.)<br />

2. <strong>The</strong> Gause <strong>predator</strong>-<strong>prey</strong> <strong>model</strong> with discontinuous functional response<br />

3. Some <strong>model</strong>s of animal behavior.<br />

4. Effects of animal behavior on the <strong>Lotka</strong>-<strong>Volterra</strong> population dynamics.


“Why did the percentage of <strong>predator</strong>y fish<br />

increase during the WWI when fishing effort<br />

ceased?<br />

I cannot find any reasonable way how to explain<br />

this trend… but...I will meet Luisa and Vito tonight<br />

…”<br />

Table: % of <strong>predator</strong>y fish in total catch in the port of Fiume<br />

Umberto D'Ancona<br />

1896-1964 Fiume, Italy<br />

Percent of<br />

<strong>predator</strong>y fish<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1912 1914 1916 1918 1920 1922 1924<br />

Years


Later on that day … Vito <strong>Volterra</strong> is reading Ancona’s notes …<br />

“Hmmm, Umberto raises interesting questions<br />

that make me think really hard…maybe biology<br />

will be more fun than integral equations...”<br />

Vito <strong>Volterra</strong><br />

(1860 – 1940)<br />

Nature, October 1926


…and the (<strong>Lotka</strong>-)<strong>Volterra</strong> <strong>predator</strong>-<strong>prey</strong> <strong>model</strong> was<br />

conceived…<br />

dR<br />

dt<br />

= R(r−λC)<br />

dC<br />

dt<br />

= (eλR−m)C<br />

Equilibrium=Average number:<br />

R ∗ = m eλ and C∗ = r λ .


This had several consequences:<br />

1. Mathematical (theoretical) ecology was born<br />

2. Umberto married Luisa <strong>Volterra</strong> and he continued his life-long productive<br />

collaboration with V. <strong>Volterra</strong><br />

INTERNATIONALE REVUE DER GESAMTEN<br />

HYDROBIOLOGIE UND HYDROGRAPHIE<br />

Volume 18, Issue 3-4, 1927, Pages: 261–295<br />

Ulteriori osservazioni sulla Daphnia cucullata del<br />

Lago di Nemi.<br />

Per<br />

la Dott. Luisa Volterre D’Ancona.<br />

Con 12 Figure.<br />

Le osservazioni da me eseguite sulla Daphnia c u c u l l a t a , originaria dal Lago Danese di<br />

* * *


…soon after, a young student at Moscow University is reading the<br />

<strong>Volterra</strong>’s article …<br />

That Calculus course was really useful. <strong>The</strong> idea<br />

about <strong>predator</strong>-<strong>prey</strong> oscillations is so co...ool.<br />

This looks like a real lab project for me!<br />

…and that work could finally convince the<br />

people at the Rockefeller Foundation to give me<br />

the fellowship to work with Raymond Pearl …’’<br />

Georgii Frantsevich Gause<br />

(1910–1986)


…and Gause experimented with protists…


…and with mites…<br />

Outcome of experiments:<br />

1. Disappearance of <strong>predator</strong>s at insufficient <strong>prey</strong> densities<br />

2. Complete destruction of <strong>prey</strong> by <strong>predator</strong>s<br />

3. Disappearance of <strong>predator</strong>s in a dense population of <strong>prey</strong>


…and with protists and yeast…<br />

Paramecium bursaria<br />

Yeast<br />

Observation: Periodic fluctuations,<br />

but not of the LV conservation type


…but he never observed the <strong>Lotka</strong>-<strong>Volterra</strong> type oscillations in his experiments …<br />

...but...<br />

he was smart and tried to understand what assumptions of the <strong>Lotka</strong>-<strong>Volterra</strong><br />

<strong>model</strong> were not met in these experiments …


Instead, he postulated two new mechanisms for <strong>predator</strong>-<strong>prey</strong> coexistence:<br />

1. Consumption of <strong>prey</strong> by <strong>predator</strong>s is not a linear function of <strong>prey</strong> density<br />

(i.e. λR in the <strong>Lotka</strong><strong>Volterra</strong> <strong>model</strong>), but a non-linear saturating function f(R)<br />

2. At low concentrations, <strong>prey</strong> are in a refuge (yeast in the sediment was not<br />

accessible to <strong>predator</strong>s)


…and this lead him to the Gause <strong>model</strong>…<br />

dR<br />

dt<br />

= rR−Cf(R)<br />

dC<br />

dt<br />

= (ef(R)−m)C<br />

Gause‘s stability criterion: Let (R ∗ , C ∗ ) be an equilibrium of the above <strong>model</strong>.<br />

Provided<br />

df<br />

dR (R∗ ) > f(R∗ )<br />

R ∗<br />

then the equilibrium is locally asymptotically stable.<br />

Destabilizing f<br />

Potentially stabilizing f


Functional response (Holling 1959)<br />

Question: When <strong>prey</strong> density is R, how many <strong>prey</strong> a <strong>predator</strong> can capture in<br />

time T ?<br />

f(R) =<br />

λR<br />

1 + hλ R


Functional response<br />

Population dynamics


Effect of a refuge on <strong>prey</strong>-<strong>predator</strong> population dynamics<br />

(Gause et al. 1936)<br />

dR<br />

dt<br />

dC<br />

dt<br />

= rR − Cf(R)<br />

= (ef(R) − m)C<br />

0.6<br />

0.5<br />

f<br />

f<br />

f<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

R c<br />

R<br />

0.0<br />

0.0 r 0.5 1.0 1.5 2.0 2.5 3.0<br />

R c<br />

R


Using this functional response, Gause predicted existence of a <strong>predator</strong>-<strong>prey</strong> limit cycle


dR<br />

dt<br />

dC<br />

dt<br />

For R > R c :<br />

= rR − Cf(R)<br />

= (ef(R) − m)C<br />

dR<br />

dt<br />

dC<br />

dt<br />

{ λR<br />

1+λhR<br />

if R > R c<br />

f<br />

f =<br />

0 if R < R c<br />

1.0<br />

= rR−C λR<br />

0.8<br />

1 + hλR<br />

eλR<br />

= (<br />

1 + hλR − m)C 0.6<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0<br />

R<br />

0.4<br />

For R < R c :<br />

dR<br />

dt<br />

dC<br />

dt<br />

= rR<br />

= −mC<br />

R c<br />

0.2<br />

0.0<br />

0.0 0.5 1.0 1.5 2.0<br />

C<br />

But Gause did not realize that this <strong>model</strong> is not well posed!


C⊣⊓⌋〈†√∇≀⌊↕⌉⇕⇐∞⇒<br />

C⊣⊓⌋〈†P⌉⊣\≀⊑⊣⊔〈⌉≀∇⌉⇕¬C≀\⊔〉\⊓〉⊔†≀{fI↽⌉§〉∫⊔⌉\⌋⌉≀{∫≀↕⊓⊔〉≀\∫≀{⊔〈⌉<br />

C⊣⊓⌋〈†P⌉⊣\≀⊑⊣⊔〈⌉≀∇⌉⇕¬C≀\⊔〉\⊓〉⊔†≀{fI↽⌉§〉∫⊔⌉\⌋〉⌉\∇≀⊑\〉⌋⌉⇐∞⇒<br />

Existence of solutions for ODEs<br />

dx<br />

dt<br />

x(0) = x 0<br />

= f(t, x(t))<br />

(1)<br />

x = (x 1 , . . . , x n ) a f : I × D ⊂ R × R n → R n .<br />

Cauchy-Peano theorem: Continuity of f =⇒ existence of solutions to the Cauchy<br />

problem (1)


LetR n = G 1 ∪ G 2 ∪ M<br />

Filippov definition of a solution<br />

(Filippov 1960, 1985)<br />

{<br />

dx f<br />

dt = 1 (x) x ∈ G 1<br />

f 2 (x) x ∈ G 2<br />

(DR)<br />

F (x)≡<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

{f 1 (x)} x ∈ G 1<br />

conv{lim y∈G 1<br />

y→x<br />

f 1 (y), lim y∈G 2<br />

y→x<br />

f 2 (y)}<br />

x ∈ M<br />

{f 2 (x)} x ∈ G 2<br />

dx<br />

dt ∈ F(x)<br />

(DI)<br />

Definition: Solutions of differential equation (DR) in the Filippov sense are<br />

solutions of differential inclusion (DI)


Prey isocline<br />

R<br />

1.5<br />

1.0<br />

Limit cycle<br />

R c<br />

0.5<br />

0.0<br />

0.0 0.5 1.0 1.5 2.0<br />

C<br />

R<br />

C


Small refuge size, small handling time<br />

Small refuge size, larger handling time<br />

Large refuge size, small handling time<br />

Large refuge size, larger handling time


Gause’s work resulted in publication of his book in 1934 when he was 24 years old…


How a functional response can become discontinuous?


Behavioral response of <strong>prey</strong> to predation risk<br />

Dragonfly larvae<br />

(Peacor and Werner 2001)<br />

λ


Behavioral and morphological responses of <strong>prey</strong> to<br />

predation risk<br />

Leoicephalus carinaturs<br />

Predatory lizard<br />

(Losos et al. 2006)<br />

Anolis sagrei<br />

Native lizard at Bahmas


<strong>Lotka</strong>-<strong>Volterra</strong><br />

dR<br />

dt<br />

= (r − λP ) R<br />

dP<br />

dt<br />

= (eλR − m) P<br />

Model with <strong>predator</strong>/<strong>prey</strong> activities<br />

dR<br />

dt<br />

= (r 1 u + r 2 − (λ 1 u + λ 2 v)P ) R<br />

dP<br />

dt<br />

= (e (λ 1 u + λ 2 v)R−(m 1 + m 2 v)) P<br />

Parameter<br />

<strong>prey</strong> per capita<br />

growth rate<br />

interaction strength<br />

conversion of <strong>prey</strong><br />

to new <strong>predator</strong>s<br />

<strong>predator</strong> mortality<br />

rate<br />

<strong>Lotka</strong>-<br />

<strong>Volterra</strong><br />

r constant<br />

λ constant<br />

e constant<br />

m constant<br />

Model with <strong>predator</strong>/<strong>prey</strong> activities<br />

r 1 u+r 2<br />

λ 1 u+ λ 2 v increases with <strong>prey</strong> & <strong>predator</strong><br />

activity<br />

e constant<br />

increases with <strong>prey</strong> activity<br />

m 1 + m 2 v increases with <strong>predator</strong><br />

activity


What are the <strong>prey</strong> and <strong>predator</strong> optimal activity levels?<br />

Herbert Spencer<br />

Charles Darwin<br />

“Survival of the fittest”


What are the <strong>prey</strong> and <strong>predator</strong> optimal activity levels?<br />

Prey fitness ∼ per capita <strong>prey</strong> population growth rate =<br />

W R = r 1 u + r 2 − (λ 1 u + λ 2 v)P<br />

Predator fitness ∼ per capita <strong>predator</strong> population growth rate<br />

W P = e(λ 1 u + λ 2 v)R − (m 1 + m 2 v)<br />

0 ≤ u ≤ 1 = <strong>prey</strong> activity<br />

0 ≤ v ≤ 1 = <strong>predator</strong> activity


Optimal <strong>prey</strong> activity<br />

Optimal <strong>prey</strong> activity:<br />

u(P ) =<br />

{<br />

1 if P < Ps = r 1<br />

λ 1<br />

0 if P > P s<br />

Prey should be active if <strong>predator</strong> density is below the critical threshold. When above<br />

they should be inactive.<br />

Optimal <strong>predator</strong> activity:<br />

v(R) =<br />

{<br />

1 if R > Rs = m 2<br />

eλ 2<br />

0 if R < R s<br />

Predators should be active if the benefit from activity overweights the increased<br />

mortality due to <strong>predator</strong> activity. Otherwise they should be inactive.


Ps<br />

Rs<br />

Both <strong>prey</strong> and <strong>predator</strong>s are adaptive<br />

Prey inactive<br />

Predator inactive<br />

Prey inactive<br />

Predator active<br />

Predator abundance<br />

P s<br />

u = 0<br />

v = 0<br />

Prey active<br />

Predator inactive<br />

u = 0<br />

v = 1<br />

Prey active<br />

Predator active<br />

u = 1<br />

v = 0<br />

u = 1<br />

v = 1<br />

R s<br />

Prey abundance


Prey functional response<br />

Prey functional response: f(R, P ) = (λ 1 u(P ) + λ 2 v(R))R<br />

4<br />

f<br />

3<br />

2<br />

f<br />

1<br />

0<br />

0.0 0.5 1.0 1.5 2.0<br />

R<br />

R<br />

P


<strong>Lotka</strong>-<strong>Volterra</strong><br />

<strong>Lotka</strong>-<strong>Volterra</strong> with activity<br />

<strong>The</strong> activity level at the population equilibrium<br />

u = m 1λ 2<br />

m 2 λ 1<br />

, v = r 2λ 1<br />

r 1 λ 2


Prey switching<br />

Acanthina<br />

λ 1<br />

λ 2<br />

Barnacles<br />

Mussels


Prey switching<br />

Guppies<br />

Proportion of Drosophila<br />

eaten<br />

Proportion of Drosophila<br />

In aquarium<br />

Tubificid worm<br />

Drosphila


A <strong>Lotka</strong>-<strong>Volterra</strong> <strong>model</strong> with two <strong>prey</strong> types<br />

(Holt 1977, Krivan 1997)<br />

C<br />

dR 1<br />

dt<br />

= R 1 (r 1 − u 1 λ 1 C)<br />

u 1<br />

u 2<br />

R 1<br />

R 2<br />

dR 2<br />

dt<br />

= R 2 (r 2 − u 2 λ 2 C)<br />

dC<br />

dt<br />

= C(e 1 u 1 R 1 + e 2 u 2 R 2 − m)<br />

u 2 = 1 − u 2<br />

5<br />

4<br />

R 1<br />

3<br />

2<br />

1<br />

0<br />

0 20 40 60 80 100<br />

time<br />

C<br />

R 2<br />

Proposition 1 (Gause Competitive exclusion principle) When preferences<br />

u 1 and u 2 are fixed, the resource with the lower ratio of r i /(u i λ i ) will be outcompeted.


Optimal <strong>prey</strong> switching<br />

Consumer fitness ~ per capita population growth rate=<br />

1<br />

C<br />

dC<br />

dt = e 1u 1 R 1 + e 2 u 2 R 2 − m → max<br />

(u 1 ,u 2 )<br />

N(x) = {(u 1 , u 2 ) | u i ≥ 0, u 1 + u 2 = 1, e 1 u 1 R 1 + e 2 u 2 R 2 − m → max}<br />

Consumer optimal strategy:<br />

u 1 (R 1 , R 2 ) =<br />

{<br />

1 for e1 R 1 > e 2 R 2<br />

0 for e 1 R 1 < e 2 R 2<br />

u 2 (R 1 , R 2 ) = 1−u 1 (R 1 , R 2 )


<strong>The</strong> <strong>Lotka</strong>-<strong>Volterra</strong> functional response<br />

for <strong>prey</strong> switching<br />

f 1 (R 1 , R 2 ) =<br />

{ 0 e1 R 1 < e 2 R 2<br />

λ 1 R 1 e 1 R 1 > e 2 R 2<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

f 1<br />

R 1<br />

0.0 0.5 1.0 1.5 2.0


No adaptive predation<br />

Adaptive predation<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 20 40 60 80 100<br />

time<br />

5<br />

R 1<br />

R 1<br />

4<br />

R 2<br />

3<br />

C<br />

C<br />

2<br />

1<br />

R 2<br />

0 20 40 60 80 100<br />

time<br />

Conclusion: Adaptive consumer foraging behavior relaxes apparent competition<br />

between resources and leads to their persistence.


Proposition 1 (Boukal and Krivan 1999, Krivan and Vrkoc 2007) When<br />

<strong>predator</strong>s behave optimally, all trajectories with positive initial conditions converge<br />

to a global atractor (shown in blue). <strong>The</strong> atractor is in the plane e 1 R 1 =<br />

e 2 R 2 (shown in cyan) and it is formed by the solutions of differential equation<br />

(<br />

dR 1<br />

r1 λ 2 + r 2 λ 1<br />

= R 1 − λ )<br />

1λ 2<br />

C<br />

dt<br />

λ 1 + λ 2 λ 1 + λ 2<br />

dC<br />

= C(e 1 λ 1 R 1 − m)<br />

dt<br />

that satisfy C(t)≥ r 1−r 2<br />

λ 1<br />

(i. e., they are above the dashed line). Preferences of<br />

the <strong>predator</strong> on the attractor satisfy<br />

u 1 = r 1− r 2 + λ 2 C<br />

(λ 1 + λ 2 )C<br />

C<br />

R 1<br />

R 2


Population dynamics<br />

dx i<br />

dt = x if i (x, u),<br />

i = 1, . . . , n<br />

Controls (animal strategies, or phenotypic plastic traits):<br />

u = (u 1 , . . . , u k ) ∈ U=U 1 × · · · × U k<br />

Fitness of the i-th individuals:<br />

G i (u i ; u, x) = f i (x, u)<br />

Strategies that maximize animal fitness are the Nash equilibria (or Evolutionary Stable<br />

Strategies) at current population numbers:<br />

N(x) = { u ∈ U | G i (u i ; u, x) ≥ G i (v; u, x) for any v ∈ U i , i = 1, . . . , k } .<br />

Feedback control:<br />

u ∈ N(x)<br />

This approach assumes time scale separtion: Behavioral processes operate on a much<br />

faster time scale than do population dynamics


Question: Are these predictions falsifiable?


Population growth of bacteria on two substrates<br />

Diauxie (J. Monod):<br />

microbial cells consume two or more<br />

substrates in a sequential pattern, resulting in two separate growth<br />

phases (phase I and II). During the first phase, cells preferentially<br />

metabolize the sugar on which it can grow faster (often glucosebut<br />

not always). Only after the first sugar has been exhausted do the<br />

cells switch to the second. At the time of the ”diauxic shift”, there<br />

is often a lag period during which cells produce theenzymesneeded<br />

to metabolize the second sugar.<br />

Lac operon: Molecular mechanism that regulates diauxic growth (F. Jacob<br />

and J. Monod, Nobel prize 1965)<br />

Adaptation: Evolution should result in optimal timing of the diauxic switch<br />

so that bacterial fitness maximizes<br />

Question: Is the lac operon evolutionarily optimized?


Michaelis-Menten batch population kinetics<br />

C<br />

u 1<br />

u 2<br />

S 1 S 2<br />

dS 1<br />

dt<br />

dS 2<br />

dt<br />

dC<br />

dt<br />

= − 1 Y 1<br />

S 1<br />

K 1 + S 1<br />

u 1 C<br />

= − 1 S 2<br />

u 2 C<br />

Y 2 K 2 + S<br />

( 2<br />

µ1 S 1<br />

=<br />

u 1 + µ )<br />

2S 2<br />

u 2 C<br />

K 1 + S 1 K 2 + S 2<br />

S 1 , S 2 - sugar concentration (eg. glucose and lactose)<br />

C - bacterial population<br />

u i -bacterial preference for the i−th (u 1 + u 2 = 1, i = 1, 2) sugar


Optimal strategy maximizing bacterial fitness<br />

Fitness= per capita bacterial population growth rate i.e.,<br />

1<br />

C<br />

dC<br />

dt = µ 1S 1<br />

u 1 + µ 2S 2<br />

u 2 ↦→ max<br />

K 1 + S 1 K 2 + S 2 u i<br />

<strong>The</strong> optimal strategy:<br />

µ 1 S 1<br />

K 1 + S 1<br />

> µ 2S 2<br />

K 2 + S 2<br />

=⇒ u 1 = 1<br />

µ 1 S 1<br />

K 1 + S 1<br />

< µ 2S 2<br />

K 2 + S 2<br />

=⇒ u 1 = 0


dS 1<br />

dt<br />

dS 2<br />

dt<br />

dC<br />

dt<br />

= − 1 Y 1<br />

S 1<br />

K 1 + S 1<br />

u 1 C<br />

= − 1 S 2<br />

u 2 C<br />

Y 2 K 2 + S<br />

( 2<br />

µ1 S 1<br />

=<br />

u 1 + µ )<br />

2S 2<br />

u 2 C<br />

K 1 + S 1 K 2 + S 2<br />

u 1 =<br />

{ 1 when<br />

µ 1 S 1<br />

K 1 +S 1<br />

> µ 2S 2<br />

K 2 +S 2<br />

0 when<br />

µ 1 S 1<br />

K 1 +S 1<br />

< µ 2S 2<br />

K 2 +S 2<br />

µ 1 S 1<br />

K 1 +S 1<br />

= µ 2S 2<br />

K 2 +S 2


Model predictions<br />

1. First, bacteria utilize the resource on which their population growth rate<br />

µ<br />

is highest, i.e., the resource with highest i S i<br />

K i +S i<br />

. At high concentrations<br />

this ratio is approximately eqal to µ i .<br />

2. Concentration of the preferred resource will decrease and at certain time<br />

bacterial fitness on both susbstrates will be the same. Since that time<br />

bacteria will utilize both substrates.<br />

3. <strong>The</strong> switching time can be estimated from the <strong>model</strong>. <strong>The</strong> parameters<br />

we need to know are only those that describe bacterial growth on a single<br />

substrate.


Growth rate parameters of Klebsiela oxytoca on single<br />

substrates<br />

(Kompala et. al. 1986)<br />

glucose<br />

µ K YY<br />

1.08 0.01 0.52<br />

arabinose<br />

1.00<br />

0.05<br />

0.5<br />

fruktose<br />

0.94<br />

0.01<br />

0.52<br />

xylose<br />

0.82<br />

0.2<br />

0.5<br />

lactose<br />

0.95<br />

4.5<br />

0.45


Conclusion: <strong>The</strong>re is no significant difference between observed times of<br />

switching and predicted times of switching. Thus, bacteria switch between<br />

different sugars at times at which their fitness is maximized. This shows that<br />

the lac operon is evolutionarily optimized.


What do these <strong>model</strong>s predict?<br />

1. Animal short term behavior has a potential to influence population dynamics<br />

(i.e., behavioral effects do not necessarily attenuate at the longer population<br />

time scale).<br />

2. Adaptivity in animal behaviors promotes species coexistence, without<br />

necessarily promoting species stability<br />

3. It pays off to read biology literature as a source of interesting math problems


[1] <strong>Volterra</strong> V. 1926. Fluctuations in the abundance of a species considered mathematically,<br />

Nature 118:558-560.<br />

[2] Gause, G. F. 1934. <strong>The</strong> struggle for existence,Williams and Wilkins, Baltimore.<br />

[3] Gause, G. F., Smaragdova, N. P. , Witt, A. A. 1936. Further studies of interaction between<br />

<strong>predator</strong>s and <strong>prey</strong>. Journal of Animal Ecology 5:1-18.<br />

[4] V. Krivan, Dynamic ideal free distribution: Effects of optimal patch choice on <strong>predator</strong>-<strong>prey</strong><br />

population dynamics, American Naturalist 149 (1997) 164-178<br />

[5] Boukal, D., Krivan, V. 1999. Lyapunov functions for <strong>Lotka</strong>-<strong>Volterra</strong> <strong>predator</strong>-<strong>prey</strong> <strong>model</strong>s<br />

with optimal foraging behavior. Journal of Mathematical Biology 39:493-517.<br />

[6] Krivan, V. 2011. On the Gause <strong>predator</strong>-<strong>prey</strong> <strong>model</strong> with a refuge: A fresh look at the history.<br />

Journal of <strong>The</strong>oretical Biology 274:67-73.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!