18.03.2014 Views

2 DGM for elliptic problems

2 DGM for elliptic problems

2 DGM for elliptic problems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2<br />

<strong>DGM</strong> <strong>for</strong> <strong>elliptic</strong> <strong>problems</strong><br />

chap:ellipt<br />

sec:2.0<br />

2.1 Model problem<br />

Let Ω be a bounded domain in IR d , d = 2,3, with a Lipschitz-continuous<br />

boundary ∂Ω. We denote by ∂Ω D and ∂Ω N parts of the boundary ∂Ω,<br />

Lebesques measurable with respect to (d − 1)-dimensional measure defined<br />

on ∂Ω, such that ∂Ω = ∂Ω D ∪ ∂Ω N and ∂Ω D ∩ ∂Ω N = ∅.<br />

We consider the following Poisson model problem: find a fucntion u : Ω →<br />

IR such that<br />

−∆u(x) = f(x), x ∈ Ω, (2.1) A0.1<br />

and<br />

u = u D , on ∂Ω D , (2.2) A0.2a<br />

n · ∇u = g N , on ∂Ω N , (2.3) A0.2b<br />

where f ∈ L 2 (Ω), u D ∈ L 2 (∂Ω D ) and g N ∈ L 2 (∂Ω N ). A sufficiently regular<br />

function satisfying ( 2.1) A0.1 – ( 2.3) A0.2b pointwise is called a classical solution. It is<br />

suitable to introduce the concept of a weak solution. Let us introduce the<br />

space<br />

V = {v ∈ H 1 (Ω); v| ∂ΩD = 0}. (2.4) A0.3a<br />

Now we multiply ( 2.1) A0.1 by a function v ∈ V , integrate over Ω and use the<br />

Green’s theorem. Taking into account the boundary condition ( 2.3), A0.2b we obtain<br />

the identity<br />

∫<br />

∫ ∫<br />

∇u · ∇v dx = f v dx + g N v dS, v ∈ V. (2.5) A0.3<br />

∂Ω N<br />

Ω<br />

Ω<br />

Let us assume the existence of u ∗ ∈ H 1 (Ω) such that u ∗ | ∂ΩD = u D . Now we<br />

say that a function u is a weak solution of problem ( 2.1) A0.1 - ( 2.3), A0.2b if u − u ∗ ∈ V<br />

and u satisfies identity ( 2.5).<br />

A0.3


10 2 Elliptic <strong>problems</strong><br />

sec:2.1<br />

sec:2.1.1<br />

conftri<br />

2.2 Spaces of discontinuous functions<br />

2.2.1 Partition of the domain<br />

Let T h (h > 0) be a partition of the closure Ω of the domain Ω into a finite<br />

number of closed d-dimensional simplexes K with mutually disjoint interiors<br />

such that<br />

Ω = ⋃<br />

K∈T h<br />

K. (2.6) A1.1<br />

We call T h a triangulation of Ω and do not require the standard con<strong>for</strong>ming<br />

properties from the finite element method, introduced e.g. in [Cia79], Ciarlet [BS94],<br />

BrScott<br />

Johnson<br />

[Joh88], [Sch00] Schwab or [Žen90]. Zenisek In two-dimensional <strong>problems</strong> (d = 2) we choose<br />

K ∈ T h as triangles and in three-dimensional <strong>problems</strong> (d = 3) the elements<br />

K ∈ T h are tetrehedra. As we see, we admit that in the finite element mesh<br />

the<br />

fig:faces<br />

so-called hanging nodes (and in 3D also hanging edges) appear (see Figure<br />

2.1).<br />

Remark 2.1. Let us remind that the triangulation T h is con<strong>for</strong>ming, if it has<br />

the following property: if K,K ′ ∈ T h , then K ∩K ′ = ∅ or K ∩K ′ is a common<br />

vertex or K ∩ K ′ is a common edge (or K ∩ K ′ is a common face in the case<br />

d = 3) of K and K ′ .<br />

In general, the discontinuous Galerkin method can handle with more general<br />

elements as quadrilaterals and convex or even nonconvex star-shaped<br />

polygons in 2D and hexahedra, pyramids and convex or nonconvex star-shaped<br />

polyhedra in 3D. As an example, we can consider the so-called dual finite volumes<br />

constructed over triangular (d = 2) or tetrahedral (d = 3) meshes (cf.,<br />

e.g. [FFLMW99]). FFLW96 A use of such elements will be discussed in Section ??.<br />

sec:grids<br />

In our further considerations we shall use the following notation. By ∂K<br />

we denote the boundary of an element K ∈ T h and set h K = diam(K) =<br />

diameter of K, h = max K∈Th h K . By ρ K we denote the radius of the largest<br />

d-dimensional ball inscribed into K and by |K| we denote the d-dimensional<br />

Lebesgue measure of K.<br />

Let K,K ′ ∈ T h . We say that K and K ′ are neighbours, if the set ∂K ∩∂K ′<br />

has positive (d − 1)-dimensional measure. We say that Γ ⊂ K is a face of K,<br />

if it is a maximal connected open subset either of ∂K ∩ ∂K ′ , where K ′ is a<br />

neighbour of K, or of ∂K ∩ ∂Ω. By F h we denote the system of all faces of<br />

all elements K ∈ T h . Further, we define the set of all innner faces by<br />

the set of all “Dirichlet” boundary faces by<br />

and the set of all “Neumann” boundary faces by<br />

F I h = {Γ ∈ F h ; Γ ⊂ Ω}, (2.7) A1.6<br />

F D h = {Γ ∈ F h ; Γ ⊂ ∂Ω D } (2.8) A1.7


2.2 Spaces of discontinuous functions 11<br />

⃗n Γ8<br />

Γ 5<br />

Γ 6<br />

⃗n Γ6<br />

Γ 8<br />

⃗n Γ1<br />

⃗n Γ2<br />

K 1<br />

K 2<br />

K 3<br />

⃗n Γ5<br />

K 5<br />

Γ 1<br />

Γ 2<br />

⃗n Γ7<br />

Γ 7<br />

Γ 4<br />

Γ 3<br />

⃗n Γ4<br />

⃗n Γ3<br />

K 4<br />

Fig. 2.1. Example of elements K l , l = 1, . . . , 5, and faces Γ l , l = 1, . . . , 8, with the<br />

corresponding normals n Γl<br />

fig:faces<br />

F N h = {Γ ∈ F h , Γ ⊂ ∂Ω N } . (2.9) A1.8<br />

Obviously, F h = Fh I ∪ FD h ∪ FN h<br />

. For a shorter notation we put<br />

F ID<br />

h = F I h ∪ F D h , F DN<br />

h = F D h ∪ F N h . (2.10) A1.9<br />

For each Γ ∈ F h we define a unit normal vector n Γ . We assume that <strong>for</strong><br />

Γ ∈ Fh<br />

DN the normal n Γ has the same orientation as the outer normal to ∂Ω.<br />

For<br />

fig:faces<br />

each face Γ ∈ Fh I the orientation of n Γ is arbitrary but fixed. See Figure<br />

2.1. Finally, by d(Γ) we denote the diameter of Γ ∈ F h .<br />

sec:2.1.2<br />

2.2.2 Broken Sobolev spaces<br />

Over a triangulation T h we define the so-called broken Sobolev space<br />

H k (Ω, T h ) = {v;v| K ∈ H k (K) ∀K ∈ T h } (2.11) A1.12<br />

with the norm<br />

and the seminorm<br />

( ∑<br />

‖v‖ H k (Ω,T h ) =<br />

|v| H k (Ω,T h ) =<br />

K∈T h<br />

‖v‖ 2 H k (K)<br />

) 1/2<br />

(2.12) A1.13<br />

( ) 1/2 ∑<br />

. (2.13) A1.14<br />

K∈T h<br />

|v| 2 H k (K)


12 2 Elliptic <strong>problems</strong><br />

Γ<br />

⃗n Γ<br />

K (L)<br />

Γ<br />

K (R)<br />

Γ<br />

Fig. 2.2. Interior face Γ, elements K (L)<br />

Γ<br />

and K (R)<br />

Γ<br />

and the orientation of n Γ fig:normals<br />

For each Γ ∈ Fh I<br />

such that Γ ⊂ ∂K (L)<br />

Γ<br />

normal to the element ∂K (L)<br />

Γ<br />

Figure fig:normals<br />

2.2. We call elements K (L)<br />

Γ<br />

introduce the following notation:<br />

there exist two neighbouring elements K(L)<br />

Γ<br />

,K(R) Γ<br />

∈ T h<br />

∩ ∂K (R)<br />

Γ<br />

. We use a convention that n Γ is the outer<br />

v| (L)<br />

Γ<br />

v| (R)<br />

Γ<br />

and the inner normal to the element ∂K (R)<br />

Γ<br />

, see<br />

neighbours. For v ∈ H 1 (Ω, T h ), we<br />

, K(R) Γ<br />

= the trace of v| K<br />

(L)<br />

Γ<br />

= the trace of v| (R) K Γ<br />

)<br />

〈v〉 Γ<br />

= 1 2<br />

[v] Γ<br />

= v| (L)<br />

Γ<br />

(<br />

v| (L)<br />

Γ<br />

+ v|(R) Γ<br />

− v|(R) Γ .<br />

,<br />

on Γ, (2.14) A1.15<br />

on Γ,<br />

The value [v] Γ depends on the orientation of n Γ , but the value [v] Γ n Γ is<br />

independent of this orientation.<br />

For Γ ∈ Fh<br />

DN there exists element K (L)<br />

Γ<br />

∈ T h such that Γ ⊂ K (L)<br />

Γ<br />

∩ ∂Ω.<br />

Then <strong>for</strong> v ∈ H 1 (Ω, T h ), we introduce the following notation:<br />

v| (L)<br />

Γ<br />

= the trace of v| K<br />

(L)<br />

Γ<br />

〈v〉 Γ<br />

= [v] Γ<br />

= v| (L)<br />

Γ .<br />

on Γ, (2.15) A1.17<br />

For Γ ∈ Fh<br />

DN by v| (R)<br />

Γ<br />

we <strong>for</strong>mally denote the exterior trace of v on Γ given<br />

either by a boundary condition or by an extrapolation from the interior of Ω.<br />

In case that [·] Γ , 〈 · 〉 Γ<br />

and n Γ appear in the integrals ∫ Γ ... dS, Γ ∈ F h,<br />

we omit the subscript Γ and write simply [·], 〈 · 〉 and n, respectively.<br />

sec:2.1.3<br />

2.2.3 Spaces of discontinuous piecewise polynomial functions<br />

As we already mentioned in Introduction, <strong>DGM</strong> is based on the use of discontinuous<br />

piecewise polynomial approximations.


2.2 Spaces of discontinuous functions 13<br />

Let T h be a triangulation of Ω introduced in Section sec:2.1.1 2.2.1 and let p ≥<br />

0 be an integer. We define the space of discontinuous piecewise polynomial<br />

functions<br />

S hp = {v;v| K ∈ P p (K) ∀K ∈ T h }, (2.16) A1.23<br />

where P p (K) denotes the space of all polynomials on K of degree ≤ p. We<br />

call the number p the degree of polynomial approximation.<br />

sec:2.1.4<br />

2.2.4 Some auxiliary results<br />

Assumptions on the mesh<br />

Let us consider a system {T h } h∈(0,h0), h 0 > 0, of partitions of the domain Ω<br />

(T h = {K} K∈Th ). In our further considerations we shall meet the following<br />

assumptions.<br />

(A1) The system {T h } h∈(0,h0) is shape regular: there exists a positive constant<br />

C R such that<br />

h K<br />

ρ K<br />

≤ C R ∀K ∈ T h , ∀h ∈ (0,h 0 ). (2.17) A1.33<br />

(A2) The system {T h } h∈(0,h0) is locally quasi-uni<strong>for</strong>m: there exists a constant<br />

C H > 0 such that<br />

h K ≤ C H h K ′ ∀K,K ′ ∈ T h , K,K ′ are neighbours, ∀h ∈ (0,h 0 ). (2.18) A1.35<br />

rem:MA<br />

Remark 2.2. Sometimes the quasi-uni<strong>for</strong>mity of the mesh is required, i.e. there<br />

exists a constant ˜C > 0 such that h ≤ ˜Ch K ∀K ∈ T h . The condition ( 2.18)<br />

A1.35<br />

is weaker condition than quasi-uni<strong>for</strong>mity since it only limits the ratio of<br />

diameters of neighbouring elements.<br />

Let us introduce important tools <strong>for</strong> the theoretical analysis of the DG<br />

method.<br />

lem:MTI<br />

Lemma 2.3. (Multiplicative trace inequality) Let assumption (A1) be<br />

satisfied. Then there exists a constant C M > 0 independent of v, h and K<br />

such that<br />

(<br />

)<br />

‖v‖ 2 L 2 (∂K) ≤ C M ‖v‖ L2 (K) |v| H1 (K) + h −1<br />

K ‖v‖2 L 2 (K) , (2.19) eq:MTI<br />

K ∈ T h , v ∈ H 1 (K), h ∈ (0,h 0 ).<br />

Proof. Let K ∈ T h be arbitrary but fixed. We denote by x K the centre of the<br />

largest d−dimensional ball inscribed into the simplex K. (Of course, ρ K is the<br />

radius of this ball.) Without the loss of generality we suppose that x K is the<br />

origin of the coordinate system. We start from the following relation<br />

∫<br />

∫<br />

v 2 x · ndS = ∇ · (v 2 x)dx, v ∈ H 1 (K). (2.20) A1.51<br />

∂K<br />

K


14 2 Elliptic <strong>problems</strong><br />

x K<br />

α<br />

x<br />

K<br />

ρ K<br />

Γ<br />

n Γ<br />

Fig. 2.3. Simplex K with its face Γ<br />

fig:dist<br />

Let n Γ be the unit outer normal to K on a side Γ of K. Then<br />

see Figure 2.3.<br />

fig:dist<br />

From ( 2.21) A1.52 we have<br />

∫<br />

x · n Γ = |x||n Γ |cos α = |x|cos α = ρ K x ∈ Γ, (2.21) A1.52<br />

∂K<br />

= ρ K<br />

∑<br />

v 2 x · n dS = ∑<br />

Γ ⊂∂K<br />

∫<br />

Γ<br />

Γ ⊂∂K<br />

∫<br />

Γ<br />

v 2 dS = ρ K ‖v‖ 2 L 2 (∂K) .<br />

v 2 x · n Γ dS (2.22) A1.54<br />

Moreover,<br />

∫<br />

∫<br />

∇ · (v 2 (<br />

x)dx = v 2 ∇ · x + x · ∇v 2) dx (2.23) A1.55<br />

K<br />

K<br />

∫ ∫<br />

∫<br />

= d v 2 dx + 2 vx · ∇v dx ≤ d‖v‖ 2 L 2 (K) + 2 |vx · ∇v|dx.<br />

K<br />

K<br />

With the aid of the Cauchy inequality, the second term of ( 2.23) A1.55 is estimated<br />

as<br />

∫<br />

∫<br />

2 |vx · ∇v|dx ≤ 2 sup |x| |v||∇v|dx ≤ 2h K ‖v‖ L 2 (K)|v| H 1 (K). (2.24) A1.56<br />

K<br />

x∈K K<br />

Then ( 2.17), A1.33 ( 2.20), A1.51 ( 2.22), A1.54 ( 2.23) A1.55 and ( 2.24) A1.56 give<br />

K


lem:II<br />

lem:III<br />

def:Pi_h<br />

2.2 Spaces of discontinuous functions 15<br />

‖v‖ 2 L 2 (∂K) ≤ 1 [<br />

]<br />

2h K ‖v‖ L<br />

ρ 2 (K)|v| H 1 (K) + d‖v‖ 2 L 2 (K) (2.25) A1.57<br />

K<br />

[<br />

≤ C R 2‖v‖ L2 (K)|v| H1 (K) + d ]<br />

‖v‖ 2 L<br />

h 2 (K) ,<br />

K<br />

which proves ( eq:MTI 2.19) with C M = C R max{2,d}. ⊓⊔<br />

Lemma 2.4. (Inverse inequality) Let (A1) be satisfied. Then there exists<br />

a constant C I > 0 independent of v, h and K such that<br />

|v| H1 (K) ≤ C I h −1<br />

K ‖v‖ L 2 (K), ∀v ∈ P p (K), ∀K ∈ T h , <strong>for</strong>allh ∈ (0,h 0 ).<br />

(2.26) eq:InvI<br />

Proof. Let ˆK be a reference triangle and F K : ˆK → K, K ∈ Th be an<br />

affine mapping such that F K ( ˆK) = K. By [Cia79], Ciarlet Theorem 3.1.2 <strong>for</strong> any v ∈<br />

H m (K), where m ≥ 0 is an integer,the function ˆv(ˆx) = v(F K (ˆx)) ∈ H m ( ˆK)<br />

and<br />

|v| Hm (K) ≤ c c h d 2 −m<br />

K |ˆv| H m ( ˆK)<br />

, (2.27) eq:ci1<br />

|ˆv| Hm ( ˆK) ≤ c ch m− d 2<br />

K |v| H m (K), (2.28) eq:ci2<br />

where c c > 0 depends on C R but not on K and v. From [Sch98], Schwab-book Theorem<br />

4.76 we have<br />

|ˆv| H 1 ( ˆK) ≤ c sp 2 ‖ˆv‖ L 2 ( ˆK) , ˆv ∈ P p( ˆK), (2.29) eq:sch<br />

where c s > 0 depends on d but not on ˆv and p. A simple combination of ( 2.27)<br />

eq:ci1<br />

– ( 2.29) eq:sch proves ( 2.26) eq:InvI with C I = c s c 2 c p 2 . ⊓⊔<br />

Lemma 2.5. (Approximation properties) Let assumption (A1) be valid.<br />

Then there exist a mapping π K,p : H 1 (K) → P p (K) and a constant C A > 0<br />

such that<br />

|π K,p v − v| H q (K) ≤ C A h µ−q<br />

K |v| H µ (K) (2.30) eq:ap<br />

∀v ∈ H s (K) ∀K ∈ T h ∀h ∈ (0,h 0 ),<br />

where µ = min(p + 1,s), 0 ≤ q ≤ s and p,s are integers.<br />

Proof. We define π K,p as the L 2 (K) projection on P p (K), i.e, <strong>for</strong> ϕ ∈ L 2 (K),<br />

∫<br />

∫<br />

π K,p ϕ ∈ P p (K), (π K,p ϕ)v dx = ϕv dx ∀v ∈ P p (K). (2.31) Ltwoproj<br />

K<br />

The approximation properties ( 2.30) eq:ap follow immediately from [Cia79, Ciarlet Theorem<br />

3.1.4].<br />

⊓⊔<br />

Definition 2.6. Let T h be a triangulation and p ≥ 0. We define the mapping<br />

Π hp : H 1 (Ω, T h ) → S hp by<br />

K<br />

(Π hp u) | K = π K,p (u| K ) ∀K ∈ T h , (2.32) eq:Pi_h<br />

where π K,p : H 1 (K) → P p (K) is the mapping introduced in Lemma 2.5.<br />

lem:III


lem:AP<br />

16 2 Elliptic <strong>problems</strong><br />

By ( 2.31), Ltwoproj π K,p is the operator of L 2 (K)-projection. This implies that Π hp<br />

is the L 2 (Ω)-projection on S hp : if ϕ ∈ L 2 (Ω), then<br />

∫<br />

∫<br />

Π hp ϕ ∈ S hp , (Π hp ϕ)v dx = ϕv dx ∀v ∈ S hp . (2.33) LtwoprOm<br />

Lemma 2.7. Let assumption (A1) be valid. Then<br />

Ω<br />

Ω<br />

|Π hp v − v| Hq (Ω,T h ) ≤ C Ah µ−q |v| Hµ (Ω,T h ), v ∈ H s (Ω, T h ), (2.34) eq:AP<br />

where µ = min(p + 1,s), 0 ≤ q ≤ s and C A is the constant from ( 2.30).<br />

eq:ap<br />

Proof. Using ( 2.32), eq:Pi_h definition of a seminorm in a broken Sobolev space and<br />

the approximation properties ( 2.30), eq:ap we obtain ( 2.34). eq:AP<br />

⊓⊔<br />

sec:2.2<br />

2.3 <strong>DGM</strong> based on a primal <strong>for</strong>mulation<br />

In this section we shall describe and analyze the <strong>DGM</strong> <strong>for</strong> the solution of<br />

problem ( 2.1) A0.1 – ( 2.3) A0.2b based on a primal <strong>for</strong>mulation. The approximate solution<br />

will be sought in the space S hp ⊂ H 1 (Ω, T ). However, the weak <strong>for</strong>mulation<br />

( 2.5) A0.3 given in Section 2.1 sec:2.0 is not suitable <strong>for</strong> the derivation of the <strong>DGM</strong>, because<br />

( 2.5) A0.3 does not make sense <strong>for</strong> u ∈ H 1 (Ω, T ) ⊄ H 1 (Ω). There<strong>for</strong>e, we shall<br />

introduce a “weak <strong>for</strong>m of ( 2.1) A0.1 – ( 2.3) A0.2b in the sence of broken Sobolev spaces”.<br />

Let as assume that u is a sufficiently regular solution of ( 2.1) A0.1 – ( 2.3). A0.2b We<br />

shall consider the so-called strong solution, i.e. a solution u ∈ H 2 (Ω). We<br />

proceed in the following way: We multiply ( 2.1) A0.1 by a function v ∈ H 2 (Ω, T h )<br />

integrate over K ∈ T and use Green’s theorem. Summing over all K ∈ T h , we<br />

obtain the identity<br />

∑<br />

∇u · ∇v dx − ∑<br />

∫<br />

(n K · ∇u)v dS = f v dx, (2.35) A2.4<br />

K∈T h<br />

∫K<br />

K∈T h<br />

∫∂K<br />

where n K denotes the unit outer normal to ∂K. The surface integrals over<br />

∂K make sense due to the regularity of u. We split them according to the<br />

type of faces Γ that <strong>for</strong>m the boundary of the element K ∈ T h :<br />

∑<br />

K∈T h<br />

∫∂K<br />

= ∑<br />

Γ ∈F D h<br />

+ ∑<br />

∫<br />

Γ ∈F I h<br />

Γ<br />

∫<br />

(n K · ∇u)v dS (2.36) A2.5<br />

(n Γ · ∇u)v dS + ∑<br />

Γ<br />

(<br />

n Γ ·<br />

Γ ∈F N h<br />

(∇u| (L)<br />

Γ<br />

)v|(L) Γ<br />

∫<br />

Γ<br />

Ω<br />

(n Γ · ∇u)v dS<br />

− (∇u|(R) Γ<br />

)v|(R) Γ<br />

)<br />

dS.<br />

(There is a sign “−” in the last integral, since n Γ is the unit outer normal to<br />

but the unit inner normal to ∂K (R) sec:2.1.1<br />

Γ<br />

, see Section 2.2.1 or Figure 2.2.<br />

fig:normals<br />

∂K (L)<br />

Γ


Due to the assumption that u ∈ H 2 (Ω),<br />

[u] Γ = 0 = [∇u] Γ ,<br />

2.3 <strong>DGM</strong> based on a primal <strong>for</strong>mulation 17<br />

∇u| (L)<br />

Γ<br />

= ∇u| (R)<br />

Γ<br />

= 〈∇〉 Γ . (2.37) jumpsonGamma<br />

Thus, the integrand of the last integral in ( A2.5 2.36) can by written in the <strong>for</strong>m<br />

n Γ · (∇u)| (L)<br />

Γ<br />

v|(L) Γ<br />

Hence, due to ( A0.2b 2.3), ( A1.17 2.15) and ( A2.4 2.35) – ( A2.6<br />

∫<br />

=<br />

∑<br />

K∈T h<br />

∫K<br />

Ω<br />

− n Γ · (∇u)| (R)<br />

Γ<br />

v|(R) Γ<br />

= n Γ · 〈∇u)〉 Γ<br />

[v] Γ . (2.38) A2.6<br />

∇u · ∇v dx −<br />

f v dx + ∑<br />

Γ ∈F N h<br />

∫<br />

Γ<br />

2.38), we have<br />

∑ ∫<br />

n · 〈∇u〉 [v]dS (2.39) A2.9<br />

Γ ∈F ID<br />

h<br />

Γ<br />

g N v dS, v ∈ H 2 (Ω, T h ).<br />

Moreover, <strong>for</strong> u,v ∈ H 1 (Ω, T h ) we define the interior penalty bilinear <strong>for</strong>m<br />

Jh σ (u,v) = ∑ ∫<br />

σ[u][v]dS (2.40) A2.17<br />

and the boundary penalty linear <strong>for</strong>m<br />

Γ ∈F ID<br />

h<br />

J σ D(v) = ∑<br />

Γ ∈F D h<br />

∫<br />

Γ<br />

Γ<br />

σu D v dS, (2.41) A2.18<br />

where σ > 0 is a penalty weight. Its choice will be discussed in Section 2.4.<br />

sec:2.4<br />

If u ∈ H 1 (Ω) ∩H 2 (Ω, T h ) and u satisfies the Dirichlet boundary condition<br />

( 2.2), A0.2a then<br />

∑<br />

∫<br />

n · 〈∇v〉 [u]dS = ∑ ∫<br />

n · ∇v u D dS ∀v ∈ H 2 (Ω, T h ) (2.42) A2.E1<br />

and<br />

Γ ∈F ID<br />

h<br />

Γ<br />

Γ ∈F D h<br />

Γ<br />

J σ h(u,v) = J σ D(v) ∀v ∈ H 2 (Ω, T h ), (2.43) A2.E2<br />

since [u] Γ = 0 <strong>for</strong> Γ ∈ Fh I and [u] Γ = u| Γ = u D <strong>for</strong> Γ ∈ Fh D.<br />

Now, we introduce several variants of the discontinuous Galerkin weak<br />

<strong>for</strong>mulation in such a way that we sum ( 2.39) A2.9 with −1, 0 or 1-multiple of<br />

( 2.42) A2.E1 and possibly add equality ( 2.43).This A2.E2 leads us to the following notation.<br />

For u,v ∈ H 2 (Ω, T h ) we set<br />

a s h(u,v) = ∑<br />

K∈T h<br />

∫K<br />

−<br />

∑<br />

Γ ∈F ID<br />

h<br />

∇u · ∇v dx (2.44) ah_S<br />

∫<br />

Γ<br />

(n · 〈∇u〉 [v] + n · 〈∇u〉 [v]) dS,


18 2 Elliptic <strong>problems</strong><br />

a n h(u,v) = ∑<br />

K∈T h<br />

∫K<br />

−<br />

a i h(u,v) = ∑<br />

∑<br />

Γ ∈F ID<br />

h<br />

K∈T h<br />

∫K<br />

∇u · ∇v dx (2.45) ah_N<br />

∫<br />

Γ<br />

(n · 〈∇u〉 [v] − n · 〈∇u〉 [v]) dS,<br />

∇u · ∇v dx −<br />

∑<br />

Γ ∈F ID<br />

h<br />

∫<br />

Γ<br />

n · 〈∇u〉 [v]dS (2.46) ah_I<br />

and the linear <strong>for</strong>ms<br />

∫<br />

Fh(v) s = f v dx + ∑<br />

∫<br />

Fh n (v) =<br />

∫<br />

Fh(v) i =<br />

Ω<br />

Ω<br />

Γ ∈F N h<br />

f v dx + ∑<br />

Γ ∈F N h<br />

f v dx + ∑<br />

Ω<br />

Γ ∈F N h<br />

∫<br />

g N v dS + ∑ ∫<br />

n · ∇v u D dS, (2.47) Fh_S<br />

∫<br />

∫<br />

Γ<br />

Γ<br />

Γ<br />

Γ ∈F D h<br />

g N v dS − ∑<br />

∫<br />

Γ<br />

Γ ∈F D Γ<br />

h<br />

n · ∇v u D dS, (2.48) Fh_N<br />

g N v dS. (2.49) Fh_I<br />

Moreover, <strong>for</strong> u,v ∈ H 2 (Ω, T h ) let us define the bilinear <strong>for</strong>ms<br />

and the linear <strong>for</strong>ms<br />

B s h(u,v) = a s h(u,v), (2.50) A2.20a<br />

Bh(u,v) n = a n h(u,v), (2.51) A2.20b<br />

B s,σ<br />

h (u,v) = as h(u,v) + Jh σ (u,v), (2.52) A2.20c<br />

B n,σ<br />

h (u,v) = an h(u,v) + Jh σ (u,v), (2.53) A2.20d<br />

B i,σ<br />

h (u,v) = ai h(u,v) + Jh σ (u,v) (2.54) A2.20e<br />

def:2.1<br />

l s h(v) = F s h(v), (2.55) A2.21a<br />

l n h(v) = Fh n (v), (2.56) A2.21b<br />

l s,σ<br />

h (v) = F h(v) s + JD(v), σ (2.57) A2.21c<br />

l n,σ<br />

h (v) = F h n (v) + JD(v), σ (2.58) A2.21d<br />

l i,σ<br />

h (v) = F h(v) i + JD(v). σ (2.59) A2.21e<br />

Since S hp ⊂ H 2 (Ω, T h ), the <strong>for</strong>ms ( 2.50) A2.20a – ( 2.59) A2.21e make sense <strong>for</strong> u h ,v h ∈<br />

S hp . Consequently, we define five numerical schemes.<br />

Definition 2.8. A function u h ∈ S hp is called a DG approximate solution of<br />

problem ( 2.1) A0.1 – ( 2.3), A0.2b if it satisfies one of the following identities:<br />

i) B s h(u h ,v h ) = l s h(v h ) ∀v h ∈ S hp (2.60) A2.22a<br />

ii) B n h(u h ,v h ) = l n h(v h ) ∀v h ∈ S hp (2.61) A2.22b


2.3 <strong>DGM</strong> based on a primal <strong>for</strong>mulation 19<br />

iii) B s,σ<br />

h<br />

(u h,v h ) = l s,σ<br />

h (v h) ∀v h ∈ S hp (2.62) A2.22c<br />

iv) B n,σ<br />

h<br />

(u h,v h ) = l n,σ<br />

h (v h) ∀v h ∈ S hp (2.63) A2.22d<br />

v) B i,σ<br />

h (u h,v h ) = l i,σ<br />

h (v h) ∀v h ∈ S hp (2.64) A2.22e<br />

where the <strong>for</strong>ms Bh s, Bn h ,... and ls h ,ln h<br />

,... are defined by (A2.20a 2.50) – ( 2.54) A2.20e and<br />

( 2.55) A2.21a – ( 2.59), A2.21e respectively.<br />

If we denote by B h any <strong>for</strong>m defined by ( 2.50) A2.20a – ( 2.54) A2.20e and by l h we denote<br />

the corresponding <strong>for</strong>m given by ( 2.55) A2.21a – ( 2.59), A2.21e the discrete problem can be<br />

<strong>for</strong>mulated to find u h ∈ S hp satisfying the identity<br />

B h (u h ,v h ) = l h (v h ) ∀v h ∈ S hp . (2.65) dispr<br />

From the construction of the <strong>for</strong>ms B and l one can see that the strong<br />

solution u ∈ H 2 (Ω) of problem ( 2.1) A0.1 – ( 2.3) A0.2b satisfies the identity<br />

terminology<br />

B h (u,v) = l h (v) ∀v ∈ H 2 (Ω, T h ) (2.66) A2.23<br />

which represents the consistency of the method. The expressions ( 2.65) dispr and<br />

( 2.66) A2.23 imply the so-called Galerkin orthogonality of the error e h = u h − u of<br />

the method:<br />

B h (e h ,v h ) = 0 ∀v h ∈ S hp , (2.67) A2.23a<br />

which will be used in the analysis of error estimates.<br />

In contrast to standard con<strong>for</strong>ming finite element techniques, both Dirichlet<br />

and Neumann boundary conditions are included automatically in <strong>for</strong>mulation<br />

( 2.65) dispr of the discrete problem. This is an advantage particularly in<br />

the case of nonhomogeneous Dirichlet boundary conditions, because it is not<br />

necessary to construct subsets of finite element spaces <strong>for</strong>med by functions<br />

approximating the Dirichlet boundary condition in a suitable way.<br />

Remark 2.9. The method ( 2.60) A2.22a was introduced by Delves et al. ([DH79],<br />

Delves1<br />

Delves2<br />

[DP80], [HD79], Delves3 [HDP79]), Delves4 who call it global element method. Its advantage is<br />

the symmetry of the discrete problem. On the other hand, a significant disadvantage<br />

is that the billinear <strong>for</strong>m Bh s (·, ·) is indefinite. This causes troubles<br />

when dealing with time-dependent problem since some eigenvalues can have<br />

negative real parts and then the resulting <strong>for</strong>mulations becames unconditionally<br />

unstable. There<strong>for</strong>e we prove in Lemma 2.18 lem:A11 the continuity of the bilinear<br />

<strong>for</strong>m Bh s , but further we shall not be concerned with this method any more.<br />

The scheme ( 2.61) A2.22b was introduced by Baumann and Oden in [BBO99],<br />

bbo<br />

obb<br />

[OBB98]. There<strong>for</strong>e, we shall call it the Baumann-Oden method. It is straight<strong>for</strong>ward<br />

to show that the corresponding billinear <strong>for</strong>m Bh n (·, ·) is positive<br />

semidefinite. An interesting property of this method is that it is unstable<br />

<strong>for</strong> piecewise linear approximations, i.e. <strong>for</strong> p = 1.


20 2 Elliptic <strong>problems</strong><br />

The scheme ( 2.62) A2.22c is called symmetric interior penalty Galerkin (SIPG)<br />

method. It was derived by Arnold ([Arn82]) Arnold and Wheeler ([Whe78]) Whe78 by adding<br />

penalty terms to the <strong>for</strong>m Bh s . This <strong>for</strong>mulation leads to a symmetric bilinear<br />

<strong>for</strong>m which is coercive if the penalty parameter σ is sufficiently large.<br />

Moreover, the Aubin-Nitsche trick can be used <strong>for</strong> obtaining an optimal error<br />

estimate in the L 2 (Ω)-norm.<br />

The method ( 2.63), A2.22d called nonsymmetric interior penalty Galerkin (NIPG)<br />

method, was proposed by Girault, Riviére and Wheeler in [RWG99]. RWG99 In this<br />

case the bilinear <strong>for</strong>m B n,σ<br />

h<br />

is nonsymmetric and does not allow to obtain<br />

optimal error estimates in the L 2 (Ω)-norm with the aid of the Aubin-Nitsche<br />

trick. However, numerical experiments show that the odd degrees of the polynomial<br />

approximation give the optimal order of convergence. On the other<br />

hand, a favorable property of NIPG method is the coercivity of B n,σ<br />

h<br />

(·, ·) <strong>for</strong><br />

any penalty parameter σ > 0.<br />

Finally, the method 2.64), A2.22e called incomplete interior penalty Galerkin<br />

(IIPG) method, was studied in [DSW04], Dawson2004 [Sun03], Sun-PhD [SW05]. Sun05 In this case the<br />

bilinear <strong>for</strong>m B i,σ<br />

h<br />

is nonsymmetric and does not allow to obtain an optimal<br />

error estimate in the L 2 (Ω)-norm. Moreover, the penalty parameter σ should<br />

be chosen sufficiently large in order to guarantee the coercivity of B i,σ<br />

h . The<br />

advantage of the IIPG method is the simplicity of the discrete diffusion operator.<br />

This is particularly advantageous in the case when the diffusion operator<br />

is nonlinear. (See, e.g. [Dol08].<br />

iipg07<br />

It would also be possible to define the scheme Bh i (u,v) = li h (v) ∀v ∈ S hp,<br />

where Bh i (u,v) = ai h (u,v) and li h (v) = F h i (v), but this method does not make<br />

sense, because it does not contain the Dirichlet boundary condition ( 2.2).<br />

A0.2a<br />

sec:2.4<br />

2.4 Properties of the bilinear <strong>for</strong>ms<br />

We are interested in the existence of the numerical solutions of method ( 2.60)<br />

A2.22a<br />

– ( 2.64) A2.22e and in a priori error estimates of the difference of numerical solution<br />

and the exact one. There<strong>for</strong>e, we define the following mesh-dependent norm<br />

|||u||| Th<br />

=<br />

(<br />

|u| 2 H 1 (Ω,T h ) + Jσ h(u,u)) 1/2<br />

, (2.68) en<br />

In what follows, if there is no danger of misunderstanding, we shall omit<br />

the subscript T h . This means that we shall simply write ||| · ||| = ||| · ||| Th<br />

.<br />

exer1 Exercise 2.10. Prove that ||| · ||| is a norm on the spaces H 1 (Ω, T h ) and S hp .<br />

Let Γ ∈ Fh I be an inner face and K(L)<br />

Γ<br />

and K (R)<br />

Γ<br />

the elements sharing Γ.<br />

There are several possibilities how to define the penalty weight σ. We can set<br />

σ| Γ =<br />

(<br />

max<br />

C W<br />

h K<br />

(L)<br />

Γ<br />

, h K<br />

(R)<br />

Γ<br />

), (2.69) A3.1


where h K<br />

(L)<br />

Γ<br />

and h K<br />

(R)<br />

Γ<br />

2.4 Properties of the bilinear <strong>for</strong>ms 21<br />

are the diameters of the elements K (L)<br />

Γ<br />

and K (R)<br />

Γ ,<br />

respectively, adjacent to the face Γ, and C W > 0 is a suitable constant. For<br />

boundary faces Γ ∈ F D h (i.e. Γ ⊂ Γ D) we put<br />

σ| Γ = C W<br />

h K<br />

(L)<br />

Γ<br />

, (2.70) A3.2<br />

where C W > 0 and h KΓ denotes the diameter of the element K (L)<br />

Γ<br />

adjacent<br />

to Γ. If we use the simplified notation<br />

( )<br />

h Γ = max h (L) K<br />

, h (R)<br />

Γ K<br />

<strong>for</strong> Γ ∈ Fh I and h Γ = h (L)<br />

Γ<br />

K<br />

<strong>for</strong> Γ ∈ Fh D , (2.71)<br />

Γ<br />

A3.2a<br />

we can write<br />

σ| Γ = C W<br />

, Γ ∈ F h . (2.72) A3.3<br />

h Γ<br />

Let Γ ⊂ ∂K be a face of an element K. Then, in virtue of ( 2.18) A1.35 and ( 2.71),<br />

A3.2a<br />

we have<br />

h K ≤ h Γ ≤ C H h K , K ∈ T h , Γ ∈ F h , Γ ⊂ K. (2.73) A3.5<br />

Another possibility is to replace ( 2.69) A3.1 by<br />

σ| Γ =<br />

h K<br />

(L)<br />

Γ<br />

2C W<br />

In this case, σ| Γ is defined by ( A3.3 2.72) with<br />

h Γ =<br />

h K<br />

(L)<br />

Γ<br />

+ h K<br />

(R)<br />

Γ<br />

. (2.74) A3.1a<br />

+ h (R) K Γ<br />

. (2.75) A3.1b<br />

2<br />

If the partition T h represents a standard con<strong>for</strong>ming triangulation <strong>for</strong>med<br />

by simplexes, then one ususally defines the weight σ| Γ as<br />

σ| Γ = C W<br />

, (2.76) A3.1c<br />

diam(Γ)<br />

i.e. h Γ = diam(Γ).<br />

Under the introduced notation, in view of ( 2.40) A2.17 and ( 2.72), A3.3 the interior<br />

and boundary penalty <strong>for</strong>ms read<br />

Jh σ (u,v) = ∑ ∫<br />

C W<br />

[u][v]dS, (2.77) A3.4<br />

h Γ<br />

Γ ∈F ID<br />

h<br />

J σ D(v) = ∑<br />

Γ ∈F D h<br />

∫<br />

Γ<br />

Γ<br />

C W<br />

h Γ<br />

u D v dS.


22 2 Elliptic <strong>problems</strong><br />

estsigma<br />

Lemma 2.11. Let (A2) be valid. Then <strong>for</strong> each v ∈ H 1 (Ω, T h ) we have<br />

∑<br />

∫<br />

[v] 2 dS ≤ ∑ ∫<br />

|v| 2 dS, (2.78) A3.6a<br />

Γ ∈F ID<br />

h<br />

∑<br />

Γ ∈F ID<br />

h<br />

h −1<br />

Γ<br />

h Γ<br />

∫<br />

Γ<br />

Γ<br />

2h −1<br />

K<br />

K∈T h<br />

〈v〉 2 dS ≤ C H<br />

∑<br />

∂K<br />

K∈T h<br />

h K<br />

∫∂K<br />

|v| 2 dS. (2.79) A3.7a<br />

Hence,<br />

∑<br />

Γ ∈F ID<br />

h<br />

∑<br />

Γ ∈F ID<br />

h<br />

σ| Γ ‖[v]‖ 2 L 2 (Γ) ≤ 2C W<br />

1<br />

σ| Γ<br />

‖〈v〉‖ 2 L 2 (Γ) ≤ C H<br />

C W<br />

Proof. a) By ( A1.15 2.14), the inequality<br />

∑ 1<br />

‖v‖ 2 L<br />

h 2 (∂K), K<br />

K∈T h<br />

(2.80) A3.6<br />

∑<br />

. (2.81) A3.7<br />

K∈T h<br />

h K ‖v‖ 2 L 2 (∂K)<br />

exer2<br />

and ( 2.73) A3.5 we have<br />

∑<br />

∫<br />

h −1<br />

Γ [v]2 dS = ∑<br />

Γ ∈F ID<br />

h<br />

≤ 2 ∑<br />

Γ<br />

Γ ∈F I h<br />

≤ 2 ∑<br />

Γ ∈F ID<br />

h<br />

≤ 2 ∑<br />

∫<br />

h −1<br />

Γ<br />

Γ<br />

h −1<br />

K<br />

K∈T h<br />

h −1<br />

K (L)<br />

Γ<br />

∫<br />

(γ + δ) 2 ≤ 2(γ 2 + δ 2 ), γ,δ ∈ IR, (2.82) AC3.6<br />

Γ ∈F I h<br />

( ∣∣∣v| (L)<br />

∣ 2 ∣<br />

+<br />

∫<br />

∂K<br />

∣<br />

Γ<br />

∣v| (L)<br />

Γ<br />

Γ<br />

|v| 2 dS.<br />

∫<br />

h −1<br />

Γ<br />

Γ<br />

∣v| (R)<br />

Γ<br />

∣ 2 dS + ∑<br />

∣<br />

∣v| (L)<br />

Γ<br />

− v|(R) Γ<br />

∣ 2) dS + ∑<br />

Γ ∈F I h<br />

h K<br />

(R)<br />

Γ<br />

Γ ∈F D h<br />

∫<br />

∣<br />

∣ 2 dS + ∑<br />

∫<br />

h −1 ∣<br />

Γ<br />

Γ<br />

∣v| (R)<br />

Γ<br />

Γ<br />

∣ 2 dS<br />

Γ ∈F D h<br />

∣v| (L)<br />

Γ<br />

∫<br />

h −1 ∣<br />

Γ<br />

Γ<br />

∣ 2 dS<br />

∣v| (L)<br />

Γ<br />

This and ( 2.72) A3.3 immediately imply ( 2.80).<br />

A3.6<br />

b) In the proof of ( 2.79) A3.7a we proceed similarly, using ( 2.14), A1.15 ( 2.73) A3.5 and<br />

( 2.82). AC3.6 Inequality ( 2.81) A3.7 is a consequence of ( 2.79) A3.7a and ( 2.72). A3.3<br />

⊓⊔<br />

Exercise 2.12. Formulate and prove Lemma 2.11 estsigma <strong>for</strong> definitions ( 2.74) A3.1a and<br />

( 2.76).<br />

A3.1c<br />

∣ 2 dS<br />

2.4.1 Continuity of the bilinear <strong>for</strong>ms B<br />

First, we shall prove an auxiliary assertion.


lem:A11a<br />

2.4 Properties of the bilinear <strong>for</strong>ms 23<br />

Lemma 2.13. Any <strong>for</strong>m a h defined by ( 2.44), ah_S ( 2.45) ah_N or ( 2.46) ah_I satisfies the<br />

estimate<br />

|a h (u,v)| ≤ ‖u‖ 1,σ ‖v‖ 1,σ ∀u,v ∈ H 2 (Ω, T h ), (2.83) Aa2.31<br />

where<br />

‖v‖ 2 1,σ = |v| 2 H 1 (Ω,T h ) + ∑<br />

Γ ∈F ID<br />

h<br />

Proof. It follows from ( ah_S 2.44) – ( ah_N 2.45) that<br />

∫<br />

Γ<br />

(<br />

σ −1 (n · 〈∇v〉) 2 + σ[v] 2) dS (2.84) Aa2.31b<br />

|a h (u,v)| ≤ ∑<br />

|∇u · ∇v| dx<br />

(2.85) Aa2.32<br />

K∈T<br />

∫K h<br />

} {{ }<br />

χ 1<br />

+ ∑ ∫<br />

|n · 〈∇u〉 [v]| dS + ∑ ∫<br />

|n · 〈∇u〉 [v]| dS<br />

Γ ∈F ID<br />

h<br />

Γ<br />

} {{ }<br />

χ 2<br />

Γ ∈F ID<br />

h<br />

Γ<br />

} {{ }<br />

χ 3<br />

.<br />

(For the <strong>for</strong>m a i h term χ 3 vanishes of course.) Obviously,<br />

Moreover, the Cauchy inequality implies that<br />

χ 2 ≤<br />

∑<br />

Γ ∈F ID<br />

h<br />

⎛<br />

≤ ⎝ ∑<br />

Γ ∈F ID<br />

h<br />

(∫<br />

∫<br />

Γ<br />

Γ<br />

χ 1 ≤ |u| H 1 (Ω,T h )|v| H 1 (Ω,T h ). (2.86) Aa2.33<br />

) 1/2 (∫ 1/2<br />

σ −1 (n · 〈∇u〉) 2 dS σ[v] dS) 2 (2.87) Aa2.34<br />

Γ<br />

⎞<br />

σ −1 (n · 〈∇u〉) 2 dS⎠<br />

1/2 ⎛<br />

⎝ ∑<br />

Γ ∈F ID<br />

h<br />

∫<br />

Γ<br />

⎞<br />

σ[v] 2 dS⎠<br />

where the penalty weight σ is given by ( A3.1 2.69). Similarly we find that<br />

⎛<br />

χ 3 ≤ ⎝ ∑<br />

Γ ∈F ID<br />

h<br />

∫<br />

Γ<br />

⎞<br />

σ −1 (n · 〈∇v〉) 2 dS⎠<br />

1/2 ⎛<br />

⎝ ∑<br />

Γ ∈F ID<br />

h<br />

∫<br />

Γ<br />

⎞<br />

σ[u] 2 dS⎠<br />

Using the Cauchy inequality, from ( Aa2.33 2.86) – ( Aa2.35 2.88) we derive the bound<br />

1/2<br />

1/2<br />

,<br />

. (2.88) Aa2.35<br />

|a h (u,v)| ≤ |u| H1 (Ω,T h )|v| H1 (Ω,T h ) (2.89) Aa2.36<br />

⎛<br />

⎞<br />

+ ⎝ ∑<br />

1/2 ⎛<br />

⎞<br />

∫<br />

σ −1 (n · 〈∇u〉) 2 dS⎠<br />

⎝ ∑<br />

1/2<br />

∫<br />

σ[v] 2 dS⎠<br />

Γ ∈F ID<br />

h<br />

Γ<br />

Γ ∈F ID<br />

h<br />

Γ


24 2 Elliptic <strong>problems</strong><br />

⎛<br />

+ ⎝ ∑<br />

⎛<br />

Γ ∈F ID<br />

h<br />

∫<br />

≤ ⎝|u| 2 H 1 (Ω,T h ) + ∑<br />

⎛<br />

Γ<br />

⎞<br />

σ −1 (n · 〈∇v〉) 2 dS⎠<br />

Γ ∈F ID<br />

h<br />

× ⎝|v| 2 H 1 (Ω,T h ) + ∑<br />

= ‖u‖ 1,σ ‖v‖ 1,σ .<br />

∫<br />

Γ ∈F ID<br />

h<br />

Γ<br />

1/2 ⎛<br />

⎝ ∑<br />

Γ ∈F ID<br />

h<br />

∫<br />

Γ<br />

⎞<br />

σ[u] 2 dS⎠<br />

⎞<br />

(<br />

σ −1 (n · 〈∇u〉) 2 + σ[u] 2) dS⎠<br />

∫<br />

Γ<br />

1/2<br />

⎞<br />

(<br />

σ −1 (n · 〈∇v〉) 2 + σ[v] 2) dS⎠<br />

1/2<br />

1/2<br />

exer3<br />

exer4<br />

lem:est_sigma<br />

⊓⊔<br />

Exercise 2.14. Prove that ‖ · ‖ 1,σ intoduced by ( 2.83) Aa2.31 defines a norm on the<br />

broken Sobolev space H 2 (Ω, T h ).<br />

Corollary 2.15. By virtue of ( 2.50) A2.20a – ( 2.51), A2.20b Lemma 2.13 lem:A11a and Exercise 2.14,<br />

exer3<br />

the bilinear <strong>for</strong>ms Bh s and Bn h are bounded with respect to the norm ‖ · ‖ 1,σ on<br />

the broken Sobolev space H 2 (Ω, T h ).<br />

Exercise 2.16. Prove that the bilinear <strong>for</strong>ms B s,σ<br />

h<br />

respect to the norm ‖ · ‖ 1,σ on H 2 (Ω, T h ).<br />

and B n,σ<br />

h<br />

are bounded with<br />

Lemma 2.17. Under assumptions (A1) and (A2), <strong>for</strong> any v ∈ H 2 (Ω, T h ) the<br />

following estimate holds:<br />

∑<br />

∫<br />

σ −1 (n · 〈∇v〉) 2 dS (2.90) A2.30a<br />

Γ ∈F ID<br />

h<br />

Γ<br />

≤ C HC M<br />

C W<br />

∑ (<br />

)<br />

h K ‖∇v‖ L2 (K) |∇v| H1 (K) + h −1<br />

K ‖∇v‖2 L 2 (K)<br />

K∈T h<br />

Proof. Using ( 2.81) A3.7 and ( 2.19), eq:MTI we find that<br />

∑<br />

∫<br />

σ −1 (n · 〈∇v〉) 2 dS (2.91) A2.35ab<br />

Γ ∈F ID<br />

h<br />

≤ C H<br />

C W<br />

≤ C HC M<br />

C W<br />

Γ<br />

∑<br />

h K ‖∇v‖ 2 L 2 (∂K)<br />

K∈T h<br />

∑ (<br />

h K ‖∇v‖ L 2 (K) |∇v| H 1 (K) + h −1<br />

K ‖∇v‖2 L 2 (K)<br />

K∈T h<br />

which we wanted to prove.<br />

⊓⊔<br />

Now, we prove the continuity of the bilinear <strong>for</strong>ms B defined by ( 2.50) A2.20a –<br />

( 2.54) A2.20e with respect to the norm ||| · ||| given by ( 2.68) en on the space S hp .<br />

)<br />

,


2.4 Properties of the bilinear <strong>for</strong>ms 25<br />

lem:A11<br />

Lemma 2.18. Let assumptions (A1) and (A2) be satisfied. Then the <strong>for</strong>ms<br />

a h defined by ( 2.44), ah_S ( 2.45) ah_N or ( 2.46) ah_I satisfy the estimate<br />

|a h (u h ,v h )| ≤ c a |||u h ||| |||v h ||| ∀u h ,v h ∈ S hp . (2.92) A2.31<br />

Proof. Let u h ,v h ∈ S hp . Since S hp ⊂ H 2 (Ω, T h ), the estimate ( 2.83) Aa2.31 is valid<br />

<strong>for</strong> u h ,v h ∈ S hp . Moreover, ( 2.90) A2.30a and ( 2.26) eq:InvI imply that<br />

∑<br />

∫<br />

σ −1 (n · 〈∇v h 〉) 2 dS (2.93) A2.35a<br />

Γ ∈F ID Γ<br />

h<br />

≤ C HC M<br />

C W<br />

∑ (<br />

)<br />

C I ‖∇v h ‖ 2 L 2 (K) + ‖∇v h‖ 2 L 2 (K)<br />

K∈T h<br />

= C HC M<br />

(C I + 1) ∑<br />

‖∇v h ‖ L<br />

C 2 (K) = c|v h | 2 H 1 (Ω,T h ) ,<br />

W<br />

K∈T h<br />

where c = C H C M (C I + 1)/C W . Similarly,<br />

∑<br />

∫<br />

σ −1 (n · 〈∇u h 〉) 2 dS ≤ c|u h | 2 H 1 (Ω,T h ). (2.94) A2.35b<br />

Γ ∈F ID<br />

h<br />

Then, ( Aa2.31b 2.84), ( A2.35a 2.93) and ( A2.35b 2.94) imply that<br />

Γ<br />

‖u h ‖ 1,σ ≤ ( (1 + c)|u h | H1 (Ω,T h ) + J σ h (u h ,u h ) ) 1/2<br />

≤ (1 + c) 1/2 |||u h |||,(2.95) A2.36<br />

‖v h ‖ 1,σ ≤ ( (1 + c)|v h | H 1 (Ω,T h ) + J σ h (v h ,v h ) ) 1/2<br />

≤ (1 + c) 1/2 |||v h |||.<br />

This and( 2.83) Aa2.31 already yield ( 2.92) A2.31 with which proves lemma with c a = (1 +<br />

C H C M (C I + 1)/(2C W )).<br />

⊓⊔<br />

lem:Bhest<br />

Lemma 2.19. Let assumptions (A1) and (A2) be satisfied. Then the <strong>for</strong>ms<br />

B h defined by ( 2.50) A2.20a – ( 2.54) A2.20e satisfy the estimate<br />

|B h (u h ,v h )| ≤ C B |||u h ||| |||v h ||| ∀u h ,v h ∈ S hp , (2.96) A2.41<br />

where C B is a constant independent of u, v and h.<br />

Proof. i) Let the bilinear <strong>for</strong>m B h be defined by ( 2.50) A2.20a or ( 2.51). A2.20b Then ( 2.92)<br />

A2.31<br />

immediately yields ( 2.96) A2.41 with C B := c a .<br />

ii) Let the bilinear <strong>for</strong>m B h is defined by ( 2.52) A2.20c or ( 2.53) A2.20d or ( 2.54). A2.20e Then<br />

from ( 2.92) A2.31 we obtain<br />

|B h (u h ,v h )| = |a h (u h ,v h ) + Jh(u σ h ,v h )| ≤ c a |||u h ||| |||v h ||| + |Jh σ (u h ,v h )|,<br />

(2.97) A2.42<br />

where a h (·, ·) is the bilinear <strong>for</strong>m given either by ( 2.44) ah_S or ( 2.45) ah_N or ( 2.46).<br />

ah_I<br />

The Cauchy inequality implies that


26 2 Elliptic <strong>problems</strong><br />

|Jh σ (u h ,v h )| ≤ ∑ ∫<br />

Γ ∈F ID<br />

h<br />

⎛<br />

≤ ⎝ ∑<br />

Γ ∈F ID<br />

h<br />

Γ<br />

∫<br />

σ|[u h ][v h ]|dS (2.98) A2.43<br />

Γ<br />

⎞<br />

σ[u h ] 2 dS⎠<br />

1/2 ⎛<br />

= J σ h(u h ,u h ) 1/2 J σ h(v h ,v h ) 1/2 ,<br />

which together with ( en 2.68) and ( A2.42 2.97) gives<br />

⎝ ∑<br />

Γ ∈F ID<br />

h<br />

∫<br />

Γ<br />

⎞<br />

σ[v h ] 2 dS⎠<br />

|B h (u h ,v h )| ≤ c a |||u||| |||v||| + J σ h (u h ,u h ) 1/2 J σ h(v h ,v h ) 1/2<br />

≤ (c a + 1)|||u h ||| |||v h |||,<br />

which gives ( A2.41 2.96) with C B := c a + 1. ⊓⊔<br />

Remark 2.20. In the same way as in ( A2.43 2.98) it is possible to show that<br />

|J σ h (u,v)| = J σ h(u,u) 1/2 J σ h(v,v) 1/2 ∀u,v ∈ H 1 (Ω, T h ). (2.99) A2.J<br />

1/2<br />

coercofB<br />

lem:2.4<br />

2.4.2 Coercivity of the bilinear <strong>for</strong>ms<br />

Lemma 2.21. (NIPG coercivity) For any C W > 0 the bilinear <strong>for</strong>m B n,σ<br />

h<br />

defined by ( 2.53) A2.20d satisfies the coercivity condition<br />

B n,σ<br />

h (v,v) ≥ |||v|||2 ∀v ∈ H 2 (Ω, T h ). (2.100) A2.50<br />

Proof. From ( ah_N 2.45) and ( A2.20d 2.53) it follows immediately<br />

B n,σ<br />

h (v,v) = an h(v,v) + J σ h(v,v) = |v| 2 H 1 (Ω,T h ) + Jσ h (v,v) = |||v||| 2 .⊓⊔ (2.101) A2.51<br />

The proof of the coercivity of the symmetric bilinear <strong>for</strong>m B s,σ<br />

h<br />

complicated.<br />

is more<br />

Lemma 2.22. (SIPG coercivity) Let assumptions (A1) and (A2) be satis-<br />

fied, let<br />

C W ≥ 4C H C M (1 + C I ), (2.102) A3.40<br />

where C M , C I and C H are constants from ( 2.19), eq:MTI ( 2.26) eq:InvI and ( 2.18) A1.35 respectively,<br />

and let the penalty parametr σ be given by ( 2.69) A3.1 <strong>for</strong> all Γ ∈ Fh ID.<br />

Then<br />

B s,σ<br />

h (v h,v h ) ≥ 1 2 |||v h||| 2 ∀v h ∈ S hp , ∀h ∈ (0,h 0 ). (2.103) A3.41<br />

lem:2.8<br />

Proof. Let δ > 0, then from ( ah_S 2.44) and the Cauchy and Young’s inequalities<br />

it follows that


2.4 Properties of the bilinear <strong>for</strong>ms 27<br />

a s h(v h ,v h ) (2.104) A3.42<br />

= |v h | 2 H 1 (Ω,T h ) − 2 ∑ ∫<br />

n · 〈∇v h 〉[v h ]dS<br />

Γ ∈F ID<br />

h<br />

Γ<br />

≥ |v h | 2 H 1 (Ω,T h )<br />

⎧<br />

⎨<br />

1 ∑<br />

−2<br />

⎩δ<br />

Γ ∈F ID<br />

h<br />

∫<br />

Γ<br />

≥ |v h | 2 H 1 (Ω,T h ) − ω −<br />

⎫1/2 ⎧<br />

⎬ ⎨<br />

h Γ (n · 〈∇v h 〉) 2 dS<br />

⎭ ⎩ δ ∑<br />

δ<br />

C W<br />

J σ h (v h ,v h ),<br />

Γ ∈F ID<br />

h<br />

∫<br />

Γ<br />

⎫<br />

1<br />

⎬<br />

[v h ] 2 dS<br />

h Γ ⎭<br />

1/2<br />

where<br />

ω = 1 δ<br />

∑<br />

Γ ∈F ID Γ<br />

h<br />

Further, from ( 2.69), A3.1 ( 2.81),( A3.7 2.19) eq:MTI and ( 2.26), eq:InvI we get<br />

ω ≤ C H<br />

δ<br />

≤ C HC M<br />

δ<br />

∑<br />

∫<br />

h Γ |〈∇v h 〉| 2 dS. (2.105) A3.43<br />

h K ‖v h ‖ 2 L 2 (∂K) (2.106) A3.44<br />

K∈T h<br />

∑ (<br />

)<br />

h K |v h | H1 (K)|∇v h | H1 (K) + h −1<br />

K |v h| 2 H 1 (K)<br />

K∈T h<br />

≤ C HC M (1 + C I )<br />

|v h | 2 H<br />

δ<br />

1 (Ω,T h ) .<br />

Now let us choose<br />

δ = 2C H C M (1 + C I ). (2.107) A3.45<br />

then it follows from ( 2.102) A3.40 and ( 2.104) A3.42 – ( 2.107) A3.45 that<br />

a s h(v h ,v h ) (2.108) A3.46<br />

≥ 1 (<br />

|v h | 2 H<br />

2<br />

1 (Ω,T h ) − 4C )<br />

HC M (1 + C I )<br />

J σ<br />

C<br />

h(v h ,v h )<br />

W<br />

≥ 1 (<br />

)<br />

|v h | 2 H<br />

2<br />

1 (Ω,T h ) − Jσ h(v h ,v h ) .<br />

Finally, from ( A2.20c 2.52) and ( A3.46 2.108) we have<br />

B s,σ<br />

h (v h,v h ) = a s h(v h ,v h ) + Jh σ (v h ,v h ) (2.109) A3.47<br />

≥ 1 (<br />

)<br />

|v h | 2 H<br />

2<br />

1 (Ω,T h ) + Jσ h(v h ,v h ) = 1 2 |||v h||| 2 ,<br />

which we wanted to prove.<br />

⊓⊔<br />

Lemma 2.23. (IIPG coercivity) Let assumptions (A1) and (A2) be satis-<br />

fied, let<br />

lem:2.8I


28 2 Elliptic <strong>problems</strong><br />

cor:2.9<br />

exer:coerc<br />

rem:ex_uni<br />

C W ≥ C H C M (1 + C I ), (2.110) A3.40I<br />

where C M , C I and C H are constants from ( 2.19), eq:MTI ( 2.26) eq:InvI and ( 2.18) A1.35 respectively,<br />

and let the penalty parametr σ be given by ( 2.69) A3.1 <strong>for</strong> all Γ ∈ Fh ID.<br />

Then<br />

B i,σ<br />

h (v h,v h ) ≥ 1 2 |||v h||| 2 ∀v h ∈ S hp . (2.111) A3.41I<br />

Proof. The proof is almost identical with the proof of Lemma 2.22. lem:2.8 ⊓⊔<br />

Corollary 2.24. We can summarize the above results in the following way.<br />

We have<br />

B h (v h ,v h ) ≥ C C |||v h ||| 2 ∀v h ∈ S hp , (2.112) A3.50<br />

with C C = 1 <strong>for</strong> B = B n,σ<br />

h<br />

if C W = 1, C C = 1/2 <strong>for</strong> B = B s,σ<br />

h<br />

if C W ≥<br />

4C H C M (1 + C I ) and C C = 1/2 <strong>for</strong> B = B i,σ<br />

h , if C W ≥ C H C M (1 + C I ).<br />

Exercise 2.25. Analyze the coercivity of the <strong>for</strong>m B n,σ<br />

h<br />

, Bs,σ h<br />

and B i,σ<br />

h<br />

with<br />

σ defined by ( 2.74) A3.1a or ( 2.76).<br />

A3.1c<br />

Remark 2.26. In virtue of the Lax-Milgram Lemma 1.3, lem:L-M the coercivity and<br />

continuity of the <strong>for</strong>m B h imply the existence and uniqueness of the solution<br />

of the discrete problem.<br />

sec:2.5<br />

2.5 Error estimates<br />

2.5.1 SIPG, NIPG and IIPG methods<br />

In this section we shall prove a priori error estimates <strong>for</strong> the discontinuous<br />

Galerkin method. If u and u h denote the exact solution of problem ( 2.1) A0.1 –<br />

( 2.5) A0.3 and the approximate solution obtained by method ( 2.66), A2.23 respectively,<br />

we define the error e h = u h − u. It can be written in the <strong>for</strong>m<br />

lem:2.6<br />

e h = η + ξ, with η = Π hp u − u, ξ = u h − Π hp u ∈ S hp , (2.113) A3.22a<br />

where Π hp is the S hp -interpolation defined by ( 2.32). eq:Pi_h The estimation of the<br />

error e h will be carried out in several steps.<br />

In this whole section we shall suppose that assumptions (A1) and (A2) are<br />

satisfied.<br />

Lemma 2.27. Let us assume that s ≥ 1,p ≥ 1 are integers, u ∈ H s (Ω),<br />

η = u − Π hp u and µ = min(p + 1,s). Then<br />

∑<br />

h −1<br />

K ‖η‖2 L 2 (∂K) ≤ 2C MCAh 2 2µ−2 |u| 2 H µ (Ω), (2.114) A3.29b<br />

K∈T h<br />

∑<br />

h K ‖∇η‖ 2 L 2 (∂K) ≤ 2C MCAh 2 2µ−2 |u| 2 H µ (Ω,T h ), (2.115) A3.29a<br />

K∈T h<br />

Jh σ (η,η) ≤ CJh 2 2µ−2 |u| 2 H µ (Ω). (2.116) A3.29c<br />

|||η||| 2 ≤ (CA 2 + CJ)h 2 2µ−2 |u| 2 H µ (Ω), (2.117) A3.29d


2.5 Error estimates 29<br />

lem:2.7<br />

where C J = 2C A<br />

√<br />

CW C M .<br />

Proof. i) Using the multiplicative trace inequality ( 2.19) eq:MTI and ( 2.30), eq:ap we obtain<br />

∑<br />

h −1<br />

K ‖η‖2 L 2 (∂K) (2.118) A3.23<br />

K∈T h<br />

∑ (<br />

)<br />

≤ C M K<br />

h −1<br />

K ‖η‖2 L 2 (K) + ‖η‖ L 2 (K)|η| H1 (K)<br />

≤ C M C 2 A<br />

K∈T h<br />

h −1<br />

∑<br />

h −1<br />

K<br />

K∈T h<br />

≤ 2C M CAh ∑ 2 2µ−2 |u| 2 H µ (K) ,<br />

K∈T h<br />

which proves ( 2.114).<br />

A3.29b<br />

ii) Similarly, by ( 2.19) eq:MTI and ( 2.30), eq:ap we have<br />

∑<br />

(<br />

)<br />

h −1<br />

K h2µ K + hµ K hµ−1 K<br />

|u| 2 H µ (K)<br />

h K ‖∇η‖ 2 L 2 (∂K) (2.119) A3.23+<br />

K∈T h<br />

∑ (<br />

)<br />

≤ C M h K h −1<br />

K ‖∇η‖2 L 2 (K) + ‖∇η‖ L 2 (K)|∇η| H 1 (K)<br />

K∈T h<br />

∑ ( )<br />

= C M |η|H1 (K) + h K |η| H1 (K)|η| H2 (K)<br />

K∈T h<br />

≤ 2C M CAh 2 2µ−2 |u| 2 H µ (K) ,<br />

iii) By ( 2.77) A3.4 and ( 2.80),<br />

A3.6<br />

Jh σ (η,η) = ∑ ∫<br />

σ[η] 2 dS (2.120) A3.30<br />

≤<br />

∑<br />

Γ ∈F ID<br />

h<br />

Γ ∈F ID<br />

h<br />

Γ<br />

C W<br />

h Γ<br />

‖[η]‖ 2 L 2 (Γ) ≤ 2C W<br />

∑<br />

K∈T h<br />

1<br />

h K<br />

‖η‖ 2 L 2 (∂K) ,<br />

which together with ( 2.114) A3.29b gives ( 2.116).<br />

A3.29c<br />

iv) Inequality ( 2.117) A3.29d immediately follows from ( 2.68), en ( 2.34) eq:AP and ( 2.116).<br />

A3.29c<br />

⊓⊔<br />

Lemma 2.28. Let us assume that s ≥ 1,p ≥ 1 are integers, u ∈ H s (Ω),<br />

µ = min(p + 1,s) and a h (·, ·) is a bilinear <strong>for</strong>m defined by ( 2.44) ah_S or ( 2.45) ah_N or<br />

( 2.46). ah_I Then there exists a constant C a > 0 such that<br />

and,<br />

|a h (Π hp u − u,v h )| ≤ C a h µ−1 |u| Hµ (Ω)|||v h ||| ∀v h ∈ S hp , (2.121) A4.a<br />

|Jh σ (Π hp u − u,v h )| ≤ C J h µ−1 |u| Hµ (Ω)|||v h ||| ∀v h ∈ S hp ,(2.122) A4.j<br />

where the constant C J was introduced in Lemma 2.27.<br />

lem:2.6


30 2 Elliptic <strong>problems</strong><br />

Proof. i) Let us use the notation η = Π hp u − u. In view of ( 2.44) ah_S – ( 2.46), ah_I we<br />

can write<br />

a h (η,v h ) = χ 1 + χ 2 , (2.123) A4.8<br />

χ 1 := ∑<br />

∇η · ∇v h dx,<br />

χ 2 := −<br />

K∈T h<br />

∫K<br />

∑<br />

Γ ∈F ID<br />

h<br />

∫<br />

Γ<br />

(<br />

)<br />

n · 〈∇η〉[v h ] + θn · 〈∇v h 〉[η] dS,<br />

where θ = +1, −1,0 in dependence on the used variant ( 2.44) ah_S – ( 2.46). ah_I We<br />

estimate the individual terms in ( 2.123). A4.8 Using the Cauchy inequality and<br />

( 2.34), eq:AP we get<br />

|χ 1 | ≤ |η| H1 (Ω,T h )|v h | H1 (Ω,T h ) (2.124) A4.9<br />

≤ C A h µ−1 |u| H µ (Ω)|v h | H 1 (Ω,T h ),<br />

where µ = min(p + 1,s).<br />

Moreover, if we proceed similarly as in the proof of Lemma 2.27, lem:2.6 use the<br />

Cauchy inequality, the inequality<br />

( A3.5 2.73) and ( A3.4 2.77), we obtain the estimates<br />

⎛<br />

|χ 2 | ≤ ⎝ ∑<br />

≤<br />

Γ ∈F ID<br />

h<br />

∫<br />

⎛<br />

+ ⎝ ∑<br />

(<br />

+<br />

Γ ∈F ID<br />

h<br />

C H<br />

∑<br />

(<br />

(δ + γ) 2 ≤ 2(δ 2 + γ 2 ), δ,γ ∈ IR, (2.125) AC3.6a<br />

Γ<br />

⎞<br />

h Γ |〈∇η〉| 2 dS⎠<br />

∫<br />

Γ<br />

1/2 ⎛<br />

⎞<br />

h Γ |〈∇v h 〉| 2 dS⎠<br />

K∈T h<br />

h K ‖∇η‖ 2 L 2 (∂K)<br />

C H<br />

∑<br />

By ( A3.29a 2.115), we have<br />

( ∑<br />

K∈T h<br />

h K ‖∇v h ‖ 2 L 2 (∂K)<br />

⎝ ∑<br />

Γ ∈F ID<br />

h<br />

1/2 ⎛<br />

∫<br />

⎝ ∑<br />

Γ<br />

Γ ∈F ID<br />

h<br />

⎞<br />

1<br />

[v h ] 2 dS⎠<br />

h Γ<br />

∫<br />

) 1/2<br />

J σ h (v h ,v h ) 1/2 C −1/2<br />

Γ<br />

1/2<br />

⎞<br />

1<br />

[η] 2 dS⎠<br />

h Γ<br />

W<br />

) 1/2<br />

J σ h(η,η) 1/2 C −1/2<br />

W .<br />

(2.126) A4.10<br />

) 1/2<br />

≤ √ 2C M C A h µ−1 |u| H µ (Ω), (2.127) A4.12<br />

1/2<br />

K∈T h<br />

h K ‖∇η‖ 2 L 2 (∂K)<br />

From ( eq:MTI 2.19) and ( eq:InvI 2.26), where we put v := |∇v h |, we get


∑<br />

2.5 Error estimates 31<br />

h K ‖∇v h ‖ 2 L 2 (∂K) (2.128) A4.13<br />

K∈T h<br />

∑ (<br />

)<br />

≤ C M ‖∇v h ‖ 2 L 2 (K) + h K‖∇v h ‖ L 2 (K)|∇v h | H 1 (K)<br />

K∈T h<br />

∑ (<br />

)<br />

≤ C M ‖∇v h ‖ 2 L 2 (K) + C I‖∇v h ‖ 2 L 2 (K)<br />

K∈T h<br />

= C M (1 + C I ) ∑<br />

|v h | 2 H 1 (K) = C M(1 + C I )|v h | 2 H 1 (Ω,T h ) .<br />

K∈T h<br />

Finally, ( A4.12 2.127), ( A4.13 2.128) and ( A3.29c 2.116) imply that<br />

|χ 2 | ≤ √ 2C H C M C A h µ−1 |u| Hµ (Ω)J σ h(v h ,v h ) 1/2 C −1/2<br />

W<br />

(2.129) A4.14<br />

+C −1/2<br />

W<br />

(C HC M (1 + C I )) 1/2 |v h | H 1 (Ω,T h )C J h µ−1 |u| H µ (Ω).<br />

There<strong>for</strong>e, from ( 2.68), en ( 2.124), A4.9 ( 2.129), A4.14 ( 2.125) AC3.6a<br />

√<br />

and the relation C J =<br />

2C A CW C M we obtain<br />

|χ 1 | + |χ 2 | ≤ C A h µ−1 |u| H µ (Ω)|v h | H 1 (Ω,T h )<br />

+C A (C H C M /C W ) 1/2 h µ−1 |u| Hµ (Ω)J σ h(v h ,v h ) 1/2<br />

+(C H C M (1 + C I )) 1/2 C J h µ−1 |u| H µ (Ω)|v h | H 1 (Ω,T h )<br />

(<br />

≤ C A + (C H C M (1 + C I )) 1/2 2C A (C W C M ) 1/2 |v h | H1 (Ω,T h )<br />

+C A (C H C M /C W ) 1/2 J σ h (v h ,v h ) 1/2) h µ−1 |u| H µ (Ω)<br />

≤ ˜Ch µ−1 |u| Hµ (Ω)(|v h | H1 (Ω,T h ) + J σ h(v h ,v h ) 1/2 ) ≤ √ 2h µ−1 |u| Hµ (Ω)|||v h |||,<br />

where ˜C = C A max(1 + √ 2(C H C M (1 + C I )C W C M ) 1/2 ,(C H C M /C W ) 1/2 ).<br />

Hence, we have ( 2.121) A4.a with C a = √ 2 ˜C.<br />

ii) Using ( 2.99), A2.J ( 2.116) A3.29c and ( 2.68), en we find that<br />

|J σ h (η,v h )| ≤ J σ h (η,η) 1/2 J σ h(v h ,v h ) 1/2 ≤ C J h µ−1 |u| H µ (Ω) |||v h |||. (2.130) A2.14b<br />

⊓⊔<br />

lem:2.10<br />

Theorem 2.29. (||| · |||-norm error estimate) Let us assume that s ≥ 1, u ∈<br />

H s (Ω) is the solution of problem ( 2.1) A0.1 – ( 2.5), A0.3 {T h } h∈(0,h0) is a system of<br />

triangulations of the domain Ω satisfying assumtions (A1) and (A2), S hp is<br />

the space of discontinuous piecewise polynomial functions ( 2.16)and A1.23 u h ∈ S hp<br />

the approximate solution obtained by means of the SIPG method ( 2.62) A2.22c with<br />

C W satisfying ( 2.102) A3.40 or NIPG method ( 2.63) A2.22d with C W > 0 or IIPG method<br />

( 2.64) A2.22e with C W satisfying ( 2.110). A3.40I Then<br />

|||e h ||| ≤ ˜Ch µ−1 |u| Hµ (Ω,T h ), h ∈ (0,h 0 ), (2.131) A4.1<br />

where e h = u h − u, µ = min(p + 1,s) and ˜C is a constant independent of h.


32 2 Elliptic <strong>problems</strong><br />

Proof. We express the error by ( 2.113), A3.22a i.e. e h = u h − u = η + ξ. By B<br />

we denote the <strong>for</strong>m B n,σ<br />

h<br />

or B s,σ<br />

h<br />

or B i,σ<br />

h . The error e h satisfies the Galerkin<br />

orthogonality ( 2.67), A2.23a which is equivalent to<br />

B h (ξ,v h ) = −B h (η,v h ) ∀v h ∈ S hp . (2.132) A4.5<br />

If we set v h := ξ ∈ S hp in ( 2.132) A4.5 and use ( 2.52) A2.20c – ( 2.54) A2.20e and the coercivity<br />

( 2.112), A3.50 we find that<br />

C C |||ξ||| 2 ≤ |a h (ξ,η)| + |Jh σ (η,ξ)|, (2.133) A4.6<br />

where C C is the constant from Corollary 2.24 cor:2.9 and a h (·, ·) is given by either<br />

( 2.44) ah_S or ( 2.45) ah_N or ( 2.46).<br />

ah_I<br />

Now we shall estimate the individual terms on the right-hand side of<br />

( 2.133). A4.6 The estimate ( 2.121) A4.a gives<br />

|a h (η,ξ)| ≤ C a h µ−1 |u| Hµ (Ω)|||ξ|||. (2.134) A4.00<br />

Furthermore, in view of the Cauchy inequality, ( 2.68) en and ( 2.116),<br />

A3.29c<br />

|J σ h (η,ξ)| ≤ (J σ h (η,η)) 1/2 (J σ h (ξ,ξ)) 1/2 (2.135) A4.15<br />

≤ C J h µ−1 |u| H µ (Ω) |||ξ|||.<br />

Using ( 2.133) A4.6 – ( 2.135), A4.15 we get<br />

|||ξ||| 2 ≤ (C a + C J )C −1<br />

C hµ−1 |u| H µ (Ω)|||ξ|||, (2.136) A4.17<br />

which gives<br />

|||ξ||| ≤ ¯Ch µ−1 |u| H µ (Ω) (2.137) A4.18<br />

with ¯C = (C a + C J )/C C . Finally, ( 2.68), en ( 2.113), A3.22a the triangle inequality<br />

|||e h ||| ≤ |||ξ||| + |||η|||, (2.138) A4.17a<br />

( 2.117) A3.29d and ( 2.137) A4.18 imply that<br />

|||e h ||| ≤ ¯Ch µ−1 |u| H µ (Ω) + (C 2 A + C 2 J) 1/2 h µ−1 |u| H µ (Ω). (2.139) A4.19<br />

Hence, ( 2.131) A4.1 holds with ˜C = (C a +C J )C −1<br />

C +(C2 A +C2 J )1/2 and the theorem<br />

is proved.<br />

⊓⊔<br />

In order to derive an error estimate in the L 2 (Ω)-norm we present the<br />

following result.<br />

lem:2.11<br />

Lemma 2.30. (Broken Poincaré inequality) Let the system {T h } h∈(0,h0)<br />

of triangulations satisfy the assumptions (A1) and (A2). Then there exists a<br />

constant C independent of h and v h such that<br />

⎛<br />

⎞<br />

‖v h ‖ 2 L 2 (Ω) ≤ C ⎝ ∑<br />

|v h | 2 H 1 (K) + ∑ 1<br />

d(Γ) ‖[v h]‖ 2 ⎠<br />

L 2 (Γ) (2.140) A4.31<br />

K∈T h<br />

∀v h ∈ S hp , ∀h ∈ (0,h 0 ).<br />

Γ ∈F ID<br />

h


2.5 Error estimates 33<br />

The proof of the broken Poincaré inequality ( 2.140) A4.31 was carried out in [Arn82]<br />

Arnold<br />

in the case that ∂Ω D = ∂Ω and Ω is a convex polygonal domain. Inequality<br />

( 2.140) A4.31 in a general case with nonempty Neumann part of the boundary is a<br />

consequence of [Bre03].<br />

SCBrenner<br />

From Theorem 2.29 lem:2.10 and Lemma 2.30 lem:2.11 we immediatly obtain the following<br />

result.<br />

cor:2.12<br />

Corollary 2.31. (L 2 (Ω)-(suboptimal) error estimate) Let assumptions<br />

of Theorem 2.29 lem:2.10 be satisfied. Then<br />

‖e h ‖ L 2 (Ω) ≤ Ch µ−1 |u| H µ (Ω), h ∈ (0,h 0 ), (2.141) A4.32<br />

where C is a constant independent of h. Hence, if s = p + 1, we get the error<br />

estimates<br />

rem_subopt<br />

|||e h ||| ≤ ˜Ch p |u| H p+1 (Ω), (2.142) A4.32a<br />

‖e h ‖ L2 (Ω) ≤ Ch p |u| H p+1 (Ω). (2.143) A4.32b<br />

Remark 2.32. The error estimate ( 2.142, A4.32a which is the order of O(h p ), is subotimal<br />

with respect to the approximation property of the piecewise polynomial<br />

space S hp with q = 0, µ = s = p + 1, (cf. 2.34) eq:AP giving the order O(h p+1 ). In<br />

Section 2.6 sec-optL2 we shall prove an optimal error estimates in the L 2 (Ω)-norm <strong>for</strong><br />

SIPG method using the Aubin-Nitsche technique.<br />

2.5.2 Baumann-Oden method<br />

Let us consider the Baumann-Oden scheme ( 2.61). A2.22b Hence, we seek u h ∈ S hp<br />

such that<br />

B h (u h ,v h ) = l h (v h ) ∀v h ∈ S hp , (2.144) A7.1<br />

where B h (·, ·) and l h are given by ( 2.51) A2.20b and ( 2.56), A2.21b respectively:<br />

B h (u,v) = ∑<br />

K∈T h<br />

∫K<br />

−<br />

∫<br />

l h (v) =<br />

Ω<br />

∑<br />

Γ ∈F ID<br />

h<br />

∇u · ∇v dx (2.145) A7.2<br />

∫<br />

Γ<br />

f v dx + ∑<br />

(n · 〈∇u〉 [v] − n · 〈∇u〉 [v]) dS,<br />

Γ ∈F N h<br />

∫<br />

Γ<br />

g N v dS − ∑<br />

Γ ∈F D h<br />

∫<br />

Γ<br />

(n · ∇v)u D dS,<br />

This method was presented and analysed <strong>for</strong> one-dimensional diffusion<br />

problem in [BBO99]. bbo In [RWG99], RWG99 Rivière, Wheeler, and Girault showed how<br />

to obtain error estimates under the assumption that the polynomial degree<br />

p ≥ 2 and the mesh is con<strong>for</strong>ming. The analysis carried out in [RWG99]<br />

RWG99<br />

(Lemma 5.1) is based on the existence of an interpolation operator I hp :<br />

H 2 (Ω, T h ) → S hp , <strong>for</strong> p ≥ 2 such that


34 2 Elliptic <strong>problems</strong><br />

∫<br />

〈∇(v − I hp v)〉 · n dS = 0 ∀Γ ∈ F h , v ∈ H 2 (Ω, T h ), (2.146) A7.3<br />

Γ<br />

|I hp v − v| H q (Ω,T h ) ≤ ¯C A h µ−q |v| H µ (Ω,T h ), v ∈ H s (Ω, T h ), h ∈ (0,h (2.147) 0 ), A7.3a<br />

where µ = min(p + 1,s), q = 0,1 and ¯C A is a constant.<br />

Let u ∈ H s (Ω) (s ≥ 1 is an integer) be an exact solution of ptoblem ( 2.1)<br />

A0.1<br />

– ( 2.2). A0.2a Then, in view of ( 2.145) A7.2 and ( 2.146),<br />

A7.3<br />

B h (u − I hp u,v h ) = 0 ∀v h ∈ S h0 , (2.148) A7.4<br />

where S h0 denotes the space of piecewise constant fucntions on T h . Hence, if<br />

Π 0 is the orthogonal projection of L 2 (Ω) onto S h0 , then ( 2.96) A2.41 and ( 2.148)<br />

A7.4<br />

imply that<br />

|B h (u − I hp u,v h )| ≤ ∣ ∣ Bh (u − I hp u,v h − Π 0 v h ) ∣ ∣ +<br />

∣ ∣Bh (u − I hp u,Π 0 v h ) ∣ ∣<br />

≤ C B |||u − I hp u||| |||v h − Π 0 v h ||| ∀v h ∈ S hp . (2.149) A7.5<br />

Obviously,<br />

|u − Π 0 u| H 1 (K) = |u| H 1 (K), K ∈ T h . (2.150) A7.6a<br />

Moreover, it follows from the approximation properties ( 2.34) eq:AP that<br />

‖v − Π 0 v‖ L 2 (K) ≤ C A h K |v| H 1 (K), v ∈ H 1 (K), K ∈ T h . (2.151) A7.6<br />

Let ψ ∈ H 1 (Ω, T h ). Then, using ( eq:MTI 2.19) and ( A3.30 2.120), we find that<br />

|||ψ||| 2 = |ψ| 2 H 1 (Ω,T h ) + Jσ h(ψ,ψ)<br />

∑<br />

(2.152) A7.7<br />

≤ |v| 2 H 1 (Ω,T h ) + 2C W h −1<br />

K ‖ψ‖2 L 2 (∂K)<br />

K∈T h<br />

≤ |ψ| 2 H 1 (Ω,T h ) +2C WC M<br />

∑<br />

K∈T h<br />

(<br />

h −2<br />

K ‖ψ‖2 L 2 (K) + h−1 K ‖ψ‖ L 2 (K)|ψ| H1 (K)<br />

For v ∈ H 1 (Ω, T h ) let us set ψ := v − Π 0 v in ( 2.152). A7.7 Then from ( 2.150) A7.6a –<br />

( 2.151) A7.6 we get<br />

|||v − Π 0 v||| 2 ≤ (1 + 4CAC 2 W C M ) ∑<br />

|v| 2 H 1 (K) (2.153) A7.8<br />

K∈T h<br />

= (1 + 4C 2 AC W C M )|v| 2 H 1 (Ω,T h ) .<br />

On the other hand, if we set ψ := u − I hp u, then by ( 2.152) A7.7 and ( 2.147)<br />

A7.3a<br />

we obtain<br />

)<br />

.<br />

|||u − I hp u||| 2 ≤ ¯C 2 Ah 2µ−2 |u| 2 H µ (Ω + 4 ¯C 2 AC W C M h 2µ−2 |u| 2 H µ (Ω)<br />

= ¯C 2 A(1 + 4C W C M )h 2µ−2 |u| 2 H µ (Ω) .<br />

(2.154) A7.9


2.6 L 2 (Ω)-optimal error estimate 35<br />

If we denote by u h ∈ S hp , p ≥ 2 an approvimate solution obtained from<br />

( 2.144), A7.1 then from the definition ( 2.145) A7.2 of the <strong>for</strong>m B h and the Galerkin<br />

orthogonality ( 2.67) A2.23a we conclude that<br />

|I hp u − u h | 2 H 1 (Ω,T h ) = B h(I hp u − u h ,I hp u − u h ) = B h (I hp u − u,I hp u − u h ).<br />

(2.155) A7.10<br />

Putting v h := I hp u − u h in ( 2.149) A7.5 and using ( 2.153) A7.8 – ( 2.154), A7.9 we have<br />

|B h (I hp u − u,I hp u − u h )| (2.156) A7.11<br />

≤ C B |||u − I hp u||| |||I hp u − u h − Π 0 (I hp u − u h )|||<br />

√ √<br />

≤ C B ¯CA 1 + 4CW C M h µ−1 |u| Hµ (Ω) 1 + 4CA 2 C WC M |I hp u − u h | H1 (Ω,T h ).<br />

This and ( A7.10 2.155) imply that<br />

|I hp u − u h | H1 (Ω,T h ) ≤ c ∗ h µ−1 |u| Hµ (Ω), (2.157) A7.12<br />

√ √<br />

where c ∗ = C B ¯CA 1 + 4CW C M 1 + 4C<br />

2<br />

A<br />

C W C M . Now, by the triangle inequality<br />

and and ( 2.147) A7.3a we finally get the error estimate of the Bauman-Oden<br />

method under the assumptions (A1), (A2), p ≥ 2 and u ∈ H s (Ω):<br />

|u − u h | H1 (Ω,T h ) ≤ |u − I hp u| H1 (Ω,T h ) + |I hp u − u h | H1 (Ω,T h ) (2.158) A7.13<br />

≤ ( ¯C A + c ∗ )h µ−1 |v| H µ (Ω)<br />

sec-optL2<br />

2.6 L 2 (Ω)-optimal error estimate<br />

In this section we shall consider the SIPG method applied to problem ( 2.1) A0.1 –<br />

( 2.5). A0.3 Our goal will be to prove the an optimal order of convergence in the L 2 -<br />

norm, which is possible by using the standard duality argument. There<strong>for</strong>e, <strong>for</strong><br />

an arbitrary z ∈ L 2 (Ω) we shall consider the dual problem: Given z ∈ L 2 (Ω),<br />

find ψ such that<br />

Under the notation<br />

a) − ∆ψ = z in Ω,<br />

b)ψ| ΓD = 0, (2.159) A8.1<br />

c) ∂ψ<br />

∣ = 0.<br />

∂n ΓN<br />

V = { v ∈ C ∞ }<br />

(Ω), suppv ⊂ Ω ∪ Γ N , (2.160) A8.2<br />

the weak <strong>for</strong>mulation of ( 2.160) A8.2 reads: Find ψ ∈ H 1 (Ω) such that ψ| ΓD = 0<br />

and<br />

(∇ψ, ∇v) = (z,v) ∀v ∈ V. (2.161) A8.3<br />

Let us assume that ψ ∈ H 2 (Ω) and there exists a constant ¯c > 0, independent<br />

of z such that


36 2 Elliptic <strong>problems</strong><br />

‖ψ‖ H 2 (Ω) ≤ ¯c‖z‖ L 2 (Ω). (2.162) A8.4<br />

This is true, provided the domain Ω is convex and Γ N = ∅, as follows from<br />

grisvard<br />

[Gri92]. Let us note that H 2 (Ω) ⊂ C(Ω).<br />

Let B h (·, ·) be the symmetric bilinear <strong>for</strong>m given by ( 2.52), A2.20c i.e.<br />

lem:2.13<br />

B h (u,v) = a s h(u,v) + Jh σ (u,v), u,v ∈ H 2 (Ω, T h ), (2.163) A8.5<br />

where a s h and Jσ h<br />

are defined by (ah_S 2.44) and ( 2.77), A3.4 respectively. Let us assume<br />

that the constant C W satisfies condition ( 2.102).<br />

A3.40<br />

Theorem 2.33. (L 2 (Ω)-optimal error estimate) Let us assume that u ∈<br />

H s (Ω),s ≥ 1, is the solution of problem ( 2.1) A0.1 – ( 2.3), A0.2b the system {T h } h∈(0,h0)<br />

of triangulation of Ω satisfies assumptions (A1) and (A2), S hp is the space of<br />

discontinuous piecewise polynomial functions ( 2.16)and A1.23 u h ∈ S hp the approximate<br />

solution of problem ( 2.1) A0.1 – ( 2.3) A0.2b obtained by the SIPG method ( 2.62).<br />

A2.22c<br />

Let the weight σ from the penaly terms be defined by ( 2.69) A3.1 – ( 2.70) A3.2 with a<br />

constant C W satisfying ( 2.102). A3.40 Let there exist the weak solution of problem<br />

( 2.159) A8.1 from H 2 (Ω) satisfying ( 2.162). A8.4 Then<br />

‖e h ‖ L 2 (Ω) ≤ C 3 h µ |u| H µ (Ω) (2.164) A8.20<br />

where e h = u h − u, C 3 is a constant independent of h and µ = min{p + 1,s}.<br />

Proof. Let ψ ∈ H 2 (Ω) be the solution of the dual problem ( 2.161) A8.3 with z :=<br />

e h = u h − u ∈ L 2 (Ω) and let Π h1 ψ ∈ S h1 be the approximation of ψ defined<br />

by ( 2.32) eq:Pi_h with p = 1. Taking into account the regularity of the solution ψ of<br />

problem ( 2.159), A8.1 we can show that<br />

B h (ψ,v) = (u h − u,v) L2 (Ω) ∀v ∈ H 2 (Ω, T h ). (2.165) AB.1<br />

The symmetry of B h (·, ·), the Galerkin orthogonality of the error ( 2.67) A2.23a and<br />

( 2.165) AB.1 with v := e h yield<br />

‖e h ‖ 2 L 2 (Ω) = B h(ψ,u h − u) = B h (u h − u,ψ) (2.166) AB.2<br />

= B h (u h − u,ψ − Π h1 ψ) = B h (e h ,ψ − Π h1 ψ).<br />

Moreover, from ( 2.52), A2.20c ( 2.83) Aa2.31 and ( 2.99) A2.J it follows that<br />

B h (e h ,ψ − Π h1 ψ) (2.167) AB.3<br />

= a s h(e h ,ψ − Π h1 ψ) + J σ h(e h ,ψ − Π h1 ψ)<br />

≤ ‖e h ‖ 1,σ ‖ψ − Π h1 ψ‖ 1,σ + J σ h(e h ,e h ) 1/2 J σ h(ψ − Π h1 ,ψ − Π h1 ψ) 1/2 ,<br />

where<br />

‖v‖ 2 1,σ = |v| 2 H 1 (Ω,T h ) + Jσ h (v,v) + ∑<br />

= |||v||| + ∑<br />

Γ ∈F ID<br />

h<br />

∫<br />

Γ<br />

Γ ∈F ID<br />

h<br />

∫<br />

Γ<br />

σ −1 (n · 〈∇v〉) 2 dS.<br />

σ −1 (n · 〈∇v〉) 2 dS (2.168)<br />

AB.4


2.6 L 2 (Ω)-optimal error estimate 37<br />

Obviously, ( en 2.68), the assumption ψ ∈ H 2 (Ω), ( A3.29d 2.117) and ( A4.1 2.131) imply<br />

Jh(e σ h ,e h ) 1/2 Jh(ψ σ − Π h1 ,ψ − Π h1 ψ) 1/2 (2.169) AB.4a<br />

≤ |||e h ||| |||ψ − Π h1 ψ||| ≤ ˜C<br />

√<br />

CA 2 + C2 J |ψ| H 2 (Ω) h µ |u| H µ (Ω).<br />

Further, using ( 2.90), A2.30a ( 2.19), eq:MTI ( 2.30) eq:ap and the assumption ψ ∈ H 2 (Ω), we<br />

find that<br />

∑<br />

∫<br />

σ −1 (n · 〈∇(ψ − Π h1 ψ)〉) 2 dS (2.170) AB.5<br />

Γ ∈F ID<br />

h<br />

≤ C HC M<br />

C W<br />

Γ<br />

∑<br />

≤ 2C HC M C 2 A<br />

C W<br />

(<br />

h K ‖∇(ψ − Πh1 ψ)‖ L2 (K) |∇(ψ − Π h1 ψ)| H1 (K)<br />

K∈T h<br />

)<br />

+h −1<br />

K ‖∇(ψ − Π h1ψ)‖ 2 L 2 (K)<br />

∑<br />

h 2 K|ψ| 2 H 2 (K) ≤ 2C HC M CA<br />

2 h 2 |ψ| 2 H<br />

C 2 (Ω) .<br />

W<br />

K∈T h<br />

Thus, ( AB.4 2.168), ( eq:AP 2.34) (where we set µ = 2), ( A3.29c 2.116) and ( AB.5 2.170) imply<br />

‖ψ − Π h1 ψ‖ 2 1,σ ≤ CAh 2 2 |ψ| H2 (Ω) + CJh 2 2 |ψ| H2 (Ω) + 2C HC M CA<br />

2 h 2 |ψ| 2 H<br />

C 2 (Ω)<br />

W<br />

≤ c 2 2h 2 |ψ| H 2 (Ω), (2.171) AB.6<br />

where c 2 2 = C 2 A (1 + 2C HC M /C W ) + C 2 J .<br />

Now, the inverse inequality ( eq:InvI 2.26) and ( eq:ap 2.30) imply that<br />

|∇e h | H1 (K) = |∇(u − u h )| H1 (K) (2.172) AB.8<br />

≤ |∇(u − Π hp u)| H 1 (K) + |∇(Π hp u − u h )| H 1 (K)<br />

≤ |u − Π hp u| H 2 (K) + C I h −1<br />

K ‖Π hpu − u h ‖ H 1 (K)<br />

≤ C A h µ−2<br />

K<br />

|u| H µ (K) + C I h −1 (<br />

K ‖Πhp u − u‖ H 1 (K) + ‖u − u h ‖ H (K))<br />

1<br />

≤ C A (1 + C I )h µ−2<br />

K<br />

|u| H µ (K) + C I h −1<br />

K ‖e h‖ H1 (K).<br />

By ( 2.90), A2.30a ( 2.172) AB.8 and the discrete Cauchy inequality,<br />

∑<br />

∫<br />

σ −1 (n · 〈∇e h 〉) 2 dS (2.173) AB.7<br />

Γ ∈F ID<br />

h<br />

≤ C HC M<br />

C W<br />

Γ<br />

∑ (<br />

)<br />

h K ‖∇e h ‖ L 2 (K) |∇e h | H 1 (K) + h −1<br />

K ‖∇e h‖ 2 L 2 (K)<br />

K∈T h<br />

≤ C HC M<br />

C W<br />

{<br />

C A (1 + C I )h µ−1 |e h | H1 (Ω,T h )|u| Hµ (Ω) + (1 + C I )|e h | 2 H 1 (Ω,T h )<br />

Since |e h | H 1 (Ω,T h ) ≤ |||e h |||, in virtue of ( A4.1 2.131) and ( AB.7 2.173) we have<br />

}<br />

.


38 2 Elliptic <strong>problems</strong><br />

∑<br />

∫<br />

Γ ∈F ID<br />

h<br />

Γ<br />

σ −1 (n · 〈∇e h 〉) 2 dS (2.174) AB.9<br />

≤ C HC M<br />

C W<br />

˜C(1 + CI )(1 + C A )h 2µ−2 |u| 2 H µ (Ω) .<br />

This and ( 2.168) AB.4 yield the estimate<br />

{<br />

‖e h ‖ 2 1,σ ≤ ˜C 1 + C }<br />

HC M<br />

(1 + C I )(1 + C A ) h 2µ−2 |u| 2 H<br />

C (Ω). W<br />

(2.175) AB.11<br />

It follows from ( AB.3 2.167), ( AB.4a 2.169), ( AB.6 2.171) and ( AB.11 2.175) that<br />

B h (e h ,ψ − Π h1 ψ) ≤ c 4 h µ |ψ| H 2 (Ω) |u| H µ (Ω), (2.176) AB.12<br />

{<br />

1/2<br />

where c 4 = c ˜C1/2 2 1 + C hC M<br />

C W<br />

(1 + C I )(1 + C A )}<br />

+<br />

2 ˜C(C A + CJ 2)1/2 .<br />

Finally, by ( 2.176), AB.12 ( 2.166) AB.2 and ( 2.162),<br />

A8.4<br />

exerAB1<br />

‖e h ‖ 2 L 2 (Ω) ≤ cc 4h µ |u| H µ (Ω)‖e h ‖ L 2 (Ω), (2.177) AB.13<br />

which already implies estimate ( 2.164). A8.20<br />

⊓⊔<br />

Exercise 2.34. Verify identity ( AB.1 2.165).<br />

Remark 2.35. In RWG01 [RWG01] the Neumann problem (i.e., ∂Ω = ∂Ω N ) was considered.<br />

The penalty coefficient σ was chosen according<br />

σ| Γ = C W<br />

h β , Γ ∈ F h , (2.178) A3.3a<br />

Γ<br />

insteand of ( 2.72), A3.3 where β ≥ 1/2 is a real number. If triangular grids do<br />

not contain any hanging node (i.e., T h are con<strong>for</strong>ming) then the optimal error<br />

estimation in the L 2 -norm of the NIPG method was proved provided that<br />

β ≥ 3 <strong>for</strong> d = 2 and β ≥ 3/2 <strong>for</strong> d = 3. In this case the interior penalty<br />

is so strong that DGFE methods behave likes the standard con<strong>for</strong>ming (i.e.,<br />

continuous) finite element schemes. For more details see [RWG01].<br />

RWG01<br />

sec:num_sc<br />

2.7 Numerical examples<br />

In this section, we shall justify the a priori error estimates ( 2.131), A4.1 ( 2.141) A4.32 and<br />

( 2.164). A8.20 In the first example, we assume that the exact solution is sufficiently<br />

regular. We show that the use of a higher degree of polynomial approximation<br />

increases the rate of convergence of the method. In the second example, the exact<br />

solution has a singularity. Then the order of convergence does not increase<br />

with the increasing degree of the used polynomial approximation. The computational<br />

results are in agreement with theory and show that the accuracy<br />

of the method is determined by the degree of the polynomial approximation<br />

as well the regularity of the solution.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!