18.03.2014 Views

2 DGM for elliptic problems

2 DGM for elliptic problems

2 DGM for elliptic problems

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

24 2 Elliptic <strong>problems</strong><br />

⎛<br />

+ ⎝ ∑<br />

⎛<br />

Γ ∈F ID<br />

h<br />

∫<br />

≤ ⎝|u| 2 H 1 (Ω,T h ) + ∑<br />

⎛<br />

Γ<br />

⎞<br />

σ −1 (n · 〈∇v〉) 2 dS⎠<br />

Γ ∈F ID<br />

h<br />

× ⎝|v| 2 H 1 (Ω,T h ) + ∑<br />

= ‖u‖ 1,σ ‖v‖ 1,σ .<br />

∫<br />

Γ ∈F ID<br />

h<br />

Γ<br />

1/2 ⎛<br />

⎝ ∑<br />

Γ ∈F ID<br />

h<br />

∫<br />

Γ<br />

⎞<br />

σ[u] 2 dS⎠<br />

⎞<br />

(<br />

σ −1 (n · 〈∇u〉) 2 + σ[u] 2) dS⎠<br />

∫<br />

Γ<br />

1/2<br />

⎞<br />

(<br />

σ −1 (n · 〈∇v〉) 2 + σ[v] 2) dS⎠<br />

1/2<br />

1/2<br />

exer3<br />

exer4<br />

lem:est_sigma<br />

⊓⊔<br />

Exercise 2.14. Prove that ‖ · ‖ 1,σ intoduced by ( 2.83) Aa2.31 defines a norm on the<br />

broken Sobolev space H 2 (Ω, T h ).<br />

Corollary 2.15. By virtue of ( 2.50) A2.20a – ( 2.51), A2.20b Lemma 2.13 lem:A11a and Exercise 2.14,<br />

exer3<br />

the bilinear <strong>for</strong>ms Bh s and Bn h are bounded with respect to the norm ‖ · ‖ 1,σ on<br />

the broken Sobolev space H 2 (Ω, T h ).<br />

Exercise 2.16. Prove that the bilinear <strong>for</strong>ms B s,σ<br />

h<br />

respect to the norm ‖ · ‖ 1,σ on H 2 (Ω, T h ).<br />

and B n,σ<br />

h<br />

are bounded with<br />

Lemma 2.17. Under assumptions (A1) and (A2), <strong>for</strong> any v ∈ H 2 (Ω, T h ) the<br />

following estimate holds:<br />

∑<br />

∫<br />

σ −1 (n · 〈∇v〉) 2 dS (2.90) A2.30a<br />

Γ ∈F ID<br />

h<br />

Γ<br />

≤ C HC M<br />

C W<br />

∑ (<br />

)<br />

h K ‖∇v‖ L2 (K) |∇v| H1 (K) + h −1<br />

K ‖∇v‖2 L 2 (K)<br />

K∈T h<br />

Proof. Using ( 2.81) A3.7 and ( 2.19), eq:MTI we find that<br />

∑<br />

∫<br />

σ −1 (n · 〈∇v〉) 2 dS (2.91) A2.35ab<br />

Γ ∈F ID<br />

h<br />

≤ C H<br />

C W<br />

≤ C HC M<br />

C W<br />

Γ<br />

∑<br />

h K ‖∇v‖ 2 L 2 (∂K)<br />

K∈T h<br />

∑ (<br />

h K ‖∇v‖ L 2 (K) |∇v| H 1 (K) + h −1<br />

K ‖∇v‖2 L 2 (K)<br />

K∈T h<br />

which we wanted to prove.<br />

⊓⊔<br />

Now, we prove the continuity of the bilinear <strong>for</strong>ms B defined by ( 2.50) A2.20a –<br />

( 2.54) A2.20e with respect to the norm ||| · ||| given by ( 2.68) en on the space S hp .<br />

)<br />

,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!