18.03.2014 Views

2 DGM for elliptic problems

2 DGM for elliptic problems

2 DGM for elliptic problems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

22 2 Elliptic <strong>problems</strong><br />

estsigma<br />

Lemma 2.11. Let (A2) be valid. Then <strong>for</strong> each v ∈ H 1 (Ω, T h ) we have<br />

∑<br />

∫<br />

[v] 2 dS ≤ ∑ ∫<br />

|v| 2 dS, (2.78) A3.6a<br />

Γ ∈F ID<br />

h<br />

∑<br />

Γ ∈F ID<br />

h<br />

h −1<br />

Γ<br />

h Γ<br />

∫<br />

Γ<br />

Γ<br />

2h −1<br />

K<br />

K∈T h<br />

〈v〉 2 dS ≤ C H<br />

∑<br />

∂K<br />

K∈T h<br />

h K<br />

∫∂K<br />

|v| 2 dS. (2.79) A3.7a<br />

Hence,<br />

∑<br />

Γ ∈F ID<br />

h<br />

∑<br />

Γ ∈F ID<br />

h<br />

σ| Γ ‖[v]‖ 2 L 2 (Γ) ≤ 2C W<br />

1<br />

σ| Γ<br />

‖〈v〉‖ 2 L 2 (Γ) ≤ C H<br />

C W<br />

Proof. a) By ( A1.15 2.14), the inequality<br />

∑ 1<br />

‖v‖ 2 L<br />

h 2 (∂K), K<br />

K∈T h<br />

(2.80) A3.6<br />

∑<br />

. (2.81) A3.7<br />

K∈T h<br />

h K ‖v‖ 2 L 2 (∂K)<br />

exer2<br />

and ( 2.73) A3.5 we have<br />

∑<br />

∫<br />

h −1<br />

Γ [v]2 dS = ∑<br />

Γ ∈F ID<br />

h<br />

≤ 2 ∑<br />

Γ<br />

Γ ∈F I h<br />

≤ 2 ∑<br />

Γ ∈F ID<br />

h<br />

≤ 2 ∑<br />

∫<br />

h −1<br />

Γ<br />

Γ<br />

h −1<br />

K<br />

K∈T h<br />

h −1<br />

K (L)<br />

Γ<br />

∫<br />

(γ + δ) 2 ≤ 2(γ 2 + δ 2 ), γ,δ ∈ IR, (2.82) AC3.6<br />

Γ ∈F I h<br />

( ∣∣∣v| (L)<br />

∣ 2 ∣<br />

+<br />

∫<br />

∂K<br />

∣<br />

Γ<br />

∣v| (L)<br />

Γ<br />

Γ<br />

|v| 2 dS.<br />

∫<br />

h −1<br />

Γ<br />

Γ<br />

∣v| (R)<br />

Γ<br />

∣ 2 dS + ∑<br />

∣<br />

∣v| (L)<br />

Γ<br />

− v|(R) Γ<br />

∣ 2) dS + ∑<br />

Γ ∈F I h<br />

h K<br />

(R)<br />

Γ<br />

Γ ∈F D h<br />

∫<br />

∣<br />

∣ 2 dS + ∑<br />

∫<br />

h −1 ∣<br />

Γ<br />

Γ<br />

∣v| (R)<br />

Γ<br />

Γ<br />

∣ 2 dS<br />

Γ ∈F D h<br />

∣v| (L)<br />

Γ<br />

∫<br />

h −1 ∣<br />

Γ<br />

Γ<br />

∣ 2 dS<br />

∣v| (L)<br />

Γ<br />

This and ( 2.72) A3.3 immediately imply ( 2.80).<br />

A3.6<br />

b) In the proof of ( 2.79) A3.7a we proceed similarly, using ( 2.14), A1.15 ( 2.73) A3.5 and<br />

( 2.82). AC3.6 Inequality ( 2.81) A3.7 is a consequence of ( 2.79) A3.7a and ( 2.72). A3.3<br />

⊓⊔<br />

Exercise 2.12. Formulate and prove Lemma 2.11 estsigma <strong>for</strong> definitions ( 2.74) A3.1a and<br />

( 2.76).<br />

A3.1c<br />

∣ 2 dS<br />

2.4.1 Continuity of the bilinear <strong>for</strong>ms B<br />

First, we shall prove an auxiliary assertion.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!