18.03.2014 Views

2 DGM for elliptic problems

2 DGM for elliptic problems

2 DGM for elliptic problems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

where h K<br />

(L)<br />

Γ<br />

and h K<br />

(R)<br />

Γ<br />

2.4 Properties of the bilinear <strong>for</strong>ms 21<br />

are the diameters of the elements K (L)<br />

Γ<br />

and K (R)<br />

Γ ,<br />

respectively, adjacent to the face Γ, and C W > 0 is a suitable constant. For<br />

boundary faces Γ ∈ F D h (i.e. Γ ⊂ Γ D) we put<br />

σ| Γ = C W<br />

h K<br />

(L)<br />

Γ<br />

, (2.70) A3.2<br />

where C W > 0 and h KΓ denotes the diameter of the element K (L)<br />

Γ<br />

adjacent<br />

to Γ. If we use the simplified notation<br />

( )<br />

h Γ = max h (L) K<br />

, h (R)<br />

Γ K<br />

<strong>for</strong> Γ ∈ Fh I and h Γ = h (L)<br />

Γ<br />

K<br />

<strong>for</strong> Γ ∈ Fh D , (2.71)<br />

Γ<br />

A3.2a<br />

we can write<br />

σ| Γ = C W<br />

, Γ ∈ F h . (2.72) A3.3<br />

h Γ<br />

Let Γ ⊂ ∂K be a face of an element K. Then, in virtue of ( 2.18) A1.35 and ( 2.71),<br />

A3.2a<br />

we have<br />

h K ≤ h Γ ≤ C H h K , K ∈ T h , Γ ∈ F h , Γ ⊂ K. (2.73) A3.5<br />

Another possibility is to replace ( 2.69) A3.1 by<br />

σ| Γ =<br />

h K<br />

(L)<br />

Γ<br />

2C W<br />

In this case, σ| Γ is defined by ( A3.3 2.72) with<br />

h Γ =<br />

h K<br />

(L)<br />

Γ<br />

+ h K<br />

(R)<br />

Γ<br />

. (2.74) A3.1a<br />

+ h (R) K Γ<br />

. (2.75) A3.1b<br />

2<br />

If the partition T h represents a standard con<strong>for</strong>ming triangulation <strong>for</strong>med<br />

by simplexes, then one ususally defines the weight σ| Γ as<br />

σ| Γ = C W<br />

, (2.76) A3.1c<br />

diam(Γ)<br />

i.e. h Γ = diam(Γ).<br />

Under the introduced notation, in view of ( 2.40) A2.17 and ( 2.72), A3.3 the interior<br />

and boundary penalty <strong>for</strong>ms read<br />

Jh σ (u,v) = ∑ ∫<br />

C W<br />

[u][v]dS, (2.77) A3.4<br />

h Γ<br />

Γ ∈F ID<br />

h<br />

J σ D(v) = ∑<br />

Γ ∈F D h<br />

∫<br />

Γ<br />

Γ<br />

C W<br />

h Γ<br />

u D v dS.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!