18.03.2014 Views

2 DGM for elliptic problems

2 DGM for elliptic problems

2 DGM for elliptic problems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

∑<br />

2.5 Error estimates 31<br />

h K ‖∇v h ‖ 2 L 2 (∂K) (2.128) A4.13<br />

K∈T h<br />

∑ (<br />

)<br />

≤ C M ‖∇v h ‖ 2 L 2 (K) + h K‖∇v h ‖ L 2 (K)|∇v h | H 1 (K)<br />

K∈T h<br />

∑ (<br />

)<br />

≤ C M ‖∇v h ‖ 2 L 2 (K) + C I‖∇v h ‖ 2 L 2 (K)<br />

K∈T h<br />

= C M (1 + C I ) ∑<br />

|v h | 2 H 1 (K) = C M(1 + C I )|v h | 2 H 1 (Ω,T h ) .<br />

K∈T h<br />

Finally, ( A4.12 2.127), ( A4.13 2.128) and ( A3.29c 2.116) imply that<br />

|χ 2 | ≤ √ 2C H C M C A h µ−1 |u| Hµ (Ω)J σ h(v h ,v h ) 1/2 C −1/2<br />

W<br />

(2.129) A4.14<br />

+C −1/2<br />

W<br />

(C HC M (1 + C I )) 1/2 |v h | H 1 (Ω,T h )C J h µ−1 |u| H µ (Ω).<br />

There<strong>for</strong>e, from ( 2.68), en ( 2.124), A4.9 ( 2.129), A4.14 ( 2.125) AC3.6a<br />

√<br />

and the relation C J =<br />

2C A CW C M we obtain<br />

|χ 1 | + |χ 2 | ≤ C A h µ−1 |u| H µ (Ω)|v h | H 1 (Ω,T h )<br />

+C A (C H C M /C W ) 1/2 h µ−1 |u| Hµ (Ω)J σ h(v h ,v h ) 1/2<br />

+(C H C M (1 + C I )) 1/2 C J h µ−1 |u| H µ (Ω)|v h | H 1 (Ω,T h )<br />

(<br />

≤ C A + (C H C M (1 + C I )) 1/2 2C A (C W C M ) 1/2 |v h | H1 (Ω,T h )<br />

+C A (C H C M /C W ) 1/2 J σ h (v h ,v h ) 1/2) h µ−1 |u| H µ (Ω)<br />

≤ ˜Ch µ−1 |u| Hµ (Ω)(|v h | H1 (Ω,T h ) + J σ h(v h ,v h ) 1/2 ) ≤ √ 2h µ−1 |u| Hµ (Ω)|||v h |||,<br />

where ˜C = C A max(1 + √ 2(C H C M (1 + C I )C W C M ) 1/2 ,(C H C M /C W ) 1/2 ).<br />

Hence, we have ( 2.121) A4.a with C a = √ 2 ˜C.<br />

ii) Using ( 2.99), A2.J ( 2.116) A3.29c and ( 2.68), en we find that<br />

|J σ h (η,v h )| ≤ J σ h (η,η) 1/2 J σ h(v h ,v h ) 1/2 ≤ C J h µ−1 |u| H µ (Ω) |||v h |||. (2.130) A2.14b<br />

⊓⊔<br />

lem:2.10<br />

Theorem 2.29. (||| · |||-norm error estimate) Let us assume that s ≥ 1, u ∈<br />

H s (Ω) is the solution of problem ( 2.1) A0.1 – ( 2.5), A0.3 {T h } h∈(0,h0) is a system of<br />

triangulations of the domain Ω satisfying assumtions (A1) and (A2), S hp is<br />

the space of discontinuous piecewise polynomial functions ( 2.16)and A1.23 u h ∈ S hp<br />

the approximate solution obtained by means of the SIPG method ( 2.62) A2.22c with<br />

C W satisfying ( 2.102) A3.40 or NIPG method ( 2.63) A2.22d with C W > 0 or IIPG method<br />

( 2.64) A2.22e with C W satisfying ( 2.110). A3.40I Then<br />

|||e h ||| ≤ ˜Ch µ−1 |u| Hµ (Ω,T h ), h ∈ (0,h 0 ), (2.131) A4.1<br />

where e h = u h − u, µ = min(p + 1,s) and ˜C is a constant independent of h.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!