30.03.2014 Views

Strain amplification of the 4k chain instability in Sr Cu O

Strain amplification of the 4k chain instability in Sr Cu O

Strain amplification of the 4k chain instability in Sr Cu O

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Stra<strong>in</strong></strong> <strong>amplification</strong> <strong>of</strong> <strong>the</strong> <strong>4k</strong> F <strong>cha<strong>in</strong></strong><br />

<strong><strong>in</strong>stability</strong> <strong>in</strong> <strong>Sr</strong> 14 <strong>Cu</strong> 24 O 41<br />

Peter Abbamonte<br />

University <strong>of</strong> Ill<strong>in</strong>ois at Urbana-Champaign<br />

Fukuda, PRB, 66, 12104 (2002)<br />

Collaborators:<br />

Andrivo Rusydi, University <strong>of</strong> Hamburg<br />

Serban Smadici, University <strong>of</strong> Ill<strong>in</strong>ois<br />

Hiroshi Eisaki, AIST, Tsukuba<br />

Yoichi Fujimaki, University <strong>of</strong> Tokyo<br />

N. Motoyama, University <strong>of</strong> Tokyo<br />

Michael Rübhausen, University <strong>of</strong> Hamburg<br />

George Sawatzky, University <strong>of</strong> British Columbia<br />

Sh<strong>in</strong>-ichi Uchida,University <strong>of</strong> Tokyo<br />

Acknowledgements:<br />

S. van Smaalen (Beyruth), M. von Zimmermann<br />

(DESY), A. Gozar (Brookhaven), M. Grün<strong>in</strong>ger<br />

(Köln), Girsh Blumberg (Bell Labs)<br />

Fund<strong>in</strong>g: Office <strong>of</strong> Basic Energy Sciences, U.S.<br />

Department <strong>of</strong> Energy #s DE-FG02-06ER46285 &<br />

DE-AC02-98-CH10886


<strong>Sr</strong> 14-x Ca x <strong>Cu</strong> 24 O 41 (SCCO)<br />

Fukuda, PRB, 66, 12104 (2002)<br />

• Cha<strong>in</strong>s buckle to accommodate ladder:<br />

c ≈ 7c L ≈ 10c c<br />

1<br />

c = 27.3 Å<br />

• <strong>Sr</strong> 2+ , O 2– ⇒ <strong>Cu</strong> 2.25+<br />

isoelectronic to perovskite cuprates<br />

• 6 holes / formula unit. Most are <strong>in</strong> <strong>the</strong><br />

<strong>cha<strong>in</strong></strong>. 3<br />

• Conductivity governed by ladders 2<br />

<strong>Cu</strong>O 2<br />

<strong>Cu</strong> 2<br />

O 3<br />

• Sp<strong>in</strong> gap at all temperatures 4 : Pair<strong>in</strong>g<br />

1 Etrillard, Physica C, 403, 290 (2004); Braden, PRB, 69, 214426 (2004)<br />

2<br />

Osafune, PRL, 78, 1980 (1997)<br />

3 Nücker, PRB, 62, 14384 (2000); Piskunov, PRB, 72, 064512 (2005); Rusydi, PRB, 75, 10450 (2007)<br />

4 Carter, PRL., 77, 1378 (1996); Takigawa, PRB, 57, 1124 (1998); Matsuda, PRB, 56, 14499 (1997)


Sp<strong>in</strong> ladders<br />

t, J<br />

E. Dagotto, J. Riera, D. Scalap<strong>in</strong>o, Phys. Rev. B, 45, 5744 (1992)<br />

• Doped hole breaks a s<strong>in</strong>glet; costs energy J<br />

• No sp<strong>in</strong> gap<br />

• Holes b<strong>in</strong>d <strong>in</strong>to pairs, b<strong>in</strong>d<strong>in</strong>g energy ~J<br />

• Sp<strong>in</strong> gap restored ⇔ Pair<strong>in</strong>g<br />

• Superconductivity, ∆ ~ d x2-y2 M. Sigrist, PRB, 49, 12058 (1994)<br />

Unstable to <strong>the</strong> formation <strong>of</strong> “charge density waves”<br />

S. White, I. Affleck, D. Scalap<strong>in</strong>o, Phys. Rev. B, 65, 165122 (2002)<br />

• δ rational ⇒ holes “crystallize” <strong>in</strong>to <strong>in</strong>sulat<strong>in</strong>g CDW<br />

• δ irrational ⇒ metal with dynamic CDW correlations<br />

• Rem<strong>in</strong>iscent <strong>of</strong> ordered stripes vs. SC <strong>in</strong> High T c<br />

Tranquada, PRL, 78, 338 (1997)


Sp<strong>in</strong> ladders<br />

t, J<br />

E. Dagotto, J. Riera, D. Scalap<strong>in</strong>o, Phys. Rev. B, 45, 5744 (1992)<br />

• Doped hole breaks a s<strong>in</strong>glet; costs energy ~J<br />

• No sp<strong>in</strong> gap<br />

• Holes b<strong>in</strong>d <strong>in</strong>to pairs, b<strong>in</strong>d<strong>in</strong>g energy ~J<br />

• Superconductivity, ∆ ~ d x2-y2<br />

• Sp<strong>in</strong> gap restored ⇔ Pair<strong>in</strong>g<br />

M. Sigrist, PRB, 49, 12058 (1994)<br />

Unstable to <strong>the</strong> formation <strong>of</strong> “charge density waves”<br />

S. White, I. Affleck, D. Scalap<strong>in</strong>o, Phys. Rev. B, 65, 165122 (2002)<br />

• δ rational ⇒ holes “crystallize” <strong>in</strong>to <strong>in</strong>sulat<strong>in</strong>g CDW<br />

• δ irrational ⇒ metal with dynamic CDW correlations<br />

• Rem<strong>in</strong>iscent <strong>of</strong> ordered stripes vs. SC <strong>in</strong> High T c<br />

Tranquada, PRL, 78, 338 (1997)


<strong>Sr</strong> 14-x Ca x <strong>Cu</strong> 24 O 41 (SCCO)<br />

• x = 13.6 ⇒ superconductivity T c = 12 K at<br />

P = 3 GPa 1<br />

• x = 0 ⇒ <strong>in</strong>sulat<strong>in</strong>g with a CDW 2,3,4<br />

1<br />

M. Uehara, et. al.,<br />

J. Phys. Soc. Jpn.,<br />

65, 2764 (1996)<br />

• Exhibits both predicted phases for ladder.<br />

• Can tune between CDW and SC <strong>in</strong> one<br />

system<br />

3 Blumberg, et. al., Science, 297, 584 (2002)<br />

1<br />

Uehara, J. Phys. Soc. Jap., 65, 2764 (1996)<br />

2<br />

Gorshunov, PRB, 66, 60508 (2002)<br />

4 Vuletić, PRL, 90, 257002 (2003)


Cha<strong>in</strong> buckl<strong>in</strong>g <strong>in</strong> <strong>Sr</strong> 14 <strong>Cu</strong> 24 O 41<br />

Z. Hiroi, PRB, 54, 15849 (1996)<br />

(1,-1,0) zone<br />

Fukuda, PRB, 66, 12104 (2002)<br />

c = 27.3 Å<br />

Conjecture: Interplay between<br />

<strong>cha<strong>in</strong></strong> buckl<strong>in</strong>g and a <strong>cha<strong>in</strong></strong> CDW


X-ray & Neutron scatter<strong>in</strong>g – <strong>cha<strong>in</strong></strong> CDW?<br />

Charge density wave <strong>in</strong> <strong>the</strong> <strong>cha<strong>in</strong></strong> layer<br />

T. Fukuda, PRB, 66, 12104 (2002)<br />

D. E. Cox, PRB, 57, 10750 (1998)<br />

Matsuda, PRB, 54, 12199 (1996)<br />

Matsuda, PRB, 56, 14499 (1997)


X-ray & Neutron scatter<strong>in</strong>g – <strong>cha<strong>in</strong></strong> CDW?<br />

Charge density wave <strong>in</strong> <strong>the</strong> <strong>cha<strong>in</strong></strong> layer<br />

T. Fukuda, PRB, 66, 12104 (2002)<br />

D. E. Cox, PRB, 57, 10750 (1998)<br />

Matsuda, PRB, 54, 12199 (1996)<br />

Matsuda, PRB, 56, 14499 (1997)<br />

All just Bragg peaks from <strong>the</strong> structure<br />

S. van Smaalen, PRB, 67, 26101 (2003)


X-ray & Neutron scatter<strong>in</strong>g – <strong>cha<strong>in</strong></strong> CDW?<br />

Charge density wave <strong>in</strong> <strong>the</strong> <strong>cha<strong>in</strong></strong> layer<br />

T. Fukuda, PRB, 66, 12104 (2002)<br />

D. E. Cox, PRB, 57, 10750 (1998)<br />

Matsuda, PRB, 54, 12199 (1996)<br />

Matsuda, PRB, 56, 14499 (1997)<br />

All just Bragg peaks from <strong>the</strong> structure<br />

S. van Smaalen, PRB, 67, 26101 (2003)<br />

Higher harmonics appear only at low T<br />

Etrillard, Physica C, 403, 290 (2004)<br />

Braden, PRB, 69, 214426 (2004)


X-ray & Neutron scatter<strong>in</strong>g – <strong>cha<strong>in</strong></strong> CDW?<br />

Charge density wave <strong>in</strong> <strong>the</strong> <strong>cha<strong>in</strong></strong> layer<br />

T. Fukuda, PRB, 66, 12104 (2002)<br />

D. E. Cox, PRB, 57, 10750 (1998)<br />

Matsuda, PRB, 54, 12199 (1996)<br />

Matsuda, PRB, 56, 14499 (1997)<br />

All just Bragg peaks from <strong>the</strong> structure<br />

S. van Smaalen, PRB, 67, 26101 (2003)<br />

Higher harmonics appear only at low T<br />

Etrillard, Physica C, 403, 290 (2004)<br />

Braden, PRB, 69, 214426 (2004)<br />

Harmonics come from <strong>the</strong>rmal contraction<br />

M. v. Zimmermann, PRB, 73, 115121 (2006)<br />

Still unclear if <strong>the</strong>re is a CDW <strong>in</strong> <strong>the</strong> <strong>cha<strong>in</strong></strong> <strong>of</strong> <strong>Sr</strong> 14<br />

<strong>Cu</strong> 24<br />

O 41


Resonant s<strong>of</strong>t x-ray scatter<strong>in</strong>g (RSXS)<br />

valence band<br />

• Resonant elastic scatter<strong>in</strong>g, E i = E s<br />

– not RIXS<br />

• Periodic DOS modulation gives<br />

“Bragg” peak<br />

• | g(k,ω) | 2 where ω = E - E F<br />

• Same as STS for V > 0<br />

E i<br />

E s = E i<br />

Hanaguri, Nature,<br />

Core level<br />

430, 1001 (2004)<br />

Bulk-sensitive → can study anyth<strong>in</strong>g (214’s, heterostructures)<br />

Full T-dependence → 18 K < T < 500 K (push<strong>in</strong>g to 12 K)<br />

Not much k → Can reach (π,0) <strong>in</strong> cuprates but not (π,π)<br />

Radiative broaden<strong>in</strong>g ~ 200 meV


Unoccupied density <strong>of</strong> states (k=0)<br />

O K edge (1s → 2p) <strong>Cu</strong> L edge (2p → 3d)<br />

•, • <strong>Sr</strong> 14<br />

<strong>Cu</strong> 24<br />

O 41<br />

(SCO)<br />

δ c<br />

= 0.32 1 or δ c<br />

=0.5 2<br />

δ L<br />

= 0.2 1 or δ L<br />

=0.07 2<br />

• La 6<br />

Ca 8<br />

<strong>Cu</strong> 24<br />

O 41<br />

(LCCO)<br />

δ c<br />

= 0.056 3<br />

δ L<br />

= 0 3<br />

1<br />

A. Rusydi, PRB, 75, 104510 (2007), 2 N. Nücker, PRB, 62, 14384 (2000), 3 A. Rusydi, cond-mat/0611730


“Hole crystal” <strong>in</strong> <strong>the</strong> ladder<br />

T=28K<br />

Abbamonte, Nature, 431, 1078 (2004)<br />

T=28K<br />

• Density <strong>of</strong> states modulation: A Wigner crystal<br />

• L L = 0.200 ± 0.009 r. l. u. ⇒ λ = 5.00 ± 0.24 c L<br />

• Commensurate with Ladder: Does not <strong>in</strong>dex to<br />

27.3 Å unit cell.


“Hole crystal” <strong>in</strong> <strong>the</strong> ladder<br />

OK edge <strong>in</strong>tensity<br />

T = 20 K<br />

Forms only on<br />

rational fractions.<br />

τ<br />

τ<br />

1/3<br />

1/5<br />

= 1.652 =<br />

5<br />

3<br />

U ~ 1/R<br />

Pair density wave:<br />

Tesanovic, PRL, 93, 217004 (2004)<br />

Chen, PRL, 93, 187002 (2004)<br />

Rusydi, PRL, 97, 016403 (2006)


Everyth<strong>in</strong>g makes sense but …<br />

What about <strong>the</strong> <strong>cha<strong>in</strong></strong>?


Cha<strong>in</strong> and ladder orders<br />

A. Rusydi, cond-mat/0611730<br />

Z. Hiroi, et. al., PRB, 54, 15849 (1996)


Cha<strong>in</strong> and ladder orders<br />

A. Rusydi, cond-mat/0611730<br />

Z. Hiroi, et. al., PRB, 54, 15849 (1996)


Cha<strong>in</strong> and ladder orders<br />

A. Rusydi, cond-mat/0611730<br />

Z. Hiroi, et. al., PRB, 54, 15849 (1996)


Temperature dependence


Strange energy dependence<br />

x40


Separat<strong>in</strong>g charge and stra<strong>in</strong> with RXS<br />

P. Abbamonte, PRB, 74, 195113 (2006)<br />

Structure factor<br />

Form factor<br />

Absorption related to f(ω)<br />

<strong>Stra<strong>in</strong></strong> scatter<strong>in</strong>g follows:<br />

Charge scatter<strong>in</strong>g follows:<br />

RXS l<strong>in</strong>e shape gives<br />

W = v 0<br />

/u 0<br />

and phase φ<br />

W ~ 0 Supermodulation (Bragg)<br />

W ~ 1 A -1 Peierls CDW <strong>in</strong> K 0.3<br />

MoO 3<br />

W ~ 10 A -1 “stripes” <strong>in</strong> LBCO


Lattice and hole form factors


Fits<br />

<strong>Sr</strong> 14<br />

<strong>Cu</strong> 24<br />

O 41<br />

W = 1.13 Å -1<br />

φ= -23.1º<br />

La 6<br />

Ca 8<br />

<strong>Cu</strong> 24<br />

O 41<br />

W LCCO<br />

= 0.065 Å -1<br />

φ LCCO<br />

= -90.1<br />

Q = n c<br />

<strong>4k</strong> F modulation<br />

stabilized by<br />

supermodulation


Fits<br />

lattice<br />

holes<br />

<strong>Sr</strong> 14<br />

<strong>Cu</strong> 24<br />

O 41<br />

W = 1.13 Å -1<br />

φ= -23.1º<br />

La 6<br />

Ca 8<br />

<strong>Cu</strong> 24<br />

O 41<br />

W LCCO<br />

= 0.065 Å -1<br />

φ LCCO<br />

= -90.1<br />

Q = n c<br />

<strong>4k</strong> F modulation<br />

stabilized by<br />

supermodulation<br />

Interference “dip”


The Upshot<br />

• LCCO has a simple misfit supermodulation with period<br />

27.3 Å. q = 0.3 r.l.u. commensurate<br />

• Add holes (δ c ~ 0.3) → Supermodulation amplifies &<br />

stabilizes <strong>4k</strong> F <strong><strong>in</strong>stability</strong> <strong>of</strong> <strong>the</strong> <strong>cha<strong>in</strong></strong><br />

• <strong>4k</strong> F <strong><strong>in</strong>stability</strong> feeds back, shift<strong>in</strong>g supermodulation to<br />

<strong>in</strong>commensurate value q = 0.318 r.l.u.


Conclusions<br />

• RSXS allows determ<strong>in</strong>ation <strong>of</strong> W, φ<br />

• <strong>Sr</strong> 14 <strong>Cu</strong> 24 O 41 has two dist<strong>in</strong>ct, coexist<strong>in</strong>g charge density waves<br />

1. Ladder HC is ma<strong>in</strong>ly electronic, W ~ ∞ (immeasurably large)<br />

2. Cha<strong>in</strong> CDW is <strong>4k</strong> F stabilized by misfit stra<strong>in</strong>, W = 1.13 Å -1<br />

(W = 0.065 Å -1 if you take <strong>the</strong> holes out)<br />

• Transport is an amalgem <strong>of</strong> both<br />

• A CDW can form by stra<strong>in</strong><strong>in</strong>g a sample <strong>in</strong> <strong>the</strong> right way.


Fits<br />

W SCO<br />

= 1.13 Å -1 , φ SCO<br />

= -23.1º


Resonant s<strong>of</strong>t x-ray scatter<strong>in</strong>g (RSXS)<br />

• 1.2 m vacuum chamber: Pumped with Turbos and TSPs, 2 × 10 -9 mbar<br />

• Diffractometer: 10 motor axes work<strong>in</strong>g <strong>in</strong> a 6-circle geometry, <strong>in</strong>-vacuum<br />

step motors, ceramic bear<strong>in</strong>gs, vacuum lubricants.<br />

• Photon count<strong>in</strong>g detector: Channeltron, brak<strong>in</strong>g voltages, Au/CsI cathode<br />

• Helium cryostat: Indirect cool<strong>in</strong>g with copper braids (OFHC), T=18 K<br />

• 5 Tesla Magnet: Under commission<strong>in</strong>g.<br />

• <strong>Cu</strong>rrent: NSLS X1B; Forthcom<strong>in</strong>g: APS Sector 28


Resonance pr<strong>of</strong>ile or |g(k,ω)| 2<br />

Supermodulation <strong>in</strong> Bi 2<br />

<strong>Sr</strong> 2<br />

Ca<strong>Cu</strong> 2<br />

O 8+δ<br />

ZR<br />

s<strong>in</strong>glets<br />

McElroy, Nature, 422, 592 (2003)


Quantum melt<strong>in</strong>g<br />

“Melt<strong>in</strong>g”<br />

Wigner<br />

crystal<br />

L L = 1/3: ξ c<br />

= (1580 ± 70) Å and ξ a<br />

= (1615 ± 70) Å<br />

L L = 1/5: ξ c<br />

= (255 ± 40) Å and ξ a<br />

= (274 ± 40) Å<br />

Interaction strength grows with decreas<strong>in</strong>g hole spac<strong>in</strong>g


Spectroscopic details<br />

Note core<br />

level shift


Correlation with metal-<strong>in</strong>sulator transition<br />

Kojima, J. Elect. Spect.<br />

Rel. Phen., 237, 117<br />

(2001)<br />

Note this<br />

phase<br />

boundary.


Structural characterization<br />

• Gra<strong>in</strong> broken from same sample as <strong>cha<strong>in</strong></strong> studies<br />

• All 603 reflections <strong>in</strong>dex to known structure<br />

• 198 arise from <strong>in</strong>commensurate structure (<strong>cha<strong>in</strong></strong> buckl<strong>in</strong>g)


Oxygen stoichiometry


Self-absorption effects

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!