16.04.2014 Views

Phonon lifetimes in silicon from 50 GHz to 15 THz - University of ...

Phonon lifetimes in silicon from 50 GHz to 15 THz - University of ...

Phonon lifetimes in silicon from 50 GHz to 15 THz - University of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Phonon</strong> <strong>lifetimes</strong> <strong>in</strong> <strong>silicon</strong> <strong>from</strong> <strong>50</strong> <strong>GHz</strong> <strong>to</strong> <strong>15</strong> <strong>THz</strong><br />

David Cahill, Yux<strong>in</strong> Wang, Kwangu Kang,<br />

Fumiya Watanabe, Yee Kan Koh,<br />

and Jeffrey Letcher<br />

Department <strong>of</strong> Materials Science and Eng<strong>in</strong>eer<strong>in</strong>g<br />

and Materials Research Labora<strong>to</strong>ry,<br />

<strong>University</strong> <strong>of</strong> Ill<strong>in</strong>ois, Urbana, IL<br />

Brian Daly<br />

Vassar College, Poughkeepsie, NY


Experimental studies <strong>of</strong> <strong>silicon</strong> phonon<br />

<strong>lifetimes</strong> at room temperature<br />

• Attenuation <strong>of</strong> <strong>50</strong>-100 <strong>GHz</strong> longitud<strong>in</strong>al acoustic<br />

phonons measured by picosecond acoustics.<br />

–PRB 80, 174112 (2009).<br />

• Thermal acoustic phonons (1-10 10 <strong>THz</strong>) and reduction<br />

<strong>of</strong> thermal conductivity by mass disorder.<br />

–PRB 71, 235202 (2005); JAP 104, 024905 (2008).<br />

• Lifetimes <strong>of</strong> <strong>15</strong> <strong>THz</strong> optical phonons by timeresolved<br />

<strong>in</strong>coherent anti-S<strong>to</strong>kes Raman scatter<strong>in</strong>g.<br />

– APL 90, 252104 (2007).


Si phonon dispersion<br />

high-field carrier mobility, hot carrier pho<strong>to</strong>voltaics<br />

Thermal<br />

management,<br />

heat conduction<br />

acoustic imag<strong>in</strong>g, “phononics”


Time doma<strong>in</strong> thermoreflectance and<br />

picosecond acoustics<br />

• Improved optical design<br />

• Normalization by out-<strong>of</strong>-phase <strong>of</strong> signal elim<strong>in</strong>ates artifacts,<br />

<strong>in</strong>creases dynamic range and<br />

improves sensitivity<br />

• Exact analytical model for<br />

Gaussian beams and arbitrary<br />

layered geometries<br />

• One-laser/two-color approach<br />

<strong>to</strong>lerates diffuse scatter<strong>in</strong>g<br />

Clone built at Fraunh<strong>of</strong>er Institute for<br />

Physical Measurement, Jan. 7-8 2008


Time doma<strong>in</strong> thermoreflectance and<br />

picosecond acoustics<br />

• Optical constants and<br />

reflectivity depend on stra<strong>in</strong><br />

and temperature<br />

• Stra<strong>in</strong> echoes give acoustic<br />

properties p or film thickness<br />

• Thermoreflectance gives<br />

thermal properties


One and two round trips <strong>in</strong> <strong>50</strong> μm Si wafer<br />

Double-side polish th<strong>in</strong> Si wafer<br />

its)<br />

ΔR<br />

(Arbitr rary Un<br />

100K<br />

{ }<br />

{<br />

1<strong>50</strong>K<br />

200K<br />

× 2<br />

2<strong>50</strong>K × 2<br />

× 2 × 2<br />

Al film transducer<br />

{} 300K 12.22 12.3<br />

12.4<br />

24.6<br />

24.7<br />

24.8<br />

Delay Time (ns)


Broadband acoustic pulses<br />

• Fourier transforms <strong>of</strong> echoes <strong>from</strong> 10 nm (100 <strong>GHz</strong>)<br />

and 20 nm (<strong>50</strong> <strong>GHz</strong>) Al films<br />

Fourie er Transfo orm Amp plitude<br />

2.5<br />

1 Round Trip 1 Round Trip<br />

20 2.0<br />

'<strong>50</strong> <strong>GHz</strong>' '100 <strong>GHz</strong>'<br />

1.5<br />

05 0.5<br />

2 Round Trips<br />

'<strong>50</strong> <strong>GHz</strong>'<br />

1.0 2 Round Trips<br />

'100 <strong>GHz</strong>'<br />

0.0<br />

0.0 0.1 0.2 0.3<br />

Frequency (<strong>THz</strong>)


Analyze temperature dependence <strong>to</strong><br />

elim<strong>in</strong>ate surface effects<br />

Pea ak-Peak k<br />

Aco oustic Pulse Am mplitude<br />

e10<br />

1<br />

2 Round Trips<br />

1 Round Trip<br />

0 100 200 300<br />

Temperature (K)


f


TDTR enables measurements <strong>of</strong> epitaxial<br />

layers <strong>of</strong> high thermal conductivity<br />

• Time-doma<strong>in</strong> thermoreflectance (TDTR) data and model<br />

fit for iso<strong>to</strong>pically pure 28 Si<br />

– Two free parameters: thermal conductivity: Λ=164<br />

W/m-K; <strong>in</strong>terface conductance G=185 W/m 2 -K


Dilute SiGe alloys grown by gas-source<br />

molecular beam epitaxy<br />

Change <strong>in</strong> thermal resistance<br />

Δ W =Λ −Λ<br />

−1 −1<br />

28<br />

Ge concentration


Same truncated Debye-Callaway model<br />

predicts boundary scatter<strong>in</strong>g<br />

×2 reduction at ≈300 nm


Pump-probe Raman spectrometer


Time-resolved Raman spectra<br />

LO phonon<br />

t = 0.7 ps<br />

t = -10 ps


Time-resolved anti-S<strong>to</strong>kes <strong>in</strong>tensities<br />

‣ Integral <strong>of</strong> <strong>in</strong>tensity <strong>in</strong><br />

range 600-6<strong>50</strong> anti-<br />

S<strong>to</strong>kes wavenumbers<br />

gives electronic<br />

scatter<strong>in</strong>g by <strong>in</strong>terband<br />

hole excitations.<br />

‣ Integral (after<br />

background<br />

subtraction) <strong>of</strong> 490-5<strong>50</strong><br />

cm -1 gives <strong>in</strong>tensity <strong>of</strong><br />

LO phonon scatter<strong>in</strong>g<br />

‣ Pump power: 86 mW


Lifetime depends on pho<strong>to</strong>excited<br />

carrier density<br />

Lifetime <strong>from</strong> Raman l<strong>in</strong>ewidth<br />

• At low excitation,<br />

lifetime approaches<br />

prediction <strong>from</strong><br />

Raman l<strong>in</strong>ewidth:<br />

pure-dephas<strong>in</strong>g is not<br />

important.<br />

• Lifetime <strong>of</strong> zone<br />

center phonons<br />

decreases at higher<br />

excitation. Spectral<br />

diffusion? Enhanced<br />

coupl<strong>in</strong>g <strong>to</strong> acoustic<br />

modes?


Summary<br />

• Lifetime <strong>of</strong> 100 <strong>GHz</strong> longitud<strong>in</strong>al phonons is ~5 nsec; fit<br />

<strong>to</strong> Akhieser mechansims gives thermal phonon lifetime<br />

2<br />

2<br />

<strong>of</strong> ~20 ps assum<strong>in</strong>g γ − γ = 1<br />

• Model fits <strong>to</strong> thermal conductivity <strong>of</strong> iso<strong>to</strong>pically pure Si<br />

and ddilute SiGe alloys is consistent t with dom<strong>in</strong>ant<br />

mean-free-path for heat carry<strong>in</strong>g phonons <strong>of</strong> 300 nm.<br />

Lifetime ~30 ps.<br />

• Lifetime <strong>of</strong> zone-center optical phonon is 2 ps but<br />

depends on carrier (hole) density.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!