03.04.2014 Views

Logic Strand Lecture 3

Logic Strand Lecture 3

Logic Strand Lecture 3

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1.5.2. Contradiction<br />

Definition: Contradiction.<br />

Any statement that is false regardless of the truth values of<br />

the constituent parts is called a contradiction or<br />

contradictory statement.<br />

Examples:<br />

Complete the truth table for the statement<br />

~ ( P ∧ Q)<br />

⇔<br />

( Q ∧ P)<br />

P Q ~ (P ∧ Q) ⇔ (Q ∧ P)<br />

T T F T F T<br />

T F T F F F<br />

F T T F F F<br />

F F T F F F<br />

Step: 2 1 4* 3<br />

WUCT121 <strong>Logic</strong> 43


Exercises:<br />

• Complete the truth table for the statement<br />

~ ( P ∨ Q)<br />

∧ P to show it is a contradiction.<br />

P Q ~(P ∨ Q) ∧ P<br />

Step:<br />

• Complete the truth table for the statement<br />

( P ∧ Q)<br />

∧ ~ Q to show it is a contradiction.<br />

P Q (P ∧ Q) ∧ ~Q)<br />

Step:<br />

WUCT121 <strong>Logic</strong> 44


1.5.2.1 Quick Method for Showing a<br />

Contradiction<br />

The quick method for determining if a compound statement<br />

is a tautology can be used similarly for showing a<br />

contradiction.<br />

The quick method relies on the fact that if a truth value of<br />

“T” can occur under the main connective (for some<br />

combination of truth values for the components), then the<br />

statement is not a contradiction. If this truth value is not<br />

possible, then we have a contradiction.<br />

Therefore, to determine whether a statement is a<br />

contradiction, we place a “T” under the main connective<br />

and work backwards.<br />

WUCT121 <strong>Logic</strong> 45


Example:<br />

• Use the “quick” method for the statement<br />

~ ( P ∨ Q)<br />

∧ P to determine if it is a contradiction.<br />

~ (P ∨ Q) ∧ P<br />

Step: 2 1 3*<br />

1.Place “T” under main<br />

connective<br />

T<br />

2. For “T” to occur<br />

under the main<br />

connective, ~ must be<br />

“T” and P must be “T”<br />

T<br />

T<br />

3. For “T” to occur<br />

under ~,<br />

“F”.<br />

P ∨ Q must be<br />

F<br />

4. For “F” to occur<br />

under P ∨ Q, P must be<br />

“F” and Q must be “F”<br />

F<br />

F<br />

P cannot be both “T” and “F”, thus ~ ( P ∨ Q)<br />

∧ P can only<br />

ever be false and is a contradiction.<br />

WUCT121 <strong>Logic</strong> 46


Exercise:<br />

• Use the “quick” method for the statement<br />

( P ∧ Q)<br />

∧ ~ Q to determine if it is a contradiction.<br />

Step:<br />

1.<br />

(P ∧ Q) ∧ ~Q<br />

2<br />

3<br />

WUCT121 <strong>Logic</strong> 47


1.5.3. Contingent<br />

Definition: Contingent.<br />

Any statement that is neither a tautology nor a<br />

contradiction is called a contingent or intermediate<br />

statement.<br />

Examples:<br />

Complete the truth table for the statement Q ∨ ( Q ⇒ P)<br />

P Q Q ∨ (Q ⇒ P)<br />

T T T T<br />

T F T T<br />

F T F F<br />

F F T T<br />

Step: 2* 1<br />

WUCT121 <strong>Logic</strong> 48


Exercises:<br />

• Complete the truth table for the statement<br />

( p r) ⇒ ( p ∧ q)<br />

∨ to show it is contingent.<br />

p q r (p ∨ r) ⇒ (p ∧ q)<br />

Step:<br />

• Complete the truth table for the statement<br />

(( p ∧ ~ q)<br />

∨ r) ⇔ ( r ⇒ q)<br />

~ to show it is contingent.<br />

p q r ~( (p ∧ ~ q) ∨ r) ⇔ (r ⇒ q)<br />

Step:<br />

WUCT121 <strong>Logic</strong> 49


1.6. <strong>Logic</strong>al Equivalence<br />

Definition: <strong>Logic</strong>al Equivalence.<br />

Two statements are logically equivalent if, and only if, they<br />

have identical truth values for each possible substitution of<br />

statements for their statements variables.<br />

The logical equivalence of two statements P and Q is<br />

denoted<br />

P ≡ Q.<br />

If two statements P and Q are logically equivalent then<br />

P ⇔ Q is a tautology<br />

1.6.1. Determining <strong>Logic</strong>al Equivalence.<br />

To determine if two statements P and Q are logically<br />

equivalent, construct a full truth table for each statement. If<br />

their truth values at the main connective are identical, the<br />

statements are equivalent.<br />

Alternatively show<br />

conclude<br />

P ≡ Q.<br />

P ⇔ Q is a tautology and hence<br />

WUCT121 <strong>Logic</strong> 50


Examples:<br />

• Determine if the following statements are logically<br />

equivalent. P : p ⇒ q,<br />

Q :~ p ∨ q<br />

p q p ⇒ q ~p ∨ q<br />

T T T F T<br />

T F F F F<br />

F T T T T<br />

F F T T T<br />

Step: 1* 1 2*<br />

Since the main connectives * are identical, the statements P<br />

and Q are equivalent. Thus P<br />

≡ Q i.e. p ⇒ q ≡~<br />

p ∨ q<br />

• Determine if the following statements are logically<br />

equivalent. P :~ ( p ∧ q),<br />

Q :~ p∧<br />

~ q<br />

p q ~( p ∧ q) ~p ∧ ~q<br />

T T F T F F F<br />

T F T F F F T<br />

F T T F T F F<br />

F F T F T T T<br />

Step: 2* 1 1 2* 1<br />

Since the main connectives * are not identical, the<br />

statements P and Q are not equivalent.<br />

WUCT121 <strong>Logic</strong> 51


Exercises:<br />

• Determine if the following statements are logically<br />

equivalent. P :~ ( p ∨ q),<br />

Q :~ p∧<br />

~ q<br />

p q ~( p ∨ q) ~p ∧ ~q<br />

Step:<br />

• Determine if ~ ( p ∧ q)<br />

⇔~<br />

p∨<br />

~ q is a tautology, and<br />

hence if ~ ( p ∧ q)<br />

≡~<br />

p∨<br />

~ q .<br />

p q ~( p ∧ q) ⇔ ~p ∨ ~q<br />

Step:<br />

WUCT121 <strong>Logic</strong> 52


1.6.2. Substitution<br />

There are two different types of substitution into<br />

statements.<br />

Rule of Substitution: If in a tautology all occurrences of a<br />

variable are replaced by a statement, the result is still a<br />

tautology.<br />

Examples:<br />

• We know P ∨ ~ P is a tautology.<br />

Thus, by the rule of substitution, so too are:<br />

∗<br />

Q ∨ ~ Q, by letting Q = P.<br />

∗ (( p ∧ q)<br />

⇒ r)<br />

∨ ~ (( p ∧ q)<br />

⇒ r)<br />

, by letting<br />

( p ∧ q)<br />

⇒ r = P .<br />

Note: We have simply replaced every occurrence of P in<br />

the tautology<br />

P ∨ ~<br />

P , by some other statement.<br />

WUCT121 <strong>Logic</strong> 53


Rule of Substitution of Equivalence: If in a tautology we<br />

replace any part of a statement by a statement equivalent to<br />

that part, the result is still a tautology.<br />

Example:<br />

• Determine if P ⇒ (~ Q ∨ P)<br />

is a tautology.<br />

We know: P ⇒ ( Q ⇒ P)<br />

is a tautology and<br />

( P ⇒ Q)<br />

≡~<br />

P ∨ Q<br />

By the rule of substitution<br />

( Q ⇒ P)<br />

≡~<br />

Q ∨ P<br />

Thus, by the rule of substitution of equivalence,<br />

P ⇒ ( Q ⇒ P)<br />

≡ P ⇒ (~ Q ∨ P)<br />

, and hence<br />

P ⇒ (~ Q ∨ P) is also a tautology.<br />

Exercise:<br />

• ~ T ∨ (~ S ∨ T ) a tautology? Yes.<br />

We know ( P ⇒ Q)<br />

≡~<br />

P ∨ Q. So, ( S ⇒ T ) ≡~<br />

S ∨ T and<br />

T ⇒ (~ S ∨ T ) ≡~<br />

T ∨ (~ S ∨ T ) (by RoS).<br />

Hence, ~ T ∨ (~ S ∨ T ) ≡ T ⇒ ( S ⇒ T ) (by SoE).<br />

P ⇒ ( Q ⇒ P) is a known tautology, thus (by (SoE)<br />

T ⇒ ( S ⇒ T ) is a tautology, and since<br />

~ T ∨ (~ S ∨ T ) ≡ T ⇒ ( S ⇒ T ), ~ T ∨ (~ S ∨ T ) is a<br />

tautology.<br />

WUCT121 <strong>Logic</strong> 54


1.6.3. Laws<br />

The following logical equivalences hold:<br />

1. Commutative Laws:<br />

• ( P ∨ Q)<br />

≡ ( Q ∨<br />

• ( P ∧ Q)<br />

≡ ( Q ∧ P)<br />

• ( P<br />

P)<br />

⇔ Q)<br />

≡ ( Q ⇔<br />

P)<br />

2. Associative Laws:<br />

• ((<br />

P ∨ Q)<br />

∨ R) ≡ ( P ∨ ( Q ∨ R)<br />

)<br />

• ((<br />

P ∧ Q)<br />

∧ R) ≡ ( P ∧ ( Q ∧ R)<br />

)<br />

• ((<br />

P ⇔ Q)<br />

⇔ R) ≡ ( P ⇔ ( Q ⇔ R)<br />

)<br />

3. Distributive Laws:<br />

• ( P ∨ ( Q ∧ R)<br />

) ≡ ((<br />

P ∨ Q)<br />

∧ ( P ∨ R)<br />

)<br />

• ( P ∧ ( Q ∨ R)<br />

) ≡ ((<br />

P ∧ Q)<br />

∨ ( P ∧ R)<br />

)<br />

4. Double Negation (Involution) Law:<br />

• ~~<br />

P ≡<br />

P<br />

5. De Morgan’s Laws:<br />

• ~ ( P ∨ Q)<br />

≡<br />

(~<br />

• ~ ( P ∧ Q)<br />

≡ (~<br />

P∧<br />

P∨<br />

~<br />

~<br />

Q)<br />

Q)<br />

WUCT121 <strong>Logic</strong> 55


6. Implication Laws:<br />

• ( P ⇒ Q)<br />

≡<br />

• ( P<br />

⇔ Q)<br />

≡<br />

7. Identity Laws:<br />

• ( P ∨<br />

F ) ≡<br />

• ( P ∧ T ) ≡<br />

P<br />

( ~ P ∨ Q)<br />

(Implication)<br />

((<br />

P ⇒ Q)<br />

∧ ( Q ⇒ P)<br />

) (Biconditional)<br />

P<br />

8. Negation (Complement) Laws:<br />

• ( P∨<br />

• ( P∧<br />

~ P)<br />

≡ T<br />

~ P)<br />

≡<br />

F<br />

9. Dominance Laws:<br />

• ( P ∨ T )<br />

≡ T<br />

• ( P ∧ F ) ≡<br />

F<br />

10. Idempotent Laws:<br />

• ( P ∨<br />

P)<br />

≡<br />

• ( P ∧ P)<br />

≡<br />

P<br />

P<br />

11. Absorption Laws:<br />

• P ∧ ( P ∨ Q)<br />

≡ P<br />

• P ∨ ( P ∧ Q)<br />

≡ P<br />

12. Property of Implication:<br />

• ( P ⇒ ( Q ∧ R)<br />

) ≡ ((<br />

P ⇒ Q)<br />

∧ ( P ⇒ R)<br />

)<br />

• ((<br />

P ∨ Q)<br />

⇒ R) ≡ ((<br />

P ⇒ R)<br />

∧ ( Q ⇒ R)<br />

)<br />

WUCT121 <strong>Logic</strong> 56


Example:<br />

Prove the first of De Morgan’s Laws using truth tables.<br />

P Q ~( P ∨ Q) ~P ∧ ~Q<br />

T T F T F F F<br />

T F F T F F T<br />

F T F T T F F<br />

F F T F T T T<br />

Step: 2* 1 1 2* 1<br />

Since the main connectives are identical, the statements are<br />

equivalent, and first of De Morgan’s Laws is true.<br />

Exercise:<br />

Prove the second of De Morgan’s Laws using truth tables.<br />

P Q ~( P ∧ Q) ~P ∨ ~Q<br />

Step:<br />

Since the main connectives are identical, the statements are<br />

equivalent, and second of De Morgan’s Laws is true.<br />

WUCT121 <strong>Logic</strong> 57


Example:<br />

Using logically equivalent statements, without the direct<br />

use of truth tables, show: ~ ( ~ p ∧ q) ∧ ( p ∨ q) ≡ p<br />

~<br />

( ~ p ∧ q) ∧ ( p ∨ q) ≡ ( ~ ( ~ p)<br />

∨ ~ q) ∧ ( p ∨ q) ( De Morgan)<br />

≡ ( p ∨ ~ q) ∧ ( p ∨ q) ( Double Negation)<br />

≡ p ∨ ( ~ q ∧ q) ( Distributivity)<br />

≡ p ∨ ( q ∧ ~ q) ( Commutativity)<br />

≡ p ∨ F<br />

( Negation)<br />

≡ p<br />

( Identity)<br />

Exercises:<br />

Using logically equivalent statements, without the direct<br />

use of truth tables, show:<br />

• ~ ( p ⇔ q) ≡ ( p ∧ ~ q) ∨ ( q ∧ ~ p)<br />

WUCT121 <strong>Logic</strong> 58


• ( p ⇒ q) ≡ ( ~ q ⇒~<br />

p)<br />

• p ⇒ ( q ∧ r)<br />

≡ ( p ⇒ q)<br />

∧ ( p ⇒ r)<br />

, without using the<br />

property of implication<br />

WUCT121 <strong>Logic</strong> 59

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!