06.04.2014 Views

Dynamic behaviour of suction caissons

Dynamic behaviour of suction caissons

Dynamic behaviour of suction caissons

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

List <strong>of</strong> Figures<br />

1.1 Concepts for <strong>of</strong>fshore wind turbine foundations at relatively shallow waters.<br />

From left to right: Gravity based, <strong>suction</strong> caisson, monopile and<br />

tripod foundation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.2 Gravity based foundation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

1.3 Monopile foundation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

1.4 Tripod foundation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

1.5 Suction caisson. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

2.1 Image (a) and geometry (b) <strong>of</strong> the <strong>suction</strong> caisson . . . . . . . . . . . . . 13<br />

2.2 Degrees <strong>of</strong> freedom for a rigid surface footing: (a) displacements and rotations,<br />

and (b) forces and moments. . . . . . . . . . . . . . . . . . . . . . 16<br />

2.3 BE/FE models <strong>of</strong> (a) surface foundation and (b) <strong>suction</strong> caisson . . . . . 19<br />

2.4 Vertical dynamic stiffness for a surface foundation calculated by two different<br />

BE/FE models. The numerical results are compared with a known<br />

analytical solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

2.5 Vertical dynamic stiffness: variation <strong>of</strong> Poisson’s ratio. H/D = 1, G s = 1.0<br />

MPa and η s = 5% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

2.6 Vertical dynamic stiffness: variation <strong>of</strong> soil stiffness. H/D = 1, ν s = 1/3<br />

and η s = 5% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

2.7 Vertical dynamic stiffness: high frequency <strong>behaviour</strong>. G s = 1.0 MPa,<br />

ν s = 1/3 and η s = 5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

2.8 Vertical dimensionless damping coefficient ˜c V V . G s = 1.0 MPa, ν s = 1/3<br />

and η s = 5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

2.9 Solution for an infinite cylinder subjected to dynamic vertical excitation<br />

in the axial direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br />

3.1 Degrees <strong>of</strong> freedom for a rigid surface footing: (a) displacements and rotations,<br />

and (b) forces and moments. . . . . . . . . . . . . . . . . . . . . . 33<br />

3.2 Geometry (a) and BE/FE model (b) <strong>of</strong> the <strong>suction</strong> caisson. . . . . . . . . 34<br />

3.3 Infinite hollow cylinder (a) and two-dimensional BE/FE model (b) <strong>of</strong> the<br />

cylinder where Ω i and Ω o are the inner and outer boundary element domains,<br />

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

3.4 Torsional impedance: variation <strong>of</strong> skirt length. G s = 1.0 MPa, ν s = 1/3<br />

and η s = 5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

— xiii —

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!