19.04.2014 Views

GATEWAY vectors for Agrobacterium-mediated plant transformation

GATEWAY vectors for Agrobacterium-mediated plant transformation

GATEWAY vectors for Agrobacterium-mediated plant transformation

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Research Update<br />

TRENDS in Plant Science Vol.7 No.5 May 2002<br />

193<br />

What’s next?<br />

Although, the functional question raised<br />

by Levings and Siedow [1] remains<br />

unanswered, knowledge of thioredoxin o<br />

and the associated NTR enriches the<br />

field and opens the door to the<br />

identification of new regulatory events<br />

in <strong>plant</strong> mitochondria.<br />

Acknowledgement<br />

Y.B. gratefully acknowledges the support<br />

of a fellowship from the Swiss National<br />

Science Foundation.<br />

References<br />

1 Levings, C.S. and Siedow, J.N. (1995)<br />

Regulation by redox poise in chloroplast. Science<br />

268, 695–696<br />

2 Laloi, C. et al. (2001) Identification and<br />

characterization of a mitochondrial thioredoxin<br />

system in <strong>plant</strong>. Proc. Natl. Acad. Sci. U. S. A.<br />

98, 14144–14149<br />

3 Buchanan, B.B. (1980) Role of light in the<br />

regulation of chloroplast enzymes. Annu. Rev.<br />

Plant Physiol. 31, 341–374<br />

4 Schürmann, P. and Jacquot, J-P. (2000) Plant<br />

thioredoxin system revisited. Annu. Rev. Plant<br />

Physiol. Plant Mol. Biol. 51, 371–400<br />

5 Buchanan, B.B. et al. The ferredoxin/thioredoxin<br />

system: from discovery to molecular structures<br />

and beyond. Photosynth. Res. (in press)<br />

6 Williams, C.H., Jr et al. (2000) Thioredoxin<br />

reductase: two modes of catalysis have evolved.<br />

Eur. J. Biochem. 267, 6110–6117<br />

7 Arner, E.S.J. and Holmgren, A. (2000)<br />

Physiological functions of thioredoxin and<br />

thioredoxin reductase. Eur. J. Biochem.<br />

267, 6102–6109<br />

8 Fabianeck, R.A. et al. (1998) The active-site<br />

cysteines of the periplasmic thioredoxin-like<br />

protein CcmG of Escherichia coli are important<br />

but not essential <strong>for</strong> cytochrome c maturation<br />

in vivo. J. Bacteriol. 180, 1947–1950<br />

9 Carmel-Harel, O. and Storz, G. (2000) Roles of<br />

the glutathione- and thioredoxin-dependent<br />

reduction systems in the Escherichia coli and<br />

Saccharomyces cerevisiae response to oxidative<br />

stress. Annu. Rev. Microbiol. 54, 439–461<br />

10 Pedrajas, J.R. et al. (1999) Identification and<br />

functional characterization of a novel mitochondrial<br />

thioredoxin system in Saccharomyces cerevisiae.<br />

J. Biol. Chem. 274, 6366–6373<br />

11 Miranda-Vizuete, A. et al. (2000) The<br />

mitochondrial thioredoxin system.<br />

Antioxid. Redox Signal. 2, 801–810<br />

12 Rabilloud, T. et al. (2001) The mitochondrial<br />

antioxidant defense system and its response to<br />

oxidative stress. Proteomics 1, 1105–1110<br />

13 Rouhier, N. et al. (2001) Isolation and<br />

characterization of a new peroxiredoxin from<br />

poplar sieve tubes that uses either glutaredoxin<br />

or thioredoxin as proton donor. Plant Physiol.<br />

127, 1299–1309<br />

14 Cabrillac, D. et al. (2001) The S-locus receptor<br />

kinase is inhibited by thioredoxins and activated<br />

by pollen coat proteins. Nature 410, 220–223<br />

15 Besse, I. and Buchanan, B.B. (1996) Thiocalsin:<br />

a thioredoxin-linked substrate-specific protease<br />

dependent on calcium. Proc. Natl. Acad. Sci.<br />

U. S. A. 93, 3169–3175<br />

16 Mestres-Ortega, D. and Meyer, Y. (1999)<br />

The Arabidopsis thaliana genome encodes at<br />

least four thioredoxins m and a new<br />

prokaryotic-like thioredoxin. Gene 240,<br />

307–331<br />

17 Scheibe, R. (1991) Redox modulation of<br />

chloroplast enzymes. A common principle <strong>for</strong><br />

individual control. Plant Physiol. 96, 1–2<br />

18 Ruelland, E. and Miginiac-Maslow, M. (1999)<br />

Regulation of chloroplast enzyme activities by<br />

thioredoxins: activation or relief of inhibition?<br />

Trends Plant Sci. 4, 136–141<br />

19 Trebitsh, T. and Danon, A. (2001) Translation of<br />

psbA mRNA is regulated by signals initiated by<br />

both photosystems II and I. Proc. Natl. Acad. Sci.<br />

U. S. A. 98, 12289–12294<br />

20 Bodenstein-Lang, J. et al. (1989) Animal and<br />

<strong>plant</strong> mitochondria contain specific thioredoxins.<br />

FEBS Lett. 258, 22–26<br />

21 Marcus, F. et al. (1991) Plant thioredoxin h: an<br />

animal-like thioredoxin occurring in multiple<br />

cell compartments. Arch. Biochem. Biophys. 287,<br />

195–198<br />

22 Hammel, K.E. et al. (1983)<br />

Ferredoxin/flavoprotein-linked pathway <strong>for</strong> the<br />

reduction of thioredoxin. Proc. Natl. Acad. Sci.<br />

U. S. A. 80, 3681–3689<br />

Yves Balmer<br />

Bob B. Buchanan*<br />

Dept of Plant and Microbial Biology,<br />

University of Cali<strong>for</strong>nia, Berkeley, CA 94720,<br />

USA.<br />

*e-mail: view@nature.berkeley.edu<br />

Techniques & Applications<br />

GATEWAY <strong>vectors</strong> <strong>for</strong> <strong>Agrobacterium</strong>-<strong>mediated</strong> <strong>plant</strong><br />

trans<strong>for</strong>mation<br />

Mansour Karimi, Dirk Inzé and Ann Depicker<br />

<strong>Agrobacterium</strong> tumefaciens is the preferred<br />

method <strong>for</strong> trans<strong>for</strong>mation of a wide range<br />

of <strong>plant</strong> species. Commonly, the genes to be<br />

transferred are cloned between the left and<br />

right T-DNA borders of so-called binary<br />

T-DNA <strong>vectors</strong> that can replicate both in<br />

E. coli and <strong>Agrobacterium</strong>. Because these<br />

<strong>vectors</strong> are generally large, cloning can be<br />

time-consuming and laborious. Recently,<br />

the GATEWAY conversion technology<br />

has provided a fast and reliable alternative<br />

to the cloning of sequences into large<br />

acceptor plasmids.<br />

Published online: 11 April 2002<br />

The GATEWAY conversion technology<br />

(Invitrogen, Gaithersburg, MD, USA) is<br />

based on the site-specific recombination<br />

reaction <strong>mediated</strong> by phage λ. DNA<br />

fragments flanked by recombination sites<br />

(att) can be transferred into <strong>vectors</strong> that<br />

contain compatible recombination sites<br />

(attB × attP or attL × attR) in a reaction<br />

<strong>mediated</strong> by the GATEWAY BP<br />

Clonase or LR Clonase Enzyme Mix<br />

(Invitrogen). The entry clones, which can<br />

be considered general donor plasmids, are<br />

made by recombining the DNA fragment<br />

of interest with the flanking attB sites<br />

into the attP site pDONR201 <strong>mediated</strong><br />

by the GATEWAY BP Clonase<br />

Enzyme Mix. Subsequently, the fragment<br />

in the entry clone can be transferred to<br />

any destination vector that contains the<br />

attR sites by mixing both plasmids and by<br />

using the GATEWAY LR Clonase<br />

Enzyme Mix.<br />

Here we describe a set of GATEWAYcompatible<br />

binary T-DNA destination<br />

<strong>vectors</strong> <strong>for</strong> a wide range of different<br />

applications (Fig. 1). Details can be found<br />

on the web site (http://www.<strong>plant</strong>genetics.<br />

rug.ac.be/gateway/), which provides the<br />

complete DNA sequence, a map, and a<br />

Vector NTI view of all constructs. The web<br />

site will be updated regularly by adding<br />

new constructs and relevant in<strong>for</strong>mation.<br />

Backbone of GATEWAY-compatible <strong>vectors</strong><br />

The backbone of all described<br />

GATEWAY-compatible <strong>vectors</strong> is the<br />

plasmid pPZP200 [1]. This plasmid is<br />

relatively small (6.7 kb), contains an<br />

origin <strong>for</strong> replication in E. coli (ColE1) and<br />

in <strong>Agrobacterium</strong> (pVS1), has a pBR322<br />

bom site <strong>for</strong> mobilization from E. coli to<br />

http://<strong>plant</strong>s.trends.com<br />

1360-1385/02/$ – see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: S1360-1385(02)02251-3


194 Research Update<br />

TRENDS in Plant Science Vol.7 No.5 May 2002<br />

Overexpression or<br />

antisense of a gene<br />

Overexpression of<br />

a gene together with<br />

a visible marker<br />

Double-stranded<br />

RNA (post-transcriptional<br />

gene silencing)<br />

C-terminal gfp fusion<br />

N-terminal gfp fusion<br />

N, C-terminal gfp fusion<br />

Promoter analysis<br />

(gfp–gus fusion)<br />

Trans<strong>for</strong>mation or<br />

complementation with<br />

genomic sequences<br />

T-DNA borders<br />

<strong>plant</strong> selectable markers<br />

nos terminator<br />

<strong>Agrobacterium</strong>, and possesses a<br />

streptomycin and/or spectinomycin<br />

resistance gene <strong>for</strong> plasmid selection.<br />

The T-DNA border regions are derived<br />

from the nopaline plasmid pTiT37 and<br />

contain the 25 bp repeat and outer border<br />

regions but no internal T-DNA sequences;<br />

there<strong>for</strong>e, natural T-DNA sequences are<br />

not transferred into trans<strong>for</strong>med <strong>plant</strong>s.<br />

LB<br />

LB<br />

LB<br />

LB<br />

LB<br />

LB<br />

LB<br />

LB<br />

LB<br />

nos promoter<br />

35S promoter<br />

attR1<br />

Fig. 1. Maps of GATEWAY destination <strong>vectors</strong>.<br />

The vector names were assembled with the following<br />

abbreviations and symbols: *, <strong>plant</strong> selectable marker<br />

(nptII, hpt or bar); 2, promoter of 35S; 7, terminator of<br />

35S; GW, GATEWAY cassette (attR1 with or without<br />

CmR, ccdB, R2 orientation); WG, GATEWAY cassette<br />

(R2, ccdB, with or without CmR, R1 orientation); D, greenfluorescent<br />

protein (GFP) cassette (pRolD–EgfpER–t35S);<br />

F, enhanced GFP (Egfp; Clontech Laboratories, Palo Alto,<br />

CA, USA); S, β-glucuronidase (GUS) sequence.<br />

LB<br />

R1<br />

R2<br />

R2<br />

R2<br />

R1<br />

R2<br />

R1<br />

p*2GW7<br />

R2<br />

p*2WG7<br />

p*7WG2<br />

p*7WG2D<br />

LB R1 R2 R2 R1<br />

RB<br />

p*7WGF2<br />

R2<br />

p*7FWG2<br />

R2<br />

p*7FWGF2<br />

p*GWFS7<br />

p*WG<br />

R2<br />

R1<br />

R1<br />

p*7GWIWG2(II)<br />

attR2<br />

ccdB<br />

CmR<br />

R2<br />

p*7GWIWG2(I)<br />

R1<br />

R1 RB<br />

R2<br />

R1<br />

R1<br />

R1<br />

R2<br />

RB<br />

RB<br />

RB<br />

TRENDS in Plant Science<br />

Destination <strong>vectors</strong><br />

All types of T-DNA destination <strong>vectors</strong> are<br />

available with three <strong>plant</strong> selectable marker<br />

genes: the neomycin phosphotransferase II<br />

(nptII ), the hygromycin phosphotransferase<br />

(hpt), and the bialaphos acetyltransferase<br />

(bar) genes, which confer resistance against<br />

kanamycin, hygromycin and glufosinate<br />

ammonium, respectively. All three selectable<br />

markers are under transcriptional<br />

regulation of the nopaline synthase (nos)<br />

promoter and nos terminator [2] and are<br />

placed at the left side of the T-DNA.<br />

The GATEWAY recombination site<br />

<strong>for</strong> introduction of the fragment of interest<br />

was placed at the right side of the T-DNA.<br />

For construction of all <strong>vectors</strong> in this<br />

collection we used the reading frameA (rfA)<br />

RB<br />

RB<br />

35S terminator<br />

Egfp<br />

rolD promoter<br />

R1<br />

RB<br />

RB<br />

RB<br />

intron<br />

gus<br />

RB<br />

of the GATEWAY vector conversion<br />

system (Invitrogen).<br />

For overexpression of a DNA sequence,<br />

the GATEWAY site was placed between<br />

the promoter and the terminator of the<br />

cauliflower mosaic virus (CaMV) 35S<br />

transcript [3] because that promoter is<br />

highly active in most <strong>plant</strong> cells of<br />

transgenic <strong>plant</strong>s. Downstream of the 35S<br />

promoter part, the tobacco mosaic virus<br />

(TMV) Ω leader ensures efficient translation<br />

of the inserted coding sequences [4]. When<br />

both overexpression and cosuppression of a<br />

cloned sequence are desired, the p*2GW7<br />

and p*2WG7 destination <strong>vectors</strong> should<br />

be used. In these <strong>vectors</strong>, the inserted<br />

sequences are transcribed to the outside of<br />

the T-DNA. Single T-DNA inserts will then<br />

usually result in overexpression of the<br />

transgene whereas specially inverted<br />

T-DNA repeats about the right border will<br />

trigger post-transcriptional silencing of the<br />

transgene and concomitant cosuppression of<br />

homologous endogenes. By contrast, when<br />

only overexpression is desired, p*7WG2 is<br />

the vector of choice. All overexpression<br />

<strong>vectors</strong> can also be used <strong>for</strong> antisense<br />

expression of a particular sequence.<br />

A T-DNA destination overexpression<br />

or antisense vector (p*7WGD2) with an<br />

additional screenable marker was made<br />

essentially <strong>for</strong> the trans<strong>for</strong>mation of<br />

tobacco Bright Yellow 2 (BY2), because<br />

early visualization of transgenic calli is<br />

important. The visible marker cassette<br />

contained the rolD promoter fused to the<br />

coding sequences of the enhanced<br />

green-fluorescent protein (GFP) linked to<br />

the endoplasmic reticulum-targeting<br />

signal (EgfpER) and 35S terminator.<br />

For cosuppression of <strong>plant</strong> endogenes, two<br />

series of destination <strong>vectors</strong> p*7GWIWG2(I)<br />

and p*7GWIWG2(II) were designed in a way<br />

similar to that of the GATEWAY cassette<br />

described by S. Varsha Wesley et al. [5].<br />

The intron cloned between the inverted<br />

GATEWAY fragments was selected from<br />

an Arabidopsis database (ac007123.em_pl)<br />

on the basis of ideal features <strong>for</strong> efficient<br />

splicing (A + T-rich with a branch site close<br />

to the consensus). In the p*7GWIWG2 (II)<br />

series, the chloramphenicol resistance<br />

(CmR) marker was removed from the<br />

GATEWAY cassette and placed inside<br />

the intron. In <strong>plant</strong>s, these T-DNA<br />

destination expression vector constructs<br />

will produce double-stranded RNA<br />

(hairpin RNA) from the inserted sequence<br />

of interest, triggering post-transcriptional<br />

gene silencing in an efficient way.<br />

http://<strong>plant</strong>s.trends.com


Research Update<br />

TRENDS in Plant Science Vol.7 No.5 May 2002<br />

195<br />

The p*GWFS7 <strong>vectors</strong> were<br />

constructed <strong>for</strong> promoter analysis.<br />

In these <strong>vectors</strong>, a frame fusion between<br />

the regions coding <strong>for</strong> EgfpER and<br />

β-glucuronidase (gus) were cloned<br />

downstream of the GATEWAY cassette.<br />

For the localization of particular proteins,<br />

another series of T-DNA destination<br />

<strong>vectors</strong> was designed to allow the N-, C-,<br />

or N- and C-termini of the protein of<br />

interest to be fused to the GFP protein.<br />

Finally, the T-DNA destination vector<br />

p*WG allows the rapid cloning of any gene<br />

or sequence to be trans<strong>for</strong>med into <strong>plant</strong>s.<br />

As a test, the gus-coding sequence was<br />

successfully recombined in all sets of T-DNA<br />

destination <strong>vectors</strong>. Where applicable, the<br />

expected expression was observed in<br />

trans<strong>for</strong>med hairy roots or BY2 cells<br />

(<strong>for</strong> an update see http://www.<strong>plant</strong>genetics.<br />

rug.ac.be/gateway/).<br />

References<br />

1 Hajdukiewicz, P. et al. (1994) The small, versatile<br />

pPZP family of <strong>Agrobacterium</strong> binary <strong>vectors</strong> <strong>for</strong><br />

<strong>plant</strong> trans<strong>for</strong>mation. Plant Mol. Biol. 25, 989–994<br />

2 Hellens, R.P. et al. (2000) pGreen: a versatile and<br />

flexible binary Ti vector <strong>for</strong> <strong>Agrobacterium</strong>-<strong>mediated</strong><br />

<strong>plant</strong> trans<strong>for</strong>mation. Plant Mol. Biol. 42, 819–832<br />

3 Odell, J.T. et al. (1985) Identification of DNA<br />

sequences required <strong>for</strong> activity of the cauliflower<br />

mosaic virus 35S promoter. Nature 313, 810–812<br />

4 Gallie, D.R. et al. (1989) Visualizing mRNA<br />

expression in <strong>plant</strong> protoplasts: factors<br />

influencing efficient mRNA uptake and<br />

translation. Plant Cell 1, 301–311<br />

5 Wesley, S.V. et al. (2001) Construct design <strong>for</strong><br />

efficient, effective and high-throughput gene<br />

silencing in <strong>plant</strong>s. Plant J. 27, 581–590<br />

Mansour Karimi<br />

Dirk Inzé*<br />

Ann Depicker<br />

Dept of Plant Systems Biology, Flanders<br />

Interuniversity Institute <strong>for</strong> Biotechnology (VIB),<br />

Ghent University, K.L. Ledeganckstraat 35,<br />

B-9000 Gent, Belgium.<br />

*e-mail: diinz@gengenp.rug.ac.be<br />

Signal transduction<br />

The special series of Trends in Plant Science articles focussing on<br />

multiple aspects of signal transduction concludes with the May<br />

issue. The complete series is listed below:<br />

• Hirschi, K. (2001) Vacuolar H + /Ca 2+ transport: who’s directing the<br />

traffic? Trends Plant Sci. 6, 100–104<br />

• Pickett, J.A. and Poppy, G.M. (2001) Switching on <strong>plant</strong> genes<br />

by external chemical signals. Trends Plant Sci. 6, 137–139<br />

• Corpas, F.J., Barroso, J.B. and del Río, L.A. (2001) Peroxisomes<br />

as a source of reactive oxygen species and nitric oxide signal<br />

molecules in <strong>plant</strong> cells. Trends Plant Sci. 6, 145–150<br />

• Wendehenne, D., Pugin, A., Klessig, D.F. and Durner, J. (2001)<br />

Nitric oxide: comparative synthesis and signaling in animal<br />

and <strong>plant</strong> cells. Trends Plant Sci. 6, 177–183<br />

• Paul, M., Pellny, T. and Goddijn, O. (2001) Enhancing<br />

photosynthesis with sugar signals. Trends Plant Sci. 6, 197–200<br />

• Memelink, J., Verpoorte, R. and Kijne, J.W. (2001) ORCAnization<br />

of jasmonate-responsive gene expression in alkaloid<br />

metabolism. Trends Plant Sci. 6, 212–219<br />

• Munnik, T. (2001) Phosphatidic acid: an emerging <strong>plant</strong> lipid<br />

second messenger. Trends Plant Sci. 6, 227–233<br />

• Knight, H. and Knight, M.R. (2001) Abiotic stress signalling<br />

pathways: specificity and cross-talk. Trends Plant Sci. 6, 262–267<br />

• Schmülling, T. (2001) CREam of cytokinin signalling: receptor<br />

identified. Trends Plant Sci. 6, 281–284<br />

• Bartels, D. (2001) Targeting detoxification pathways: an efficient<br />

approach to obtain <strong>plant</strong>s with multiple stress tolerance? Trends<br />

Plant Sci. 6, 284–286<br />

• Stals, H. and Inzé, D. (2001) When <strong>plant</strong> cells decide to divide.<br />

Trends Plant Sci. 6, 359–364<br />

• Nürnberger, T. and Scheel, D. (2001) Signal transmission in the<br />

<strong>plant</strong> immune response. Trends Plant Sci. 6, 372–379<br />

• Kim, T-H. , Hoffman, K., von Arnim, A.G. and Chamovitz, D.A.<br />

(2001) PCI complexes: pretty complex interactions in diverse<br />

signaling pathways. Trends Plant Sci. 6, 379–386<br />

• Innes, R.W. (2001) Mapping out roles of MAP kinases in <strong>plant</strong><br />

defense. Trends Plant Sci. 6, 392–394<br />

• Reed, J.W. (2001) Roles and activities of Aux/IAA proteins in<br />

Arabidopsis. Trends Plant Sci. 6, 420–425<br />

• Harrar, Y., Bellini, C. and Faure, J-D. (2001) FKBPs: at the crossroads<br />

of folding and transduction. Trends Plant Sci. 6, 426–431<br />

• Brownlee, C. (2001) The long and the short of stomatal density<br />

signals. Trends Plant Sci. 6, 441–442<br />

• Clouse, S.D. (2001) Integration of light and brassinosteroid<br />

signals in etiolated seedling growth. Trends Plant Sci. 6, 443–445<br />

• Bachmair, A., Novatchkova, M., Potuschak , T. and Eisenhaber, F.<br />

(2001) Ubiquitylation in <strong>plant</strong>s: a post-genomic look at a<br />

post-translational modification. Trends Plant Sci. 6, 463–470<br />

• Rodermel, S. (2001) Pathways of plastid-to-nucleus signaling.<br />

Trends Plant Sci. 6, 471–478<br />

• Lahaye, T. and Bonas, U. (2001) Molecular secrets of bacterial<br />

type III effector proteins. Trends Plant Sci. 6, 479–485<br />

• Hedden, P. (2001) Hormones at Mendel’s birthplace.<br />

Trends Plant Sci. 6, 498–500<br />

• Zhang, S. and Klessig, D.F. (2001) MAPK cascades in <strong>plant</strong><br />

defense signaling. Trends Plant Sci. 6, 520–527<br />

• Muday, G.K. and Delong, A. (2001) Polar auxin transport:<br />

controlling where and how much. Trends Plant Sci. 6, 535–542<br />

• Carré, I.A. (2002) ELF3: a circadian safeguard to buffer effects of<br />

light. Trends Plant Sci. 7, 4–6<br />

• Seo, M. and Koshiba, T. (2002) Complex regulation of ABA<br />

biosynthesis in <strong>plant</strong>s. Trends Plant Sci. 7, 41–48<br />

• Lindsey, K., Casson , S. and Chilley, P. (2002) Peptides: new<br />

signalling molecules in <strong>plant</strong>s. Trends Plant Sci. 7, 78–83<br />

• Lee, J. and Rudd, J.J. (2002) Calcium-dependent protein<br />

kinases: versatile <strong>plant</strong> signalling components necessary <strong>for</strong><br />

pathogen defence. Trends Plant Sci. 7, 97–98<br />

• Drøbak , B.K. and Heras, B. (2002) Nuclear phosphoinositides<br />

could bring FYVE alive. Trends Plant Sci. 7, 132–138<br />

• Fankhauser, C. (2002) Light perception in <strong>plant</strong>s: cytokinins<br />

and red light join <strong>for</strong>ces to keep phytochrome B active.<br />

Trends Plant Sci. 7, 143–145<br />

• Balmer, Y. and Buchanan, B. (2002) Yet another <strong>plant</strong><br />

thioredoxin. Trends Plant Sci. 7, 191–193<br />

• Briggs, W.R. and Christie , J.M. (2002) Phototropins 1 and 2:<br />

versatile <strong>plant</strong> blue-light receptors. Trends Plant Sci. 7, 204–210<br />

• Weber, H. (2002) Fatty acid-derived signals in <strong>plant</strong>s. Trends<br />

Plant Sci. 7, 217–224<br />

• Xing, T., Ouellet, T. and Miki, B.L. (2002) Towards genomics and<br />

proteomics studies of protein phosphorylation in<br />

<strong>plant</strong>–pathogen interactions. Trends Plant Sci. 7, 224–230<br />

http://<strong>plant</strong>s.trends.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!