21.04.2014 Views

Molecular modelling of entangled polymer fluids under flow The ...

Molecular modelling of entangled polymer fluids under flow The ...

Molecular modelling of entangled polymer fluids under flow The ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ii<br />

CONTENTS<br />

2.3 Doi-Edwards model <strong>of</strong> <strong>entangled</strong> <strong>polymer</strong>s . . . . . . . . . . . . . . . . . 21<br />

2.3.1 Linear rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

2.3.2 Contour length fluctuations . . . . . . . . . . . . . . . . . . . . . 26<br />

2.3.3 Non-linear rheology . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

2.4 Chain stretch and constraint release . . . . . . . . . . . . . . . . . . . . 30<br />

2.4.1 <strong>The</strong> Milner McLeish and Likhtman model . . . . . . . . . . . . . 32<br />

2.4.2 Comments on the MMcL model . . . . . . . . . . . . . . . . . . . 35<br />

2.5 Branched <strong>polymer</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

2.5.1 Star Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

2.5.2 H <strong>polymer</strong>s and the pom-pom model . . . . . . . . . . . . . . . . 37<br />

2.5.3 Randomly branched <strong>polymer</strong>s . . . . . . . . . . . . . . . . . . . . 40<br />

2.5.4 Discussion <strong>of</strong> multimode pom-pom model . . . . . . . . . . . . . 41<br />

Appendix 2.I <strong>The</strong> Ito-Stratonovich relation . . . . . . . . . . . . . . . . . . 42<br />

Appendix 2.II Rescaling a Gaussian walk . . . . . . . . . . . . . . . . . . . . 43<br />

Appendix 2.III Obstructed diffusion . . . . . . . . . . . . . . . . . . . . . . . 44<br />

3 <strong>The</strong> pom-pom model in exponential shear. 48<br />

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br />

3.2 Single mode pom-pom model . . . . . . . . . . . . . . . . . . . . . . . . 50<br />

3.2.1 Solutions to the orientation equation . . . . . . . . . . . . . . . . 50<br />

3.2.2 Solutions to the stretch equation . . . . . . . . . . . . . . . . . . 54<br />

3.2.3 Behaviour <strong>of</strong> shear stress in exponential shear . . . . . . . . . . . 57<br />

3.3 <strong>The</strong> multimode method applied to exponential shear . . . . . . . . . . . 57<br />

3.3.1 Predicting exponential shear data using non-linear spectra from<br />

extensional rheology. . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />

3.3.2 Measuring the non-linear parameters from exponential shear. . . 62<br />

3.3.3 A verification <strong>of</strong> the method for a different melt. . . . . . . . . . 68<br />

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70<br />

4 <strong>The</strong>ory <strong>of</strong> CCR and chain stretch 74<br />

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

4.2 Tube model for linear <strong>polymer</strong>s with CCR and stretch . . . . . . . . . . 74<br />

4.2.1 Rouse retraction term . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

4.2.2 Tube diameter <strong>under</strong> deformation . . . . . . . . . . . . . . . . . 75<br />

4.2.3 CCR stretch relaxation . . . . . . . . . . . . . . . . . . . . . . . 77<br />

4.2.4 Suppression <strong>of</strong> reptation due to stretch . . . . . . . . . . . . . . . 78<br />

4.2.5 Langevin equation . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br />

4.2.6 Equation for the tangent correlation function . . . . . . . . . . . 79<br />

4.2.7 Number <strong>of</strong> entanglements . . . . . . . . . . . . . . . . . . . . . . 81

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!