24.04.2014 Views

potential-impacts-of-climate-change-on-the-swan-and-canning-rivers

potential-impacts-of-climate-change-on-the-swan-and-canning-rivers

potential-impacts-of-climate-change-on-the-swan-and-canning-rivers

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Potential <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Climate Change <strong>on</strong><br />

<strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong><br />

Prepared for <strong>the</strong> Swan River Trust by <strong>the</strong> Technical Advisory Panel<br />

December 2007


Table <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>tents<br />

INTRODUCTION .............................................................................................................................. 11<br />

1 CLIMATE CHANGE OBSERVATIONS & PROJECTIONS .............................................................13<br />

1.1 Global Climate Change Observati<strong>on</strong>s ......................................................................................13<br />

1.1.1 Global Air <strong>and</strong> Sea Temperatures .............................................................................................13<br />

1.1.2 Potential Evaporati<strong>on</strong> ...............................................................................................................14<br />

1.1.3 Sea Level Rise .........................................................................................................................15<br />

1.1.4 Wea<strong>the</strong>r Patterns <strong>and</strong> Rainfall ..................................................................................................16<br />

1.2 Interacti<strong>on</strong> between Human Activity <strong>and</strong> Climate Change .........................................................16<br />

1.3 Global Emissi<strong>on</strong> Scenarios..........................................................................................................17<br />

1.4 Global Climate Change Projecti<strong>on</strong>s.............................................................................................19<br />

1.4.1 Air <strong>and</strong> Ocean Temperatures ....................................................................................................20<br />

1.4.2 Sea Level Rise .........................................................................................................................21<br />

1.4.3 Wea<strong>the</strong>r Patterns <strong>and</strong> Rainfall ..................................................................................................22<br />

1.5 Climate Change Observati<strong>on</strong>s for <strong>the</strong> Swan <strong>and</strong> Canning Rivers ...............................................23<br />

1.5.1 Air <strong>and</strong> Estuary Temperatures ..................................................................................................23<br />

1.5.2 Storm Surges............................................................................................................................23<br />

1.5.3 Hydrodynamics <strong>and</strong> <strong>the</strong> salt wedge..........................................................................................25<br />

1.5.4 Relative Sea Level Rise ...........................................................................................................26<br />

1.5.5 Seas<strong>on</strong>al Total Rainfall ............................................................................................................27<br />

1.5.6 Annual <strong>and</strong> Daily River Flows ...................................................................................................28<br />

1.5.7 Extreme Rainfall <strong>and</strong> Flooding ................................................................................................28<br />

1.6 Climate Change Projecti<strong>on</strong>s for <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong> ...................................................31<br />

1.6.1 Scenarios..................................................................................................................................31<br />

1.6.2 Broad Qualitative Expectati<strong>on</strong>s ................................................................................................31<br />

1.6.3 Air <strong>and</strong> Estuary Temperatures ..................................................................................................33<br />

1.6.4 Storm surges ............................................................................................................................36<br />

1.6.5 Hydrodynamics <strong>and</strong> <strong>the</strong> salt wedge .........................................................................................36<br />

1.6.6 Relative Sea Level Rise ...........................................................................................................37<br />

1.6.7 Winter Rainfall ..........................................................................................................................37<br />

1.6.8 Annual River Flow.....................................................................................................................38<br />

1.6.9 Extreme Rainfall <strong>and</strong> Flooding above <strong>the</strong> Tidal Z<strong>on</strong>e ..............................................................39<br />

1.7 Summary .....................................................................................................................................41<br />

2 POTENTIAL CLIMATE CHANGE IMPACTS FOR SWAN AND CANNING RIVERS ......................42<br />

2.1 Impacts <strong>on</strong> Broader Catchment (Av<strong>on</strong>) .......................................................................................42


2.2 Impacts <strong>on</strong> Swan <strong>and</strong> Canning rRivers .......................................................................................43<br />

2.2.1 Impacts <strong>on</strong> Ecology ..................................................................................................................43<br />

2.2.2 Human Health <strong>and</strong> Social Impacts ...........................................................................................53<br />

2.2.3 Impacts <strong>on</strong> Infrastructure ..........................................................................................................54<br />

2.2.4 Ec<strong>on</strong>omic Impacts ....................................................................................................................57<br />

2.3 Summary ....................................................................................................................................58<br />

3 ADAPTATION TO THE IMPACTS OF CLIMATE CHANGE ...........................................................60<br />

3.1 Strategies to inform adaptati<strong>on</strong> to <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> in <strong>the</strong> broader catchment (Av<strong>on</strong>).....60<br />

3.2 Strategies to inform adaptati<strong>on</strong> to <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> in Swan <strong>and</strong> Canning Rivers ..........63<br />

3.2.1 Adapting to <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong> ecology ................................................................................................63<br />

3.2.2 Adapting to Human Health <strong>and</strong> Social Impacts ........................................................................68<br />

3.2.3 Adapting to Impacts <strong>on</strong> Infrastructure .......................................................................................70<br />

3.2.4 Adapting to Ec<strong>on</strong>omic Impacts .................................................................................................71<br />

3.3 Summary .....................................................................................................................................73<br />

4 Planning for Adaptati<strong>on</strong> .................................................................................................................74<br />

4.1 Planning Legislati<strong>on</strong> ....................................................................................................................74<br />

4.2 Adaptati<strong>on</strong> resp<strong>on</strong>ses to <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong> existing development ...............................75<br />

4.3 Resp<strong>on</strong>se to planning <str<strong>on</strong>g>of</str<strong>on</strong>g> new areas ............................................................................................77<br />

5 KEY FINDINGS ..............................................................................................................................78<br />

6 References .....................................................................................................................................80


List <str<strong>on</strong>g>of</str<strong>on</strong>g> Tables<br />

TABLE 1 - Observed rates <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise <strong>and</strong> estimated c<strong>on</strong>tributi<strong>on</strong>s from different sources. .....13<br />

Table 2 - Recent global assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> human infl uence <strong>on</strong> <strong>the</strong> trend, <strong>and</strong> projecti<strong>on</strong>s for extreme<br />

wea<strong>the</strong>r events for which <strong>the</strong>re is an observed late twentieth-century trend.. ...................................15<br />

Table 3 - Atmospheric CO2 c<strong>on</strong>centrati<strong>on</strong>s <strong>and</strong> equivalent CO2 c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r ghgs (ppm)<br />

<strong>and</strong> aerosols.. ....................................................................................................................................16<br />

Table 4 - CO2 stabilisati<strong>on</strong> equivalents <str<strong>on</strong>g>of</str<strong>on</strong>g> SRES scenarios. .............................................................19<br />

Table 5 - Projected mean surface global warming for <strong>the</strong> key selected scenarios ............................20<br />

Table 6 - Projected globally averaged surface warming <strong>and</strong> sea level rise at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

twenty-fi rst century ...........................................................................................................................22<br />

Table 7 - Highest water levels recorded at Fremantle 1897 - 2006 (metres above AHD). ................24<br />

Table 8 - Major processes infl uencing sea level variability at Fremantle ...........................................26<br />

Table 9 – Major water quality trends in <strong>the</strong> Swan Canning river system from 1995-2004 ................30<br />

Table 10 - Observed <strong>and</strong> projected (south western Australia/Swan River) climatic or climatically associated<br />

trends from global human development .............................................................................32<br />

Table 11 - Projected annual mean warming - south west (surface level) ..........................................34<br />

Table 12 - Projected relative sea level rise for south west regi<strong>on</strong>......................................................37<br />

Table 13 - Projected mean winter rainfall decrease - south west ......................................................38<br />

Table 14 - Streamfl ow decrease from 1925 - 1975............................................................................39<br />

Table 15 - Observed <strong>and</strong> projected (south western Australia/Swan Rriver) trends in rainfall extremes<br />

<strong>and</strong> fl oods ......................................................................................................................................40<br />

Table 16 - Anticipated future <str<strong>on</strong>g>change</str<strong>on</strong>g>s in <strong>the</strong> broader Av<strong>on</strong> Catchment ............................................43<br />

Table 17 - Ecological <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong> fringing vegetati<strong>on</strong> due to predicated increases in sea level <strong>and</strong><br />

decreases in river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f ....................................................................................................................47<br />

Table 18 - Physical factors effects <strong>on</strong> marine infrastructure ..............................................................57<br />

Table 19 - Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g>, adaptati<strong>on</strong> strategies <strong>and</strong> risk rating for <strong>the</strong> broader Av<strong>on</strong><br />

Catchment .........................................................................................................................................62<br />

Table 20 - Ecological system <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>and</strong> adaptati<strong>on</strong>s for <strong>the</strong> Swan <strong>and</strong> Canning river system ......64<br />

Table 21 - Human health <strong>and</strong> social <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>, adaptati<strong>on</strong> strategies <strong>and</strong> risk<br />

rating..................................................................................................................................................69<br />

Table 22 - Adaptati<strong>on</strong> strategies for marine infrastructure .................................................................69<br />

Table 23 - Ec<strong>on</strong>omic <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>, adaptati<strong>on</strong> strategies <strong>and</strong> risk rating ....................73<br />

Table 24 - Adaptati<strong>on</strong> measures ........................................................................................................86


List <str<strong>on</strong>g>of</str<strong>on</strong>g> Figures<br />

Figure 1 - Mean surface temperature - south west <strong>and</strong> global trends: anomalies from 1961–90 base ............................... 14<br />

Figure 2 - Sea surface temperature anomaly as a departure from <strong>the</strong> mean between 1900 <strong>and</strong> 2000 ............................... 14<br />

Figure 3 - Multi-model averages <strong>and</strong> assessed ranges for surface warming ...................................................................... 20<br />

Figure 4 - Projected patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g>s ......................................................................................................... 22<br />

Figure 5 – Recorded sea surface temperature <str<strong>on</strong>g>change</str<strong>on</strong>g>s for <strong>the</strong> global oceans, Indian Ocean <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong> West Australian<br />

c<strong>on</strong>tinental shelf.................................................................................................................................................................... 23<br />

Figure 6 - Storminess index based <strong>on</strong> <strong>the</strong> storm surges recorded at Fremantle.................................................................. 24<br />

Figure 7 - Recurrence intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> water levels at Barrack Street ........................................................................................ 25<br />

Figure 8 - Time series <str<strong>on</strong>g>of</str<strong>on</strong>g> Fremantle sea level (<strong>on</strong>e year running mean) with <strong>the</strong> linear trend <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.54 mm per annum superimposed<br />

in red ...................................................................................................................................................................... 26<br />

Figure 9 - Time series <str<strong>on</strong>g>of</str<strong>on</strong>g> Fremantle sea level anomaly with <strong>the</strong> linear trend removed ....................................................... 27<br />

Figure 10 - Change in daily fl ows for 1952–75 compared with 1976–99 for Yarragil Brook near Dwellingup ..................... 27<br />

Figure 11 - Average m<strong>on</strong>thly rainfall for south west <str<strong>on</strong>g>of</str<strong>on</strong>g> a line from Jurien to Bremer Bay .................................................... 28<br />

Figure 12 – Predicted sea surface temperature <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>f Western Australia in 2061-2070 when compared to 1991-2000<br />

under scenario A2................................................................................................................................................................. 35<br />

Figure 13 - Relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature to oxygen c<strong>on</strong>sumpti<strong>on</strong> <strong>and</strong> nutrient fl uxes from <strong>swan</strong> river sediments ............... 35<br />

Figure 14 - Predicted recurrence intervals for mean sea level rise <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.10 metres (2030), 0.35 metres (2070) <strong>and</strong> 0.50<br />

metres (2100) ....................................................................................................................................................................... 36<br />

Figure 15 – Waves overtopping a seawall al<strong>on</strong>g <strong>the</strong> Kwinana Freeway during a winter storm in 1995. ............................. 56


List <str<strong>on</strong>g>of</str<strong>on</strong>g> Appendixes<br />

Appendix 1: Draft Scenarios for Swan River Trust Climate Working Group ......................................85<br />

Appendix 2: Rainfall/Streamfl ow Scenario Calculati<strong>on</strong>s ...................................................................95<br />

Table 2-3. Projected winter rainfall <strong>and</strong> streamfl ow <str<strong>on</strong>g>change</str<strong>on</strong>g>s - ensemble median S/W ....................97<br />

Appendix 3: Emissi<strong>on</strong> Scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> IPCC Special Report <strong>on</strong> Emissi<strong>on</strong> Scenarios (SRES) ....101<br />

Appendix 4: Work File .....................................................................................................................104<br />

Appendix 5: Birds in <strong>the</strong> Swan <strong>and</strong> Canning River System ............................................................106


Preamble<br />

During <strong>the</strong> 21 st century <strong>the</strong> ecology <strong>and</strong> character <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan <strong>and</strong> Canning Rivers will <str<strong>on</strong>g>change</str<strong>on</strong>g>,<br />

forced by <str<strong>on</strong>g>climate</str<strong>on</strong>g>.<br />

By mid-century, community visi<strong>on</strong>s will anticipate a river system materially different from today.<br />

Goals for a healthy system will have adapted accordingly.<br />

Broadly, <str<strong>on</strong>g>change</str<strong>on</strong>g> in <strong>the</strong> river system will be driven by <strong>the</strong> inter-play <str<strong>on</strong>g>of</str<strong>on</strong>g> warming, reduced river infl ows<br />

<strong>and</strong> sea level rise.<br />

Ecologically <strong>and</strong> hydrodynamically <strong>the</strong> river system will become more marine in character.<br />

It is too early to reliably anticipate <strong>the</strong> pace <str<strong>on</strong>g>of</str<strong>on</strong>g> any systemic <str<strong>on</strong>g>change</str<strong>on</strong>g> but this should become clearer<br />

during <strong>the</strong> next few decades.<br />

These <str<strong>on</strong>g>change</str<strong>on</strong>g>s will re-defi ne future criteria <str<strong>on</strong>g>of</str<strong>on</strong>g> river health, productivity <strong>and</strong> foreshore c<strong>on</strong>necti<strong>on</strong>.<br />

This report is a fi rst attempt to create scenarios projecting <strong>the</strong> main comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>, <strong>the</strong>ir<br />

possible systemic inter-acti<strong>on</strong>s <strong>and</strong> <strong>the</strong>ir management implicati<strong>on</strong>s.


Executive summary<br />

Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> is evident as an infl uence <strong>on</strong> <strong>the</strong> Swan Canning river system <strong>and</strong> has already produced<br />

irreversible <str<strong>on</strong>g>change</str<strong>on</strong>g>. The rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> is increasing relative to <strong>the</strong> past century <strong>and</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g>s<br />

to <strong>the</strong> familiar river regime will become increasingly evident <strong>and</strong> signifi cant as <strong>the</strong> century progresses.<br />

Tidal <strong>and</strong> n<strong>on</strong>-tidal secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>rivers</strong> will be altered by signifi cantly diminished stream-fl ow<br />

with warming <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> water bodies <strong>and</strong> surrounding envir<strong>on</strong>ment. There will be <str<strong>on</strong>g>change</str<strong>on</strong>g>s in <strong>the</strong> seas<strong>on</strong>al<br />

timing <str<strong>on</strong>g>of</str<strong>on</strong>g> fl ows with smaller <strong>and</strong> later autumn/winter fl ows. Tidal reaches will also be affected<br />

by sea level rise <strong>and</strong> by superimposed storm surges.<br />

The lower winter fl ows, especially during <strong>the</strong> transiti<strong>on</strong>s from salt water to fresh in spring <strong>and</strong> autumn,<br />

could prol<strong>on</strong>g <strong>and</strong> exacerbate low oxygen c<strong>on</strong>diti<strong>on</strong>s across signifi cant lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> tidal<br />

riverine reaches.<br />

The ‘marine’ nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> tidal reaches, especially <strong>the</strong> riverine secti<strong>on</strong>s, will last l<strong>on</strong>ger (become<br />

more marine in nature), a <str<strong>on</strong>g>change</str<strong>on</strong>g> driven by already diminished stream-fl ows. This trend will be accentuated<br />

through <strong>the</strong> century by c<strong>on</strong>tinuing low fl ows <strong>and</strong> accelerating sea level rise. Banks, foreshores<br />

<strong>and</strong> low-lying <strong>rivers</strong>ide infrastructure developments in tidal reaches will be altered or suffer<br />

from <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> inundati<strong>on</strong> from sea level rise <strong>and</strong> by fl ooding from storm surge associated with<br />

sea level rise <str<strong>on</strong>g>of</str<strong>on</strong>g> at least 0.5 metres, <strong>and</strong> possibly a metre or more, in this century.<br />

The n<strong>on</strong>-tidal reaches <strong>and</strong> inl<strong>and</strong> waterways will be affected by <strong>the</strong> stress <str<strong>on</strong>g>of</str<strong>on</strong>g> warming <strong>and</strong> drying.<br />

The warming will progress at around 0.2OC per decade over <strong>the</strong> next 30 years <strong>and</strong> is likely to accelerate<br />

bey<strong>on</strong>d that time. River fl ows <strong>and</strong> salt loads will c<strong>on</strong>tinue to diminish under a c<strong>on</strong>tinued drying<br />

trend. Bank vegetati<strong>on</strong> <strong>and</strong> catchment vegetati<strong>on</strong> will <str<strong>on</strong>g>change</str<strong>on</strong>g> under increasing moisture stress <strong>and</strong><br />

fi re regimes in <strong>the</strong> catchment will become more severe.<br />

Winter fl ooding is not likely to increase <strong>and</strong> may diminish fur<strong>the</strong>r, but it is more likely than not that<br />

summer fl ooding will not decrease <strong>and</strong> might in fact increase. Coupled with <strong>the</strong> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture<br />

stress <strong>and</strong> fi re, fl ooding in <strong>the</strong> upper reaches may be an agent <str<strong>on</strong>g>of</str<strong>on</strong>g> altered erosi<strong>on</strong> <strong>and</strong> sediment<br />

regimes, even if winter fl ood fl ows are diminished. The summer <strong>and</strong> autumn ‘event’ fl ows will bring<br />

large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> fi ne sediments, organic matter <strong>and</strong> nutrients into <strong>the</strong> system at <strong>the</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> year<br />

when low oxygen levels <strong>and</strong> algal bloom problems are most likely to occur. The specifi c <str<strong>on</strong>g>impacts</str<strong>on</strong>g> will<br />

depend <strong>on</strong> <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> larger catchment <strong>and</strong> where <strong>the</strong> rain falls.<br />

The climatic <str<strong>on</strong>g>change</str<strong>on</strong>g>s projected for <strong>the</strong> Swan Canning river system will have major <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong><br />

catchment, ecology, social values, infrastructure <strong>and</strong> ec<strong>on</strong>omics during <strong>the</strong> next 20 – 70 years.<br />

Water, sediment, nutrients <strong>and</strong> salt loads from <strong>the</strong> broader catchment to <strong>the</strong> <strong>rivers</strong> are expected to<br />

reduce with widespread drying. The hotter <strong>and</strong> more arid <str<strong>on</strong>g>climate</str<strong>on</strong>g> will alter <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> native<br />

vegetati<strong>on</strong> <strong>and</strong> l<strong>and</strong> use practices in <strong>the</strong> regi<strong>on</strong>. Fuel loads will take l<strong>on</strong>ger to accumulate but fire<br />

seas<strong>on</strong>s will be l<strong>on</strong>ger.<br />

The key <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan Canning river system will be driven by sea level rise<br />

<strong>and</strong> reduced streamfl ow, which will increase <strong>the</strong> period <str<strong>on</strong>g>of</str<strong>on</strong>g> salinity stratifi cati<strong>on</strong> <strong>and</strong> <strong>the</strong> penetrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> marine water upstream. Key biological processes will be affected, including: biological oxygen<br />

dem<strong>and</strong>; nutrient cycling; <strong>and</strong> sediment retenti<strong>on</strong>. Changes in <strong>the</strong> distributi<strong>on</strong> <strong>and</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

species are very likely <strong>and</strong> <strong>the</strong> seas<strong>on</strong>al patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> productivity <strong>and</strong> food-web dynamics will almost<br />

certainly be altered. The lower estuary, which experiences marine c<strong>on</strong>diti<strong>on</strong>s for much <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> year<br />

will be least affected. The upper estuary will be most affected with increased <strong>and</strong> <strong>on</strong>going problems<br />

associated with eutrophicati<strong>on</strong>, such as algal blooms <strong>and</strong> fi sh kills.<br />

The social values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system are likely to be threatened by a reducti<strong>on</strong> in passive recreati<strong>on</strong>al<br />

facilities through loss <str<strong>on</strong>g>of</str<strong>on</strong>g> beaches, wetl<strong>and</strong>s <strong>and</strong> associated vegetati<strong>on</strong> throughout <strong>the</strong> lower, middle<br />

<strong>and</strong> upper estuary. Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> aes<strong>the</strong>tic value may occur due to a greater frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> algal blooms<br />

<strong>and</strong> fi sh kills in <strong>the</strong> upper estuary, which will lead to public percepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an unhealthy envir<strong>on</strong>ment.


Increased development <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure to mitigate sea level rise, including seawalls, revetments<br />

<strong>and</strong> barrages will alter <strong>the</strong> current ic<strong>on</strong>ic Western Australian l<strong>and</strong>scape to produce a more ‘European’<br />

or ‘artifi cial’ l<strong>and</strong>scape.<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> uncertainty involved it will be important to maintain good communicati<strong>on</strong>s with river<br />

users <strong>and</strong> residents so every<strong>on</strong>e agrees <strong>and</strong> underst<strong>and</strong>s <strong>the</strong> means <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong> <strong>and</strong> ways to<br />

increase system resilience.<br />

The main ec<strong>on</strong>omic <str<strong>on</strong>g>impacts</str<strong>on</strong>g> relate to <strong>the</strong> increasing costs <str<strong>on</strong>g>of</str<strong>on</strong>g> water quality management. Reduced<br />

water quality has already necessitated c<strong>on</strong>siderable investment in a range <str<strong>on</strong>g>of</str<strong>on</strong>g> remedial projects in<br />

<strong>the</strong> system. Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> is likely to exacerbate eutrophicati<strong>on</strong> <strong>and</strong> fi sh deaths in <strong>the</strong> upper estuary,<br />

<strong>and</strong> increased river <strong>and</strong> l<strong>and</strong> values may require corresp<strong>on</strong>ding increased costs associated with<br />

m<strong>on</strong>itoring <strong>and</strong> interventi<strong>on</strong> programs such as oxygenati<strong>on</strong>.<br />

The increased fi sh deaths <strong>and</strong> algal blooms may reduce <strong>the</strong> recreati<strong>on</strong>al amenity <strong>and</strong> value for recreati<strong>on</strong>al<br />

users, which may in turn have an impact <strong>on</strong> local businesses in <strong>the</strong> regi<strong>on</strong>.<br />

Ec<strong>on</strong>omic loss will also result from a need to protect, retr<str<strong>on</strong>g>of</str<strong>on</strong>g>i t, repair or replace infrastructure due<br />

to increased sea levels <strong>and</strong> storm surges. In additi<strong>on</strong>, mitigati<strong>on</strong> or modifi cati<strong>on</strong> measures may be<br />

required to protect <strong>rivers</strong>ide suburbs into <strong>the</strong> future.<br />

Adaptati<strong>on</strong> refers to reducing or accommodating to <strong>the</strong> adverse <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>. The ability<br />

to adapt to <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> will be aided by <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> appropriate <strong>and</strong> robust informati<strong>on</strong> <strong>on</strong> key<br />

variables that may <strong>the</strong>n be used to develop strategies for protecti<strong>on</strong>, accommodati<strong>on</strong>, avoidance or<br />

retreat.<br />

Key adaptati<strong>on</strong> strategies for <strong>the</strong> Swan Canning river system include:<br />

• Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> foreshore areas to provide a sound basis for determining<br />

future planning setbacks, managing foreshore vegetati<strong>on</strong> <strong>and</strong> erosi<strong>on</strong>, <strong>and</strong><br />

designing erosi<strong>on</strong> c<strong>on</strong>trol measures.<br />

• Development <strong>and</strong> adopti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> innovative technologies to improve water quality<br />

through oxygenati<strong>on</strong>, trapping nutrient <strong>and</strong> ensuring adequate fl ows.<br />

• Using m<strong>on</strong>itoring <strong>and</strong> modelling to predict future <str<strong>on</strong>g>change</str<strong>on</strong>g>s by exp<strong>and</strong>ing m<strong>on</strong>itoring<br />

into upstream areas where <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>s are most likely to occur.<br />

• Improving our underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> how fi shes <strong>and</strong> <strong>the</strong>ir supporting ecosystems resp<strong>on</strong>d<br />

to <str<strong>on</strong>g>change</str<strong>on</strong>g>s <strong>and</strong> how <strong>the</strong>se <str<strong>on</strong>g>change</str<strong>on</strong>g>s impact biodiversity, recreati<strong>on</strong>al <strong>and</strong> commercial<br />

values.<br />

• Protecting infrastructure by incorporating sea level rises <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1 – 0.3 m into <strong>the</strong> design,<br />

maintenance or replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> roads, river jetties, boat pens <strong>and</strong> ramps, sea<br />

walls <strong>and</strong> groynes.<br />

Adaptive management will ensure <strong>the</strong> Swan River Trust <strong>and</strong> wider community are in <strong>the</strong> best possible<br />

positi<strong>on</strong> to deal with <strong>the</strong> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>and</strong> maintain <strong>the</strong> valuable ecosystem integrity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan Canning river system.


INTRODUCTION<br />

In recent millennia <strong>the</strong> earth’s <str<strong>on</strong>g>climate</str<strong>on</strong>g> has been characterised by a comparatively stable inter-glacial<br />

period. C<strong>on</strong>sequently, throughout <strong>the</strong> 20th century, a suppositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> stability has been adopted<br />

in <strong>the</strong> decisi<strong>on</strong>-making process. This c<strong>on</strong>veniently simple <strong>and</strong> reassuring assumpti<strong>on</strong> is now<br />

questi<strong>on</strong>able in light <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> global c<strong>on</strong>sensus <strong>on</strong> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>. It is particularly true where defensible<br />

planning policies need to be developed.<br />

The Intergovernmental Panel <strong>on</strong> Climate Change [IPCC] Fourth Assessment Report (AR4) (IPCC,<br />

2007a) presents <strong>the</strong> most authoritative statements <strong>on</strong> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> to date 1 . It c<strong>on</strong>cludes that:<br />

Warming <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>climate</str<strong>on</strong>g> system is unequivocal as now evident from observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> increases<br />

in global average air <strong>and</strong> ocean temperatures, widespread melting <str<strong>on</strong>g>of</str<strong>on</strong>g> snow <strong>and</strong> ice, <strong>and</strong> rising<br />

global average sea level [IPCC 2007a; p. 5].<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> observed increase in globally averaged temperatures since <strong>the</strong> mid-20th century<br />

is very likely 2 due to <strong>the</strong> observed increase in anthropogenic greenhouse gas c<strong>on</strong>centrati<strong>on</strong>s<br />

[IPCC 2007a; p. 10].<br />

C<strong>on</strong>tinued greenhouse gas emissi<strong>on</strong>s at or above current rates would cause fur<strong>the</strong>r warming <strong>and</strong><br />

induce many <str<strong>on</strong>g>change</str<strong>on</strong>g>s in <strong>the</strong> global <str<strong>on</strong>g>climate</str<strong>on</strong>g> system during <strong>the</strong> 21st century that would very likely be<br />

larger than those observed during <strong>the</strong> 20th century [IPCC 2007a; p. 13].<br />

Human induced warming <str<strong>on</strong>g>of</str<strong>on</strong>g> our planet is clearly <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> most pressing envir<strong>on</strong>mental c<strong>on</strong>cerns <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

our age. Rising sea levels, shifting patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> <strong>and</strong> altered frequency <strong>and</strong> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extreme events will have far reaching implicati<strong>on</strong>s around <strong>the</strong> globe. These <str<strong>on</strong>g>impacts</str<strong>on</strong>g> will be particularly<br />

felt in coastal envir<strong>on</strong>ments. While <str<strong>on</strong>g>change</str<strong>on</strong>g>s in <str<strong>on</strong>g>climate</str<strong>on</strong>g> are set to c<strong>on</strong>tinue through <strong>the</strong> next 100<br />

years <strong>and</strong> bey<strong>on</strong>d, <str<strong>on</strong>g>impacts</str<strong>on</strong>g> are also <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern at current planning time-scales.<br />

In Western Australia, human populati<strong>on</strong> centres are largely c<strong>on</strong>centrated <strong>on</strong> estuaries <strong>and</strong> river<br />

systems. In <strong>the</strong> capital city <str<strong>on</strong>g>of</str<strong>on</strong>g> Perth, <strong>the</strong> Swan Canning river system serves as an important focal<br />

point with more than 1.5 milli<strong>on</strong> people residing in <strong>the</strong> wider catchment Like most heavily populated<br />

aquatic ecosystems, <strong>the</strong> Swan Canning river system has a l<strong>on</strong>g history <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental stress,<br />

dem<strong>on</strong>strated by recurring algal blooms, low dissolved oxygen levels <strong>and</strong> seas<strong>on</strong>al fi sh deaths.<br />

Planning, protecti<strong>on</strong> <strong>and</strong> management <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan Canning <strong>rivers</strong> system is coordinated by <strong>the</strong><br />

Swan River Trust. The Trust recognises <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> will alter <strong>the</strong> ecological<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>rivers</strong> <strong>and</strong> have implicati<strong>on</strong>s for <strong>the</strong> way people interact with <strong>the</strong> system as a<br />

whole. In light <str<strong>on</strong>g>of</str<strong>on</strong>g> this, <strong>the</strong> current range <str<strong>on</strong>g>of</str<strong>on</strong>g> management practices employed in <strong>the</strong> catchment will<br />

need to accommodate a new underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> in <strong>the</strong> regi<strong>on</strong>.<br />

In this c<strong>on</strong>text, <strong>the</strong> Trust commissi<strong>on</strong>ed a background report to provide an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>and</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> adaptati<strong>on</strong> strategies for <strong>the</strong> Swan Canning river system. The Swan<br />

Canning river system is here defi ned as <strong>the</strong> Swan Canning estuary above Fremantle Port <strong>and</strong> <strong>the</strong><br />

<strong>rivers</strong> <strong>and</strong> <strong>the</strong>ir catchments that discharge into <strong>the</strong> estuaries. The current report was developed by<br />

<strong>the</strong> Swan River Trust Technical Advisory Panel, comprising 15 leading Western Australian scientists<br />

1 It is important to note that <strong>the</strong> AR4 is <strong>the</strong> outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> an exhaustive review process that str<strong>on</strong>gly inhibits speculative<br />

c<strong>on</strong>clusi<strong>on</strong>s <strong>and</strong> as a result is c<strong>on</strong>servative in some predicti<strong>on</strong>s (e.g. sea level rise)<br />

2 In IPCC (2007), <strong>the</strong> following terms are used to indicate <strong>the</strong> assessed likelihood, using expert judgement, <str<strong>on</strong>g>of</str<strong>on</strong>g> an outcome:<br />

Likelihood as % probability <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence<br />

Virtually certain Extremely likely Very likely Likely More likely than not<br />

> 99% > 95% > 90% > 66% > 50%<br />

Extremely unlikely Very unlikely Unlikely<br />

< 5% < 10% < 33%<br />

9


from a diverse range <str<strong>on</strong>g>of</str<strong>on</strong>g> backgrounds, <strong>and</strong> c<strong>on</strong>sultants with relevant <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> expertise.<br />

The overall objectives were to:<br />

• provide an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> current state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> science with reference to regi<strong>on</strong>al<br />

scenarios for Western Australia;<br />

• examine how <strong>the</strong> projected effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> may impact <strong>the</strong> Swan Canning<br />

river system <strong>and</strong> determine which envir<strong>on</strong>mental stressors are most likely to produce<br />

physical <str<strong>on</strong>g>change</str<strong>on</strong>g>s to <strong>the</strong> system;<br />

• assess how <strong>the</strong> ecological, social <strong>and</strong> ec<strong>on</strong>omic values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong><br />

are most likely to be affected by <strong>the</strong> projected <str<strong>on</strong>g>change</str<strong>on</strong>g>s in <strong>the</strong> future <str<strong>on</strong>g>climate</str<strong>on</strong>g>; <strong>and</strong><br />

• c<strong>on</strong>sider feasible <strong>and</strong> effective adaptati<strong>on</strong> measures that may assist <strong>the</strong> Swan River<br />

Trust toge<strong>the</strong>r with <strong>the</strong> local, State <strong>and</strong> Comm<strong>on</strong>wealth governments <strong>and</strong> <strong>the</strong> community<br />

to protect <strong>the</strong> ecological health <strong>and</strong> community benefi t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan <strong>and</strong> Canning<br />

<strong>rivers</strong>.<br />

The IPCC Summary for Policy Makers (IPCC 2007b) is a major reference for this report. In additi<strong>on</strong><br />

<strong>the</strong> CSIRO <strong>and</strong> Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Meteorology scenarios for Australia have been c<strong>on</strong>sidered to provide<br />

increased detail at <strong>the</strong> nati<strong>on</strong>al level (CSIRO 2007). While <strong>the</strong> informati<strong>on</strong> presented represents <strong>the</strong><br />

best available science, it must be interpreted with an underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> three inherent sources <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

uncertainty:<br />

• future, unpredictable, human behaviour <strong>on</strong> emissi<strong>on</strong> c<strong>on</strong>trol;<br />

• science limitati<strong>on</strong>s; <strong>and</strong><br />

• natural variability.<br />

In light <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se uncertainties, a projecti<strong>on</strong>s-based approach c<strong>on</strong>sidering a range <str<strong>on</strong>g>of</str<strong>on</strong>g> possible outcomes<br />

(also known as scenarios) is adopted here. This refl ects <strong>the</strong> practical risk management<br />

approach adopted by <strong>the</strong> IPCC (Appendix 1). For <strong>the</strong> purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> this report, <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> refers<br />

to any <str<strong>on</strong>g>change</str<strong>on</strong>g> during time, whe<strong>the</strong>r due to natural variability or as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> human activity (IPCC<br />

2007b).<br />

Observed <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> is discussed in Chapter 2. Where possible, <strong>the</strong> cause <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se observed<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g>s is outlined separately but it is important to note that clear attributi<strong>on</strong> is not always possible.<br />

The term anthropogenic <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> means <str<strong>on</strong>g>change</str<strong>on</strong>g> specifi cally attributed to human activity. Projecti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> in Chapter 2 essentially deal with this anthropogenic element.<br />

The <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong> are outlined in Chapter 3, whilst<br />

adaptati<strong>on</strong> strategies to address <strong>the</strong>se <str<strong>on</strong>g>impacts</str<strong>on</strong>g> are discussed in Chapter 4. Chapter 5 discusses <strong>the</strong><br />

role <strong>and</strong> implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> in planning.<br />

Overall, <strong>the</strong> report is intended as an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> important implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> for <strong>the</strong><br />

Swan Canning river system in c<strong>on</strong>juncti<strong>on</strong> with adaptati<strong>on</strong> opti<strong>on</strong>s <strong>and</strong> future research directi<strong>on</strong>s.<br />

The informati<strong>on</strong> presented here will be used as a basis for fur<strong>the</strong>r work to support key management<br />

programs to protect envir<strong>on</strong>mental health <strong>and</strong> community benefi t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system. In this c<strong>on</strong>text, it<br />

provides a baseline for future activities by <strong>the</strong> Swan River Trust as it c<strong>on</strong>tinues to manage <strong>the</strong> river<br />

system in <strong>the</strong> backdrop <str<strong>on</strong>g>of</str<strong>on</strong>g> new pressures associated with our changing <str<strong>on</strong>g>climate</str<strong>on</strong>g>. The report also<br />

menti<strong>on</strong>s major ancillary <str<strong>on</strong>g>change</str<strong>on</strong>g>s such as populati<strong>on</strong> growth <strong>and</strong> water dem<strong>and</strong> where <strong>the</strong>re are<br />

important interacti<strong>on</strong>s with <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>.<br />

10


1 Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> observati<strong>on</strong>s & predicti<strong>on</strong>s<br />

1.1 Global <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> observati<strong>on</strong>s<br />

At c<strong>on</strong>tinental, regi<strong>on</strong>al, <strong>and</strong> ocean basin scales, numerous l<strong>on</strong>g-term <str<strong>on</strong>g>change</str<strong>on</strong>g>s in <str<strong>on</strong>g>climate</str<strong>on</strong>g><br />

have been observed. These include <str<strong>on</strong>g>change</str<strong>on</strong>g>s in Arctic temperatures <strong>and</strong> ice, widespread<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g>s in precipitati<strong>on</strong> amounts, ocean salinity, wind patterns <strong>and</strong> aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme<br />

wea<strong>the</strong>r including droughts, heavy precipitati<strong>on</strong>, heat waves <strong>and</strong> <strong>the</strong> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> tropical cycl<strong>on</strong>es<br />

(IPCC 2007b; p. 18).<br />

This secti<strong>on</strong> provides <strong>on</strong> overview <str<strong>on</strong>g>of</str<strong>on</strong>g> observed <str<strong>on</strong>g>change</str<strong>on</strong>g>s in <str<strong>on</strong>g>climate</str<strong>on</strong>g> at a global scale. The informati<strong>on</strong><br />

presented here draws heavily from <strong>the</strong> Intergovernmental Panel <strong>on</strong> Climate Change Fourth Assessment<br />

Report, Summary for Policy Makers (SPM) (IPCC 2007b), <strong>and</strong> may be c<strong>on</strong>sidered in c<strong>on</strong>juncti<strong>on</strong><br />

with more detailed reports available from <strong>the</strong> IPCC website www.ipcc.ch(.)<br />

1.1.1 Global air <strong>and</strong> sea temperatures<br />

Warming <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>climate</str<strong>on</strong>g> system is unequivocal, as is now evident from observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> increases<br />

in global average air <strong>and</strong> ocean temperatures, widespread melting <str<strong>on</strong>g>of</str<strong>on</strong>g> snow <strong>and</strong> ice,<br />

<strong>and</strong> rising global average sea level. Paleo<str<strong>on</strong>g>climate</str<strong>on</strong>g> informati<strong>on</strong> supports <strong>the</strong> interpretati<strong>on</strong><br />

that <strong>the</strong> warmth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> last half century is unusual in at least <strong>the</strong> previous 1300 years. (IPCC<br />

2007b; p. 5).<br />

Mean global surface temperatures have increased by 0.76° C since 1850 (IPCC 2007b). During <strong>the</strong><br />

last 50 years, <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> warming has increased at an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.13° C per decade with 11 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

past 12 years am<strong>on</strong>g <strong>the</strong> 11 warmest <strong>on</strong> record (IPCC 2007b).<br />

The average c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric water vapour has also increased since <strong>the</strong> 1980s over l<strong>and</strong>,<br />

ocean <strong>and</strong> <strong>the</strong> upper troposphere. This increase is broadly c<strong>on</strong>sistent with extra water vapour held<br />

in warmer air.<br />

Global sea surface temperature anomalies have increased by 0.5° C during <strong>the</strong> past 30 years relative<br />

to <strong>the</strong> 20th century average (Figure 2). Recent fi ndings suggest more than 80 per cent <str<strong>on</strong>g>of</str<strong>on</strong>g> surface<br />

warming is being translated into ocean heating down to depths <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 km.<br />

11


Figure 1 Mean surface temperature - south west <strong>and</strong> global trends: anomalies from 1961 -<br />

1990 base Source: Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Meteorology (2007)<br />

Figure 2 Sea surface temperature anomaly as a departure from <strong>the</strong> mean between 1900 <strong>and</strong><br />

2000 Data source: http://www.ncdc.noaa.gov/<br />

1.1.2 Potential evaporati<strong>on</strong><br />

Potential evaporati<strong>on</strong> may add to vegetative stress in catchments, causing xeric (defi cient in moisture)<br />

shifts <strong>and</strong> increased competiti<strong>on</strong> for water. Potential evaporati<strong>on</strong> is <strong>the</strong> evaporati<strong>on</strong> that would<br />

occur if moisture supply were unc<strong>on</strong>strained over a large area. ‘Actual evaporati<strong>on</strong>’ is c<strong>on</strong>strained<br />

by moisture availability. Pan evaporati<strong>on</strong>, measured from small pans with unc<strong>on</strong>strained water availability,<br />

aims to give a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>potential</str<strong>on</strong>g> evaporati<strong>on</strong> but can be affected by particularities <str<strong>on</strong>g>of</str<strong>on</strong>g> siting<br />

<strong>and</strong> is highly susceptible to <str<strong>on</strong>g>change</str<strong>on</strong>g>s in site envir<strong>on</strong>ment Observed <str<strong>on</strong>g>change</str<strong>on</strong>g>s in pan evaporati<strong>on</strong><br />

over Australia are generally <str<strong>on</strong>g>of</str<strong>on</strong>g> low statistical signifi cance. These issues give rise to circumstances<br />

in which reported regi<strong>on</strong>al or local trends may be as much related to <strong>the</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> sites selected for<br />

sampling purposes as <strong>the</strong>y are for strength <str<strong>on</strong>g>of</str<strong>on</strong>g> signal from actual trends in <str<strong>on</strong>g>potential</str<strong>on</strong>g> evaporati<strong>on</strong>. Pan<br />

evaporati<strong>on</strong> data need to be regarded critically when used as an indicator <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>potential</str<strong>on</strong>g> evaporati<strong>on</strong>.<br />

Observed trends in <str<strong>on</strong>g>potential</str<strong>on</strong>g> evaporati<strong>on</strong> are thus complex <strong>and</strong> affected by measurement error. A<br />

12


decreasing trend in pan evaporati<strong>on</strong> during recent decades in some countries seems c<strong>on</strong>trary to<br />

projected trends in Global Climate Model (GCM) based estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>potential</str<strong>on</strong>g> evaporati<strong>on</strong> <strong>and</strong> has<br />

been referred to as <strong>the</strong> ‘pan evaporati<strong>on</strong> paradox’ (CSIRO 2007; p. 80). Australian regi<strong>on</strong>al trends in<br />

pan evaporati<strong>on</strong> are not simply refl ective <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature rise but also refl ect infl uences <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>al<br />

trends in o<strong>the</strong>r factors, including cloud cover, wind <strong>and</strong> aerosol polluti<strong>on</strong>. For example, in nor<strong>the</strong>rn<br />

Australia pan evaporati<strong>on</strong> observati<strong>on</strong>s display a small downwards trend apparently infl uenced by<br />

increased cloudiness, rainfall <strong>and</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Asian aerosols. South western Australian observati<strong>on</strong>s<br />

have seen small increase in pan evaporati<strong>on</strong>s, c<strong>on</strong>sistent with broad expectati<strong>on</strong>s, but subject to <strong>the</strong><br />

issues <strong>and</strong> errors outlined above.<br />

1.1.3 Sea level rise<br />

Total sea level rise during <strong>the</strong> 20th century was approximately 0.17 m [0.12 m to 0.22 m] 3 . Fur<strong>the</strong>r,<br />

global average sea level rose at an average rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.8 mm per year from 1961 – 2003 with highest<br />

rates observed from 1993 – 2003 (~3.1 mm per year).<br />

The various c<strong>on</strong>tributi<strong>on</strong>s to sea level rise for 1961 – 1993 <strong>and</strong> 1993 – 2003 respectively, are presented<br />

in Table 1. The sum <str<strong>on</strong>g>of</str<strong>on</strong>g> estimated <str<strong>on</strong>g>climate</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong>s is c<strong>on</strong>sistent with directly observed<br />

total sea level rise within uncertainties <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level measurement. These estimates are based <strong>on</strong><br />

improved satellite <strong>and</strong> in-situ data relative to <strong>the</strong> previous IPCC Third Assessment Report (IPCC<br />

2001).<br />

Recent data indicate that losses from <strong>the</strong> ice sheets <str<strong>on</strong>g>of</str<strong>on</strong>g> Greenl<strong>and</strong> <strong>and</strong> Antarctica are very likely to<br />

have c<strong>on</strong>tributed to sea level rise during <strong>the</strong> 1993 – 2003 period (see Table 1). Outfl ow from some<br />

Greenl<strong>and</strong> <strong>and</strong> Antarctic glaciers has increased, draining ice from <strong>the</strong> interior <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ice sheets<br />

(IPCC 2007b). The corresp<strong>on</strong>ding increased ice sheet mass loss has <str<strong>on</strong>g>of</str<strong>on</strong>g>ten followed thinning, reducti<strong>on</strong><br />

or loss <str<strong>on</strong>g>of</str<strong>on</strong>g> ice shelves or loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fl oating glacier t<strong>on</strong>gues. Such dynamic ice loss explains most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> Antarctic net mass loss <strong>and</strong> approximately half that <str<strong>on</strong>g>of</str<strong>on</strong>g> Greenl<strong>and</strong>. The remainder <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ice loss<br />

from Greenl<strong>and</strong> is believed to have occurred when melting has exceeded accumulati<strong>on</strong> from snowfall.<br />

Table 1 Observed rates <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise <strong>and</strong> estimated c<strong>on</strong>tributi<strong>on</strong>s from different sources<br />

Source: IPCC (2007b; p.7)<br />

[Source SPM4]<br />

3 In general, uncertainty ranges for results in <strong>the</strong> SPM are 90 per cent uncertainty intervals unless stated o<strong>the</strong>rwise, i.e.<br />

<strong>the</strong>re is an estimated 5 per cent likelihood that <strong>the</strong> value could be above <strong>the</strong> range given in square brackets <strong>and</strong> 5 per cent<br />

likelihood that <strong>the</strong> value could be below.<br />

13


1.1.4 Wea<strong>the</strong>r patterns <strong>and</strong> rainfall<br />

L<strong>on</strong>g-term trends in precipitati<strong>on</strong> have been observed from 1900 – 2005 over many parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

world. Signifi cantly increased precipitati<strong>on</strong> was observed in eastern parts <str<strong>on</strong>g>of</str<strong>on</strong>g> North <strong>and</strong> South America,<br />

nor<strong>the</strong>rn Europe <strong>and</strong> nor<strong>the</strong>rn <strong>and</strong> central Asia. C<strong>on</strong>versely, drying has been observed in <strong>the</strong><br />

Sahel, <strong>the</strong> Mediterranean, sou<strong>the</strong>rn Africa <strong>and</strong> parts <str<strong>on</strong>g>of</str<strong>on</strong>g> sou<strong>the</strong>rn Asia <strong>and</strong> south western Australia.<br />

Large-scale <str<strong>on</strong>g>change</str<strong>on</strong>g>s in sub-tropical atmospheric circulati<strong>on</strong> have been observed in <strong>the</strong> 1960s <strong>and</strong><br />

1970s. These are <str<strong>on</strong>g>of</str<strong>on</strong>g> particular relevance to south west Western Australia. Work associated with <strong>the</strong><br />

Indian Ocean Climate Initiative 4 in particular, has reported <str<strong>on</strong>g>change</str<strong>on</strong>g>s in <strong>the</strong> Sou<strong>the</strong>rn Hemisphere<br />

circulati<strong>on</strong> that reduce <strong>the</strong> likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> storm development over south west Western Australia <strong>and</strong><br />

largely explain observed decreases in south west winter rainfall. These <str<strong>on</strong>g>change</str<strong>on</strong>g>s include delayed<br />

northwards movement in <strong>the</strong> z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclogenesis, which brings autumn, winter <strong>and</strong> spring rainfalls<br />

to south western Australia <strong>and</strong> an associated weakening <str<strong>on</strong>g>of</str<strong>on</strong>g> storm intensity <strong>and</strong> frequency.<br />

1.2 Interacti<strong>on</strong> between human activity <strong>and</strong> <str<strong>on</strong>g>climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>change</str<strong>on</strong>g><br />

‘Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> observed increase in globally averaged temperatures since <strong>the</strong> mid-20th century is very<br />

likely due to <strong>the</strong> observed increase in anthropogenic greenhouse gas c<strong>on</strong>centrati<strong>on</strong>s’ (IPCC 2007b;<br />

p. 10).<br />

This fi nding is based <strong>on</strong> a c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>ger <strong>and</strong> improved records, an exp<strong>and</strong>ed range <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>s,<br />

<strong>and</strong> better simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> available for <strong>the</strong> previous report <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

IPCC (IPCC 2001). The results <str<strong>on</strong>g>of</str<strong>on</strong>g> new attributi<strong>on</strong> studies evaluating whe<strong>the</strong>r observed <str<strong>on</strong>g>change</str<strong>on</strong>g>s are<br />

c<strong>on</strong>sistent with <strong>the</strong> expected resp<strong>on</strong>se to external forcing were also taken into account.<br />

Assessments from <strong>the</strong> IPCC (2007b) in relati<strong>on</strong> to <strong>the</strong> likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> observed trends <strong>and</strong> human c<strong>on</strong>tributi<strong>on</strong><br />

to o<strong>the</strong>r more specifi c aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> global <str<strong>on</strong>g>climate</str<strong>on</strong>g> are presented in Table 2. These trends are<br />

broadly evident in Australian <str<strong>on</strong>g>climate</str<strong>on</strong>g> observati<strong>on</strong>s (see CSIRO 2007; pp 17-29).<br />

4 Indian Ocean Climate Initiative Stage 2: Report <str<strong>on</strong>g>of</str<strong>on</strong>g> Stage 2 Activity - www.ioci.org.au<br />

14


Table 2 Recent global assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> human influence <strong>on</strong> <strong>the</strong> trend, <strong>and</strong> projecti<strong>on</strong>s for<br />

extreme wea<strong>the</strong>r events for which <strong>the</strong>re is an observed late twentieth-century trend Source:<br />

IPCC (2007b; p. 9)<br />

a See Table 3.7 in IPCC (2007b) for fur<strong>the</strong>r details regarding defi niti<strong>on</strong>s.<br />

b See Table TS-4, Box TS.3.4 <strong>and</strong> Table 9.4 in IPCC (2007b),.<br />

c Decreased frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> cold days <strong>and</strong> nights (coldest 10%).<br />

d Warming <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> most extreme days <strong>and</strong> nights each year.<br />

e Increased frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> hot days <strong>and</strong> nights (hottest 10%).<br />

f Magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic c<strong>on</strong>tributi<strong>on</strong>s not assessed. Attributi<strong>on</strong> for <strong>the</strong>se phenomena based <strong>on</strong> expert judgement<br />

ra<strong>the</strong>r than formal attributi<strong>on</strong> studies.<br />

g Extreme high sea level depends <strong>on</strong> average sea level <strong>and</strong> <strong>on</strong> regi<strong>on</strong>al wea<strong>the</strong>r systems. It is defi ned here as <strong>the</strong> highest<br />

1% <str<strong>on</strong>g>of</str<strong>on</strong>g> hourly values <str<strong>on</strong>g>of</str<strong>on</strong>g> observed sea level at a stati<strong>on</strong> for a given reference period.<br />

h Changes in observed extreme high sea level closely follow <strong>the</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g>s in average sea level {5.5.2.6}. It is very likely<br />

that anthropogenic activity c<strong>on</strong>tributed to a rise in average sea level. {9.5.2}<br />

i In all scenarios, <strong>the</strong> projected global average sea level at 2100 is higher than in <strong>the</strong> reference period {10.6}. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>change</str<strong>on</strong>g>s in regi<strong>on</strong>al wea<strong>the</strong>r systems <strong>on</strong> sea level extremes has not been assessed.<br />

1.3 Global emissi<strong>on</strong> scenarios<br />

CO 2<br />

equivalents<br />

CO2, <strong>the</strong> prime anthropogenic greenhouse gas (GHG), has risen from a pre-industrial atmospheric<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ~280 ppm to a current (2005) level <str<strong>on</strong>g>of</str<strong>on</strong>g> 379 ppm. O<strong>the</strong>r key l<strong>on</strong>g-lived anthropogenic<br />

GHGs include methane, nitrous oxide <strong>and</strong> halocarb<strong>on</strong>s. Anthropogenic aerosols (such as smoke<br />

haze, polluti<strong>on</strong> <strong>and</strong> dust) have a shorter life in <strong>the</strong> atmosphere <strong>and</strong> a negative effect <strong>on</strong> solar forcing.<br />

The net anthropogenic effect <strong>on</strong> radiative forcing is positive <strong>and</strong> currently equivalent to <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CO2 al<strong>on</strong>e (Table 3).<br />

15


Table 3 Atmospheric CO 2 c<strong>on</strong>centrati<strong>on</strong>s <strong>and</strong> equivalent CO 2 c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r GHGs<br />

(ppm) <strong>and</strong> aerosols Equivalent c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-lived GHGs <strong>and</strong> negative forcing <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic<br />

aerosols. Data source: IPCC (2007b)<br />

Pre-Industrial Current - CO 2<br />

C<strong>on</strong>centrati<strong>on</strong> Equivalents (2005) in ppm CO 2<br />

Greenhouse Gases<br />

Aerosols<br />

Net Equivalence<br />

GHGs +Aerosols<br />

CO 2<br />

ppm<br />

CO 2<br />

All GHGs CO 2<br />

GHG CO 2<br />

Aerosols<br />

CO 2<br />

Net<br />

al<strong>on</strong>e<br />

All anthropogenic l<strong>on</strong>g Dimming by Net equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

lived GHGs incl CO 2<br />

Aerosols anthropogenic GHGs <strong>and</strong><br />

aerosols<br />

~ 280 +379 +435 -60 +375<br />

Special report <strong>on</strong> emissi<strong>on</strong> scenarios (SRES) <strong>and</strong> stabilisati<strong>on</strong> emissi<strong>on</strong><br />

scenarios<br />

Future greenhouse gas emissi<strong>on</strong>s will be <strong>the</strong> product <str<strong>on</strong>g>of</str<strong>on</strong>g> demographic growth, socio-ec<strong>on</strong>omic<br />

development <strong>and</strong> technological <str<strong>on</strong>g>change</str<strong>on</strong>g>, <strong>the</strong> extents <str<strong>on</strong>g>of</str<strong>on</strong>g> which are highly uncertain. In light <str<strong>on</strong>g>of</str<strong>on</strong>g> this,<br />

a range <str<strong>on</strong>g>of</str<strong>on</strong>g> scenarios has been developed, presenting alternative images <str<strong>on</strong>g>of</str<strong>on</strong>g> how <strong>the</strong> future might<br />

unfold. These are termed <strong>the</strong> SRES scenarios by <strong>the</strong> IPCC (2000) (Appendix 1) .<br />

The SRES scenarios do not include additi<strong>on</strong>al <str<strong>on</strong>g>climate</str<strong>on</strong>g> initiatives, which means that no scenarios are<br />

included that explicitly assume implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> emissi<strong>on</strong>s targets <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Kyoto Protocol. An illustrative<br />

scenario was chosen for each <str<strong>on</strong>g>of</str<strong>on</strong>g> six scenario groups A1B, A1FI, A1T, A2, B1 <strong>and</strong> B2 in <strong>the</strong><br />

recent IPCC (2007b) (see Appendix 1).<br />

As <strong>the</strong> world has moved slowly towards targeted c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> emissi<strong>on</strong>s, it has also been<br />

useful to think in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> stabilisati<strong>on</strong> scenarios. Stabilisati<strong>on</strong> scenarios are those that assume <strong>the</strong><br />

world community sets <strong>and</strong> achieves a chosen c<strong>on</strong>centrati<strong>on</strong> limit <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> dioxide or carb<strong>on</strong> dioxide<br />

equivalent in <strong>the</strong> atmosphere.<br />

Favoured stabilisati<strong>on</strong> targets are 450 ppm or 550 ppm net anthropogenic carb<strong>on</strong> dioxide equivalent<br />

(a doubling <str<strong>on</strong>g>of</str<strong>on</strong>g> pre-industrial levels). These targets would seek to avoid ‘dangerous levels’ <str<strong>on</strong>g>of</str<strong>on</strong>g> global<br />

warming, seen as a real risk at around 2° C <str<strong>on</strong>g>of</str<strong>on</strong>g> warming (IPCC 2007b). The ‘safer’ 450 ppm level<br />

requires immediate <strong>and</strong> heavy reducti<strong>on</strong>s in emissi<strong>on</strong>s. Even <strong>the</strong> 550 ppm stabilisati<strong>on</strong> level would<br />

need current, rapidly growing, CO 2<br />

emissi<strong>on</strong>s to be returned to present levels by 2030 <strong>and</strong> steadily<br />

reduced to 50 per cent by 2100. In this c<strong>on</strong>text, <strong>the</strong> 550 ppm stabilisati<strong>on</strong> is viewed as optimistic,<br />

whereas <strong>the</strong> 450 ppm scenario would seem highly unlikely.<br />

Scenario selecti<strong>on</strong> for a realistic range <str<strong>on</strong>g>of</str<strong>on</strong>g> risks<br />

Most available informati<strong>on</strong> <strong>on</strong> future <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> is based <strong>on</strong> <strong>the</strong> SRES scenarios. There is an<br />

approximate equivalence between <strong>the</strong>se scenarios <strong>and</strong> different CO 2<br />

stabilisati<strong>on</strong> levels at 2100<br />

(see Table 4). The A2 SRES however is not a stabilisati<strong>on</strong> scenario. It increases more slowly in <strong>the</strong><br />

early part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> century <strong>and</strong> c<strong>on</strong>tinues with an upward slope at 2100. C<strong>on</strong>sequently, <strong>the</strong> B1 SRES<br />

scenario will be used in this report as equivalent to <strong>the</strong> 550 ppm stabilisati<strong>on</strong> scenario. The approximate<br />

CO 2<br />

equivalencies are shown in Table 4.<br />

The Technical Advisory Panel has chosen three <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> SRES scenarios (B1, A1B <strong>and</strong> A2) as providing<br />

a realistic selecti<strong>on</strong> for c<strong>on</strong>siderati<strong>on</strong> in future risk planning <strong>and</strong> management. These represent<br />

550, 850 <strong>and</strong> 1250 ppm CO 2<br />

<strong>and</strong> are <strong>the</strong> subject <str<strong>on</strong>g>of</str<strong>on</strong>g> fur<strong>the</strong>r detailed projecti<strong>on</strong>s (IPCC 2007b).<br />

16


Table 4 CO 2<br />

stabilisati<strong>on</strong> equivalents <str<strong>on</strong>g>of</str<strong>on</strong>g> SRES scenarios<br />

CO 2<br />

stabilisati<strong>on</strong> equivalents <str<strong>on</strong>g>of</str<strong>on</strong>g> SRES scenarios<br />

SRES scenario Approximate CO 2<br />

equivalent at 2100*<br />

B1 600 (~550)<br />

A1T 700<br />

B2 800<br />

A1B 850<br />

A2 1250<br />

A1F1 1550<br />

*Approximate CO 2<br />

equivalent c<strong>on</strong>centrati<strong>on</strong>s ppm corresp<strong>on</strong>ding to <strong>the</strong> computed radiative forcing<br />

due to anthropogenic greenhouse gases <strong>and</strong> aerosols in 2100.<br />

Data source: IPCC (2007b)<br />

In <strong>the</strong> opini<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Technical Advisory Panel, in <strong>the</strong> spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> emissi<strong>on</strong>s scenarios outlined<br />

above, <strong>the</strong> A2 <strong>and</strong> B1 scenarios, for adaptati<strong>on</strong> planning represent emissi<strong>on</strong>s tracks that are not extreme<br />

am<strong>on</strong>g <strong>the</strong> SRES scenarios. Ra<strong>the</strong>r, <strong>the</strong>y can be c<strong>on</strong>sidered as relatively realistic scenarios<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> GHG c<strong>on</strong>centrati<strong>on</strong> outcomes c<strong>on</strong>sistent with:<br />

• fragmented <strong>and</strong> weakly effective global resp<strong>on</strong>ses (A2); or<br />

• highly effective global resp<strong>on</strong>ses aimed at achieving ‘safe’ levels <str<strong>on</strong>g>of</str<strong>on</strong>g> stabilisati<strong>on</strong> (B1).<br />

The implied political failure under an A2 stabilisati<strong>on</strong> level is not so extreme as to imply c<strong>on</strong>tinuati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> business-as-usual growth. In <strong>the</strong> B1 level stabilisati<strong>on</strong> scenario, global acti<strong>on</strong> is not so str<strong>on</strong>g as<br />

to achieve assured avoidance <str<strong>on</strong>g>of</str<strong>on</strong>g> dangerous levels.<br />

In forming judgements <strong>on</strong> <strong>the</strong> ‘realism’, ‘optimism’ or ‘pessimism’ <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se scenarios it is important<br />

to note that, since establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> SRES scenarios in 2000, <strong>the</strong> global emissi<strong>on</strong>s outcomes<br />

have been tracking at <strong>the</strong> most extreme <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> SRES scenarios, i.e. A1F1 (rapid growth under fossil<br />

fuels). As each year passes, <strong>the</strong> emissi<strong>on</strong>s reducti<strong>on</strong>s necessary to stabilise cumulative greenhouse<br />

gas c<strong>on</strong>centrati<strong>on</strong>s below dangerous levels becomes more <strong>and</strong> more challenging for <strong>the</strong> global<br />

community. If stabilisati<strong>on</strong> is to be achieved, <strong>the</strong> window <str<strong>on</strong>g>of</str<strong>on</strong>g> opportunity is small.<br />

The next few decades are anticipated to be representative <str<strong>on</strong>g>of</str<strong>on</strong>g> high emissi<strong>on</strong> scenarios before, optimistically,<br />

very vigorous <strong>and</strong> highly effective global emissi<strong>on</strong>s reducti<strong>on</strong>s ‘kick-in’, bringing stabilisati<strong>on</strong><br />

in latter parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> century. This reas<strong>on</strong>ing suggests that, for those charged with anticipating<br />

<strong>and</strong> planning adaptive resp<strong>on</strong>ses, expectati<strong>on</strong>s for <strong>the</strong> fi rst half <str<strong>on</strong>g>of</str<strong>on</strong>g> this century should be weighted<br />

towards <strong>the</strong> higher end emissi<strong>on</strong> scenarios (A1B, A1F1, A2).<br />

1.4 Global <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> projecti<strong>on</strong>s<br />

1.4.1 Air <strong>and</strong> ocean temperatures<br />

Figure 3 shows <strong>the</strong> IPCC (2007b) projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> global mean surface warming for <strong>the</strong> three representative<br />

scenarios: A2, A1B <strong>and</strong> B1. Since <strong>the</strong> IPCC’s fi rst report in 1990 (IPCC 1990), successive<br />

projecti<strong>on</strong>s have suggested global average temperature increases <str<strong>on</strong>g>of</str<strong>on</strong>g> between about 0.15° <strong>and</strong> 0.3°<br />

C per decade for 1990 - 2005. This can now be compared with observed values <str<strong>on</strong>g>of</str<strong>on</strong>g> about 0.2° C per<br />

decade, streng<strong>the</strong>ning c<strong>on</strong>fi dence in near-term projecti<strong>on</strong>s.<br />

17


Figure 3 Multi-model averages <strong>and</strong> assessed ranges for surface warming<br />

Solid lines are multi-model global averages <str<strong>on</strong>g>of</str<strong>on</strong>g> surface warming (relative to 1980 – 1999) for <strong>the</strong> scenarios<br />

A2, A1B <strong>and</strong> B1, shown as c<strong>on</strong>tinuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> twentieth-century simulati<strong>on</strong>s. Shading denotes <strong>the</strong> plus/minus<br />

<strong>on</strong>e st<strong>and</strong>ard deviati<strong>on</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> individual model annual averages. The orange line is for <strong>the</strong> experiment<br />

in which c<strong>on</strong>centrati<strong>on</strong>s were held c<strong>on</strong>stant at year 2000 values. The grey bars at <strong>the</strong> right indicate <strong>the</strong> best<br />

estimate (solid line within each bar) <strong>and</strong> <strong>the</strong> likely range assessed for <strong>the</strong> six SRES marker scenarios. The<br />

assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> best estimate <strong>and</strong> likely ranges in <strong>the</strong> grey bars includes <strong>the</strong> AOGCMs in <strong>the</strong> left part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

fi gure, as well as results from a hierarchy <str<strong>on</strong>g>of</str<strong>on</strong>g> independent models <strong>and</strong> observati<strong>on</strong>al c<strong>on</strong>straints. Source: IPCC<br />

(2007b; p. 4)<br />

Table 5 Projected mean surface global warming for <strong>the</strong> key selected scenarios Data source:<br />

IPCC (2007b)<br />

Warming °C relative to 1990<br />

SRES scenario 2030 2070 2100<br />

B1 0.8 1.6 1.9<br />

A1B 1 2.2 2.8<br />

A2 0.8 2.3 3.6<br />

Range* 0.6 to 1.2 1.3 to 2.6 1.4 to 4.1<br />

Mid range 0.9 2 2.8<br />

*Envelope <str<strong>on</strong>g>of</str<strong>on</strong>g> st<strong>and</strong>ard deviati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> three scenarios<br />

The projected rate for <strong>the</strong> next 25 years is ~ 0.2° C per decade. This follows warming <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately<br />

0.6° C in <strong>the</strong> 100 years to 1990 <strong>and</strong> an observed rate <str<strong>on</strong>g>of</str<strong>on</strong>g> ~ 0.2° C per decade since <strong>the</strong>n.<br />

Notably, <strong>the</strong> short term projected rate <str<strong>on</strong>g>of</str<strong>on</strong>g> warming is <strong>on</strong>ly marginally affected by choice <str<strong>on</strong>g>of</str<strong>on</strong>g> global<br />

emissi<strong>on</strong> scenarios.<br />

18


1.4.2 Sea level rise<br />

The ocean acts as a sink for captured heat from <strong>the</strong> atmosphere <strong>and</strong> water from melting <str<strong>on</strong>g>of</str<strong>on</strong>g> glaciers<br />

<strong>and</strong> ice caps. Thermal expansi<strong>on</strong> <strong>and</strong> physical movement <strong>and</strong> break-up <str<strong>on</strong>g>of</str<strong>on</strong>g> glaciers <strong>and</strong> ice caps<br />

thus drive sea level rise. These processes lag atmospheric warming <strong>and</strong> will c<strong>on</strong>tinue for centuries<br />

while elevated atmospheric temperatures prevail.<br />

Diffi culties in assessing comp<strong>on</strong>ents associated with ice caps magnify uncertainties in sea level rise<br />

projecti<strong>on</strong>s for this century. The IPCC estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> rise are c<strong>on</strong>servatively framed with an<br />

emphasis <strong>on</strong> <strong>the</strong> expansi<strong>on</strong> <strong>and</strong> melt comp<strong>on</strong>ents ra<strong>the</strong>r than <strong>the</strong> currently incomplete science <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

physical dynamics.<br />

The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> ultimate rise in sea level is outlined in <strong>the</strong> following statement (IPCC<br />

2007b):<br />

The last time <strong>the</strong> Polar Regi<strong>on</strong>s were signifi cantly warmer than present for an extended<br />

period (about 125,000 years ago), reducti<strong>on</strong>s in polar ice volume led to 4 to 6 metres <str<strong>on</strong>g>of</str<strong>on</strong>g> sea<br />

level rise. Global average sea level in <strong>the</strong> last interglacial period was likely 4 to 6 m higher<br />

than during <strong>the</strong> 20th century, mainly due to <strong>the</strong> retreat <str<strong>on</strong>g>of</str<strong>on</strong>g> polar ice. Ice core data indicate<br />

that average polar temperatures at that time were 3 to 5° C higher than present, because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> differences in <strong>the</strong> Earth’s orbit. The Greenl<strong>and</strong> ice sheet <strong>and</strong> o<strong>the</strong>r Arctic ice fi elds likely<br />

c<strong>on</strong>tributed no more than 4 m <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> observed sea level rise. There may also have been a<br />

c<strong>on</strong>tributi<strong>on</strong> from Antarctica (IPCC 2007b; p. 10).<br />

The relevance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> aforementi<strong>on</strong>ed <str<strong>on</strong>g>potential</str<strong>on</strong>g> ultimate rise <strong>and</strong>/or possible physical accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

trends should be c<strong>on</strong>sidered in any <strong>on</strong>going risk-management.<br />

However, this is not possible if based <strong>on</strong>ly <strong>on</strong> informati<strong>on</strong> from <strong>the</strong> IPCC Fourth Assessment Report<br />

(due to a focus <strong>on</strong> <strong>the</strong> simplest <strong>and</strong> most readily calculable) comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> al<strong>on</strong>e (IPCC<br />

2007a).<br />

Projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise are presented in (IPCC 2007b). The c<strong>on</strong>fi dence ranges are 90 per cent<br />

in respect to <strong>the</strong> comp<strong>on</strong>ents modelled. Models used to produce this data do not include uncertainties<br />

in <str<strong>on</strong>g>climate</str<strong>on</strong>g>-carb<strong>on</strong> cycle feedback nor do <strong>the</strong>y include <strong>the</strong> full <str<strong>on</strong>g>potential</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>s in ice<br />

sheet fl ow. This is due to a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> published literature <strong>on</strong> <strong>the</strong>se aspects.<br />

The projecti<strong>on</strong>s include a c<strong>on</strong>tributi<strong>on</strong> due to increased ice fl ow from Greenl<strong>and</strong> <strong>and</strong> Antarctica at<br />

<strong>the</strong> rates observed for 1993 – 2003, but <strong>the</strong>se fl ow rates could increase or decrease in <strong>the</strong> future.<br />

IPCC SMP (2007b; p. 15) included <strong>the</strong> following caveat to explain this uncertainty ‘if this c<strong>on</strong>tributi<strong>on</strong><br />

were to grow linearly with global average temperature <str<strong>on</strong>g>change</str<strong>on</strong>g>, <strong>the</strong> upper ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level<br />

rise for SRES scenarios shown in Table 6 would increase by 0.1m to 0.2m. Larger values cannot be<br />

excluded, but underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se effects was deemed as too limited to assess <strong>the</strong>ir likelihood or<br />

provide a best estimate or an upper bound for sea level rise in this century.’<br />

The mid-range estimate fi gures for a rise in this century, ignoring <str<strong>on</strong>g>change</str<strong>on</strong>g>s in ice fl ow, are 0.28 m,<br />

0.35 m <strong>and</strong> 0.37 m for Scenarios B1, A1B <strong>and</strong> A2 respectively with a 90 per cent c<strong>on</strong>fi dence range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.18 m to 0.51 m.<br />

It is prudent to c<strong>on</strong>sider <strong>the</strong> upper bound limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> IPCC sea level rise estimates as very possible<br />

outcomes due to <strong>the</strong> inherent c<strong>on</strong>servatism in <strong>the</strong> IPCC estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> rise (noted above).<br />

C<strong>on</strong>siderati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> for accelerated rise, <strong>and</strong> planning with an eye to ultimate limits,<br />

relate primarily to l<strong>on</strong>ger term planning frameworks <strong>and</strong> ic<strong>on</strong>ic developments. However, mid-term<br />

planning also warrants c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> higher rates given that projected rates <str<strong>on</strong>g>of</str<strong>on</strong>g> rise may be c<strong>on</strong>servative<br />

due to <strong>the</strong> omissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some important comp<strong>on</strong>ents.<br />

19


Table 6 Projected globally averaged surface warming <strong>and</strong> sea level rise at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

twenty-first century Source: IPCC (2007b)<br />

1.4.3 Wea<strong>the</strong>r patterns <strong>and</strong> rainfall<br />

Anthropogenic <str<strong>on</strong>g>change</str<strong>on</strong>g>s to atmospheric chemistry will affect large-scale circulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> atmosphere,<br />

regi<strong>on</strong>al wea<strong>the</strong>r patterns <strong>and</strong> rainfall. Global research, <strong>and</strong> <strong>the</strong> regi<strong>on</strong>al research <str<strong>on</strong>g>of</str<strong>on</strong>g> IOCI,<br />

indicates <str<strong>on</strong>g>change</str<strong>on</strong>g>s in westerly systems that have a direct bearing <strong>on</strong> rainfall in <strong>the</strong> south west <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Western Australia.<br />

Figure 4 -Projected patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g>s<br />

Relative <str<strong>on</strong>g>change</str<strong>on</strong>g>s in precipitati<strong>on</strong> (in percent) for <strong>the</strong> period 2090 – 2099, relative to 1980 – 1999.<br />

Values are multi-model averages based <strong>on</strong> <strong>the</strong> SRES A1B scenario for December to February (left)<br />

<strong>and</strong> June to August (right). White areas are where less than 66 per cent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> models agree in <strong>the</strong><br />

sign <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>and</strong> stippled areas are where more than 90 per cent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> models agree in <strong>the</strong><br />

sign <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g>. Source: IPCC (2007b)<br />

An increase in global atmospheric mean evaporati<strong>on</strong> <strong>and</strong> water vapour levels is also expected in<br />

c<strong>on</strong>juncti<strong>on</strong> with a subsequent gross increase in global annual precipitati<strong>on</strong>. However, latitudinal shifts<br />

in circulati<strong>on</strong> are projected to cause regi<strong>on</strong>al <str<strong>on</strong>g>change</str<strong>on</strong>g>s in atmospheric stability, storm generati<strong>on</strong> <strong>and</strong><br />

storm tracks with relative rainfall decline in some latitudes. Figure 4 shows model projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> wet<br />

<strong>and</strong> dry trends due to anthropogenic warming globally. Of importance to <strong>the</strong> current report is <strong>the</strong><br />

projected winter drying in south west Western Australia.<br />

20


1.5 Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> observati<strong>on</strong>s for <strong>the</strong> Swan <strong>and</strong> Canning<br />

<strong>rivers</strong><br />

1.5.1 Air <strong>and</strong> estuary temperatures<br />

Mean annual surface temperatures in <strong>the</strong> south west regi<strong>on</strong> increased approximately 0.6° C in <strong>the</strong><br />

last century to 1990. This trend broadly matched <strong>the</strong> global <strong>and</strong> nati<strong>on</strong>al trends. However, as <strong>the</strong><br />

focus turns from global means to specifi c regi<strong>on</strong>s or localities <strong>the</strong> infl uences <str<strong>on</strong>g>of</str<strong>on</strong>g> r<strong>and</strong>om variability<br />

<strong>and</strong> local effects increase.<br />

In <strong>the</strong> south west, rises in mean surface temperatures have occurred in autumn, winter, <strong>and</strong> spring<br />

ra<strong>the</strong>r than in summer. Mean minimum daily temperatures increased more than those observed in<br />

mean maxima <strong>the</strong>reby reducing <strong>the</strong> mean diurnal range. During <strong>the</strong> last 65 years in Australia <strong>the</strong>re<br />

has been an increasing trend in <strong>the</strong> numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> hot days (>35° C) <strong>and</strong> hot nights (>20° C) per decade.<br />

However, in <strong>the</strong> Swan Av<strong>on</strong> regi<strong>on</strong>, this upward trend has been relatively minor (~1 per cent<br />

<strong>and</strong> ~2 per cent per decade respectively). This result is mirrored in pan evaporati<strong>on</strong>s recorded in <strong>the</strong><br />

south west, which also display an upward trend (Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Meteorology 2007). This c<strong>on</strong>trasts with<br />

trends in some Australian regi<strong>on</strong>s where <str<strong>on</strong>g>change</str<strong>on</strong>g>s in wind, cloudiness or aerosols appear to have<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fset <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> warming <strong>on</strong> evaporati<strong>on</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g>. However, as discussed in secti<strong>on</strong> 1.1.2 <strong>the</strong><br />

trends in pan evaporati<strong>on</strong> need to be regarded cautiously when viewed as an indicator <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

evaporati<strong>on</strong>.<br />

Global sea surface temperatures have also increased, particularly during <strong>the</strong> past 30 years (Figure<br />

3 <strong>and</strong> Figure 5). This increase has been refl ected in sea surface temperature data from <strong>the</strong> whole<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Indian Ocean (Figure 5). Global <strong>and</strong> Indian Ocean mean sea surface during temperature<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g>s are similar with an almost linear increase <str<strong>on</strong>g>of</str<strong>on</strong>g> ~0.5° C over <strong>the</strong> past 35 years (Figure 5). In<br />

c<strong>on</strong>trast, <strong>the</strong> ocean waters between Cape Leeuwin <strong>and</strong> North West Cape adjoining <strong>the</strong> West Australian<br />

coast, indicate a ~0.8° C rise in sea surface temperature during <strong>the</strong> same period (Figure 5).<br />

Figure 5 Recorded sea surface temperature <str<strong>on</strong>g>change</str<strong>on</strong>g>s for <strong>the</strong> global oceans, Indian Ocean <strong>and</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong> West Australian c<strong>on</strong>tinental shelf Source: Eliot <strong>and</strong> Pattiaratchi (in preparati<strong>on</strong>)<br />

1.5.2 Storm surges<br />

Storm surge is defi ned as <strong>the</strong> comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> water level that cannot be related to <strong>the</strong> periodic<br />

forcing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mo<strong>on</strong> <strong>and</strong> sun. It is also known as <strong>the</strong> tidal residual <strong>and</strong> is generated by <str<strong>on</strong>g>change</str<strong>on</strong>g>s in atmospheric<br />

pressure <strong>and</strong> wind stress. The Swan River experiences storm surges generated by storm<br />

systems impacting directly <strong>on</strong> <strong>the</strong> river (local forcing) as well as those that have an indirect impact<br />

21


<strong>on</strong> <strong>the</strong> regi<strong>on</strong> (remote forcing).<br />

For example, storm surges generated by tropical cycl<strong>on</strong>es al<strong>on</strong>g <strong>the</strong> Northwest Shelf propagate<br />

southwards al<strong>on</strong>g <strong>the</strong> coastline as c<strong>on</strong>tinental shelf waves. In additi<strong>on</strong>, wea<strong>the</strong>r systems that cross<br />

<strong>the</strong> coast during periods <str<strong>on</strong>g>of</str<strong>on</strong>g> fi ve to ten days during summer <strong>and</strong> winter result in storm surges with a<br />

quasi-periodic forcing <str<strong>on</strong>g>of</str<strong>on</strong>g> water levels. The l<strong>on</strong>ger period associated with this water level <str<strong>on</strong>g>change</str<strong>on</strong>g> (order<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> days) results in surge propagati<strong>on</strong> into <strong>the</strong> estuary with very little attenuati<strong>on</strong>. This storm surge may<br />

be <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> same order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude as <strong>the</strong> tide <strong>and</strong> thus is a major comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> water level variability<br />

in <strong>the</strong> estuary.<br />

Storm surges have two major infl uences in <strong>the</strong> Swan Canning river system: (i) <strong>the</strong>y provide a major<br />

forcing mechanism for water circulati<strong>on</strong> that c<strong>on</strong>trols <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> salinity; <strong>and</strong>, (ii) extreme surge<br />

events result in fl ooding <str<strong>on</strong>g>of</str<strong>on</strong>g> low-lying areas. Hydrodynamic forcing is addressed in secti<strong>on</strong> 2.5.3.<br />

Fremantle surge records since 1897 have been used to develop an index <str<strong>on</strong>g>of</str<strong>on</strong>g> storminess for <strong>the</strong> regi<strong>on</strong><br />

(Figure 6). The index is based <strong>on</strong> <strong>the</strong> annual number <str<strong>on</strong>g>of</str<strong>on</strong>g> surges in c<strong>on</strong>juncti<strong>on</strong> with <strong>the</strong>ir magnitude.<br />

Energetic periods with a high number <str<strong>on</strong>g>of</str<strong>on</strong>g> signifi cant storm surge events have been punctuated by<br />

relatively calm c<strong>on</strong>diti<strong>on</strong>s. For example, peaks in storm surge activity were recorded from 1928 –<br />

1936; 1973 – 1976; <strong>and</strong>, between 1992 <strong>and</strong> 2003. An increase in storm surge activity has also been<br />

observed since 1990 <strong>and</strong> is refl ected in <strong>the</strong> elevated maximum water levels recorded in 2003 <strong>and</strong><br />

2004 (Table 7).<br />

Figure 6 - Storminess index based <strong>on</strong> <strong>the</strong> storm surges recorded at Fremantle Source: Eliot<br />

<strong>and</strong> Pattiaratchi (in preparati<strong>on</strong>)<br />

Table 7 Highest water levels recorded at Fremantle 1897 – 2006<br />

(metres above Australian Height Datum)<br />

Date<br />

Level (m)<br />

16 May 2006 1.98<br />

09 May 2004 1.90<br />

18 May 1909 1.87<br />

10 June 1956 1.86<br />

20 Sep 1988 1.85<br />

A reducti<strong>on</strong> in <strong>the</strong> recurrence intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme water level at Fremantle has been observed in<br />

c<strong>on</strong>juncti<strong>on</strong> with <strong>the</strong> aforementi<strong>on</strong>ed variability in storm surge activity. This trend is mainly due to<br />

increases in mean sea level forced by global warming.<br />

Water level data from <strong>the</strong> Barrack Street tide gauge illustrate a <str<strong>on</strong>g>change</str<strong>on</strong>g> in <strong>the</strong> recurrence interval <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extreme water levels between 1930 – 1978 <strong>and</strong> 1988 – 2001 (Figure 7). For example, a water level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 1.70 cm, expected to occur every 10 years between 1930 – 1978, was expected to occur every<br />

fi ve years between 1988 – 2001 (Figure 7). Similarly, a water level <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.65 cm, with an expected<br />

seven to eight year recurrence interval for 1930 – 1978, would be expected to occur every two years<br />

22


at present. This <str<strong>on</strong>g>change</str<strong>on</strong>g> in <strong>the</strong> recurrence interval <str<strong>on</strong>g>of</str<strong>on</strong>g> storm surges may be directly attributed to <strong>the</strong><br />

rise in mean sea level.<br />

Figure 7 Recurrence intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> water levels at Barrack Street Source: Eliot <strong>and</strong> Pattiaratchi (in<br />

preparati<strong>on</strong>)<br />

1.5.3 Hydrodynamics <strong>and</strong> <strong>the</strong> salt wedge<br />

The pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> water circulati<strong>on</strong> in <strong>the</strong> Swan Canning river system results from a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

following factors:<br />

• forcing dominated by freshwater discharge from <strong>the</strong> riverine secti<strong>on</strong>;<br />

• water level forcing from <strong>the</strong> ocean boundary; <strong>and</strong>,<br />

• gravitati<strong>on</strong>al circulati<strong>on</strong> resulting from al<strong>on</strong>g-estuary gradients in density.<br />

Changes to any major forcing mechanisms will result in <str<strong>on</strong>g>change</str<strong>on</strong>g>s to <strong>the</strong> hydrodynamic behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> estuary.<br />

Circulati<strong>on</strong> in <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong> is highly seas<strong>on</strong>al due to <strong>the</strong> seas<strong>on</strong>al nature <str<strong>on</strong>g>of</str<strong>on</strong>g> streamfl<br />

ow. In general, streamfl ow in winter fl ushes saline water out <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> estuary. Al<strong>on</strong>g-estuary density<br />

gradients subsequently result in intrusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> saline water at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> winter due to reduced streamfl<br />

ow <strong>and</strong> <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> lower salinity levels in <strong>the</strong> upper estuary as compared to its lower reaches.<br />

The result is known as a salt wedge.<br />

In years <str<strong>on</strong>g>of</str<strong>on</strong>g> high streamfl ow <strong>the</strong> salt wedge can be completely displaced from <strong>the</strong> upper estuary. The<br />

extent <str<strong>on</strong>g>of</str<strong>on</strong>g> river discharge associated with salt wedge displacement was established through a series<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fi eld investigati<strong>on</strong>s (Stephens <strong>and</strong> Imberger 1996). Results indicate that <strong>the</strong> salt wedge is fl ushed<br />

downstream when river discharge reaches 2x10 5 m 3 day -1 <strong>and</strong> completely removed from <strong>the</strong> upper<br />

estuary under a discharge <str<strong>on</strong>g>of</str<strong>on</strong>g> 20x10 5 m 3 day -1 .<br />

However, with decreased rainfall <strong>and</strong> run-<str<strong>on</strong>g>of</str<strong>on</strong>g>f during <strong>the</strong> past 30 years seas<strong>on</strong>al behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> salt<br />

wedge has been altered <strong>and</strong> it is now c<strong>on</strong>sistently found in <strong>the</strong> upper estuary.<br />

The locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> salt wedge has important <strong>and</strong> far-reaching implicati<strong>on</strong>s for <strong>the</strong> water quality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> estuary. Str<strong>on</strong>g vertical stratifi cati<strong>on</strong> results in inhibited mixing between <strong>the</strong> surface <strong>and</strong> bottom<br />

23


waters leading to low levels <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved oxygen. In additi<strong>on</strong>, c<strong>on</strong>vergence at <strong>the</strong> tip <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> wedge<br />

leads to higher c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended matter, including phytoplankt<strong>on</strong>.<br />

In <strong>the</strong> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater infl ow, <strong>the</strong> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> salt wedge is c<strong>on</strong>trolled by adjacent ocean<br />

c<strong>on</strong>diti<strong>on</strong>s; in particular, <str<strong>on</strong>g>change</str<strong>on</strong>g>s in water level due to tides, storm surges <strong>and</strong> l<strong>on</strong>ger-term oscillati<strong>on</strong>s.<br />

Under <strong>the</strong> infl uence <str<strong>on</strong>g>of</str<strong>on</strong>g> a storm surge ocean water levels increase, resulting in infl ow <str<strong>on</strong>g>of</str<strong>on</strong>g> saline<br />

water into <strong>the</strong> estuary <strong>and</strong> rapid upstream propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> salt wedge <strong>and</strong> <strong>the</strong> associated anoxic<br />

water. Under <strong>the</strong>se c<strong>on</strong>diti<strong>on</strong>s, several instances <str<strong>on</strong>g>of</str<strong>on</strong>g> fi sh kills have been recorded in <strong>the</strong> upper estuary.<br />

These water level c<strong>on</strong>diti<strong>on</strong>s reverse when <strong>the</strong> storm surge abates.<br />

1.5.4 Relative sea level rise<br />

The Swan River regi<strong>on</strong> experiences an unusual water level regime in which tides, storm surges, <strong>and</strong><br />

seas<strong>on</strong>al <strong>and</strong> inter-annual fl uctuati<strong>on</strong>s are <str<strong>on</strong>g>of</str<strong>on</strong>g> similar magnitude with amplitudes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2 to<br />

0.5 metres (Table 8).<br />

Table 8 Major processes influencing sea level variability at Fremantle<br />

Processes Time scale Maximum amplitude<br />

Astr<strong>on</strong>omical tide 12–24 hours 0.80 m<br />

Storm surge 1–10 days 0.80 m<br />

Leeuwin Current Seas<strong>on</strong>al 0.30 m<br />

ENSO* Inter-annual 0.30 m<br />

Global warming Decadal 0.015 m per decade<br />

* El Nino Sou<strong>the</strong>rn Oscillati<strong>on</strong><br />

Fremantle sea level records are c<strong>on</strong>tinuous since 1897 <strong>and</strong> represent <strong>the</strong> l<strong>on</strong>gest sea level data<br />

record in <strong>the</strong> sou<strong>the</strong>rn hemisphere. This record indicates that mean sea level has risen at a rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1.54 mm per annum between 1897 <strong>and</strong> present (Figure 8). This rate <str<strong>on</strong>g>of</str<strong>on</strong>g> increase is similar to that<br />

observed globally (1.1 to 1.8 mm).<br />

Although a trend <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise has been observed during <strong>the</strong> past 100 years, removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

linear trend from this record reveals periods dominated by <strong>the</strong> inter-annual variability <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level<br />

linked to <strong>the</strong> ENSO phenomen<strong>on</strong> (Figure 9). From 1900 – 1952 cyclic periods <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level increase<br />

<strong>and</strong> decrease between 10 to 14 years in length were observed. In additi<strong>on</strong>, between 1952 <strong>and</strong> 1991<br />

a decreasing trend was recorded. However, when c<strong>on</strong>sidered in combinati<strong>on</strong> with <strong>the</strong> mean sea<br />

level rise, an almost c<strong>on</strong>stant mean sea level was observed. A reversal <str<strong>on</strong>g>of</str<strong>on</strong>g> this trend occurred between<br />

1991 <strong>and</strong> 2004 with an apparent rapid mean sea level rise <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 mm per annum – a rate more<br />

than three times <strong>the</strong> trend during <strong>the</strong> previous 100 years. This increased rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise is associated<br />

with <strong>the</strong> maximum sea levels recorded at Fremantle in 2003 <strong>and</strong> 2004 (Table 7).<br />

Figure 8 Time series <str<strong>on</strong>g>of</str<strong>on</strong>g> Fremantle sea level (<strong>on</strong>e year running mean) with <strong>the</strong> linear trend <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1.54 mm per annum superimposed in red Source: Elliot <strong>and</strong> Pattiaratchi (in preparati<strong>on</strong>)<br />

Fremantle water level (m)<br />

0. 9<br />

0. 8<br />

0. 7<br />

0. 6<br />

0. 5<br />

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000<br />

Time (years)<br />

24


Figure 9 Time series <str<strong>on</strong>g>of</str<strong>on</strong>g> Fremantle sea level anomaly with <strong>the</strong> linear trend removed The red line<br />

shows <strong>the</strong> interannual variability in <strong>the</strong> record obtained by running a 19 year Hanning window to<br />

remove <strong>the</strong> l<strong>on</strong>g-term tidal effects Source: Elliot <strong>and</strong> Pattiaratchi (in preparati<strong>on</strong>)<br />

1.5.5 Seas<strong>on</strong>al total rainfall<br />

A steep decrease in autumn/winter rainfall occurred in <strong>the</strong> early 1970s throughout <strong>the</strong> regi<strong>on</strong>, accompanied<br />

by a slight increase in spring <strong>and</strong> summer. These <str<strong>on</strong>g>change</str<strong>on</strong>g>s have been described in detail<br />

in reports <strong>and</strong> bulletins <str<strong>on</strong>g>of</str<strong>on</strong>g> IOCI <strong>and</strong> are illustrated in Figure 10. The <str<strong>on</strong>g>change</str<strong>on</strong>g>s are associated with<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g>s in cyclogensis (see secti<strong>on</strong> 1.4.3).<br />

Figure 10 Change in daily flows for 1952 – 75 compared with 1976 – 99 for Yarragil Brook<br />

near Dwellingup Source: IOCI (2005b)<br />

25


120<br />

100<br />

80<br />

60<br />

mm<br />

40<br />

20<br />

0<br />

Jan Feb Mar A pr May Jun Jul Aug Sep Oct Nov Dec<br />

Average m<strong>on</strong>thly rainfall<br />

for <strong>the</strong> south west <str<strong>on</strong>g>of</str<strong>on</strong>g> line<br />

from Jurien to Bremer Bay.<br />

M <strong>on</strong>th<br />

1925-1975 1976-2003<br />

Figure 11 Average m<strong>on</strong>thly rainfall for south west <str<strong>on</strong>g>of</str<strong>on</strong>g> a line from Jurien to Bremer Bay Source:<br />

IOCI (2005a)<br />

Regi<strong>on</strong>al average rainfall for winter m<strong>on</strong>ths decreased by 10 per cent during this period while rainfall<br />

from May - July decreased by 15 per cent (Figure 11). Although records for <strong>the</strong> last decade indicate<br />

fur<strong>the</strong>r drying, a l<strong>on</strong>ger timeframe is necessary to assess whe<strong>the</strong>r <strong>the</strong> observed <str<strong>on</strong>g>change</str<strong>on</strong>g>s are statistically<br />

signifi cant.<br />

1.5.6 Annual <strong>and</strong> daily river flows<br />

Regi<strong>on</strong>al streamfl ow has markedly decreased as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> diminished winter rainfall. In extreme<br />

cases this has equated to more than 50 per cent reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f into metropolitan catchments. In<br />

general, <strong>the</strong> greatest <str<strong>on</strong>g>change</str<strong>on</strong>g> is observed in <strong>the</strong> catchments draining higher rainfall areas. Overall,<br />

<strong>the</strong>se variati<strong>on</strong>s in fl ow have been observed from m<strong>on</strong>th to m<strong>on</strong>th as well as at an annual scale.<br />

An example <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> in daily stream fl ow between 1952 <strong>and</strong> 1999 is illustrated in Figure 10. A<br />

comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fl ow durati<strong>on</strong> curves for 1952 – 1975 <strong>and</strong> 1976 – 1999 indicates that <strong>the</strong> river is dry<br />

more frequently in recent years.<br />

1.5.7 Extreme rainfall <strong>and</strong> flooding<br />

While <str<strong>on</strong>g>change</str<strong>on</strong>g>s in seas<strong>on</strong>al records have been apparent, a signifi cant shift in extreme rainfall is<br />

more diffi cult to ascertain. Although existing records give an insight into extreme events occurring at<br />

a relatively frequent scale (e.g. 1 to 10 years), <strong>the</strong> recurrence intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> rare, disaster level events<br />

are signifi cantly harder to determine.<br />

Extreme winter rainfall events as a cause <str<strong>on</strong>g>of</str<strong>on</strong>g> winter flooding<br />

A c<strong>on</strong>sistent decrease in annual <strong>and</strong> winter rainfall has been observed throughout <strong>the</strong> south west <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Western Australia since <strong>the</strong> mid 1970s. In additi<strong>on</strong>, rainfall records indicated that <strong>the</strong> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

large storms in winter m<strong>on</strong>ths had signifi cantly decreased as had winter extremes in daily rainfalls.<br />

This was reinforced by research c<strong>on</strong>ducted by Li et al. (2005) who determined that winter extreme<br />

daily rainfalls with up to 50 year return periods have decreased since 1965. As with <strong>the</strong> aforementi<strong>on</strong>ed<br />

decrease in annual rainfall, it is likely that multi-decadal variability is c<strong>on</strong>tributing to <strong>the</strong>se<br />

observed <str<strong>on</strong>g>change</str<strong>on</strong>g>s in extreme winter rainfall events.<br />

In additi<strong>on</strong> to <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> discrete rainfalls, winter fl ooding is heavily infl uenced by antecedent<br />

c<strong>on</strong>diti<strong>on</strong>s (how wet <strong>the</strong> catchment is before <strong>the</strong> storm event). For example, <strong>the</strong> major winter fl ood<br />

26


<str<strong>on</strong>g>of</str<strong>on</strong>g> 1964 is c<strong>on</strong>sidered a 1-in-50 year fl ood event, but was <strong>the</strong> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two very wet winter<br />

m<strong>on</strong>ths followed by a 1-in-20 year rainfall event. Antecedent wetness <strong>and</strong> regi<strong>on</strong>al groundwater<br />

levels are generally lower since <strong>the</strong> rainfall decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mid 1970s. M<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> bauxite catchments<br />

has shown signifi cant falls in regi<strong>on</strong>al groundwater levels (Crot<strong>on</strong>, pers. comm.). This will<br />

have c<strong>on</strong>sequent implicati<strong>on</strong>s for future fl ood magnitudes <str<strong>on</strong>g>of</str<strong>on</strong>g> all frequencies.<br />

Extreme summer rainfall events as a cause <str<strong>on</strong>g>of</str<strong>on</strong>g> summer flooding<br />

Research to date has not found a statistically signifi cant trend in <strong>the</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g> in summer rainfall extremes<br />

over time (e.g. Li et al. 2005 <strong>and</strong> o<strong>the</strong>r unpublished IOCI related studies).<br />

Water Quality<br />

In <strong>the</strong> recent report <str<strong>on</strong>g>of</str<strong>on</strong>g> water quality trend analysis for <strong>the</strong> Swan Canning river system, Henders<strong>on</strong><br />

<strong>and</strong> Kuhnert (2004) used regressi<strong>on</strong> models to investigate <strong>the</strong> spatial <strong>and</strong> temporal trends <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental<br />

variables from 1995 to 2004. The results are summarised in Table 9 for <strong>the</strong> major areas<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan Canning river system. The results suggest a decreasing trend in total <strong>and</strong> oxidised<br />

nitrogen <strong>and</strong> phosphorus throughout most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system. There was also a general decreasing trend<br />

in chlorophyll-a.<br />

27


Table 9 Major water quality trends in <strong>the</strong> Swan Canning river system from 1995 - 2004 Source:<br />

adapted from Henders<strong>on</strong> <strong>and</strong> Kuhnert (2004)<br />

Variable sampled<br />

Lower Swan estuary<br />

Middle Swan<br />

estuary<br />

Upper Swan<br />

estuary<br />

Middle Canning<br />

estuary<br />

Total nitrogen s&b s&b b<br />

Nitrous oxides s&b s&b s<br />

Amm<strong>on</strong>ium s&b s&b s&b<br />

no evidence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>change</str<strong>on</strong>g><br />

s - Rivert<strong>on</strong><br />

Bridge<br />

s - Rivert<strong>on</strong><br />

Bridge<br />

b – Salter Point<br />

Total phosphorus s s - Salter Point<br />

Phosphate<br />

s&b<br />

Blackwall Reach<br />

s&b<br />

s&b<br />

s - Rivert<strong>on</strong><br />

Bridge<br />

Chlorophyll-a<br />

s<br />

surface > bottom<br />

s<br />

surface > bottom<br />

from 2003<br />

surface > bottom<br />

s<br />

surface > bottom<br />

PROFILES<br />

Temperature<br />

Marked seas<strong>on</strong>al<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g>s in temperature<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>i le over time with<br />

surface temperature<br />

generally greater than<br />

bottom, o<strong>the</strong>r than during<br />

winter m<strong>on</strong>ths.<br />

No str<strong>on</strong>g evidence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>change</str<strong>on</strong>g> over time at any<br />

site.<br />

some evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> <br />

in s & b<br />

some evidence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

in s & b<br />

Some evidence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> in s&b at<br />

Rivert<strong>on</strong> Bridge<br />

Dissolved oxygen<br />

b<br />

s<br />

less hypoxia<br />

more variable <strong>and</strong><br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g> for<br />

stratifi cati<strong>on</strong><br />

b<br />

hypoxia in<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>i le<br />

s<br />

b – Rivert<strong>on</strong><br />

Bridge <strong>on</strong>ly<br />

Salinity<br />

clear & signifi cant<br />

s<br />

variability <str<strong>on</strong>g>of</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>i le<br />

between Blackwall Reach<br />

<strong>and</strong> Narrows Bridge<br />

clear & signifi cant<br />

s – Narrow Bridge &<br />

Nile St<br />

b – Nile St to<br />

Mayl<strong>and</strong>s Swimming<br />

Pool<br />

variability St John’s<br />

Hospital & Mayl<strong>and</strong>s<br />

Pool<br />

Greater stratifi cati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

salinity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>i le<br />

variability<br />

s – Salter Point<br />

Note: <strong>the</strong> table above presents <strong>the</strong> major trends in <strong>the</strong> variables presented. Some site-specifi c parameters<br />

did not follow <strong>the</strong> trends presented in this table. Refer to Henders<strong>on</strong> <strong>and</strong> Kuhnert (2004) for site-specifi c trend<br />

analyses.<br />

28


1.6 Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> projecti<strong>on</strong>s for <strong>the</strong> Swan <strong>and</strong> Canning<br />

<strong>rivers</strong><br />

1.6.1 Scenarios<br />

The <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> projecti<strong>on</strong>s developed in this report are based <strong>on</strong> <strong>the</strong> A2 <strong>and</strong> B1 global scenarios<br />

(IPCC 2007b). Two main scenarios are proposed for <strong>the</strong> Swan Canning river system <str<strong>on</strong>g>of</str<strong>on</strong>g> south<br />

west Western Australia <strong>and</strong> are labelled A2# <strong>and</strong> B1# throughout <strong>the</strong> following discussi<strong>on</strong>. The scenarios<br />

are interpretati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> A2 <strong>and</strong> B1 type global scenarios, based <strong>on</strong> local interpretive material<br />

from sources such as IOCI <strong>and</strong> CSIRO/Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Meteorology studies, including studies commissi<strong>on</strong>ed<br />

by State Government agencies such as <strong>the</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Water.<br />

To interpret <strong>and</strong> exp<strong>and</strong> IPCC scenarios to <strong>the</strong> local level <strong>and</strong> to rec<strong>on</strong>cile with signifi cant observed<br />

local <str<strong>on</strong>g>change</str<strong>on</strong>g>, input from a number <str<strong>on</strong>g>of</str<strong>on</strong>g> local <strong>and</strong> nati<strong>on</strong>al studies has been used. In <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall<br />

<strong>and</strong> streamfl ow, some adjustments have been incorporated to recognise possible c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

o<strong>the</strong>r anthropogenic factors (l<strong>and</strong> clearing) as well as multi-decadal variability to ’apparent’ <str<strong>on</strong>g>change</str<strong>on</strong>g>s<br />

in <strong>the</strong> observati<strong>on</strong>al baseline. Priority has been given to any available local studies down-scaling<br />

from global forcing. However, large gaps remain in local interpretive material in keeping with <strong>the</strong> science<br />

underpinning <strong>the</strong> Fourth IPCC Assessment (IPCC 2007a). Where necessary, gaps have been<br />

fi lled through interpolating, extrapolating or factoring in available data. A key part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> regi<strong>on</strong>al<br />

interpolati<strong>on</strong> process has been peer review <str<strong>on</strong>g>of</str<strong>on</strong>g> judgements.<br />

The scenarios presented here are in a draft form <strong>and</strong> must be viewed as such. They are not predicti<strong>on</strong>s,<br />

but are plausible alternative circumstances that might be encountered in future river management.<br />

They seek to encompass a range <str<strong>on</strong>g>of</str<strong>on</strong>g> higher <strong>and</strong> lower levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> judged, from an adaptive<br />

perspective, as realistic (not extreme) possibilities (see secti<strong>on</strong> 1.4).<br />

In keeping with <strong>the</strong> Fourth IPCC Assessment (IPCC 2007a), <strong>the</strong> scenarios generally exclude c<strong>on</strong>siderati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> possibly dangerous instabilities in global <str<strong>on</strong>g>climate</str<strong>on</strong>g>. As such, <strong>the</strong> scenarios are inclined<br />

towards c<strong>on</strong>servative optimism with regard to extremes. This is a limitati<strong>on</strong> in risk management as<br />

l<strong>on</strong>g-term time scales may require additi<strong>on</strong>al scenario c<strong>on</strong>siderati<strong>on</strong>s for effective decisi<strong>on</strong>-making.<br />

Overall, <strong>the</strong> scenarios may be viewed as a preliminary tool to imply c<strong>on</strong>diti<strong>on</strong>s that will force inevitable<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g> in <strong>the</strong> regi<strong>on</strong>al envir<strong>on</strong>ment. The scenarios should be refi ned <strong>and</strong> exp<strong>and</strong>ed by fur<strong>the</strong>r<br />

work <strong>and</strong> dialogue subsequent to this report.<br />

1.6.2 Broad qualitative expectati<strong>on</strong>s<br />

Table 10 qualitatively tabulates <strong>the</strong> broad expectati<strong>on</strong>s for regi<strong>on</strong>al <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>and</strong> addresses<br />

<strong>the</strong> projected <str<strong>on</strong>g>change</str<strong>on</strong>g>s for south western Australia <strong>and</strong> <strong>the</strong> Swan <strong>and</strong> Canning river system.<br />

29


Table 10 Observed <strong>and</strong> projected (south western Australia / Swan Canning river system)<br />

climatic or climatically associated trends from global human development 5<br />

Phenomen<strong>on</strong> <strong>and</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

trend<br />

Likelihood<br />

that <strong>the</strong> trend<br />

established or<br />

c<strong>on</strong>solidated in<br />

late 20 th century<br />

Likelihood that<br />

anthropogenic<br />

<str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

has c<strong>on</strong>tributed<br />

to <strong>the</strong> observed<br />

trend<br />

Likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

future trend<br />

under A2#/B1#<br />

scenarios<br />

Accelerating atmospheric <strong>and</strong><br />

ocean warming (now rising at<br />

0.2 O C per decade)<br />

Virtually certain Virtually certain Virtually certain<br />

Autumn seas<strong>on</strong>al rainfall<br />

decrease (signficant)<br />

Very likelyVery<br />

likely<br />

Likely<br />

Winter seas<strong>on</strong>al rainfall decrease<br />

(significant)<br />

Spring seas<strong>on</strong>al rainfall increase<br />

(small)<br />

Summer seas<strong>on</strong>al rainfall<br />

increase (small)<br />

Decrease in total winter streamflows<br />

(large)<br />

Very likely Very likely Extremely likely<br />

Low significance No robust evidence Likely decrease<br />

Low significance<br />

No robust evidence<br />

Small decrease<br />

more likely than<br />

not<br />

Virtually certain Very likely Extremely likely<br />

Increased frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> droughts Very likely Very likely Extremely likely<br />

Decrease in frequency/intensity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> extreme winter rainfalls (1 to<br />

10 year return period)<br />

Likely<br />

More likely than<br />

not<br />

More likely than<br />

not<br />

Increase in frequency/intensity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> extreme summer rainfalls (1<br />

to 10 year return period)<br />

Decrease in frequency/intensity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> winter flood flows (Swan<br />

tributaries)<br />

Small or n<strong>on</strong>existent<br />

Statistically<br />

inc<strong>on</strong>clusive<br />

No clear evidence<br />

No clear evidence<br />

for significant<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g><br />

Extremely likely Extremely likely Likely<br />

5 In this report <strong>the</strong> IPCC Third Working Group judgement assessment terminology is used:<br />

Likelihood as % probability <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence<br />

Virtually certain Extremely likely Very likely Likely More likely than not<br />

> 99% > 95% > 90% > 66% > 50%<br />

Extremely unlikely Very unlikely Unlikely<br />

< 5% < 10% < 33%<br />

30


Increase in frequency/intensity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> summer flood flows (Swan<br />

tributaries)<br />

Accelerating sea <strong>and</strong> tidal<br />

estuary level rise<br />

No clear evidence<br />

No clear evidence<br />

No clear evidence<br />

for significant<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g><br />

Virtually certain Virtually certain Virtually certain<br />

Increase/decreased risk <str<strong>on</strong>g>of</str<strong>on</strong>g> storm<br />

surges which superimpose <strong>on</strong> sea<br />

level rise <strong>and</strong> flood flows<br />

Uncertain- No<br />

c<strong>on</strong>clusive<br />

evidence<br />

Uncertain- No<br />

c<strong>on</strong>clusive<br />

evidence<br />

Uncertain- No<br />

c<strong>on</strong>clusive<br />

evidence<br />

Increase in extreme tidal estuary<br />

levels<br />

Increased frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> warm<br />

spells <strong>and</strong> heat waves<br />

Virtually certain Virtually certain Virtually certain<br />

Likely Likely Extremely likely<br />

Increased <str<strong>on</strong>g>potential</str<strong>on</strong>g> evapotranspirati<strong>on</strong><br />

More likely than<br />

not<br />

More likely than<br />

not<br />

Likely<br />

Vegetative <str<strong>on</strong>g>change</str<strong>on</strong>g> (xeric shift) in<br />

upl<strong>and</strong>s catchments<br />

Very likely Very likely Extremely Likely<br />

Vegetative <str<strong>on</strong>g>change</str<strong>on</strong>g> (xeric shift) in<br />

coastal catchments<br />

Unlikely ** Unlikely Very likely<br />

More likely than More likely than<br />

Increased fire hazard ##<br />

Extremely likely<br />

not<br />

not<br />

** Observed <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> coastal plain appears to have been dominated by n<strong>on</strong>-climatic infl uences (so far)<br />

## Relates to underlying risk before management interventi<strong>on</strong><br />

1.6.3 Air <strong>and</strong> estuary temperatures<br />

Air temperatures<br />

Projecti<strong>on</strong>s for global mean temperature rises were outlined in Secti<strong>on</strong> 2.4.1. However, it is important<br />

to note that <strong>the</strong>se increases will not be uniform across <strong>the</strong> globe. The Summary for Policy<br />

Makers (SPM) projects greater temperature increases in <strong>the</strong> nor<strong>the</strong>rn hemisphere than in <strong>the</strong> sou<strong>the</strong>rn<br />

hemisphere <strong>and</strong> greater warming at <strong>the</strong> poles. Modelling by CSIRO (2007; pp 57-58) <strong>and</strong> also<br />

modelling for <strong>the</strong> IPCC (2007b) show greater warming in <strong>the</strong> north west <strong>and</strong> inl<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia than<br />

in <strong>the</strong> south west.<br />

At <strong>the</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> assembling this report, no detailed data were available to relate south west surface<br />

temperatures directly to <strong>the</strong> IPCC SPM scenarios. A coarse global trend map in <strong>the</strong> SPM (IPCC<br />

2007b; Figure 6, p. 15) suggests that south west temperatures would project at approximately 0.8<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> global means, whereas a report by IOCI (2005c) implies indirectly that this ratio may be nearer<br />

to <strong>on</strong>e. Comparis<strong>on</strong>s with CSIRO (2007) scenarios suggest a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 0.85 for Perth,<br />

Western Australia. The following table (Table 11) is c<strong>on</strong>structed through reference to both <strong>the</strong> IPCC<br />

(2007b) <strong>and</strong> CSIRO (2007). The table assumes that <strong>the</strong> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> south west mean to global mean is<br />

approximately 0.85.<br />

31


Table 11 Projected annual mean warming - south west (surface level) Data source: CSIRO<br />

(2007)<br />

* Multi model means <strong>and</strong> 90 percentile ranges<br />

NOTE: The italicised figures are <strong>the</strong> 90 percentile range <str<strong>on</strong>g>of</str<strong>on</strong>g> a multimodel<br />

ensemble<br />

Scenario<br />

Warming °C relative to 1990<br />

2030 2070 2100<br />

B1 δ* 0.8 *<br />

1.4 δ<br />

(1-2) δ # 1.6 *<br />

A1B δ*<br />

0.8 δ<br />

(0.6-1.2) δ<br />

2* 2.4 *<br />

A2 δ* 0.8 * 2 * 3.0 *<br />

A1F1 0.8 *<br />

2.7 δ #<br />

(1.9-3.8) δ<br />

3.4 *<br />

* Approximati<strong>on</strong>s <strong>on</strong> assumpti<strong>on</strong> that SWWA <str<strong>on</strong>g>change</str<strong>on</strong>g>s are 0.85 <str<strong>on</strong>g>of</str<strong>on</strong>g> projected global mean given in <strong>the</strong> SPM δ Perth fi gures<br />

from CSIRO, 2007, p 135<br />

The number <str<strong>on</strong>g>of</str<strong>on</strong>g> hot days in <strong>the</strong> regi<strong>on</strong> has increased slowly. Model projecti<strong>on</strong>s expect fur<strong>the</strong>r increases in this century.<br />

Indicative fi gures <str<strong>on</strong>g>of</str<strong>on</strong>g> surface warming are presented in Table A3 (b) Appendix 1.<br />

Estuary temperatures<br />

Data limitati<strong>on</strong>s are apparent for projected <str<strong>on</strong>g>change</str<strong>on</strong>g>s in sea surface temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> south west<br />

regi<strong>on</strong>, similar to those previously documented for atmospheric projecti<strong>on</strong>s. Observed rises in sea<br />

surface temperatures adjacent to <strong>the</strong> Western Australian coast indicate a ~0.8 o C increase during<br />

<strong>the</strong> past 35 years (secti<strong>on</strong> 1.5.1 <strong>and</strong> Figure 5). Current General Circulati<strong>on</strong> Models do not resolve<br />

features such as <strong>the</strong> Leeuwin Current, which has a large infl uence <strong>on</strong> sea surface temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

<strong>the</strong> Western Australian coast. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> CSIRO MK3 coupled ocean/atmosphere model output indicates<br />

that for <strong>the</strong> A2 scenario <strong>the</strong> predicted sea surface temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g>f Western Australia would<br />

increase by ~0.9 o C in <strong>the</strong> decade 2061 – 2070 compared with <strong>the</strong> period 1991 – 2000 (Figure 12).<br />

This latter fi gure is c<strong>on</strong>sistent with ranges recently published by CSIRO (2007; p. 100) <strong>and</strong> are incorporated<br />

in Table A3 (b) <str<strong>on</strong>g>of</str<strong>on</strong>g> Appendix 1.<br />

A str<strong>on</strong>g relati<strong>on</strong>ship between temperature <strong>and</strong> Dissolved Oxygen (DO) c<strong>on</strong>sumpti<strong>on</strong> has been<br />

dem<strong>on</strong>strated in Swan Canning river system sediments during benthic chamber deployments (G.<br />

Douglas, pers. comm..). This is particularly true during extended warm periods (summer <strong>and</strong> autumn),<br />

where it has been dem<strong>on</strong>strated that at temperatures more than ~20 ºC, every increase by<br />

1 – 2 ºC may c<strong>on</strong>ceivably double DO c<strong>on</strong>sumpti<strong>on</strong> (Figure 13). A similar relati<strong>on</strong>ship has also been<br />

dem<strong>on</strong>strated for amm<strong>on</strong>ium (N) fl uxes. Above ~20 ºC phosphate (P) fl uxes are more closely related<br />

to sediment P c<strong>on</strong>centrati<strong>on</strong>s.<br />

32


Figure 12 Predicted sea surface temperature <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>f Western Australia in 2061-2070 when<br />

compared to 1991 - 2000 under scenario A2 Source: Durack (2002)<br />

Figure 13 Relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature to oxygen c<strong>on</strong>sumpti<strong>on</strong> <strong>and</strong> nutrient fluxes (mM/m 2 /<br />

day) from Swan Canning river system sediments (a) temperature versus dissolved oxygen<br />

c<strong>on</strong>sumpti<strong>on</strong> (b) temperature versus amm<strong>on</strong>ium fl ux (c) temperature versus N/P ratio from<br />

sediments (d) temperature versus phosphate fl ux. Data source: Douglas (unpublished data)<br />

33


1.6.4 Storm surges<br />

Storm surge occurrences are diffi cult to project for <strong>the</strong> regi<strong>on</strong> due to <strong>the</strong> input <str<strong>on</strong>g>of</str<strong>on</strong>g> local <strong>and</strong> remotely<br />

forced moti<strong>on</strong>s. Surges depend <strong>on</strong> <strong>the</strong> severity <strong>and</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> fr<strong>on</strong>tal systems impacting <strong>on</strong> <strong>the</strong><br />

regi<strong>on</strong> in winter <strong>and</strong> also <strong>on</strong> <strong>the</strong> number <strong>and</strong> severity <str<strong>on</strong>g>of</str<strong>on</strong>g> wea<strong>the</strong>r systems crossing <strong>the</strong> coastline to<br />

<strong>the</strong> north <str<strong>on</strong>g>of</str<strong>on</strong>g> Fremantle. There is no informati<strong>on</strong> with regard to future <str<strong>on</strong>g>change</str<strong>on</strong>g>s to wea<strong>the</strong>r systems<br />

impacting <strong>on</strong> storm surges in Western Australia. Using <strong>the</strong> projected mean sea level rise, <strong>the</strong> extremes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sea level could be estimated as shown in Figure 14. The predicted values indicate that by<br />

2030 (ca. 0.10 m sea level rise), <strong>the</strong> existing maximum recorded water level would be experienced<br />

every 20 years <strong>and</strong> by 2070 every <strong>on</strong>e to two years (Figure 14).<br />

Figure 14 Predicted recurrence intervals for mean sea level rise <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.10 metres (2030), 0.35<br />

metres (2070) <strong>and</strong> 0.50 metres (2100) The highest water level recorded to date (1.98 metres) is<br />

shown for comparis<strong>on</strong>. Source: Eliot <strong>and</strong> Pattiaratchi (in preparati<strong>on</strong>)<br />

1.6.5 Hydrodynamics <strong>and</strong> <strong>the</strong> salt wedge<br />

Hydrodynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> estuary depend <strong>on</strong> streamfl ow, ocean water levels <strong>and</strong> <strong>the</strong> salinity (density)<br />

difference between <strong>the</strong> upper estuary <strong>and</strong> <strong>the</strong> ocean. Predicted <str<strong>on</strong>g>change</str<strong>on</strong>g>s in streamfl ow indicate <strong>the</strong><br />

estuary is likely to experience mean salinity levels closer to oceanic levels if <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> c<strong>on</strong>tinues<br />

unabated. Future upstream migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> salt wedge is likely to be limited as it currently<br />

extends to <strong>the</strong> navigable reach <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> upper estuary (West Swan Bridge). The major infl uence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

predicted <str<strong>on</strong>g>change</str<strong>on</strong>g>s <strong>on</strong> <strong>the</strong> hydrodynamic regime is likely to be <strong>the</strong> reducti<strong>on</strong> in streamfl ow, resulting<br />

in a higher salinity envir<strong>on</strong>ment throughout <strong>the</strong> estuary <strong>and</strong> a reducti<strong>on</strong> in vertical stratifi cati<strong>on</strong> in <strong>the</strong><br />

absence <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater infl ow.<br />

34


1.6.6 Relative sea level rise<br />

Future <str<strong>on</strong>g>change</str<strong>on</strong>g>s in sea level, particularly <strong>on</strong> a regi<strong>on</strong>al basis, are associated with a high degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

uncertainty. The rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise is governed by many factors, <strong>the</strong> most important <str<strong>on</strong>g>of</str<strong>on</strong>g> which<br />

is <strong>the</strong> <strong>the</strong>rmal expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ocean due to warming. The lower bounds <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise can be<br />

identifi ed with relative c<strong>on</strong>fi dence but <strong>the</strong>re is a great deal <str<strong>on</strong>g>of</str<strong>on</strong>g> uncertainty associated with <strong>the</strong> risks <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

positive feedbacks causing accelerated <str<strong>on</strong>g>change</str<strong>on</strong>g> in ice cap movement <strong>and</strong> discharge.<br />

This risk is reported in <strong>the</strong> CSIRO <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> paper (CSIRO 2007; p. 92). In additi<strong>on</strong>, researchers<br />

have found that sea levels are tracking towards <strong>the</strong> upper trajectory <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> IPCC’s 2001 projecti<strong>on</strong>s<br />

(Church 2007).<br />

Regi<strong>on</strong>al oceanographic <strong>and</strong> meteorological effects <strong>and</strong> vertical l<strong>and</strong> movements fur<strong>the</strong>r compound<br />

<strong>the</strong> uncertainty about future relative sea level rise at any site. The projected relative sea level rise for<br />

<strong>the</strong> south west Western Australian regi<strong>on</strong> is presented in Table 12 for both <strong>the</strong> B1# <strong>and</strong> A2# scenarios.<br />

These values are presented as cumulative increases added to <strong>the</strong> total increase <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.16 metres<br />

recorded since <strong>the</strong> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sea level measurements at Fremantle in 1897 (Figure 8).<br />

Table 12 Projected relative sea level rise for south west regi<strong>on</strong><br />

Change<br />

Element Scenario<br />

2000 2030 2070 2100<br />

relative to<br />

Sea Level Rise -<br />

B1#<br />

0.28m- 0.35m-<br />

0.22mexcluding<br />

future rapid<br />

0.43m 0.55m<br />

dynamic <str<strong>on</strong>g>change</str<strong>on</strong>g> in ice<br />

0.33m<br />

A2# 0.3m- 0.4mflow*<br />

1897 ~0.16m<br />

0.5m-<br />

0.7m<br />

Sea Level Rise -<br />

including future rapid<br />

dynamic <str<strong>on</strong>g>change</str<strong>on</strong>g> in ice<br />

flow<br />

B1#<br />

A2#<br />

∗Interpolati<strong>on</strong>s between 1990 <strong>and</strong> 2100 are linear approximati<strong>on</strong>s.<br />

1.6.7 Winter rainfall<br />

0.6m-<br />

0.9m<br />

As noted in secti<strong>on</strong> 1.4.3, in additi<strong>on</strong> to a weakening <str<strong>on</strong>g>of</str<strong>on</strong>g> storm intensity <strong>and</strong> frequency, <strong>the</strong> later<br />

northward movement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclogenesis has affected <strong>the</strong> seas<strong>on</strong>al timing <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall during<br />

<strong>the</strong> ‘winter’ half <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> year. Recent IOCI research is beginning to study <strong>the</strong>se synoptic trends for<br />

applicati<strong>on</strong> in model projecti<strong>on</strong>s. However, quantitative scenario projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘winter’ rainfall in this<br />

report are c<strong>on</strong>fi ned to a ‘total winter rainfall’ <str<strong>on</strong>g>of</str<strong>on</strong>g> May to October inclusive (i.e. inclusive <str<strong>on</strong>g>of</str<strong>on</strong>g> late autumn<br />

<strong>and</strong> early spring).<br />

Attributi<strong>on</strong>s <strong>and</strong> projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> winter seas<strong>on</strong> rainfall <strong>and</strong> river fl ow are complex. The observed<br />

trends <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se <str<strong>on</strong>g>climate</str<strong>on</strong>g> elements have been statistically unusual. However, although statistically<br />

unusual, <strong>the</strong> trends have not been outside <strong>the</strong> bounds <str<strong>on</strong>g>of</str<strong>on</strong>g> extremes, which could be explained by<br />

natural variability. The observed trends have also followed directi<strong>on</strong>al <str<strong>on</strong>g>change</str<strong>on</strong>g>s expected <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic<br />

global warming. Although <strong>the</strong>re are good grounds for assuming that global anthropogenic<br />

<str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> has altered <strong>the</strong> statistical expectati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> present <strong>and</strong> future seas<strong>on</strong>al rainfall totals,<br />

<strong>the</strong> outcome in actual observati<strong>on</strong>s has exceeded median rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> from ensemble runs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>climate</str<strong>on</strong>g> models<br />

Climate modelling is c<strong>on</strong>sistent in projecting a sustained downward trend in <strong>the</strong> regi<strong>on</strong>’s rainfall in<br />

this century due to increasing greenhouse gas (GHG) c<strong>on</strong>centrati<strong>on</strong>s. However, <strong>on</strong>ly part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

observed rainfall decrease – 10 per cent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> total winter half – can be explained by modelling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

GHG forcing. Typically, this ‘explained’ comp<strong>on</strong>ent is approximately <strong>on</strong>e half <strong>the</strong> observati<strong>on</strong>al esti-<br />

35


mate (see IOCI 2005d). This leaves <strong>the</strong> following possibilities or mix <str<strong>on</strong>g>of</str<strong>on</strong>g> possibilities:<br />

• part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> decrease may be natural variability, not <str<strong>on</strong>g>change</str<strong>on</strong>g>, <strong>and</strong> might not c<strong>on</strong>tinue as<br />

a trend;<br />

• modelling has underestimated <strong>the</strong> GHG induced <str<strong>on</strong>g>change</str<strong>on</strong>g> so far;<br />

• l<strong>and</strong> clearing has been a signifi cant c<strong>on</strong>tributor to <str<strong>on</strong>g>change</str<strong>on</strong>g>; <strong>and</strong><br />

• o<strong>the</strong>r, yet unspecifi ed, temporary or permanent forcing may also be involved (e.g.<br />

aerosols).<br />

Statistical downscaling <str<strong>on</strong>g>of</str<strong>on</strong>g> global models has been carried out by Charles et. al (2004) to achieve<br />

regi<strong>on</strong>al resoluti<strong>on</strong> for rainfall scenarios. Scenarios presented here are based <strong>on</strong> those c<strong>on</strong>tained<br />

in unabridged reports <str<strong>on</strong>g>of</str<strong>on</strong>g> IOCI Stage 2 (Bates pers. comm.) 6 <strong>and</strong> associated studies applied to <strong>the</strong><br />

Stirling Catchment (Berti et al. 2004).<br />

The development <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se scenarios has involved assumpti<strong>on</strong>s to rec<strong>on</strong>cile with explained <strong>and</strong><br />

unexplained comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> pre-1990 <str<strong>on</strong>g>change</str<strong>on</strong>g>s. These assumpti<strong>on</strong>s <strong>and</strong> adjustments are detailed in<br />

Appendix 2. They seek to broadly represent <strong>the</strong> 50-percentile range <str<strong>on</strong>g>of</str<strong>on</strong>g> post-1990 ensembled runs<br />

for <strong>the</strong> A2# <strong>and</strong> B1# scenarios, as affected by alternative assumpti<strong>on</strong>s regarding anthropogenic factors,<br />

such as l<strong>and</strong> clearing, <strong>on</strong> <strong>the</strong> actual <str<strong>on</strong>g>climate</str<strong>on</strong>g> outcomes realised at 1990.<br />

The scenarios proposed for this study would represent a mid-range <str<strong>on</strong>g>of</str<strong>on</strong>g> projecti<strong>on</strong>s am<strong>on</strong>gst those<br />

reported from internati<strong>on</strong>ally available Global Climate Models. It is notable that emissi<strong>on</strong> scenario<br />

selecti<strong>on</strong> makes very little difference at 2030, with greatest variati<strong>on</strong>s occurring at 2100. The scenarios<br />

presented are nominally for <strong>the</strong> A2 <strong>and</strong> B1 SRES scenarios. These include adjustments as<br />

outlined above <strong>and</strong> are discussed fur<strong>the</strong>r in Appendix 1.<br />

Table 13 Projected mean winter rainfall decrease - south west<br />

Element<br />

Total winter rain<br />

decrease from 1925-75<br />

Possibly not all GHG driven<br />

1.6.8 Annual river flow<br />

Scenario<br />

1990 as %<br />

decrease<br />

from<br />

1925-75<br />

Rainfall decrease as % <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

from 1925-75<br />

2030 2070 2100<br />

B1#<br />

7~14% 16~25% 17~27%<br />

A2# 10%* 12~20% 22~34% 26~40%<br />

scenario range 7~20% 16~34% 17~40%<br />

The n<strong>on</strong>-linear relati<strong>on</strong>ship between rainfall <strong>and</strong> streamfl ow has magnifi ed <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> decreased<br />

rainfall <strong>on</strong> streamfl ows <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> south west. This can be seen in <strong>the</strong> reduced total infl ow into <strong>the</strong> reservoirs<br />

supplying Perth, where a 10 to 15 per cent reducti<strong>on</strong> in rainfall since 1975 has c<strong>on</strong>tributed<br />

to an approximate 50 per cent decrease in total infl ow from <strong>the</strong> l<strong>on</strong>g-term average <strong>and</strong> even larger<br />

decreases since 2001. Research in <strong>the</strong> Stirling Catchment has shown that for a future <str<strong>on</strong>g>climate</str<strong>on</strong>g> scenario,<br />

in which rainfall was decreased by 11 per cent, a 30 per cent decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> annual stream fl ow<br />

could be expected (Berti et. al, 2004).<br />

Studies to date have generally not incorporated <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> fur<strong>the</strong>r warming <strong>and</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> evaporati<strong>on</strong><br />

increase in assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> streamfl ow resp<strong>on</strong>se. The Stirling Catchment studies however,<br />

did incorporate sensitivity studies, which suggest that a 10 per cent increase in <str<strong>on</strong>g>potential</str<strong>on</strong>g> evaporati<strong>on</strong><br />

coupled with <strong>the</strong> 11 per cent decrease in rainfall would lift <strong>the</strong> assessed <str<strong>on</strong>g>potential</str<strong>on</strong>g> streamfl ow<br />

decrease to more than 40 per cent. By 2070 <str<strong>on</strong>g>potential</str<strong>on</strong>g> evaporati<strong>on</strong> increases <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 to 7 per cent are<br />

indicated for <strong>the</strong> B1 <strong>and</strong> A2 scenarios respectively (CSIRO 2007).<br />

6 The data are detailed in a draft Unabridged Report <str<strong>on</strong>g>of</str<strong>on</strong>g> IOCI Stage 2/Phase 2 (pers. comm Brys<strong>on</strong> Bates)<br />

36


A porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> current reducti<strong>on</strong> in rainfall may be <strong>the</strong> result <str<strong>on</strong>g>of</str<strong>on</strong>g> natural multi-decadal variability. As<br />

discussed in <strong>the</strong> preceding secti<strong>on</strong>, this adds uncertainty to <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> fur<strong>the</strong>r sustained<br />

rainfall <strong>and</strong> river fl ow reducti<strong>on</strong>.<br />

There is a limit to how far existing catchment models can project <strong>the</strong> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> future warming <strong>and</strong><br />

drying scenarios. At some point <strong>the</strong> catchment vegetati<strong>on</strong> will <str<strong>on</strong>g>change</str<strong>on</strong>g> suffi ciently in resp<strong>on</strong>se to<br />

stress <strong>and</strong> <strong>the</strong> model parameterisati<strong>on</strong> could break down.<br />

The scenarios presented in Table 14 are c<strong>on</strong>sistent with <strong>the</strong> rainfall scenarios. Table 14 is a merging<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 50-percentile ensemble range <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> A2 <strong>and</strong> B1 model runs (CSIRO Mk3 <strong>and</strong> CCAM<br />

runs) (Draft Unabridged Report <str<strong>on</strong>g>of</str<strong>on</strong>g> IOCI Stage 2/Phase 2 - Brys<strong>on</strong> Bates pers. comm). The fi gures<br />

approximately represent <strong>the</strong> mid-67 per cent <str<strong>on</strong>g>of</str<strong>on</strong>g> model runs from <strong>the</strong> total ensemble range. Fur<strong>the</strong>r<br />

explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> scenarios is presented in Appendix 2.<br />

Table 14 Streamflow decrease from 1925 – 1975<br />

Element<br />

Streamflow decrease<br />

from 1925-75<br />

Scenario<br />

B1# – A2#<br />

scenario range<br />

1990 as % decrease<br />

from 1925-75<br />

Flow decrease as % <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

from 1925-75<br />

2030 2070 2100<br />

30% 22~55% 45~75% 50~80%<br />

1.6.9 Extreme rainfall <strong>and</strong> flooding above <strong>the</strong> tidal z<strong>on</strong>e<br />

Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> future projected extreme rainfalls in <strong>the</strong> south west is <str<strong>on</strong>g>of</str<strong>on</strong>g> limited scope at this stage<br />

although recent modelling for nati<strong>on</strong>al scenarios is notable (CSIRO 2007). As a c<strong>on</strong>sequence, <strong>on</strong>ly<br />

<strong>the</strong> qualitative expectati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Table 10 are incorporated in <strong>the</strong>se scenarios (Table 15).<br />

As a broad global trend, rising atmospheric temperatures imply that <strong>the</strong> atmosphere will have an<br />

increasing trend in moisture-carrying capacity. Most computer models <strong>the</strong>refore simulate a global<br />

trend <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing extreme daily rainfall. This can occur even in <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an annual drying<br />

trend. However, a decrease is evident in winter rainfalls for south west <str<strong>on</strong>g>of</str<strong>on</strong>g> Western Australia at this<br />

time.<br />

37


Table 15 Observed <strong>and</strong> projected (south western Australia/Swan Canning river system)<br />

trends in rainfall extremes <strong>and</strong> floods 7<br />

Phenomen<strong>on</strong> <strong>and</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

trend<br />

Likelihood that <strong>the</strong><br />

trend established or<br />

c<strong>on</strong>solidated in late<br />

20 th century<br />

Likelihood<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a human<br />

c<strong>on</strong>tributi<strong>on</strong> to<br />

observed trend<br />

Likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

future trend<br />

under A2#/B1#<br />

scenarios<br />

Decrease in frequency/<br />

intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme winter<br />

rainfalls<br />

(1 to 10 year return period)<br />

Likely<br />

More likely than<br />

not<br />

More likely than<br />

not<br />

Increase/decrease in<br />

frequency/intensity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extreme summer rainfalls<br />

(1 to 10 year return period)<br />

Small or n<strong>on</strong>existent<br />

statistically<br />

inc<strong>on</strong>clusive<br />

No clear evidence<br />

No clear evidence<br />

for significant<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g><br />

Decrease in frequency/intensity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> winter flood flows<br />

(Swan tributaries)<br />

Extremely likely Extremely likely Likely<br />

Increase or decrease in frequency/intensity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> summer<br />

flood flows (Swan tributaries)<br />

No clear evidence<br />

No clear<br />

evidence<br />

No clear evidence<br />

*C<strong>on</strong>tent in this table extracted from Table 9<br />

Winter extremes affecting flooding above <strong>the</strong> tidal z<strong>on</strong>e<br />

A decrease in winter rainfall has dominated <strong>the</strong> observed experience in <strong>the</strong> south west <strong>and</strong> <strong>the</strong>re<br />

seems no justifi cati<strong>on</strong> for anticipating increased rainfall extremes in this regi<strong>on</strong> in <strong>the</strong> next few decades<br />

(B. Bates pers. comm 8 <strong>and</strong> IOCI 2005e). Indeed, recent modelling for nati<strong>on</strong>al scenarios suggests<br />

that <strong>the</strong> observed decreases in <strong>the</strong> regi<strong>on</strong>’s winter extremes will c<strong>on</strong>tinue in <strong>the</strong> future (CSIRO<br />

2007; page 74).<br />

Under <strong>the</strong> B1# <strong>and</strong> A2# scenarios it would seem reas<strong>on</strong>able to expect that, in <strong>the</strong> mid-term, extreme<br />

winter rainfalls will not intensify bey<strong>on</strong>d past experience <strong>and</strong> are more likely to refl ect <strong>the</strong> post-1965<br />

reducti<strong>on</strong>s. Given that <strong>the</strong> drying trends are comm<strong>on</strong>ly causing reducti<strong>on</strong>s in antecedent catchment<br />

wetness for most storm events <strong>and</strong> decreases in regi<strong>on</strong>al groundwater levels in uncleared catchments,<br />

<strong>the</strong> net c<strong>on</strong>sequence is a likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> a decrease in intensity <strong>and</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> associated<br />

winter fl ooding.<br />

7 In this report <strong>the</strong> IPCC Third Working Group judgement assessment terminology is used:<br />

Likelihood as % probability <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence<br />

Virtually certain Extremely likely Very likely Likely More likely than not<br />

> 99% > 95% > 90% > 66% > 50%<br />

Extremely unlikely Very unlikely Unlikely<br />

< 5% < 10% < 33%<br />

8 The data are detailed in a draft Unabridged Report <str<strong>on</strong>g>of</str<strong>on</strong>g> IOCI Stage 2/Phase 2 (Brys<strong>on</strong> Bates pers. comm) .<br />

38


• For <strong>the</strong> mid-term future <strong>the</strong> following two scenarios represent a reas<strong>on</strong>able range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

probabilities.Rainfall intensities <strong>and</strong> fl ooding at various recurrence intervals c<strong>on</strong>tinue<br />

at <strong>the</strong> lower intensity levels refl ected in <strong>the</strong> statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> last 40 years with a<br />

tendency to fur<strong>the</strong>r reducti<strong>on</strong>s in <strong>the</strong> future.<br />

• Rainfall intensities at various recurrence intervals revert to higher (relative) levels<br />

<strong>and</strong>, as a precauti<strong>on</strong>ary c<strong>on</strong>servatism in respect to designing to avoid fl ood damage,<br />

<strong>the</strong> l<strong>on</strong>ger term historical extreme rainfall <strong>and</strong> fl ood statistics are appropriate.<br />

Summer extremes affecting flooding above <strong>the</strong> tidal z<strong>on</strong>e<br />

Modelling results in recently published nati<strong>on</strong>al scenarios are notable (CSIRO 2007; page 74).<br />

These results do not suggest an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> summer-half rainfall extremes, but ra<strong>the</strong>r hint at possible<br />

decrease. However, at <strong>the</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> this study <strong>the</strong>re is no str<strong>on</strong>g observati<strong>on</strong>al or model evidence<br />

available to support any str<strong>on</strong>g c<strong>on</strong>cerns or expectati<strong>on</strong>s for signifi cant <str<strong>on</strong>g>change</str<strong>on</strong>g>, whe<strong>the</strong>r increase or<br />

decrease, in summer extremes <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall in <strong>the</strong> south west.<br />

Under <strong>the</strong> B1# <strong>and</strong> A2# scenarios it would seem reas<strong>on</strong>able to expect that extreme summer rainfalls<br />

<strong>and</strong> associated fl ooding will not signifi cantly increase or decrease in frequency or intensity.<br />

1.7 Summary<br />

This chapter has presented <strong>the</strong> latest scientifi c informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>and</strong> provided two scenarios<br />

for <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> in <strong>the</strong> Swan Canning river System. The scenarios indicate:<br />

• accelerating atmosphere <strong>and</strong> ocean warming;<br />

• decreasing in total winter stream fl ows;<br />

• accelerating sea <strong>and</strong> tidal estuary level rise;<br />

• drecreasing winter rainfall;<br />

• increased frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> droughts;<br />

• increasing in extreme tidal estuary levels; <strong>and</strong><br />

• increasing frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> warm spells <strong>and</strong> heat waves.<br />

Chapter 3 applies this informati<strong>on</strong> to assess <strong>the</strong> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Swan <strong>and</strong> Canning<br />

<strong>rivers</strong>. Then, in Chapter 4, adaptati<strong>on</strong> opti<strong>on</strong>s <strong>and</strong> research priorities to ameliorate <str<strong>on</strong>g>climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> are discussed.<br />

39


2 POTENTIAL CLIMATE CHANGE IMPACTS FOR SWAN<br />

AND CANNING RIVERS<br />

Key <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>s anticipated at global <strong>and</strong> regi<strong>on</strong>al scales were outlined in Chapter 2 in c<strong>on</strong>juncti<strong>on</strong><br />

with scenarios for climatic <str<strong>on</strong>g>change</str<strong>on</strong>g>s anticipated in <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong>. In this<br />

chapter <strong>the</strong> scenarios are applied to determine <strong>the</strong> anticipated <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>. The chapter<br />

commences with a review <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Av<strong>on</strong> Regi<strong>on</strong> as a whole as a c<strong>on</strong>textual setting<br />

for specifi c effects in <strong>the</strong> Swan Canning river system discussed in subsequent secti<strong>on</strong>s.<br />

2.1 Impacts <strong>on</strong> broader catchment (Av<strong>on</strong>)<br />

Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> predicti<strong>on</strong>s indicate a future reducti<strong>on</strong> in rainfall for <strong>the</strong> south west <str<strong>on</strong>g>of</str<strong>on</strong>g> Western<br />

Australia. This decline in annual rainfall in t<strong>and</strong>em with <strong>the</strong> warming <str<strong>on</strong>g>climate</str<strong>on</strong>g> will act as <strong>the</strong> most<br />

signifi cant d<strong>rivers</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> in <strong>the</strong> broader catchment. More specifi cally, <strong>the</strong> scenarios in Chapter 2<br />

suggest that by 2030 <strong>the</strong>re will be decrease in winter rainfall <str<strong>on</strong>g>of</str<strong>on</strong>g> between 7 <strong>and</strong> 20 per cent from that<br />

historically recorded between 1925 <strong>and</strong> 1975.<br />

Any <str<strong>on</strong>g>change</str<strong>on</strong>g> in rainfall <strong>and</strong> annual run<str<strong>on</strong>g>of</str<strong>on</strong>g>f will infl uence sediment <strong>and</strong> nutrient loads in <strong>the</strong> catchment.<br />

Ali et al (2007) examined <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> in sediment <strong>and</strong> nutrient loads as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> decline<br />

in rainfall. Their research estimates that a 10 per cent reducti<strong>on</strong> in rainfall in <strong>the</strong> Av<strong>on</strong> River basin<br />

between 2004 <strong>and</strong> 2031 would result in a 35 per cent reducti<strong>on</strong> in annual run<str<strong>on</strong>g>of</str<strong>on</strong>g>f (to 212 GL) <strong>and</strong> a<br />

38 per cent reducti<strong>on</strong> in annual salt loads (to 1634 kT) at Walyunga (Upper Swan). A 20 per cent<br />

reducti<strong>on</strong> in rainfall during that period would reduce run<str<strong>on</strong>g>of</str<strong>on</strong>g>f by 60 per cent <strong>and</strong> salt loads by 64 per<br />

cent <strong>and</strong> a 30 per cent reducti<strong>on</strong> will reduce run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> salt loads by 80 per cent <strong>and</strong> 81 per cent<br />

respectively.<br />

Rainfall decline will fur<strong>the</strong>r add to <strong>the</strong> existing widespread drying <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> catchments in <strong>the</strong> Darling<br />

Range <strong>and</strong> Av<strong>on</strong> river system. The c<strong>on</strong>tinued drying <str<strong>on</strong>g>of</str<strong>on</strong>g> catchments may result in reduced annual<br />

sediment <strong>and</strong> nutrient <strong>and</strong> carb<strong>on</strong> loads. The possible extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se <str<strong>on</strong>g>impacts</str<strong>on</strong>g> is hard to quantify<br />

due to major diffi culties in estimating sediment <strong>and</strong> nutrient loads in fl ow events. Although fl ow m<strong>on</strong>itors<br />

are adequate, sediments <strong>and</strong> nutrients are not discretely m<strong>on</strong>itored in <strong>the</strong> catchment, with <strong>the</strong><br />

excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e stati<strong>on</strong> at Walyunga.<br />

In summary, <strong>the</strong> timing <strong>and</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> water, sediment, nutrients, carb<strong>on</strong> <strong>and</strong> salt loads in <strong>the</strong> Av<strong>on</strong><br />

Catchment will be altered by <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> through:<br />

• reducti<strong>on</strong> in rainfall <strong>and</strong> salt loads; <strong>and</strong><br />

• widespread drying <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> catchment <strong>and</strong> c<strong>on</strong>sequent reducti<strong>on</strong> in annual sediment,<br />

nutrient <strong>and</strong> carb<strong>on</strong> loads.<br />

Reducti<strong>on</strong>s in rainfall will also have an impact <strong>on</strong> vegetati<strong>on</strong> in <strong>the</strong> Av<strong>on</strong> regi<strong>on</strong>. Wet habitats (e.g.<br />

Eucalyptus megacarpa or bullich) are already decreasing, <strong>and</strong> may be lost completely if regi<strong>on</strong>al<br />

groundwater levels c<strong>on</strong>tinue to fall below <strong>the</strong> invert <str<strong>on</strong>g>of</str<strong>on</strong>g> streams. Alternatively, <strong>the</strong> decline in rainfall<br />

has slowed <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> jarrah dieback (Phytophthora cinnamomi) as c<strong>on</strong>diti<strong>on</strong>s for zoospore<br />

dispersal reduces. However any increase in episodic summer storms would result in a rapid<br />

expansi<strong>on</strong> (Table 10).<br />

Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> has <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> to induce major <str<strong>on</strong>g>change</str<strong>on</strong>g>s in <strong>the</strong> reactivity <str<strong>on</strong>g>of</str<strong>on</strong>g> acid sulphate soils in<br />

<strong>the</strong> Swan Canning river system. Acid sulphate soils both underlay <strong>and</strong> fringe large porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

estuary <strong>and</strong> are also present as laterally extensive, lenticular horiz<strong>on</strong>s in fl oodplain soils/sediments.<br />

In a scenario <str<strong>on</strong>g>of</str<strong>on</strong>g> increased erosi<strong>on</strong>, exposure <strong>and</strong> desiccati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soils/sediments may lead to acid<br />

generati<strong>on</strong> <strong>and</strong> <strong>the</strong> mobilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both acidity <strong>and</strong> trace elements. In general, <strong>the</strong> n<strong>on</strong>-limest<strong>on</strong>ebearing<br />

sediments <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan Coastal Plain are poorly buffered, <strong>and</strong> thus would have little inherent<br />

capacity to attenuate sulphide-generated acidity prior to groundwater or surface water discharge to<br />

<strong>the</strong> Swan Canning river system. C<strong>on</strong>versely, prol<strong>on</strong>ged inundati<strong>on</strong> during periods <str<strong>on</strong>g>of</str<strong>on</strong>g> increased water<br />

40


levels may increase waterlogging, reduce <strong>the</strong> rate <strong>and</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen infi ltrati<strong>on</strong> <strong>and</strong> provide a<br />

transient barrier to <strong>the</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acidity via sulfi de oxidati<strong>on</strong>.<br />

Agriculture is <strong>the</strong> predominant l<strong>and</strong> use in <strong>the</strong> Av<strong>on</strong> Regi<strong>on</strong>. Increasing productivity <strong>on</strong> cereal farms<br />

is resulting in increased yields despite a decline in rainfall. However, if plant <strong>and</strong> ec<strong>on</strong>omic thresholds<br />

are exceeded, <str<strong>on</strong>g>change</str<strong>on</strong>g>s to farm enterprises will result. A drier <str<strong>on</strong>g>climate</str<strong>on</strong>g> has been predicted to<br />

result in fur<strong>the</strong>r expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> grain growing in <strong>the</strong> wetter, western parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Av<strong>on</strong> Catchment (e.g.<br />

O’C<strong>on</strong>ner et al. 2004) <strong>and</strong> a possible expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stock in <strong>the</strong> wheatbelt if drier seas<strong>on</strong>s make<br />

cereals too risky to grow (John et al. 2005). Some perennials may be harder to establish as <strong>the</strong> <str<strong>on</strong>g>climate</str<strong>on</strong>g><br />

dries. However, a shift to animal-based industries could encourage perennial fodder shrubs.<br />

The key <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> in <strong>the</strong> broader catchment are summarised in Table 16:<br />

Table 16 Anticipated future <str<strong>on</strong>g>change</str<strong>on</strong>g>s in <strong>the</strong> broader Av<strong>on</strong> Catchment<br />

Area<br />

Agriculture <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

Water, sediment, nutrient,<br />

carb<strong>on</strong> <strong>and</strong> salt loads<br />

Vegetati<strong>on</strong><br />

Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> Climate Change<br />

Drought <strong>and</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g> in l<strong>and</strong> practices<br />

Reduced rainfall, flow, sedimentati<strong>on</strong>, nutrient load <strong>and</strong> salt load<br />

Demarcati<strong>on</strong> between jarrah-marri <strong>and</strong> w<strong>and</strong>oo woodl<strong>and</strong>s is<br />

moving west<br />

Change in fire regime <strong>and</strong> groundwater recharge, water discharge<br />

<strong>and</strong> sedimentati<strong>on</strong><br />

Acid Sulphate Soils<br />

Wet habitats decreasing or are being lost<br />

2.2 Impacts <strong>on</strong> Swan <strong>and</strong> Canning <strong>rivers</strong><br />

Exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> peaty soils in low buffering c<strong>on</strong>diti<strong>on</strong>s which leach<br />

acid <strong>and</strong> mobilise heavy metals.<br />

The <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong> are discussed under <strong>the</strong> following<br />

headings: ecological <str<strong>on</strong>g>impacts</str<strong>on</strong>g>; <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong> infrastructure; human health <strong>and</strong> social <str<strong>on</strong>g>impacts</str<strong>on</strong>g>; <strong>and</strong> ec<strong>on</strong>omic<br />

<str<strong>on</strong>g>impacts</str<strong>on</strong>g>. These subject areas are indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> priority management areas for <strong>the</strong> Swan<br />

River Trust.<br />

2.2.1 Impacts <strong>on</strong> ecology<br />

The ecological system <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong> is diverse <strong>and</strong> subsequently <strong>the</strong> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> are numerous. C<strong>on</strong>sequently, for ease <str<strong>on</strong>g>of</str<strong>on</strong>g> discussi<strong>on</strong>, <strong>the</strong> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong> ecology have<br />

been broken into a number <str<strong>on</strong>g>of</str<strong>on</strong>g> sub-secti<strong>on</strong>s, namely: sediment compositi<strong>on</strong> <strong>and</strong> nutrient loads; dissolved<br />

oxygen levels; nutrient cycling; fringing vegetati<strong>on</strong>; community structure (including trophic<br />

dynamics with a particular focus <strong>on</strong> birds <strong>and</strong> fi sh); mudfl ats; sea grass <strong>and</strong> macro-algae; biodiversity;<br />

acidifi cati<strong>on</strong>; <strong>and</strong> geomorphology.<br />

Sediment compositi<strong>on</strong> <strong>and</strong> nutrient loads<br />

Anticipated reducti<strong>on</strong>s in rainfall <strong>and</strong> increased atmospheric <strong>and</strong> riverine temperatures will impact<br />

sediment retenti<strong>on</strong> <strong>and</strong> compositi<strong>on</strong> in <strong>the</strong> Swan Canning river system (as discussed above). Sediment<br />

compositi<strong>on</strong> is affected directly by <strong>the</strong> depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particulate nutrients, sediments <strong>and</strong> organic<br />

matter in river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, <strong>and</strong> indirectly by <strong>the</strong> effi ciency <str<strong>on</strong>g>of</str<strong>on</strong>g> trapping <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved nutrients in river<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f by phytoplankt<strong>on</strong> blooms – which subsequently deposit <strong>on</strong> <strong>the</strong> river bed.<br />

During years <str<strong>on</strong>g>of</str<strong>on</strong>g> average to high run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, particulate <strong>and</strong> dissolved nutrients (carb<strong>on</strong>, nitrogen, phos-<br />

41


phorus) in river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f are largely discharged to <strong>the</strong> ocean, with some retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particulate nutrients<br />

(particularly carb<strong>on</strong> <strong>and</strong> phosphorus) in <strong>the</strong> middle <strong>and</strong> upper reaches <strong>and</strong> dissolved nutrients<br />

throughout <strong>the</strong> river system. In years <str<strong>on</strong>g>of</str<strong>on</strong>g> higher run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong> surface layer <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient-rich sediments in<br />

<strong>the</strong> middle <strong>and</strong> upper reaches may also be ‘scoured out’ <strong>and</strong> ei<strong>the</strong>r (partially) redeposited or discharged<br />

to <strong>the</strong> ocean. In years <str<strong>on</strong>g>of</str<strong>on</strong>g> low run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong> particulate nutrient loads tend to settle in <strong>the</strong> middle<br />

<strong>and</strong> upper estuary ra<strong>the</strong>r than being fl ushed out, <strong>and</strong> <strong>the</strong>re is also a high level <str<strong>on</strong>g>of</str<strong>on</strong>g> assimilati<strong>on</strong> <strong>and</strong><br />

cycling <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved nutrients by successive phytoplankt<strong>on</strong> blooms.<br />

The predicted reducti<strong>on</strong>s in river fl ows will c<strong>on</strong>sequently reduce loads <str<strong>on</strong>g>of</str<strong>on</strong>g> particulate <strong>and</strong> dissolved<br />

nutrients. However, reduced fl ows will also ensure higher proporti<strong>on</strong>s are retained. The eventual<br />

balance between <strong>the</strong>se two processes is at present uncertain. Given retenti<strong>on</strong> is <strong>the</strong> predominant<br />

mechanism, it is expected that over time <strong>the</strong> total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> particulate <strong>and</strong> dissolved nutrients in<br />

<strong>the</strong> Swan Canning river system will increase. Fur<strong>the</strong>r, <strong>the</strong>re may be an increase in <strong>the</strong> spatial extent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> highly nutrient-rich sediments, as <strong>the</strong> reducti<strong>on</strong> in river fl ows plus <strong>the</strong> extended tidal infl uence<br />

(due to sea level rise) may cause more effi cient trapping <str<strong>on</strong>g>of</str<strong>on</strong>g> particulate nutrients via fl occulati<strong>on</strong> <strong>and</strong><br />

transport <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se sediment-laden plumes back into higher river reaches.<br />

The degree <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment retenti<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g>s in sediment compositi<strong>on</strong> will also depend <strong>on</strong> <strong>the</strong><br />

annual extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> penetrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> salt wedge, <strong>the</strong> scale <strong>and</strong> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>s in urban run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

(due to urban expansi<strong>on</strong>) <strong>and</strong> agricultural run<str<strong>on</strong>g>of</str<strong>on</strong>g>f (due to <str<strong>on</strong>g>change</str<strong>on</strong>g>s in type <str<strong>on</strong>g>of</str<strong>on</strong>g> agriculture) <strong>and</strong> episodic<br />

events such as large-scale bushfi res. Changes in sediment compositi<strong>on</strong> will also depend <strong>on</strong> <strong>the</strong> degree<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> any <str<strong>on</strong>g>change</str<strong>on</strong>g> in groundwater nutrient inputs to <strong>the</strong> Swan Canning river system, which will presumably<br />

decrease, but any proposed drainage schemes – which largely intercept groundwater, <strong>and</strong><br />

in particular shallow groundwater which is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten enriched in nutrients – will also need c<strong>on</strong>siderati<strong>on</strong>.<br />

The recent trend towards diverting stormwater <strong>and</strong> groundwater in urban drains into <strong>the</strong> Superfi cial<br />

Aquifer will reduce nutrients <strong>and</strong> freshwater infl ows to <strong>the</strong> <strong>rivers</strong>.<br />

Groundwater<br />

A combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> decreased rainfall <strong>and</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, with increased propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> saline wedge <strong>and</strong><br />

riverine salinity, is likely to fundamentally infl uence <strong>the</strong> hydrology <strong>and</strong> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> near-shore<br />

z<strong>on</strong>e in <strong>the</strong> Swan Canning river system. Previous CSIRO research <strong>on</strong> <strong>the</strong> hydrology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> estuary<br />

has dem<strong>on</strong>strated seas<strong>on</strong>al inundati<strong>on</strong> <strong>and</strong> displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> near-shore z<strong>on</strong>e groundwater by<br />

saline waters, particularly <strong>on</strong> <strong>the</strong> inside <str<strong>on</strong>g>of</str<strong>on</strong>g> major me<strong>and</strong>ers (Linderfelt <strong>and</strong> Turner 2001).<br />

Increasing density within <strong>the</strong> saline wedge <strong>and</strong> its probable l<strong>on</strong>ger residence time in <strong>the</strong> mid to upper<br />

reaches due to decreased fl ushing, is likely to lead to enhanced penetrati<strong>on</strong> into <strong>the</strong> shallow<br />

aquifers surrounding <strong>the</strong> main Swan channel. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>change</str<strong>on</strong>g> in shallow groundwater<br />

compositi<strong>on</strong> <strong>and</strong> structure are likely to be many. In ecological terms, both animals <strong>and</strong> plants accustomed<br />

to more transient <strong>and</strong> lower salinity levels may not be suitably adapted to survive an increasingly<br />

saline shallow groundwater regime. Local residents who have historically abstracted shallow<br />

groundwater may fi nd <strong>the</strong> increase in salinity renders <strong>the</strong>ir bores unusable.<br />

Groundwater levels have fallen in Darling Range catchments as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> lower rainfalls since <strong>the</strong><br />

mid-1970s. This has been gradual <strong>and</strong> progressive such that levels are now below <strong>the</strong> invert <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

streams in many cases <strong>and</strong> unlikely to be fully recovered by a wet year or two, or a major storm.<br />

This means that run<str<strong>on</strong>g>of</str<strong>on</strong>g>f yields as a percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall have progressively declined as catchments<br />

have dried (e.g. rainfall was average in 2005 in metropolitan catchments but run<str<strong>on</strong>g>of</str<strong>on</strong>g>f was <strong>on</strong>ly about a<br />

quarter <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> l<strong>on</strong>g-term average).<br />

Groundwater levels have also declined in <strong>the</strong> Superfi cial Aquifer <strong>on</strong> <strong>the</strong> Swan Coastal Plain resulting<br />

in <strong>the</strong> following <str<strong>on</strong>g>change</str<strong>on</strong>g>s.<br />

• A loss <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater wetl<strong>and</strong>s <strong>and</strong> groundwater dependent GDEs (suitable for waterfowl<br />

that use <strong>the</strong> <strong>rivers</strong>).<br />

• Reduced basefl ow into drains that intersect <strong>the</strong> water table (e.g. most main drains).<br />

42


• A c<strong>on</strong>sequent reducti<strong>on</strong> in nutrient loads from <strong>the</strong>se drains (but not necessarily a<br />

reducti<strong>on</strong> in nutrient c<strong>on</strong>centrati<strong>on</strong>s).<br />

• L<strong>and</strong> that was previously subject to inundati<strong>on</strong> being made suitable for urban <strong>and</strong><br />

industrial development.<br />

Dissolved oxygen (DO) & nutrient cycling<br />

Dissolved oxygen levels equate to <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> free oxygen available in water. DO is required by<br />

fi sh <strong>and</strong> o<strong>the</strong>r aquatic organisms for respirati<strong>on</strong>. Oxygen levels in <strong>the</strong> water column depend <strong>on</strong> <strong>the</strong><br />

diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen to replace oxygen c<strong>on</strong>sumed by (i) microbial decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter<br />

(mainly in <strong>the</strong> sediments, but sometimes in <strong>the</strong> water column during <strong>the</strong> collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> large phytoplankt<strong>on</strong><br />

blooms), <strong>and</strong>/or (ii) <strong>the</strong> combined respirati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large phytoplankt<strong>on</strong> blooms <strong>and</strong> fauna during<br />

<strong>the</strong> night. The diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen across <strong>the</strong> water/air interface is generally low under quiescent<br />

c<strong>on</strong>diti<strong>on</strong>s, <strong>and</strong> diffusi<strong>on</strong> in <strong>the</strong> water column is greatly impeded by any stratifi cati<strong>on</strong>, making it diffi -<br />

cult to ensure adequate DO levels in <strong>the</strong> river benthos. The Swan Canning river system is however,<br />

pr<strong>on</strong>e to local <strong>and</strong> regi<strong>on</strong>al discharge <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwater in <strong>the</strong> margins <strong>and</strong> base <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> channel, which<br />

may manifest as regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> low dissolved oxygen.<br />

With increases in water temperature <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen that can be held in <strong>the</strong> water will decline<br />

<strong>and</strong> bacterial respirati<strong>on</strong> will increase. Overall, <str<strong>on</strong>g>change</str<strong>on</strong>g>s in <strong>the</strong> extent, frequency <strong>and</strong> severity <str<strong>on</strong>g>of</str<strong>on</strong>g> algal<br />

blooms are diffi cult to predict due to varying nutrient loads delivered by river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, groundwater <strong>and</strong><br />

sediment nutrient-cycling processes. In additi<strong>on</strong>, <str<strong>on</strong>g>change</str<strong>on</strong>g>s in water depth, water temperature <strong>and</strong><br />

clarity also impact <strong>on</strong> algal bloom abundance, species compositi<strong>on</strong> <strong>and</strong> successi<strong>on</strong>.<br />

Irrespective <str<strong>on</strong>g>of</str<strong>on</strong>g> any <str<strong>on</strong>g>change</str<strong>on</strong>g>s in algal blooms, <strong>the</strong>re is an increased <str<strong>on</strong>g>potential</str<strong>on</strong>g> (intensity, frequency,<br />

durati<strong>on</strong>) for low DO events <strong>and</strong> more fi sh kills in <strong>the</strong> middle <strong>and</strong> upper estuary due to increased<br />

sediment oxygen dem<strong>and</strong>, increased stratifi cati<strong>on</strong>, increased water depth <strong>and</strong> higher temperatures<br />

(warmer water can hold less oxygen than cooler water). Increased water temperatures can also be<br />

expected to increase sediment oxygen dem<strong>and</strong> (Douglas, unpublished data). The spatial extent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong>se low DO events may retreat upstream, as <strong>the</strong> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced river fl ows <strong>and</strong> a rise in<br />

sea level (<strong>and</strong> <strong>the</strong>refore extended tidal infl uence) causes a <str<strong>on</strong>g>change</str<strong>on</strong>g> in <strong>the</strong> area <str<strong>on</strong>g>of</str<strong>on</strong>g> stratifi cati<strong>on</strong>.<br />

For <strong>the</strong> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this report, nutrient cycling is simplistically c<strong>on</strong>sidered as:<br />

1 Uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients by plants <strong>and</strong> <strong>the</strong>ir incorporati<strong>on</strong> into organic matter;<br />

2 Release <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients from decomposing organic matter; <strong>and</strong><br />

3 C<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inorganic nutrients into forms unavailable for plant uptake.<br />

Items <strong>on</strong>e <strong>and</strong> two take place largely in <strong>the</strong> sediments, <strong>and</strong> in well-oxygenated waters. The natural<br />

processes involved in item three c<strong>on</strong>vert a proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients into forms temporally unavailable<br />

for phytoplankt<strong>on</strong> growth.<br />

The natural processes for nutrient removal are reas<strong>on</strong>ably effective in <strong>the</strong> lower estuary, but relatively<br />

poor (compared to many o<strong>the</strong>r estuaries in Australia) in <strong>the</strong> middle <strong>and</strong> upper reaches. As <strong>the</strong><br />

marine infl uence extends upstream so will <strong>the</strong> key processes in both <strong>the</strong> N <strong>and</strong> P cycles. For example,<br />

rates for both N fi xati<strong>on</strong> <strong>and</strong> denitrifi cati<strong>on</strong> may <str<strong>on</strong>g>change</str<strong>on</strong>g> depending <strong>on</strong> species <str<strong>on</strong>g>change</str<strong>on</strong>g>s <strong>and</strong><br />

carb<strong>on</strong> loading rates.<br />

Nutrient cycling processes in <strong>the</strong> middle <strong>and</strong> upper estuary will be affected by <strong>the</strong> increases in sediment<br />

organic matter c<strong>on</strong>tent, increased stratifi cati<strong>on</strong> due to a greater vertical salinity gradient, <strong>and</strong><br />

extended periods <str<strong>on</strong>g>of</str<strong>on</strong>g> low DO levels that are predicted with <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>. The greater salinity gradient<br />

will also increase <strong>the</strong> water column stability <strong>and</strong> hence, reduce <strong>the</strong> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vective<br />

overturn <strong>and</strong> mixing fur<strong>the</strong>r prol<strong>on</strong>ging episodes <strong>and</strong> <strong>the</strong> spatial extent <str<strong>on</strong>g>of</str<strong>on</strong>g> low DO at <strong>the</strong> sedimentwater<br />

interface. Lower DO levels at <strong>the</strong> sediment/water interface will fur<strong>the</strong>r reduce <strong>the</strong> processes<br />

that c<strong>on</strong>vert nutrients into forms less available for plant growth. C<strong>on</strong>sequently a greater proporti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients in <strong>the</strong> organic matter accumulating in <strong>the</strong> sediments will subsequently become available<br />

43


(after microbial decompositi<strong>on</strong>) to fuel fur<strong>the</strong>r growth <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> <strong>and</strong>/or microphytobenthos in<br />

shallow areas. This will be exacerbated by increasing river water temperatures, which will increase<br />

nutrient fl ux from <strong>the</strong> sediments.<br />

Reducing c<strong>on</strong>diti<strong>on</strong>s associated with anoxia generally enhance <strong>the</strong> release <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients in sediments.<br />

Under appropriate growth c<strong>on</strong>diti<strong>on</strong>s <strong>and</strong> with an initially n<strong>on</strong>-limiting nutrient fl ux, this will<br />

facilitate an <strong>on</strong>going cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> blooms, high sediment organic matter c<strong>on</strong>tent <strong>and</strong> high<br />

sediment nutrient release, <strong>and</strong> reduced denitrifi cati<strong>on</strong> rates. High nutrient c<strong>on</strong>centrati<strong>on</strong>s are likely<br />

to subsequently build up in bottom waters under stratifi ed c<strong>on</strong>diti<strong>on</strong>s.<br />

In effect, lower nutrient inputs (from groundwater <strong>and</strong> catchment run<str<strong>on</strong>g>of</str<strong>on</strong>g>f) may perpetuate a similar<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> blooms. High nutrient levels in bottom waters will tend to favour motile or<br />

buoyancy-regulating algal species (e.g. din<str<strong>on</strong>g>of</str<strong>on</strong>g>l agellate or cyanobacteria blooms respectively, both<br />

species <str<strong>on</strong>g>of</str<strong>on</strong>g> which are <str<strong>on</strong>g>potential</str<strong>on</strong>g>ly toxic), ra<strong>the</strong>r than <strong>the</strong> more ecologically benefi cial groups <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong><br />

such as diatoms. Enhanced fl uxes <str<strong>on</strong>g>of</str<strong>on</strong>g> some trace metals (e.g. ir<strong>on</strong>, manganese, molybdenum)<br />

from sediments also occur under anoxic c<strong>on</strong>diti<strong>on</strong>s, <strong>and</strong> some are known to induce toxicity in<br />

certain species <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> as well as nitrogen fi xers such as some cyanobacteria.<br />

Fringing vegetati<strong>on</strong><br />

Fringing vegetati<strong>on</strong> al<strong>on</strong>g <strong>the</strong> banks <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan Canning river system exist as vegetati<strong>on</strong> ‘complexes’,<br />

each with a characteristic species compositi<strong>on</strong>. Different complexes occur with differing<br />

soil type, elevati<strong>on</strong> (i.e. distance from <strong>the</strong> shore) <strong>and</strong> distance upstream. This is dependent <strong>on</strong> <strong>the</strong><br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> inundati<strong>on</strong> by tidal <strong>and</strong>/or fl ood water <strong>and</strong> water salinity. Groundwater expressi<strong>on</strong>s al<strong>on</strong>g <strong>the</strong><br />

shores <str<strong>on</strong>g>of</str<strong>on</strong>g> an estuary can also affect z<strong>on</strong>ati<strong>on</strong>, particularly if <strong>the</strong> groundwater is <str<strong>on</strong>g>of</str<strong>on</strong>g> low salinity. Fringing<br />

vegetati<strong>on</strong> communities are naturally dynamic <strong>and</strong> variable, but it can take decades for resp<strong>on</strong>ses<br />

to <str<strong>on</strong>g>change</str<strong>on</strong>g>d c<strong>on</strong>diti<strong>on</strong>s to become apparent.<br />

The fringing vegetati<strong>on</strong> has important physical <strong>and</strong> ecological functi<strong>on</strong>s for <strong>the</strong> river system. Roots<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> riparian vegetati<strong>on</strong> support riverbanks <strong>and</strong> shade reduces water temperatures (most Western<br />

Australian freshwater fauna are cold steno<strong>the</strong>rms <strong>and</strong> are c<strong>on</strong>sequently intolerant <str<strong>on</strong>g>of</str<strong>on</strong>g> elevated water<br />

temperatures). Ecologically, carb<strong>on</strong> from riparian vegetati<strong>on</strong> is important for c<strong>on</strong>sumers including<br />

aquatic invertebrates <strong>and</strong> fi sh.<br />

At present, fringing vegetati<strong>on</strong> al<strong>on</strong>g <strong>the</strong> estuarine reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan Canning river system<br />

(where present) comprises – in order <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing elevati<strong>on</strong> <strong>and</strong> decreasing salinity - samphire salt<br />

marsh, Casuarina/Melaleuca forest <strong>and</strong> Melaleuca/Juncus (tree/sedge). Fur<strong>the</strong>r upstream <strong>the</strong>re is a<br />

transiti<strong>on</strong> from estuarine to freshwater vegetati<strong>on</strong> typifi ed by Eucalyptus/Melaleuca forest (<str<strong>on</strong>g>of</str<strong>on</strong>g>ten with<br />

Juncus at <strong>the</strong> river’s edge), <strong>and</strong> freshwater riparian vegetati<strong>on</strong> such as Melaleuca swamp complex.<br />

There are a number <str<strong>on</strong>g>of</str<strong>on</strong>g> anticipated <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong> fringing vegetati<strong>on</strong> due to <strong>the</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g>s in sea level<br />

<strong>and</strong> river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f predicted to occur with <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> (Table 17). These <str<strong>on</strong>g>impacts</str<strong>on</strong>g> can be summarised<br />

as (i) <str<strong>on</strong>g>change</str<strong>on</strong>g> in vegetati<strong>on</strong> distributi<strong>on</strong>, (ii) <str<strong>on</strong>g>change</str<strong>on</strong>g> in vegetati<strong>on</strong> density, <strong>and</strong> (iii) species<br />

invasi<strong>on</strong>. The functi<strong>on</strong>al amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fringing vegetati<strong>on</strong> in <strong>the</strong> river is anticipated to remain <strong>the</strong> same<br />

providing <strong>the</strong>re are suitable (i.e. undeveloped) areas for its l<strong>and</strong>ward extensi<strong>on</strong> to occur.<br />

44


Table 17 Ecological <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong> fringing vegetati<strong>on</strong> due to predicated increases in sea level<br />

<strong>and</strong> decreases in river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

Impact<br />

Increase in sea level rise<br />

Decrease in river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

Increase in sea level rise<br />

Decrease in river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

Invasi<strong>on</strong> by transiti<strong>on</strong> vegetati<strong>on</strong><br />

Invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dryl<strong>and</strong> species at <strong>the</strong><br />

l<strong>and</strong>ward edge<br />

Reduced groundwater flows may<br />

also c<strong>on</strong>tribute to this pattern.<br />

Reduced run<str<strong>on</strong>g>of</str<strong>on</strong>g>f in <strong>the</strong> freshwater<br />

reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> river.<br />

Decrease in river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

Community structure<br />

Resp<strong>on</strong>se<br />

Z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> saltmarsh, Casuarina/Melaleuca forest <strong>and</strong> Melaleuca/Juncus<br />

(tree/sedge) will retreat from <strong>the</strong> shore <strong>and</strong><br />

extend <strong>the</strong>ir distributi<strong>on</strong> l<strong>and</strong>wards, <strong>and</strong> also extend <strong>the</strong>ir<br />

distributi<strong>on</strong> fur<strong>the</strong>r upstream.<br />

Transiti<strong>on</strong> vegetati<strong>on</strong> will retreat from <strong>the</strong> shore <strong>and</strong> extend<br />

its distributi<strong>on</strong> l<strong>and</strong>wards. It will also retreat from its downstream<br />

extent but extend its distributi<strong>on</strong> fur<strong>the</strong>r upstream.<br />

Some areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Eucalyptus/Melaleuca forest will be invaded<br />

by more salt tolerant species such as Casuarina, <strong>and</strong> may<br />

become Casuarina/Melaleuca forest (this has already happened<br />

in some parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan Canning).<br />

The downstream extent <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater riparian vegetati<strong>on</strong><br />

will be reduced.<br />

Freshwater riparian vegetati<strong>on</strong> will extend fur<strong>the</strong>r into <strong>the</strong><br />

(retreating) river bed, <strong>and</strong> <strong>the</strong> width <str<strong>on</strong>g>of</str<strong>on</strong>g> riparian vegetati<strong>on</strong><br />

may be reduced overall<br />

During transiti<strong>on</strong> in <strong>the</strong> fringing vegetati<strong>on</strong> <strong>the</strong>re is <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

for large areas <str<strong>on</strong>g>of</str<strong>on</strong>g> tree dieback or loss <str<strong>on</strong>g>of</str<strong>on</strong>g> tree health<br />

in areas <str<strong>on</strong>g>of</str<strong>on</strong>g> fringing vegetati<strong>on</strong>.<br />

The effective width <str<strong>on</strong>g>of</str<strong>on</strong>g> any vegetated z<strong>on</strong>e al<strong>on</strong>g <strong>the</strong> freshwater<br />

reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> river will be retained, but will c<strong>on</strong>sist<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> more dryl<strong>and</strong> species <strong>on</strong> <strong>the</strong> outer edge.<br />

Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> is expected to result in a slightly larger <strong>and</strong> deeper lower estuary that has essentially<br />

marine c<strong>on</strong>diti<strong>on</strong>s for most if not all <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> year, with water quality similar to or possibly better than<br />

at present. In c<strong>on</strong>trast, <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> is expected to result in reduced water quality, increased low<br />

DO events, more din<str<strong>on</strong>g>of</str<strong>on</strong>g>l agellate blooms <strong>and</strong> possibly more fi sh kills in <strong>the</strong> middle <strong>and</strong> upper reaches.<br />

The <str<strong>on</strong>g>change</str<strong>on</strong>g>s in community structure that are expected to occur are as follows.<br />

In <strong>the</strong> lower estuary, <strong>the</strong>re will be limited <str<strong>on</strong>g>change</str<strong>on</strong>g> in productivity <strong>and</strong> a possible slight increase in species<br />

diversity due to <strong>the</strong> recruitment <strong>and</strong> retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more marine species <str<strong>on</strong>g>of</str<strong>on</strong>g> plankt<strong>on</strong>, macroalgae,<br />

invertebrates <strong>and</strong> fi sh (see Trophic Dynamics in Detail – Birds <strong>and</strong> Fish). These <str<strong>on</strong>g>change</str<strong>on</strong>g>s in productivity<br />

are based <strong>on</strong> <strong>the</strong> assumpti<strong>on</strong> that <strong>the</strong> proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> seagrass, mudfl at <strong>and</strong> fringing vegetati<strong>on</strong><br />

habitats in <strong>the</strong> lower estuary do not <str<strong>on</strong>g>change</str<strong>on</strong>g> signifi cantly.<br />

In <strong>the</strong> middle <strong>and</strong> upper estuary productivity will be high, but <strong>the</strong>re will be a reducti<strong>on</strong> in <strong>the</strong> diversity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> plankt<strong>on</strong>, invertebrates <strong>and</strong> fi sh. Increased dominance by small, fecund <strong>and</strong> fast growing opportunistic<br />

species is likely. This is a classic symptom <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient enrichment (Pears<strong>on</strong> <strong>and</strong> Rosenberg<br />

1978).<br />

An extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seagrasses into shallow water habitats may take place, as could <strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> free<br />

fl oating algal species such as Gracilaria <strong>and</strong> Hincksia, leading to <str<strong>on</strong>g>change</str<strong>on</strong>g>s in total habitat areas (see<br />

Seagrass <strong>and</strong> Macro-algae below).<br />

45


Trophic dynamics<br />

Trophic dynamics are determined by trophic structure, which in turn is determined by <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

trophic levels in existence. Trophic levels are amalgamati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> species that have similar feeding<br />

habits (for example, plants, herbivores, <strong>and</strong> carnivores). Therefore, trophic dynamics refers to <strong>the</strong><br />

feeding relati<strong>on</strong>ships <str<strong>on</strong>g>of</str<strong>on</strong>g> organisms in communities <strong>and</strong> ecosystems.<br />

The typical estuarine food web is a complex interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> food chains involving <strong>the</strong> following trophic<br />

groups:<br />

• plants (phytoplankt<strong>on</strong>, macroalgae, seagrasses, fringing vegetati<strong>on</strong>);<br />

• herbivores (zooplankt<strong>on</strong>, some fi sh, ducks <strong>and</strong> <strong>swan</strong>s);<br />

• planktivores (small fi sh such as pilchard, sprat, hardyheads, anchovies);<br />

• detritivores (benthic invertebrates, Perth herring, sea mullet);<br />

• omnivores (benthic invertebrates, black bream, cobbler, yellow eye mullet, waders);<br />

<strong>and</strong><br />

• carnivores (mulloway, tailor, cormorants).<br />

These trophic groups are represented in <strong>the</strong> lower estuary where major <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> are<br />

not anticipated. In <strong>the</strong> middle <strong>and</strong> upper estuary <strong>the</strong> trophic groups are also represented at present,<br />

but by a reduced number <str<strong>on</strong>g>of</str<strong>on</strong>g> species. With <strong>the</strong> predicted decline in water quality <strong>and</strong> increased<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> low DO events in <strong>the</strong> middle <strong>and</strong> upper estuary <strong>the</strong>re is <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> for trophic dynamics to<br />

become even simpler (involving fewer species) with periods dominated by plankt<strong>on</strong>ic food webs due<br />

to loss <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic invertebrates.<br />

This loss in biodiversity may also cause a ’feedback loop’ that exacerbates <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient enrichment<br />

as follows: fewer large predatory <strong>and</strong> omnivorous fi sh ==> increased abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> small<br />

fi sh that eat zooplankt<strong>on</strong> ==> decreased abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> herbivorous zooplankt<strong>on</strong> ==> increased<br />

abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong>. Depending <strong>on</strong> its spatial <strong>and</strong> temporal extent, this loss in biological<br />

diversity <strong>and</strong> trophic structure will result in an overall loss in <strong>the</strong> ‘resilience’ (i.e. ability to cope with<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>and</strong> recover afterwards) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> middle <strong>and</strong> upper Swan estuary.<br />

Trophic dynamics in detail – birds <strong>and</strong> fish<br />

A detailed review <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> may have <strong>on</strong> trophic elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan Canning<br />

river system is bey<strong>on</strong>d <strong>the</strong> scope <str<strong>on</strong>g>of</str<strong>on</strong>g> this background report. C<strong>on</strong>sequently, birds <strong>and</strong> fi sh have<br />

been selected as <strong>the</strong> key priority species due to <strong>the</strong>ir ec<strong>on</strong>omic <strong>and</strong> social value.<br />

Impacts <strong>on</strong> birds<br />

The Swan <strong>and</strong> Canning <strong>rivers</strong> are <str<strong>on</strong>g>of</str<strong>on</strong>g> recognised importance for birds, both for birds that use <strong>the</strong><br />

aquatic envir<strong>on</strong>ments (waterbirds) <strong>and</strong> birds that use terrestrial envir<strong>on</strong>ments (l<strong>and</strong>birds).<br />

Higher water levels, leading to str<strong>on</strong>ger tidal infl uences upstream, reduced freshwater infl ow (reduced<br />

rainfall) <strong>and</strong> increased temperatures are <strong>the</strong> key <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> that will affect birds<br />

in <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong>. Fur<strong>the</strong>r, <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> increased water levels <strong>and</strong> tidal infl uences<br />

will be enhanced by <strong>the</strong> reduced freshwater infl ow. These climatic variati<strong>on</strong>s will result in <str<strong>on</strong>g>change</str<strong>on</strong>g>s<br />

in salinity levels; sedimentati<strong>on</strong>; nutrient levels; vegetati<strong>on</strong>; trophic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> marine species; <strong>and</strong><br />

pH levels. Fur<strong>the</strong>r, <str<strong>on</strong>g>change</str<strong>on</strong>g>s in development patterns surrounding <strong>the</strong> river, as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

increased residential populati<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>, will impact Swan <strong>and</strong> Canning river birds.<br />

46


The key <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> birds in <strong>the</strong> river system are likely to be a:<br />

• decline in <strong>the</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> waders due to a loss <str<strong>on</strong>g>of</str<strong>on</strong>g> foraging habitat;<br />

• <str<strong>on</strong>g>potential</str<strong>on</strong>g> increase in <strong>the</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>swan</strong>s <strong>and</strong> ducks;<br />

• critical shortage <str<strong>on</strong>g>of</str<strong>on</strong>g> roosting areas for <strong>swan</strong>s, ducks, cormorants <strong>and</strong> terns, especially<br />

in <strong>the</strong> lower estuary;<br />

• shortage <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater sources for <strong>swan</strong>s <strong>and</strong> ducks in <strong>the</strong> lower estuary;<br />

• decline in freshwater wetl<strong>and</strong>s in <strong>the</strong> upper reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>rivers</strong>, particularly <str<strong>on</strong>g>of</str<strong>on</strong>g> sites<br />

used as summer drought refuges;<br />

• decline <strong>and</strong> fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fringing <strong>and</strong> adjacent vegetati<strong>on</strong>, important in urban<br />

areas for l<strong>and</strong>birds; <strong>and</strong><br />

• possible threat from poor water quality in <strong>the</strong> mid to upper estuary.<br />

Fur<strong>the</strong>r informati<strong>on</strong> <strong>on</strong> <strong>the</strong> current spatial <strong>and</strong> temporal extent <str<strong>on</strong>g>of</str<strong>on</strong>g> waterbirds <strong>and</strong> l<strong>and</strong>birds in <strong>the</strong><br />

Swan Canning river system, <strong>and</strong> <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong>ir abundance <strong>and</strong><br />

distributi<strong>on</strong> is provided in Appendix 5.<br />

Impacts <strong>on</strong> fish communities <strong>and</strong> fishing<br />

Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> will impact fi sh species in differing ways depending <strong>on</strong> <strong>the</strong>ir trophic structure <strong>and</strong><br />

life-cycle. Species comprising <strong>the</strong> fi sh community can be broadly grouped into <strong>the</strong> following lifecycle<br />

categories (L<strong>on</strong>eragan et al.1989).<br />

• Marine stragglers – marine species that occasi<strong>on</strong>ally enter estuaries as adults usually<br />

when c<strong>on</strong>diti<strong>on</strong>s are marine, or near marine (for example, school whiting, juvenile<br />

snapper, Australian herring).<br />

• Marine opportunists – marine species that utilise <strong>the</strong> estuary extensively during some<br />

stage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir life (for example, as juveniles). Sea mullets, yelloweye mullets <strong>and</strong> tailor<br />

are good examples <str<strong>on</strong>g>of</str<strong>on</strong>g> marine opportunists. The blowfi sh is an extreme case with both<br />

juveniles <strong>and</strong> adults resident in <strong>the</strong> system for a large part <str<strong>on</strong>g>of</str<strong>on</strong>g> its life-cycle.<br />

• Estuarine – estuarine species spend <strong>the</strong>ir whole life-cycle in <strong>the</strong> estuarine envir<strong>on</strong>ment<br />

(for example, black bream).<br />

• Anadromous – species that live in <strong>the</strong> sea but breed in <strong>the</strong> upper estuary. Perth herring<br />

is <strong>the</strong> <strong>on</strong>ly anadromous species in <strong>the</strong> Swan River.<br />

• Freshwater – species c<strong>on</strong>fi ned to <strong>the</strong> freshwater regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> estuarine system.<br />

Harvested invertebrates such as cephalopods, crabs, prawns <strong>and</strong> mussels can similarly be grouped<br />

into <strong>the</strong> same life-cycle categories. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> species in each category varies primarily as a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system (for example, lower, middle <strong>and</strong> upper estuary), <strong>and</strong> to a lesser<br />

extent, seas<strong>on</strong> <strong>and</strong> year (L<strong>on</strong>eragan et al. 1989; Hoeksema <strong>and</strong> Potter 2006; Kan<strong>and</strong>jembo et al.<br />

2001).<br />

Physical <str<strong>on</strong>g>change</str<strong>on</strong>g>s in <strong>the</strong> Swan Canning river system as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> include reducti<strong>on</strong>s<br />

in, <strong>and</strong> changing patterns <str<strong>on</strong>g>of</str<strong>on</strong>g>, run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> riverine discharge, increased tidal amplitude (storm surges)<br />

<strong>and</strong> elevated water temperatures. Fish are likely to resp<strong>on</strong>d directly through changing distributi<strong>on</strong><br />

<strong>and</strong> abundance, or indirectly via <str<strong>on</strong>g>change</str<strong>on</strong>g>s to <strong>the</strong>ir habitat <strong>and</strong> food supply; <strong>and</strong> may suffer lethal<br />

(fi sh kills), or sub-lethal effects. If <strong>the</strong> physical, chemical <strong>and</strong> microbial/food web characteristics are<br />

altered by <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>, <strong>the</strong>re is <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> for <str<strong>on</strong>g>change</str<strong>on</strong>g>s in species compositi<strong>on</strong>, distributi<strong>on</strong> <strong>and</strong><br />

abundance throughout <strong>the</strong> river system.<br />

Ec<strong>on</strong>omically important species will resp<strong>on</strong>d to riverine <str<strong>on</strong>g>change</str<strong>on</strong>g>s <strong>and</strong> subsequently infl uence <strong>the</strong><br />

recreati<strong>on</strong>al <strong>and</strong> commercial amenity currently provided by <strong>the</strong>se species. Marine stragglers may<br />

become more abundant in <strong>the</strong> lower estuary, <strong>and</strong> penetrate fur<strong>the</strong>r upstream than <strong>the</strong>y have historically.<br />

This trend is already apparent, with species such as Australian herring, juvenile snapper,<br />

47


<strong>and</strong> squid now more c<strong>on</strong>sistently abundant in <strong>the</strong> lower estuary. Indeed, during recent years, catch<br />

<strong>and</strong> effort data from <strong>the</strong> few fi shers that operate in <strong>the</strong> commercial fi shery showed that an increasing<br />

proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir catch was comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> marine stragglers. However, <strong>the</strong> extent to which <strong>the</strong><br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>going <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> this sector <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fi shery will need to be managed will depend<br />

<strong>on</strong> whe<strong>the</strong>r or not <strong>the</strong> remaining two operators relinquish <strong>the</strong>ir licences through <strong>the</strong> Fisheries Adjustment<br />

Scheme.<br />

Blowfi sh provide <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> best examples <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a marine opportunist to <strong>the</strong> changing<br />

patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> riverine discharge. Historically, from time to time, c<strong>on</strong>diti<strong>on</strong>s in <strong>the</strong> estuary<br />

have suited <strong>the</strong> recruitment, survival <strong>and</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> progeny from successful marine spawnings.<br />

However, historically, periods <str<strong>on</strong>g>of</str<strong>on</strong>g> sustained winter riverine discharge are thought to have c<strong>on</strong>tributed<br />

to this species failing to become established as a major comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> estuarine fi sh fauna.<br />

During recent years <strong>the</strong> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> signifi cant periods <str<strong>on</strong>g>of</str<strong>on</strong>g> winter freshwater discharge has assisted<br />

blowfi sh to become established as a permanent <strong>and</strong> dominant comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> estuarine fi nfish<br />

community. The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> its dominance means that it has managed to compete very successfully<br />

for food <strong>and</strong> shelter in <strong>the</strong> estuarine system at <strong>the</strong> expense <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r species. Fur<strong>the</strong>r, because<br />

it is a most undesirable species for anglers, its dominance has modifi ed angler behaviour, such as<br />

discouraging participati<strong>on</strong>, discouraging <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> bait in favour <str<strong>on</strong>g>of</str<strong>on</strong>g> lures, or encouraging fi shing at<br />

night instead <str<strong>on</strong>g>of</str<strong>on</strong>g> during <strong>the</strong> day. This in turn has <str<strong>on</strong>g>change</str<strong>on</strong>g>d <strong>the</strong> size, <strong>and</strong> species compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

recreati<strong>on</strong>al catch, <strong>and</strong> thus <strong>the</strong> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> amenity provided by <strong>the</strong> ec<strong>on</strong>omically important fi sh<br />

community.<br />

The key invertebrate marine opportunist, <strong>the</strong> blue swimmer crab, is <strong>the</strong> principal target species<br />

for <strong>the</strong> two remaining commercial operators. The persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> more marine c<strong>on</strong>diti<strong>on</strong>s for l<strong>on</strong>ger<br />

during <strong>the</strong> year, <strong>and</strong> fur<strong>the</strong>r upstream, coupled with elevated water temperatures in <strong>the</strong> adjacent<br />

ocean where <strong>the</strong>y release <strong>the</strong>ir young, should enhance recruitment <str<strong>on</strong>g>of</str<strong>on</strong>g> this species into <strong>the</strong> estuarine<br />

system. Fur<strong>the</strong>r, provided water quality is adequate, growth <strong>and</strong> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> species will also be<br />

enhanced.<br />

The preferred habitat for <strong>the</strong> true estuarine species appears to have extended fur<strong>the</strong>r upstream, with<br />

less marked seas<strong>on</strong>al <str<strong>on</strong>g>change</str<strong>on</strong>g>s in distributi<strong>on</strong> throughout <strong>the</strong> system. The period <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced freshwater<br />

discharge during recent years seems to be well correlated with more c<strong>on</strong>sistently str<strong>on</strong>g annual<br />

recruitment <str<strong>on</strong>g>of</str<strong>on</strong>g> black bream, <strong>the</strong> main ec<strong>on</strong>omically important true estuarine fi nfi sh. It may also<br />

be correlated with a reducti<strong>on</strong> in <strong>the</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> important upstream habitat for <strong>the</strong> anadromous<br />

Perth herring, <strong>and</strong> freshwater habitats preferred by <strong>the</strong> few true freshwater species that still survive<br />

in <strong>the</strong> system.<br />

Mudflats<br />

As discussed, intertidal <strong>and</strong> shallow subtidal mudfl ats <strong>on</strong> <strong>the</strong> margins <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lower Swan Canning<br />

river system are an important habitat for benthic invertebrates <strong>and</strong> feeding area for fi sh <strong>and</strong> waterbirds<br />

– especially migratory waders. The main areas <str<strong>on</strong>g>of</str<strong>on</strong>g> importance are Alfred Cove/Waylen Point,<br />

Pelican Point <strong>and</strong> <strong>the</strong> South Perth foreshore. O<strong>the</strong>r areas used include <strong>the</strong> mud fl ats between Heiriss<strong>on</strong><br />

Isl<strong>and</strong> <strong>and</strong> Redcliffe, <strong>and</strong> al<strong>on</strong>g <strong>the</strong> Canning River.<br />

The sea level rise predicted with <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> will result in a l<strong>and</strong>ward migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> intertidal<br />

z<strong>on</strong>e <strong>and</strong> shallow subtidal z<strong>on</strong>e in <strong>the</strong> lower estuary — provided <strong>the</strong>re is undeveloped l<strong>and</strong> to accommodate<br />

<strong>the</strong> predicted sea level rise (it is assumed that tidal amplitude will not <str<strong>on</strong>g>change</str<strong>on</strong>g>). Although<br />

<strong>the</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g> in <strong>the</strong> total area <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal <strong>and</strong> shallow subtidal mudfl ats is not known at present, <strong>the</strong>ir<br />

productivity per unit area is not expected to decrease, as nutrient inputs should be suffi cient to<br />

maintain <strong>the</strong> microphytobenthos producti<strong>on</strong> <strong>on</strong> which benthic invertebrates depend.<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>change</str<strong>on</strong>g> in <strong>the</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> both vegetati<strong>on</strong> (some species invading o<strong>the</strong>rs retreating)<br />

<strong>and</strong> foreshore sediment dynamics from changing energy regimes it is diffi cult to predict <strong>the</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

habitat <str<strong>on</strong>g>change</str<strong>on</strong>g> over time.<br />

48


Seagrass <strong>and</strong> macro-algae<br />

The most comm<strong>on</strong> seagrass in <strong>the</strong> lower estuary is <strong>the</strong> small species Halophila ovalis, which is<br />

more tolerant <str<strong>on</strong>g>of</str<strong>on</strong>g> low salinities <strong>and</strong> low light supply (<strong>and</strong> <strong>the</strong>refore turbid waters) than o<strong>the</strong>r species<br />

(Hillman et al. 1995). Small beds <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> less tolerant Heterozostera tasmanica occur just downstream<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Fremantle Harbour, where waters are clearer <strong>and</strong> more marine.<br />

Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> is expected to cause some <str<strong>on</strong>g>change</str<strong>on</strong>g>s favourable to seagrasses in <strong>the</strong> lower estuary,<br />

including a less extreme salinity range, maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> marine salinities for l<strong>on</strong>ger periods, <strong>and</strong><br />

possibly improved water clarity. The expected rise in sea level may result in some loss <str<strong>on</strong>g>of</str<strong>on</strong>g> seagrass<br />

from <strong>the</strong> deeper edge <str<strong>on</strong>g>of</str<strong>on</strong>g> its depth range (typically water depths <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.5 – 3 m) if water clarity does not<br />

improve. The l<strong>and</strong>ward edge <str<strong>on</strong>g>of</str<strong>on</strong>g> Halophila meadows will extend, providing <strong>the</strong>re is undeveloped l<strong>and</strong><br />

to accommodate <strong>the</strong> predicted sea level rise. Seagrass may also extend fur<strong>the</strong>r upstream, but <strong>the</strong><br />

turbidity <str<strong>on</strong>g>of</str<strong>on</strong>g> Perth Water would need to improve dramatically to allow this to occur. An increase in <strong>the</strong><br />

establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> marine species <str<strong>on</strong>g>of</str<strong>on</strong>g> seagrass is also a possibility.<br />

The distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> macroalgae in <strong>the</strong> lower estuary is largely c<strong>on</strong>strained by <strong>the</strong> availability <str<strong>on</strong>g>of</str<strong>on</strong>g> suitable<br />

hard substrate for <strong>the</strong>m to attach to with <strong>the</strong> excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> drift species Gracilaria comosa,<br />

which is more c<strong>on</strong>strained by light availability. There is no signifi cant macroalgal growth in <strong>the</strong><br />

middle <strong>and</strong> upper estuary due to <strong>the</strong> water turbidity. Macroalgae <strong>and</strong> freshwater fl owering plants are,<br />

however, important biota <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> freshwater reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong>, except in those<br />

reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Canning River where turbidity is excessive due to dense phytoplankt<strong>on</strong> blooms.<br />

With <strong>the</strong> increased marine salinities <strong>and</strong> possible improvement in water clarity expected to occur<br />

with <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>, marine species <str<strong>on</strong>g>of</str<strong>on</strong>g> macro-algae may extend <strong>the</strong>ir distributi<strong>on</strong> (spatially <strong>and</strong> temporally)<br />

in <strong>the</strong> lower Swan Canning estuary. The distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> macro-algae <strong>and</strong> aquatic fl owering<br />

plants in <strong>the</strong> freshwater reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong> may, however, decline, as water<br />

quality in <strong>the</strong> freshwater reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong> also declines.<br />

Freshwater biodiversity<br />

In <strong>the</strong> Canning River <strong>the</strong>re has been an estimated 96 per cent reducti<strong>on</strong> in catchment run<str<strong>on</strong>g>of</str<strong>on</strong>g>f (due<br />

to regulati<strong>on</strong> for potable water supplies). Therefore, <strong>the</strong> freshwater reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Canning River<br />

above Kent Street Weir provide some indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> freshwater reaches <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> Swan River due to effects associated with <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>.<br />

The upper Canning is thus a river in winter (albeit with greatly reduced fl ows), but essentially a<br />

freshwater pool, or a series <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>nected freshwater pools, from spring to autumn. These river<br />

pools are an important summer refuge for aquatic <strong>and</strong> terrestrial fl ora <strong>and</strong> fauna, but have reduced<br />

in size or been lost due to sedimentati<strong>on</strong> <strong>and</strong> <strong>the</strong> reduced fl ow regime. Waters are stagnant <strong>and</strong><br />

anoxic, with intense, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten toxic algal blooms regularly recorded. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se c<strong>on</strong>diti<strong>on</strong>s, <strong>the</strong><br />

diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater invertebrates <strong>and</strong> fi sh in <strong>the</strong> freshwater reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Canning River is low<br />

(Bunn & Davies 1990).<br />

In <strong>the</strong> upper catchment <strong>the</strong>re are a number <str<strong>on</strong>g>of</str<strong>on</strong>g> weirs <strong>on</strong> <strong>the</strong> Av<strong>on</strong> that may become increasingly important<br />

freshwater species refuges (see secti<strong>on</strong> 3.1).<br />

Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> is expected to reduce <strong>the</strong> downstream extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> freshwater reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan<br />

River (due to rising sea levels <strong>and</strong> reduced river fl ows). Reduced run<str<strong>on</strong>g>of</str<strong>on</strong>g>f in <strong>the</strong> upper reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Swan River will be combined with increased retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments <strong>and</strong> nutrients. These <str<strong>on</strong>g>change</str<strong>on</strong>g>s in<br />

<strong>the</strong> upper reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan River will combine to:<br />

• reduce <strong>the</strong> spatial extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> freshwater reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan River;<br />

• increase <strong>the</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> freshwater reaches into disc<strong>on</strong>nected river<br />

pools;<br />

• reduce <strong>the</strong> depth <strong>and</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> water in <strong>the</strong> freshwater reaches (especially in <strong>the</strong><br />

49


pools); <strong>and</strong><br />

• result in a reducti<strong>on</strong> in <strong>the</strong> biodiversity <str<strong>on</strong>g>of</str<strong>on</strong>g> fl ora <strong>and</strong> fauna in <strong>the</strong> freshwater habitat that<br />

remains.<br />

The existing problems in <strong>the</strong> freshwater reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Canning River will also be exacerbated by<br />

<strong>the</strong> reducti<strong>on</strong> in <strong>the</strong> quantity <strong>and</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f expected with <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>, unless this is <str<strong>on</strong>g>of</str<strong>on</strong>g>fset<br />

by <strong>the</strong> restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental fl ows.<br />

Acidificati<strong>on</strong>/buffering capacity<br />

As <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> dioxide (CO 2<br />

) in <strong>the</strong> earth’s atmosphere increases, so does <strong>the</strong> level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2<br />

that <strong>the</strong> oceans absorb. When CO 2<br />

dissolves in water it reacts with water to form carb<strong>on</strong>ic<br />

acid (H 2<br />

CO 3<br />

), making waters more acidic. These <str<strong>on</strong>g>change</str<strong>on</strong>g>s in <strong>the</strong> surface waters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ocean also<br />

result in release <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>ate i<strong>on</strong>s from CaCO 3<br />

-supersaturated deeper waters. The calcium carb<strong>on</strong>ate<br />

reacts with carb<strong>on</strong>ic acid (produced from increased CO 2<br />

absorpti<strong>on</strong>) <strong>and</strong> decreases <strong>the</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

acidifi cati<strong>on</strong> produced. This natural process, called ‘buffering’, acts to c<strong>on</strong>tinuously stabilise <strong>the</strong> pH<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> seawater unless <strong>the</strong> supply <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>ate is exhausted.<br />

Fur<strong>the</strong>rmore, modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> extent to which ocean acidifi cati<strong>on</strong> will affect <strong>the</strong> carb<strong>on</strong>ate saturati<strong>on</strong><br />

depth - <strong>and</strong> how <str<strong>on</strong>g>change</str<strong>on</strong>g>s to that depth will modify <strong>the</strong> capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater to buffer any increases<br />

in acid - suggests that <strong>the</strong> process will be very slow, <strong>and</strong> not fast enough to <str<strong>on</strong>g>of</str<strong>on</strong>g>fset <strong>the</strong> rapid acidifi cati<strong>on</strong><br />

from CO 2<br />

absorpti<strong>on</strong>. Any acidifi cati<strong>on</strong> effects will be particularly noticeable in shallow waters,<br />

<strong>and</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> implicati<strong>on</strong>s are as follows.<br />

Many marine organisms make shells or supporting plates out <str<strong>on</strong>g>of</str<strong>on</strong>g> CaCO 3<br />

via <strong>the</strong> process called calcifi<br />

cati<strong>on</strong>. As water becomes more acidic, <strong>the</strong> calcifi cati<strong>on</strong> process is inhibited <strong>and</strong> <strong>the</strong> growth <strong>and</strong>/or<br />

survival <str<strong>on</strong>g>of</str<strong>on</strong>g> certain organisms could be affected. As many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se organisms are <strong>the</strong> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> primary<br />

producti<strong>on</strong>, any <str<strong>on</strong>g>change</str<strong>on</strong>g> in <strong>the</strong>ir life-cycle has <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> to affect ecosystems.<br />

The speciati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many important compounds depends <strong>on</strong> pH. The speciati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients such as<br />

phosphate, silicate, ir<strong>on</strong> <strong>and</strong> amm<strong>on</strong>ia would all be affected in <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> pH decreases predicted<br />

with ocean acidifi cati<strong>on</strong>. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se will be benefi cial - for example as pH decreases, <strong>the</strong><br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic amm<strong>on</strong>ia (NH 3<br />

) would be lowered in preference to <strong>the</strong> amm<strong>on</strong>ium species<br />

(NH 4+<br />

). For o<strong>the</strong>rs <strong>the</strong> effects are less clear – for example <strong>the</strong> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> soluble to insoluble ir<strong>on</strong> may<br />

increase, reducing <strong>the</strong> growth limiting effect that low soluble ir<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s have in some areas<br />

(<strong>on</strong> some species) <strong>and</strong> causing an increase in phytoplankt<strong>on</strong> growth, or inducing toxicity in certain<br />

species <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong>.<br />

Biodiversity may be affected, as some species will be better suited to higher CO 2<br />

<strong>and</strong> lower pH (e.g.<br />

<strong>the</strong> capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> blood to carry oxygen can be reduced by high CO 2<br />

levels, <strong>and</strong> highly active animals<br />

may be less favoured).<br />

Geomorphology – bank stability<br />

Changes in sea level, episodic fl ooding (in a diminishing fl ood plain), storm surge, sediment supply<br />

<strong>and</strong> vegetative c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> banks, intertidal <strong>and</strong> wetl<strong>and</strong> areas will lead to <str<strong>on</strong>g>change</str<strong>on</strong>g>s in ’foreshore’<br />

dynamics <strong>and</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> readjustments to sedimentary processes, particularly in <strong>the</strong> shallow areas<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mid-Swan. As an example, increased bank erosi<strong>on</strong> <strong>and</strong> <strong>the</strong> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> riparian vegetati<strong>on</strong> may<br />

occur, which will fur<strong>the</strong>r destabilise riverbanks,. The resultant slumping could mobilise c<strong>on</strong>siderable<br />

supplies <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments that usually aggregate in important aquatic habitats such as pools, or infl u-<br />

ence <strong>the</strong> depositi<strong>on</strong>al characteristics (stability) <str<strong>on</strong>g>of</str<strong>on</strong>g> foreshore, areas critical to seagrasses. Ano<strong>the</strong>r<br />

possibility is a <str<strong>on</strong>g>change</str<strong>on</strong>g> in light characteristics due to increased mobilisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments. These<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g>s will be transiti<strong>on</strong>al, with scales <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 to 50 years or l<strong>on</strong>ger, but may also be actively managed<br />

to reduce or infl uence <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g>.<br />

50


Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong> Swan Canning river ecology<br />

The ecological c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> key <str<strong>on</strong>g>impacts</str<strong>on</strong>g> due to <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>and</strong> <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se <str<strong>on</strong>g>change</str<strong>on</strong>g>s<br />

<strong>on</strong> <strong>the</strong> ecological resilience <str<strong>on</strong>g>of</str<strong>on</strong>g> biological communities have yet to be fully established. In additi<strong>on</strong>,<br />

<strong>the</strong> associated social expectati<strong>on</strong>s that are carried by <strong>the</strong> community <strong>and</strong> managed <strong>on</strong> <strong>the</strong>ir behalf<br />

by <strong>the</strong> Trust must be c<strong>on</strong>sidered. Clearly, many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g>s will sit outside <strong>the</strong> domain <str<strong>on</strong>g>of</str<strong>on</strong>g> opportunity<br />

for active management. For o<strong>the</strong>r <str<strong>on</strong>g>change</str<strong>on</strong>g>s, choices must be made; for example, erosi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> public open space <strong>and</strong> c<strong>on</strong>sequent habitat migrati<strong>on</strong> verses foreshore protecti<strong>on</strong> <strong>and</strong> retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

open space. Cox (2006) dem<strong>on</strong>strates that not <strong>on</strong>ly are community percepti<strong>on</strong>s str<strong>on</strong>gly infl uenced<br />

by envir<strong>on</strong>mental quality, but so too is quality <str<strong>on</strong>g>of</str<strong>on</strong>g> life.<br />

An underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> social <str<strong>on</strong>g>impacts</str<strong>on</strong>g> will be key to <strong>the</strong> successful management <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan Canning<br />

river system in <strong>the</strong> face <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing ecological uncertainty.<br />

2.2.2 Human health <strong>and</strong> social <str<strong>on</strong>g>impacts</str<strong>on</strong>g><br />

Human health <strong>and</strong> social <str<strong>on</strong>g>impacts</str<strong>on</strong>g> are <strong>the</strong> key d<strong>rivers</strong> behind management acti<strong>on</strong>s to address<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g> in our envir<strong>on</strong>mental systems. Impacts can range from altered social practices <strong>and</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

in river aes<strong>the</strong>tics <strong>and</strong> recreati<strong>on</strong>al use, to ec<strong>on</strong>omic <str<strong>on</strong>g>impacts</str<strong>on</strong>g>, alterati<strong>on</strong>s to fi shing <strong>and</strong> tourism, <strong>and</strong><br />

physical health related <str<strong>on</strong>g>impacts</str<strong>on</strong>g> such as increased risk <str<strong>on</strong>g>of</str<strong>on</strong>g> mosquito-borne diseases <strong>and</strong> skin irritati<strong>on</strong>s.<br />

The descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se health <strong>and</strong> social <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>and</strong> subsequent implementati<strong>on</strong> strategies are<br />

more generalised than those arising from <strong>the</strong> physical <strong>and</strong> <str<strong>on</strong>g>climate</str<strong>on</strong>g> modelling. This is because <strong>the</strong>re<br />

is a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>potential</str<strong>on</strong>g> factors that may impact <strong>on</strong> <strong>the</strong> community’s attitudes in future years<br />

<strong>and</strong> <strong>the</strong>se may drive compensatory behaviours. For example, <str<strong>on</strong>g>potential</str<strong>on</strong>g> health effects may be modifi<br />

ed by <str<strong>on</strong>g>change</str<strong>on</strong>g>s in community knowledge <strong>and</strong> awareness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>potential</str<strong>on</strong>g> hazards. Bank erosi<strong>on</strong> may be<br />

affected by <str<strong>on</strong>g>change</str<strong>on</strong>g>s in tastes <strong>and</strong> even community acceptance <str<strong>on</strong>g>of</str<strong>on</strong>g> regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> motorised boating.<br />

Community recreati<strong>on</strong> patterns may be altered by acceptance <str<strong>on</strong>g>of</str<strong>on</strong>g> interventi<strong>on</strong>s in some reaches <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> <strong>rivers</strong> to protect indigenous values <strong>and</strong> so <strong>on</strong>. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> uncertainty involved it will be important<br />

to develop an <strong>on</strong>going community engagement process to underst<strong>and</strong> <strong>the</strong> d<strong>rivers</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong><br />

<strong>and</strong> to manage <strong>the</strong>m as far as possible to meet community <strong>and</strong> cultural aspirati<strong>on</strong>s. Reporting<br />

<strong>on</strong> <strong>the</strong> relatively fragmented data <strong>on</strong> current attitudes or behaviours in detail is <str<strong>on</strong>g>of</str<strong>on</strong>g> limited help in this<br />

regard.<br />

River l<strong>and</strong>scape <strong>and</strong> river bank management<br />

The <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> scenarios presented in Chapter 2 indicate that sea levels will rise. Subsequently<br />

<strong>the</strong>re may be a loss <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘beach’ envir<strong>on</strong>ment, ephemeral wetl<strong>and</strong>s <strong>and</strong> associated vegetati<strong>on</strong>. Under<br />

such scenarios, structures such as weirs <strong>and</strong> walled banks may be required to protect <strong>the</strong> river<br />

shores. Lesser stream fl ows <strong>and</strong> higher temperatures may also create a greater frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> algal<br />

blooms, which may lead to a public percepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an unhealthy envir<strong>on</strong>ment.<br />

These physical <str<strong>on</strong>g>change</str<strong>on</strong>g>s will alter <strong>the</strong> aes<strong>the</strong>tics <strong>and</strong> l<strong>and</strong>scape meaning l<strong>and</strong>scape to a signifi cant<br />

degree. The current ic<strong>on</strong>ic l<strong>and</strong>scape representing <strong>the</strong> West Australian envir<strong>on</strong>ment may become<br />

more ‘European ‘or ‘artifi cial’ in its appearance. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> l<strong>and</strong>scape will be less visible because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> reduced access to <strong>the</strong> foreshore <strong>and</strong> <strong>the</strong>refore less valuable to <strong>the</strong> community at large. The degree<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> is, <str<strong>on</strong>g>of</str<strong>on</strong>g> course, a moot point <strong>and</strong> will depend <strong>on</strong> <strong>the</strong> visibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>d management<br />

approaches.<br />

Recreati<strong>on</strong> <strong>and</strong> tourism amenity<br />

The Swan River provides a major resource for active <strong>and</strong> passive recreati<strong>on</strong> <strong>on</strong> <strong>the</strong> water <strong>and</strong> from<br />

its banks. Picnicking, walking, cycling, fi shing <strong>and</strong> o<strong>the</strong>r activities occur <strong>on</strong> <strong>the</strong> banks. A multitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

boating activities, from sailing, rowing <strong>and</strong> kayaking to jet skiing <strong>and</strong> tourism boating, take place <strong>on</strong><br />

51


<strong>the</strong> Swan River. Observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> variety <str<strong>on</strong>g>of</str<strong>on</strong>g> bird species <strong>and</strong> ic<strong>on</strong>ic creatures such as dolphins<br />

are also popular pastimes. With or without <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> it is expected <strong>the</strong> dem<strong>and</strong> for recreati<strong>on</strong><br />

<strong>and</strong> tourism from <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong> will increase markedly in <strong>the</strong> l<strong>on</strong>g-term.<br />

Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> scenarios indicate that many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se activities may be negatively affected. Rise<br />

in water levels could exacerbate <strong>the</strong> problems currently encountered by some tourism operati<strong>on</strong>s<br />

in gaining access under <strong>the</strong> bridges. Access to <strong>the</strong> water itself may be affected by <strong>the</strong> diminuti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ‘beaches’ <strong>and</strong> possible negative effects <strong>on</strong> jetties <strong>and</strong> infrastructure. Walking <strong>and</strong> cycling paths<br />

could be threatened. In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> passive recreati<strong>on</strong>, <strong>the</strong>re may be a <str<strong>on</strong>g>change</str<strong>on</strong>g> in <strong>the</strong> biodiversity as <strong>the</strong><br />

ephemeral parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> wetl<strong>and</strong>s become deepened <strong>and</strong> permanently covered.<br />

Recreati<strong>on</strong>al fi shing opportunities could be altered if ecosystem <str<strong>on</strong>g>change</str<strong>on</strong>g> has an impact <strong>on</strong> food<br />

availability or spawning envir<strong>on</strong>ments. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong> <strong>the</strong>re may be some benefi ts such as an<br />

increased presence <str<strong>on</strong>g>of</str<strong>on</strong>g> dolphins if <strong>the</strong> saline areas are more prevalent fur<strong>the</strong>r up <strong>the</strong> <strong>rivers</strong>.<br />

Finally, <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> weirs or o<strong>the</strong>r structures to cope with storm surges may also restrict<br />

some access.<br />

Envir<strong>on</strong>mental <strong>and</strong> human health risk<br />

The rising water levels, <str<strong>on</strong>g>change</str<strong>on</strong>g>s in salinity, <strong>and</strong> possible increases in temperature <strong>and</strong> perhaps<br />

greater nutrient levels causing algal blooms have <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> to exacerbate health threats. For<br />

example, increases in temperature <strong>and</strong> generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acid sulphate acidity will have <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> to<br />

increase <strong>the</strong> mobility <str<strong>on</strong>g>of</str<strong>on</strong>g> many toxic substances in <strong>the</strong> water. The populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mosquitoes tolerant<br />

to warm <strong>and</strong> somewhat saline c<strong>on</strong>diti<strong>on</strong>s may increase <strong>and</strong> fi sh may become unacceptable for human<br />

c<strong>on</strong>sumpti<strong>on</strong>. Fur<strong>the</strong>r, <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> could exacerbate <strong>the</strong> health risks associated<br />

with water c<strong>on</strong>tact, such as minor <strong>and</strong> major infecti<strong>on</strong>.<br />

Cultural <strong>and</strong> Indigenous issues<br />

While <strong>the</strong> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> l<strong>and</strong>scape <strong>and</strong> envir<strong>on</strong>ment can alter <strong>the</strong> meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>rivers</strong>’ envir<strong>on</strong>ment,<br />

<strong>the</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g> in water quality, envir<strong>on</strong>mental health <strong>and</strong> <strong>the</strong> inundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> open space can also<br />

have deeper cultural implicati<strong>on</strong>s. George Sedd<strong>on</strong>’s ic<strong>on</strong>ic publicati<strong>on</strong> regarding <strong>the</strong> Swan River ‘A<br />

Sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Place’ (1972) clearly indicates <strong>the</strong> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>rivers</strong> to community identity.<br />

This is currently being reinforced by <strong>the</strong> interpretive informati<strong>on</strong> provided in artifi cial wetl<strong>and</strong>s designed<br />

for improving water quality. Such attempts to create stewardship will also underpin a changing<br />

but l<strong>on</strong>g-term attachment by <strong>the</strong> wider Western Australian community.<br />

Inundati<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g>s in salinity also have <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> to threaten any relics associated with<br />

sacred sites near <strong>the</strong> river from <strong>the</strong> Nyungah community’s perspective.<br />

2.2.3 Impacts <strong>on</strong> infrastructure<br />

The major forms <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure c<strong>on</strong>structed around <strong>the</strong> perimeter <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan Canning estuary<br />

include: seawalls, bridges, roads, railway, pathways, stormwater drains, jetties <strong>and</strong> marinas. There<br />

is also signifi cant natural infrastructure that includes reefs, cliffs <strong>and</strong> minor tributaries. The estuary<br />

experiences <strong>on</strong>ly limited tidal amplitude <strong>and</strong> c<strong>on</strong>sequently much <str<strong>on</strong>g>of</str<strong>on</strong>g> this infrastructure is <strong>on</strong>ly marginally<br />

higher than current water levels at high tide. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> established infrastructure<br />

can be broadly c<strong>on</strong>sidered, recognising that <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> may bring about <strong>the</strong> following<br />

alterati<strong>on</strong>s to <strong>the</strong> system:<br />

• increase in l<strong>on</strong>g-term water levels;<br />

• increase in storminess leading to greater magnitude <strong>and</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> storm surge.<br />

52


The resulting <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong> infrastructure include:<br />

• increased erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> foreshore features such as s<strong>and</strong> beaches <strong>and</strong> low-lying dunes;<br />

• increased erosi<strong>on</strong> <strong>and</strong> damage <str<strong>on</strong>g>of</str<strong>on</strong>g> protective walls such as those al<strong>on</strong>g Mounts Bay<br />

Road;<br />

• increased frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> inundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> low lying features such as parks, roads,<br />

footpaths, <strong>and</strong> stormwater drainage systems; <strong>and</strong><br />

• some increase in damage to piers <strong>and</strong> abutments used for jetties <strong>and</strong> bridges.<br />

Increased erosive capacity through elevated sea levels is a key issue for management. Accordingly<br />

<strong>the</strong> Swan River Trust commissi<strong>on</strong>ed an engineering assessment to determine <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong>. The engineering assessment was limited to <strong>the</strong><br />

following types <str<strong>on</strong>g>of</str<strong>on</strong>g> marine infrastructure: jetties, seawalls, revetments, boat pens, boat ramps <strong>and</strong><br />

groynes.<br />

Drainage structures <strong>and</strong> development levels were not included in <strong>the</strong> assessment. However, as<br />

menti<strong>on</strong>ed above, <strong>the</strong>se are important comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan River infrastructure <strong>and</strong> it is possible<br />

that those items may be more signifi cantly affected by <strong>the</strong> anticipated <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

than <strong>the</strong> marine infrastructure.<br />

The issue <str<strong>on</strong>g>of</str<strong>on</strong>g> drainage <strong>and</strong> fl ood c<strong>on</strong>trol can be quite complex <strong>and</strong> is very site specifi c. Detailed discussi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> drainage <strong>and</strong> fl ood c<strong>on</strong>trol is bey<strong>on</strong>d <strong>the</strong> scope <str<strong>on</strong>g>of</str<strong>on</strong>g> this background paper. However, <strong>the</strong><br />

key issues are: river fl ood levels, existing development levels al<strong>on</strong>g <strong>the</strong> shoreline, drainage infrastructure<br />

<strong>and</strong> <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> l<strong>and</strong> that could <str<strong>on</strong>g>potential</str<strong>on</strong>g>ly fl ood more frequently.<br />

The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <strong>on</strong> infrastructure is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> physical setting, design criteria <strong>and</strong><br />

design life. These issues are discussed in turn to illustrate <strong>the</strong> key <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong><br />

infrastructure in <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong>.<br />

Physical setting<br />

The physical setting <strong>on</strong> <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong> has infl uenced <strong>the</strong> design <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> existing marine<br />

infrastructure such as jetties, boat pens, seawalls <strong>and</strong> boat ramps.<br />

In <strong>the</strong> lower reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> river system <strong>the</strong> water level regimes are dominated by ocean water<br />

levels, whereas upstream <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Causeway <strong>and</strong> Canning Bridge catchment run<str<strong>on</strong>g>of</str<strong>on</strong>g>f dominates <strong>the</strong><br />

extreme water levels. The normal summer tidal levels greatly infl uence <strong>the</strong> design <str<strong>on</strong>g>of</str<strong>on</strong>g> jetties <strong>and</strong><br />

pens with fi xed decks as well as seawalls <strong>and</strong> revetments. In areas downstream <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Causeway<br />

<strong>and</strong> Canning Bridge, deck levels <strong>and</strong> seawall crests are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten designed in <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.0 m to 1.7<br />

m above <strong>the</strong> Australian Height Datum. This datum is roughly mean sea level. These deck <strong>and</strong> crest<br />

levels are built at reas<strong>on</strong>ably low levels because <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al requirements, <strong>and</strong> aes<strong>the</strong>tics, during<br />

low tidal levels in summer <strong>and</strong> autumn. C<strong>on</strong>sequently, such structures are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten inundated or experience<br />

signifi cant overtopping during storm events.<br />

The following photograph from The West Australian newspaper <strong>on</strong> 13 July 1995 shows a seawall<br />

al<strong>on</strong>g <strong>the</strong> Kwinana Freeway <strong>and</strong> an indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> overtopping experienced during high water<br />

level events accompanied by str<strong>on</strong>g winds <strong>and</strong> waves. The high river water levels were caused by<br />

<strong>the</strong> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> storm surge <strong>and</strong> high tides. This occurs to some extent during most winters.<br />

Wave c<strong>on</strong>diti<strong>on</strong>s depend up<strong>on</strong> wind speed, directi<strong>on</strong>, durati<strong>on</strong>, <strong>and</strong> fetch distance (<strong>the</strong> length <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

water that <strong>the</strong> wind is acting over). C<strong>on</strong>sequently, in <strong>the</strong> narrow reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>rivers</strong> <strong>the</strong> wind waves<br />

tend to be quite small, generally smaller than waves generated by boat wash, which can be in <strong>the</strong><br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.3 m to 0.6 m in height. The open areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Perth <strong>and</strong> Melville Waters have signifi cant<br />

fetches <strong>and</strong> waves can be 0.5 m to 1 m in height, with extreme events causing waves greater than<br />

1 m. The wave c<strong>on</strong>diti<strong>on</strong>s affect <strong>the</strong> siting, functi<strong>on</strong> <strong>and</strong> structural design <str<strong>on</strong>g>of</str<strong>on</strong>g> marine infrastructure<br />

al<strong>on</strong>g <strong>the</strong> <strong>rivers</strong>.<br />

53


Figure 15 – Waves overtopping a seawall al<strong>on</strong>g <strong>the</strong> Kwinana Freeway during a winter storm<br />

in 1995 Source: The West Australian newspaper (13 July 1995)<br />

Design criteria <strong>and</strong> design life<br />

The <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> scenarios presented in Chapter 2 are summarised as physical factors that can<br />

impact infrastructure <strong>and</strong> are presented in Table 18 against <strong>the</strong> service life <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> comm<strong>on</strong> marine<br />

infrastructure existing in <strong>the</strong> river. The service life <str<strong>on</strong>g>of</str<strong>on</strong>g> marine infrastructure is variable due to different<br />

st<strong>and</strong>ards for different structures. For example, a private jetty for a small boat may be c<strong>on</strong>structed<br />

from untreated timber <strong>and</strong> have an effective service life <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly 10 years. The major public jetties at<br />

Barrack Square <strong>and</strong> South Perth have been built to more dem<strong>and</strong>ing st<strong>and</strong>ards. Provided <strong>the</strong>y are<br />

reas<strong>on</strong>ably maintained, <strong>the</strong>se jetties should last between 30 <strong>and</strong> 50 years.<br />

Various types <str<strong>on</strong>g>of</str<strong>on</strong>g> revetments <strong>and</strong> seawalls have been built al<strong>on</strong>g <strong>the</strong> <strong>rivers</strong> <strong>and</strong> range from Gabi<strong>on</strong><br />

Baskets to limest<strong>on</strong>e block walls. The former are likely to have an effective service life <str<strong>on</strong>g>of</str<strong>on</strong>g> fi ve to<br />

20 years due to <strong>the</strong> durability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> wire baskets (CIRIA no date). Alternatively, well-designed <strong>and</strong><br />

regularly maintained limest<strong>on</strong>e block walls have a service life <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 to 50 years (service life may be<br />

reduced when located in proximity to acid sulphate soils).<br />

54


Table 18 Physical factors effecting marine infrastructure<br />

Item<br />

Service<br />

life<br />

Water levels<br />

*<br />

Winds<br />

+<br />

Waves<br />

Φ<br />

Currents<br />

δ<br />

Sedimentati<strong>on</strong><br />

φ<br />

Jetties &<br />

boat pens<br />

10 to 50<br />

years<br />

Deck levels,<br />

heights <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chaffers &<br />

locating piles,<br />

& frequency<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> inundati<strong>on</strong><br />

Berthing &<br />

mooring, &<br />

structural<br />

loads from<br />

moored<br />

vessel<br />

Berthing<br />

& mooring<br />

c<strong>on</strong>diti<strong>on</strong>s, &<br />

structural loads<br />

Layout, &<br />

structural<br />

loads<br />

Locati<strong>on</strong>,<br />

toe scour,<br />

maintenance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> water depth<br />

Seawalls &<br />

revetments<br />

5 to 50<br />

years<br />

Crest levels,<br />

frequency<br />

& level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

overtopping<br />

Sec<strong>on</strong>dary<br />

effect <strong>on</strong><br />

extent<br />

overtopping<br />

Crest levels,<br />

frequency & level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> overtopping,<br />

toe scour, &<br />

structural loads<br />

Toe scour<br />

Toe scour<br />

Groynes<br />

50 years<br />

Crest levels,<br />

frequency<br />

& level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

overtopping<br />

Sec<strong>on</strong>dary<br />

effect <strong>on</strong><br />

extent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

overtopping<br />

Crest levels,<br />

frequency & level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> overtopping,<br />

toe scour, &<br />

structural loads<br />

Toe scour, &<br />

effectiveness<br />

at s<strong>and</strong><br />

trapping<br />

Effectiveness at<br />

s<strong>and</strong> trapping<br />

Boat ramps<br />

25 to 50<br />

years<br />

Level <str<strong>on</strong>g>of</str<strong>on</strong>g> top <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ramp<br />

Siting for<br />

functi<strong>on</strong><br />

Siting for<br />

functi<strong>on</strong>,<br />

toe scour, &<br />

structural loads<br />

Toe scour<br />

Toe scour, &<br />

maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

water depth<br />

*tides, storm surges <strong>and</strong> river fl oods; +prevailing winds, <strong>and</strong> extreme storm winds; Φ locally generated prevailing <strong>and</strong><br />

extreme waves; δ river fl ows, tides, storm surges, <strong>and</strong> wind; φ erosi<strong>on</strong> <strong>and</strong> accreti<strong>on</strong><br />

2.2.4 Ec<strong>on</strong>omic <str<strong>on</strong>g>impacts</str<strong>on</strong>g><br />

This secti<strong>on</strong> discusses ec<strong>on</strong>omic <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> ecology, infrastructure, <strong>and</strong><br />

social systems <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong>. As in secti<strong>on</strong> 2.2.2, <strong>the</strong> descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ec<strong>on</strong>omic<br />

<str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>and</strong> subsequent implementati<strong>on</strong> strategies are more generalised than those arising from<br />

<strong>the</strong> physical <strong>and</strong> <str<strong>on</strong>g>climate</str<strong>on</strong>g> modelling.<br />

Ecological ec<strong>on</strong>omics<br />

Increased soil erosi<strong>on</strong> following drought, lower fl ows <strong>and</strong> higher water temperatures have negative<br />

implicati<strong>on</strong>s for water quality. This may lead to increased eutrophicati<strong>on</strong> <strong>and</strong> algal blooms (Pittock<br />

2003). Reduced run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, higher riverine, estuarine <strong>and</strong> coastal aquifer salinity, <strong>and</strong> increased algal<br />

blooms could exacerbate water supply <strong>and</strong> water quality problems, particularly in Perth urban drinking<br />

water catchment areas (Pittock 2003). Fur<strong>the</strong>rmore, declining water quality reduces aes<strong>the</strong>tic<br />

value <strong>and</strong> c<strong>on</strong>sequently, property values may decrease. Given hed<strong>on</strong>ic pricing, <strong>the</strong>se ec<strong>on</strong>omic <str<strong>on</strong>g>impacts</str<strong>on</strong>g><br />

may be <strong>the</strong> highest, especially if recreati<strong>on</strong>al use is reduced. For example, rotting seaweed reduced<br />

<strong>the</strong> aes<strong>the</strong>tic <strong>and</strong> property values <str<strong>on</strong>g>of</str<strong>on</strong>g> areas surrounding <strong>the</strong> Peel Harvey Estuary in <strong>the</strong> 1970s<br />

<strong>and</strong> 1980s. Reduced water quality has already necessitated c<strong>on</strong>siderable investment in a range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

remedial projects at <strong>the</strong> catchment <strong>and</strong> localised levels. There are increasing costs associated with<br />

interventi<strong>on</strong> programs <strong>and</strong> m<strong>on</strong>itoring programs that could be exacerbated by <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>.<br />

55


Human <strong>and</strong> social ec<strong>on</strong>omics<br />

The primary result <str<strong>on</strong>g>of</str<strong>on</strong>g> rising salinity <strong>on</strong> recreati<strong>on</strong>al use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong> may be<br />

increased fi sh kills. A decrease in fi sh will result in a reducti<strong>on</strong> in <strong>the</strong> recreati<strong>on</strong>al amenity value for<br />

recreati<strong>on</strong>al fi shers. Subsequently <strong>the</strong> businesses reliant <strong>on</strong> recreati<strong>on</strong>al fi shing may have to shift to<br />

o<strong>the</strong>r locati<strong>on</strong>s or alter <strong>the</strong>ir business strategy. Both <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se opti<strong>on</strong>s would add to <strong>the</strong>ir operati<strong>on</strong>al<br />

costs.<br />

Increases in algal blooms can restrict certain recreati<strong>on</strong>al activities such as windsurfi ng, kite surfi ng<br />

<strong>and</strong> swimming. A decline in recreati<strong>on</strong>al use will impact businesses that rely <strong>on</strong> recreati<strong>on</strong>al activities,<br />

such as wind surf hire or <strong>rivers</strong>ide cafes. Fur<strong>the</strong>r, increased algal blooms, which reduce use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> <strong>rivers</strong>, may result in movement <str<strong>on</strong>g>of</str<strong>on</strong>g> people to alternative recreati<strong>on</strong>al sites such as <strong>the</strong> beach. This<br />

can cause overcrowding <strong>and</strong> traffi c c<strong>on</strong>gesti<strong>on</strong>.<br />

Deoxygenati<strong>on</strong> <strong>and</strong> algal blooms can result in fi sh death <strong>and</strong> high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> toxins in fi sh. C<strong>on</strong>suming<br />

fi sh from <strong>the</strong> <strong>rivers</strong> with high toxic levels may have an impact <strong>on</strong> human health, <strong>and</strong> c<strong>on</strong>sequently<br />

those affected may try to seek compensati<strong>on</strong>. Warnings <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> dangers <str<strong>on</strong>g>of</str<strong>on</strong>g> eating fi sh may be necessary<br />

to prevent litigati<strong>on</strong> issues.<br />

Increased risks <str<strong>on</strong>g>of</str<strong>on</strong>g> bushfi re will affect insurance premiums <strong>on</strong> properties that are at high risk. Insurance<br />

costs may become higher while <strong>the</strong> sales value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> property may decrease. Subsequently,<br />

communities may place pressure <strong>on</strong> local councils to increase <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trolled burns or<br />

create fi re buffer z<strong>on</strong>es.<br />

Subject to acceptable water quality in <strong>the</strong> <strong>rivers</strong>, hotter days may mean more people will go to <strong>the</strong><br />

<strong>rivers</strong> for water activities. This can result in overcrowding <strong>and</strong> disutility (lower level <str<strong>on</strong>g>of</str<strong>on</strong>g> enjoyment).<br />

The food sector may also be negatively impacted if agricultural activities in <strong>the</strong> catchment become<br />

less productive. Reduced supply <str<strong>on</strong>g>of</str<strong>on</strong>g> food from <strong>the</strong> catchment area may impose higher prices due to<br />

dem<strong>and</strong> exceeding supply.<br />

Infrastructure ec<strong>on</strong>omics<br />

Sudden storm surges will affect roads, cars <strong>and</strong> traffi c c<strong>on</strong>diti<strong>on</strong>s. Ec<strong>on</strong>omic loss from traffi c delays,<br />

road surface damage <strong>and</strong> car breakdowns is expected to rise. Permanent inundati<strong>on</strong> will have an<br />

impact <strong>on</strong> private <strong>and</strong> public infrastructure such as river fr<strong>on</strong>t properties, roads, parks <strong>and</strong> walking<br />

trails.<br />

Perth <strong>rivers</strong>ide suburbs are selling at around $10 milli<strong>on</strong> <strong>and</strong> executive apartments with river views<br />

are selling for $2-3 milli<strong>on</strong> (Gibs<strong>on</strong> 2007). High ec<strong>on</strong>omic costs to foreshore <strong>and</strong> residential assets<br />

from inundati<strong>on</strong> are expected <strong>and</strong> ei<strong>the</strong>r mitigati<strong>on</strong> or modifi cati<strong>on</strong> measures are required to prevent<br />

<strong>the</strong> inundati<strong>on</strong> from occurring or to adapt to <strong>the</strong> inevitable inundati<strong>on</strong>, respectively. The increased<br />

risk <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure to extreme events has str<strong>on</strong>g implicati<strong>on</strong>s for <strong>the</strong> insurance industry, with higher<br />

premiums possible for clients, insurers <strong>and</strong> re-insurers (Pittock 2003). Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> recreati<strong>on</strong>al areas<br />

such as <strong>rivers</strong>ide parks due to inundati<strong>on</strong> can also have an impact <strong>on</strong> <strong>the</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> life for those living<br />

in <strong>the</strong> Perth metropolitan area.<br />

Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> introduces uncertainties in streamfl ow, water dem<strong>and</strong>, populati<strong>on</strong> trends <strong>and</strong> l<strong>and</strong><br />

use <str<strong>on</strong>g>change</str<strong>on</strong>g>s. Dry soil c<strong>on</strong>diti<strong>on</strong>s increase <strong>the</strong> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> drainage pipe failure <strong>and</strong> collapse, whilst higher<br />

peak fl ows increase <strong>the</strong> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> damage to storm water infrastructure (Howe et al., 2005). Fur<strong>the</strong>r,<br />

stormwater infrastructure, dams, weirs, <strong>and</strong> river banks may need to be rechecked, repaired, <strong>and</strong><br />

rec<strong>on</strong>structed to better deal with uncertainties in levels <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall.<br />

2.3 Summary<br />

The <str<strong>on</strong>g>potential</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong> <strong>and</strong> <strong>the</strong> broader Av<strong>on</strong><br />

Catchment have been outlined in this chapter. The <str<strong>on</strong>g>impacts</str<strong>on</strong>g> have followed <strong>the</strong> scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> projected<br />

56


<str<strong>on</strong>g>change</str<strong>on</strong>g> developed in Chapter 2.<br />

Impacts discussed range from those associated with ecological <strong>and</strong> human health, to those affecting<br />

<strong>the</strong> local ec<strong>on</strong>omy. These <str<strong>on</strong>g>impacts</str<strong>on</strong>g> are summarised in Tables 18 to 22 as part <str<strong>on</strong>g>of</str<strong>on</strong>g> a discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g> opti<strong>on</strong>s for adaptati<strong>on</strong>.<br />

The following chapter suggests <strong>the</strong> key strategies <strong>and</strong> adaptati<strong>on</strong> priorities required to ameliorate<br />

<strong>the</strong> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>.<br />

57


3 Adaptati<strong>on</strong> to <strong>the</strong> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> adaptati<strong>on</strong> is defi ned by <strong>the</strong> IPCC (2001) as ‘adjustment in ecological, social, or<br />

ec<strong>on</strong>omic systems in resp<strong>on</strong>se to actual or expected climatic stimuli <strong>and</strong> <strong>the</strong>ir effects or <str<strong>on</strong>g>impacts</str<strong>on</strong>g>.’ In<br />

this report, <strong>the</strong> term adaptati<strong>on</strong> is applied to mean an adjustment (whe<strong>the</strong>r passive, reactive or anticipatory;<br />

with a focus <strong>on</strong> anticipatory) that is proposed as a means <str<strong>on</strong>g>of</str<strong>on</strong>g> reducing anticipated adverse<br />

c<strong>on</strong>sequences expected from <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>.<br />

To determine adaptati<strong>on</strong> strategies, detailed informati<strong>on</strong> <strong>on</strong> underlying current <strong>and</strong> historic processes<br />

is required to highlight trends to estimate resp<strong>on</strong>ses to <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>and</strong> to assess <strong>the</strong><br />

implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> management decisi<strong>on</strong>s. Some system variables may be outside <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> past<br />

experience so any predictive model may be inaccurate. C<strong>on</strong>sequently, a number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> adaptati<strong>on</strong><br />

strategies outlined below focus <strong>on</strong> <strong>the</strong> preliminary assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> current c<strong>on</strong>diti<strong>on</strong>s <strong>and</strong> underlying<br />

processes so future decisi<strong>on</strong>s can be based <strong>on</strong> <strong>the</strong> best available knowledge (o<strong>the</strong>rwise known as<br />

anticipatory adaptati<strong>on</strong>).<br />

It is also important to note that <strong>the</strong> social <strong>and</strong> ecological envir<strong>on</strong>ments <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong><br />

are already experiencing <str<strong>on</strong>g>change</str<strong>on</strong>g> driven by <str<strong>on</strong>g>climate</str<strong>on</strong>g> <strong>and</strong> o<strong>the</strong>r pressures (notably polluti<strong>on</strong> pressures).<br />

As such, an adaptive management approach is required to ensure that as informati<strong>on</strong> comes<br />

to light, management practices can be adjusted accordingly.<br />

The adaptati<strong>on</strong> priorities outlined below are <strong>the</strong> preliminary baseline adaptati<strong>on</strong> decisi<strong>on</strong>s that can<br />

be, <strong>and</strong> should be, made now as a fi rst pass to mitigate <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Swan<br />

<strong>and</strong> Canning <strong>rivers</strong>.<br />

In each subsecti<strong>on</strong> below, summary tables outline adaptati<strong>on</strong> strategies <strong>and</strong> research priorities.<br />

They rank <strong>the</strong> likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g>, state <strong>the</strong> types <str<strong>on</strong>g>of</str<strong>on</strong>g> adverse <str<strong>on</strong>g>impacts</str<strong>on</strong>g> due to <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>, <strong>and</strong><br />

rank <strong>the</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g> impact that <strong>the</strong>se will have <strong>on</strong> <strong>the</strong> Swan River Trust’s strategic plans. The likelihood<br />

rating refers to <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> for adverse <str<strong>on</strong>g>impacts</str<strong>on</strong>g> to occur in <strong>the</strong> short term (less than 30 years). The<br />

‘adverse impact rating’ can be inferred to determine management priorities. The risk rating relates to<br />

<strong>the</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g> impact <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> will have <strong>on</strong> <strong>the</strong> Swan River Trust’s strategic plans.<br />

3.1 Strategies to inform adaptati<strong>on</strong> to <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g><br />

in <strong>the</strong> broader catchment (Av<strong>on</strong>)<br />

Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> requiring adaptati<strong>on</strong> in <strong>the</strong> broader catchment include: reduced rainfall<br />

amounts (<strong>and</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g>ly intensities in both winter <strong>and</strong> summer) (Brian Sadler, pers. comm.), lower<br />

groundwater levels, reduced run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, reduced sedimentati<strong>on</strong> (unless vegetati<strong>on</strong> cover is lost), <strong>and</strong><br />

reduced nutrient <strong>and</strong> salt loads.<br />

Management <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> storms requires analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> past fl ows from <strong>the</strong> Av<strong>on</strong> <strong>and</strong> coastal<br />

catchments to determine which events have caused problems in <strong>the</strong> past <strong>and</strong> whe<strong>the</strong>r <strong>the</strong>re is a<br />

recent trend. A strategic m<strong>on</strong>itoring network for fl ows, sediments <strong>and</strong> nutrients is a priority for <strong>the</strong><br />

Av<strong>on</strong> Catchment. This will subsequently act as a basis to move to more cost effective management<br />

measures in <strong>the</strong> future. In additi<strong>on</strong>, <strong>the</strong> overall predicted reducti<strong>on</strong> in annual fl ows, including that<br />

arising from increased stormwater diversi<strong>on</strong> to aquifers, needs to be analysed to determine if it will<br />

have a negative or positive impact <strong>on</strong> <strong>the</strong> estuary, especially in <strong>the</strong> river reaches.<br />

Any <str<strong>on</strong>g>change</str<strong>on</strong>g>s in agricultural activities in resp<strong>on</strong>se to a <str<strong>on</strong>g>change</str<strong>on</strong>g>d climatic regime require m<strong>on</strong>itoring.<br />

For example, <strong>the</strong> mix <str<strong>on</strong>g>of</str<strong>on</strong>g> cropping <strong>and</strong> grazing may impact <strong>on</strong> erosi<strong>on</strong> <strong>and</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment, organic<br />

material <strong>and</strong> nutrients. There remains str<strong>on</strong>g interest by some l<strong>and</strong>holders to increase saline<br />

drainage to <strong>the</strong> Av<strong>on</strong> River.<br />

Spatial <strong>and</strong> temporal <str<strong>on</strong>g>change</str<strong>on</strong>g>s in vegetati<strong>on</strong> should be m<strong>on</strong>itored to ensure successful adaptati<strong>on</strong> to<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g>s in vegetati<strong>on</strong>. Regi<strong>on</strong>al vegetati<strong>on</strong> can be m<strong>on</strong>itored using L<strong>and</strong>sat TM (L<strong>and</strong> M<strong>on</strong>itoring<br />

58


project, L<strong>and</strong>gate). Additi<strong>on</strong>al analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> historic L<strong>and</strong>sat TM images to detect l<strong>on</strong>g-term <str<strong>on</strong>g>change</str<strong>on</strong>g> in<br />

vegetati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s in <strong>the</strong> Darling Ranges will be carried out by Dr Eddy Campbell at CSIRO as<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> a Premier’s Water Foundati<strong>on</strong> project.<br />

In additi<strong>on</strong> to regi<strong>on</strong>al m<strong>on</strong>itoring, acti<strong>on</strong> should be taken to maintain priority areas. For example,<br />

riparian z<strong>on</strong>es must remain vegetated to reduce <strong>the</strong> likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> erosi<strong>on</strong> <strong>and</strong> sedimentati<strong>on</strong>. The<br />

Av<strong>on</strong> <strong>and</strong> Swan Catchment Councils will complete implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>, <strong>and</strong> annual review <str<strong>on</strong>g>of</str<strong>on</strong>g>, River<br />

Acti<strong>on</strong> Plans. The Upper Swan riparian z<strong>on</strong>es can be m<strong>on</strong>itored through analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> annual digital<br />

aerial photography under <strong>the</strong> Urban M<strong>on</strong>itor project managed by CSIRO <strong>and</strong> L<strong>and</strong>gate.<br />

In order to adapt to <str<strong>on</strong>g>potential</str<strong>on</strong>g> increases in Acid Sulphate Soils (ASS) we need to comprehensively<br />

underst<strong>and</strong> <strong>the</strong> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> ASS formati<strong>on</strong> <strong>on</strong> <strong>the</strong> Swan Coastal Plain. Current management is<br />

based <strong>on</strong> eastern states experiences. The formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ASS in Western Australia may differ, <strong>and</strong><br />

<strong>the</strong>refore research is required to underst<strong>and</strong> local processes <strong>and</strong> management opti<strong>on</strong>s.<br />

Research is also required to assess <strong>the</strong> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> ASS that may occur after falls in regi<strong>on</strong>al groundwater<br />

levels <strong>and</strong> exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> peaty soils to oxidati<strong>on</strong>. Raising <strong>the</strong> discharge outlet level <str<strong>on</strong>g>of</str<strong>on</strong>g> drains may<br />

reduce <strong>the</strong> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> over-drainage <strong>and</strong> also increase groundwater retenti<strong>on</strong> in areas with a high water<br />

table. This approach should be c<strong>on</strong>sidered if increased groundwater levels are desired.<br />

The adaptati<strong>on</strong> <strong>and</strong> research priorities for <strong>the</strong> broader catchment are detailed in Table 19.<br />

59


Table 19 Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g>, adaptati<strong>on</strong> strategies <strong>and</strong> risk rating for <strong>the</strong> broader Av<strong>on</strong><br />

Catchment<br />

Area/Issue Likelihood Adverse Impact<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CC<br />

Adaptati<strong>on</strong>/Mitigati<strong>on</strong><br />

Risk<br />

Agricultural<br />

industry<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g><br />

Low -<br />

medium<br />

Amount <strong>and</strong> intensity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cropping <strong>and</strong> grazing<br />

may <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

M<strong>on</strong>itor l<strong>and</strong> use <strong>and</strong> l<strong>and</strong> practices<br />

(e.g. drainage for salinity).<br />

Establish/maintain vegetative<br />

buffers between agriculture <strong>and</strong><br />

rivering systems to reduce erosi<strong>on</strong>,<br />

sediment <strong>and</strong> nutrients in<br />

<strong>the</strong> streams.<br />

Low -<br />

medium<br />

Water,<br />

sediment,<br />

nutrient,<br />

carb<strong>on</strong> <strong>and</strong><br />

salt loads<br />

High – largely<br />

beneficial<br />

Reduced rainfall,<br />

flows, sedimentati<strong>on</strong>,<br />

nutrient load<br />

<strong>and</strong> salt loads<br />

Assess historic flows <strong>and</strong> sediment<br />

loads as a basis for cost effective<br />

management<br />

Establish strategic m<strong>on</strong>itoring<br />

network for flows, sediments <strong>and</strong><br />

nutrients in Av<strong>on</strong> Catchment<br />

Low -<br />

medium<br />

Vegetati<strong>on</strong><br />

type <strong>and</strong><br />

c<strong>on</strong>diti<strong>on</strong><br />

High<br />

Thinning <str<strong>on</strong>g>of</str<strong>on</strong>g> forest<br />

areas <strong>and</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g>s in<br />

communities (xeric)<br />

M<strong>on</strong>itor regi<strong>on</strong>al vegetati<strong>on</strong> with<br />

L<strong>and</strong> M<strong>on</strong>itor (L<strong>and</strong>sat TM )<br />

Ensure riparian z<strong>on</strong>es are vegetated<br />

to reduce erosi<strong>on</strong> <strong>and</strong><br />

sedimentati<strong>on</strong>.<br />

Low<br />

High<br />

Change in fire regime<br />

(l<strong>on</strong>ger seas<strong>on</strong>;<br />

reduced fuel loads)<br />

Adapt fuel burning program<br />

Medium<br />

High<br />

Less groundwater recharge<br />

<strong>and</strong> discharge<br />

resulting in wet<br />

habitats decreasing<br />

Ensure riparian z<strong>on</strong>es remain<br />

vegetated to reduce erosi<strong>on</strong> <strong>and</strong><br />

sedimentati<strong>on</strong><br />

M<strong>on</strong>itor upper Swan riparian<br />

z<strong>on</strong>es using digital aerial photography<br />

techniques<br />

Medium<br />

Acid<br />

sulphate<br />

soils<br />

Unknown<br />

at present<br />

– possibly<br />

medium<br />

Exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> peaty<br />

soils in low buffering<br />

soils to c<strong>on</strong>diti<strong>on</strong>s<br />

that will release acid<br />

<strong>and</strong> mobilise heavy<br />

metals.<br />

Research <str<strong>on</strong>g>of</str<strong>on</strong>g> ASS formati<strong>on</strong> <strong>on</strong><br />

Swan Coastal Plain<br />

Assess risks associated with a falling<br />

water table<br />

Divert stormwater <strong>and</strong> possibly<br />

treated wastewater into <strong>the</strong> superficial<br />

aquifer<br />

Medium<br />

60


3.2 Strategies to inform adaptati<strong>on</strong> to <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g><br />

in <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong><br />

3.2.1 Adapting to <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong> ecology<br />

The key <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong> are driven by: rise in sea level;<br />

increased salinity in lower reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system; increased periods <str<strong>on</strong>g>of</str<strong>on</strong>g> stratifi cati<strong>on</strong>; reduced fl ushing;<br />

<strong>and</strong> issues <str<strong>on</strong>g>of</str<strong>on</strong>g> water clarity. Once again, <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> management strategies requires a<br />

detailed underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> historic c<strong>on</strong>diti<strong>on</strong>s to determine trends in <strong>the</strong> system. Much <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> adaptive<br />

strategies for <strong>the</strong> ecological system rely <strong>on</strong> setting research <strong>and</strong> management priorities. Table<br />

20 lists <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>and</strong> adaptati<strong>on</strong> strategies for <strong>the</strong> ecological system, <strong>and</strong> ranks <strong>the</strong> priority <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

impact against <strong>the</strong> Trust’s strategic plans. Each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se adaptati<strong>on</strong> strategies is discussed in more<br />

detail below.<br />

Adapting to <str<strong>on</strong>g>change</str<strong>on</strong>g>s in sediment retenti<strong>on</strong> <strong>and</strong> differing compositi<strong>on</strong> requires informati<strong>on</strong> <strong>on</strong> historical<br />

sediment loads <strong>and</strong> historical summer <strong>and</strong> autumn winter fl ows. Fur<strong>the</strong>r, predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>s<br />

in nutrient loads (run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong> groundwater) due to projected urban expansi<strong>on</strong> <strong>and</strong> probable <str<strong>on</strong>g>change</str<strong>on</strong>g>s<br />

in type <str<strong>on</strong>g>of</str<strong>on</strong>g> agriculture – with <strong>and</strong> without management, should be developed. It is not presently<br />

known which is <strong>the</strong> greater threat – diffuse loads from l<strong>and</strong>-based sources through poor catchment<br />

management practice (which can be managed) or <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>.<br />

In order to adapt to decreases in dissolved oxygen levels, critical habitats for key species <str<strong>on</strong>g>of</str<strong>on</strong>g> fi sh<br />

<strong>and</strong> crustaceans in <strong>the</strong> Swan Canning river system (typically riverine pools) in each seas<strong>on</strong> should<br />

be mapped <strong>and</strong> overlayed with predicted areas <str<strong>on</strong>g>of</str<strong>on</strong>g> low DO events. This informati<strong>on</strong> will enable <strong>the</strong><br />

Trust to determine where best to apply interventi<strong>on</strong> techniques (oxygenati<strong>on</strong>, nutrient interventi<strong>on</strong>) in<br />

<strong>the</strong> short-term. This short-term priority can proceed whilst l<strong>on</strong>ger-term measures to reduce nutrient<br />

inputs are being implemented.<br />

In additi<strong>on</strong>, an improvement in our underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> extent, severity <strong>and</strong> ecological signifi cance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> low oxygen ‘plug’ <str<strong>on</strong>g>of</str<strong>on</strong>g> water that is present below <strong>the</strong> Narrows Bridge each spring <strong>and</strong> that subsequently<br />

migrates upstream with <strong>the</strong> salt wedge is required. The relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> this water<br />

versus in situ sediment oxygen dem<strong>and</strong> in determining low DO events should be used to determine<br />

where best to apply interventi<strong>on</strong> techniques (oxygenati<strong>on</strong>, nutrient interventi<strong>on</strong>) in <strong>the</strong> short-term.<br />

Finally, <strong>the</strong> relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic algal blooms, low DO waters <strong>and</strong> ‘habitat squeeze’ (trapping<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fi sh between areas with low oxygen <strong>and</strong>/or toxic algal blooms) in causing fi sh kills need to be<br />

clarifi ed.<br />

Changes in nutrient cycling have signifi cant implicati<strong>on</strong>s for trophic dynamics – especially algal<br />

growth. The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> various nutrient sources (retenti<strong>on</strong> <strong>and</strong> recycling <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients from catchment<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, groundwater inputs, existing sediment nutrient stores) in <strong>the</strong> Swan Canning river system<br />

is reas<strong>on</strong>ably well documented. It is, however, not clear to what degree algal growth is fuelled<br />

by each source in each seas<strong>on</strong> – or even whe<strong>the</strong>r any <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se three sources is suffi cient to fuel<br />

<strong>the</strong> present levels <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> growth because nutrients are in oversupply <strong>and</strong> growth is light<br />

limited.<br />

Knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> each nutrient source, <strong>the</strong> nature <strong>and</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> key recycling<br />

processes, temperature <str<strong>on</strong>g>change</str<strong>on</strong>g>s (which may favour different species <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong>) <strong>and</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g>s<br />

in light regimes (quality <strong>and</strong> quantity) in each seas<strong>on</strong> is required to adapt to <str<strong>on</strong>g>change</str<strong>on</strong>g>s in nutrient<br />

cycling. Underst<strong>and</strong>ing <strong>the</strong> relative impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> nutrient cycling will enable management<br />

to be focused accordingly.<br />

The <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> fringing vegetati<strong>on</strong> are described in Chapter 3 as alterati<strong>on</strong> in<br />

type, density <strong>and</strong> distributi<strong>on</strong>. To develop adaptati<strong>on</strong> <strong>and</strong> management strategies, important areas <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fringing vegetati<strong>on</strong> need to be identifi ed, mapped, m<strong>on</strong>itored <strong>and</strong> risk-based management strategies<br />

developed with relevant stakeholders.<br />

61


Fur<strong>the</strong>r, assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ecological importance <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> from riparian vegetati<strong>on</strong> for aquatic c<strong>on</strong>sumers<br />

(stable isotope analyses) needs to be undertaken <strong>and</strong> used to assess <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong> species<br />

shifts <strong>and</strong> nutrient cycles. The reserves adjacent to important areas <str<strong>on</strong>g>of</str<strong>on</strong>g> fringing vegetati<strong>on</strong> need to<br />

be assessed to see if <strong>the</strong>y will allow <strong>the</strong> expected l<strong>and</strong>ward migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fringing vegetati<strong>on</strong>. Fur<strong>the</strong>rmore,<br />

planning <str<strong>on</strong>g>of</str<strong>on</strong>g> development adjacent to <strong>the</strong> <strong>rivers</strong> will need to c<strong>on</strong>sider any expected l<strong>and</strong>ward<br />

migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fringing vegetati<strong>on</strong>. Finally, <str<strong>on</strong>g>change</str<strong>on</strong>g>s in vegetati<strong>on</strong> need to be m<strong>on</strong>itored <strong>and</strong> factored<br />

into foreshore protecti<strong>on</strong> strategies<br />

62


Area / issue Likelihood Adverse impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> Mitigati<strong>on</strong> <strong>and</strong> adaptati<strong>on</strong> Risk rating<br />

Lower flow<br />

High trapping in estuarine basin<br />

Low –<br />

medium<br />

(reducing)<br />

Develop models to predict <str<strong>on</strong>g>change</str<strong>on</strong>g>s in nutrient load<br />

due to urban growth <strong>and</strong> agriculture, with <strong>and</strong> without<br />

management<br />

Increase <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient rich sediments<br />

Low<br />

Sediment<br />

accumulati<strong>on</strong><br />

Develop management strategies to capture sediment<br />

before it enters <strong>the</strong> estuary<br />

Low scouring in middle <strong>and</strong> upper estuary<br />

Low export to ocean<br />

Map areas <str<strong>on</strong>g>of</str<strong>on</strong>g> critical habitat for key species in each<br />

seas<strong>on</strong> to determine likely <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>and</strong> best areas to<br />

implement interventi<strong>on</strong> techniques<br />

Higher nutrient rich sediment retenti<strong>on</strong><br />

in mid <strong>and</strong> upper estuary<br />

Higher water temperature will decrease<br />

O2 saturati<strong>on</strong> <strong>and</strong> increase bacterial<br />

BOD<br />

Greater<br />

biological<br />

oxygen<br />

dem<strong>and</strong><br />

(BOD)<br />

High<br />

Develop better underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> extent, severity<br />

<strong>and</strong> ecological significance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> low O2 plug, which<br />

annually migrates up <strong>the</strong> estuary in spring <strong>and</strong> down<br />

<strong>the</strong> estuary in winter<br />

High<br />

Determine <strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> low O2 plug vs. in situ<br />

sediment O2 dem<strong>and</strong> <strong>and</strong> how to best apply interventi<strong>on</strong><br />

techniques<br />

Salinity stratificati<strong>on</strong> expected for l<strong>on</strong>ger<br />

periods <strong>and</strong> fur<strong>the</strong>r upstream than<br />

at present<br />

Extended spatial <strong>and</strong> temporal low O2<br />

will increase <str<strong>on</strong>g>potential</str<strong>on</strong>g> for fish death<br />

Low<br />

dissolved<br />

oxygen<br />

(DO)<br />

Use <str<strong>on</strong>g>of</str<strong>on</strong>g> interventi<strong>on</strong> techniques such as oxygenati<strong>on</strong><br />

<strong>and</strong> modified clays.<br />

Key processes in <strong>the</strong> N <strong>and</strong> P cycles will<br />

move upstream<br />

High<br />

Knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> each nutrient<br />

source, <strong>the</strong> nature <strong>and</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> key recycling<br />

processes, temperature <str<strong>on</strong>g>change</str<strong>on</strong>g>s <strong>and</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g>s in light<br />

regimes in each seas<strong>on</strong> is required to underst<strong>and</strong> <strong>the</strong><br />

relative impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> – <strong>and</strong> focus management<br />

accordingly.<br />

Rate <str<strong>on</strong>g>of</str<strong>on</strong>g> N fixati<strong>on</strong> <strong>and</strong> denitrificati<strong>on</strong><br />

may <str<strong>on</strong>g>change</str<strong>on</strong>g> depending <strong>on</strong> species<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>and</strong> carb<strong>on</strong> loading rates<br />

Medium -<br />

high<br />

Nutrient<br />

cycling<br />

Use <str<strong>on</strong>g>of</str<strong>on</strong>g> interventi<strong>on</strong> techniques such as oxygenati<strong>on</strong><br />

<strong>and</strong> modified clays.<br />

Increased stratificati<strong>on</strong> <strong>and</strong> extended<br />

periods <str<strong>on</strong>g>of</str<strong>on</strong>g> low dissolved oxygen levels<br />

Fuel for fur<strong>the</strong>r growth <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong><br />

63


Area / issue Likelihood Adverse impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> Mitigati<strong>on</strong> <strong>and</strong> adaptati<strong>on</strong> Risk rating<br />

Identify important areas <str<strong>on</strong>g>of</str<strong>on</strong>g> fringing vegetati<strong>on</strong> <strong>and</strong><br />

develop risk based management strategies<br />

Assess ecological importance <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> from riparian<br />

vegetati<strong>on</strong> for aquatic c<strong>on</strong>sumers (stable isotope<br />

analyses) to assess <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong> species shifts <strong>and</strong><br />

nutrient cycles.<br />

Z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> saltmarsh will retreat <strong>and</strong><br />

extend <strong>the</strong>ir distributi<strong>on</strong> l<strong>and</strong>wards, <strong>and</strong><br />

also fur<strong>the</strong>r upstream<br />

Lowmedium<br />

Transiti<strong>on</strong> vegetati<strong>on</strong> will retreat from<br />

<strong>the</strong> shore <strong>and</strong> extend its distributi<strong>on</strong><br />

l<strong>and</strong>wards<br />

Medium<br />

Riparian<br />

vegetati<strong>on</strong><br />

Assess reserves adjacent to important areas <str<strong>on</strong>g>of</str<strong>on</strong>g> fringing<br />

vegetati<strong>on</strong> to determine l<strong>and</strong>ward migrati<strong>on</strong><br />

(loss / <str<strong>on</strong>g>change</str<strong>on</strong>g>)<br />

Development adjacent to <strong>the</strong> river will need to<br />

c<strong>on</strong>sider any expected l<strong>and</strong>ward migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fringing<br />

vegetati<strong>on</strong><br />

Downstream extent <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater riparian<br />

vegetati<strong>on</strong> will be reduced due to<br />

invasi<strong>on</strong> by transiti<strong>on</strong> vegetati<strong>on</strong><br />

Factor <str<strong>on</strong>g>change</str<strong>on</strong>g>s in vegetati<strong>on</strong> into foreshore protecti<strong>on</strong><br />

strategies <strong>and</strong> statutory planning<br />

More marine species that enter <strong>the</strong> estuary<br />

as juveniles<br />

Possible establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> some tropical<br />

species<br />

*High<br />

Develop ecological resilience models to predict <strong>the</strong><br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> water quality <str<strong>on</strong>g>change</str<strong>on</strong>g>s (particularly salinity<br />

<strong>and</strong> dissolved oxygen) from <strong>the</strong> lower to upper<br />

estuary. This will assist <strong>the</strong> predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spatial<br />

patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> community structure<br />

High<br />

Marine community<br />

structure<br />

Reducti<strong>on</strong> in diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> plankt<strong>on</strong>, invertebrates<br />

<strong>and</strong> fish<br />

C<strong>on</strong>tinue l<strong>on</strong>g-term catchment management to reduce<br />

nutrient loads<br />

Increased dominance <str<strong>on</strong>g>of</str<strong>on</strong>g> opportunistic<br />

species<br />

*High<br />

Develop ecological resilience models to predict<br />

water quality (particularly salinity, temperature<br />

<strong>and</strong> dissolved oxygen) in <strong>the</strong> upper estuary to assist<br />

<strong>the</strong> predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spatial patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> community<br />

structure<br />

Potential for trophic dynamics to become<br />

simpler with periods dominated<br />

by plankt<strong>on</strong>ic food webs due to loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

benthic invertebrates<br />

High<br />

Trophic dynamics<br />

C<strong>on</strong>tinue l<strong>on</strong>g-term catchment management to reduce<br />

nutrient loads<br />

Increased nutrient enrichment<br />

64


Area / issue Likelihood Adverse impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> Mitigati<strong>on</strong> <strong>and</strong> adaptati<strong>on</strong> Risk rating<br />

Where possible, allow tidal habitats to shift l<strong>and</strong>ward<br />

(see ‘Mudflats’ below)<br />

A decline in <strong>the</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> waders<br />

due to a loss <str<strong>on</strong>g>of</str<strong>on</strong>g> foraging habitat<br />

Create s<strong>and</strong>bars<br />

Reduce disturbance at shoreline roosting sites<br />

Potential increase in <strong>the</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>swan</strong>s <strong>and</strong> ducks<br />

Low – high<br />

*Medium<br />

A critical shortage <str<strong>on</strong>g>of</str<strong>on</strong>g> roosting areas <strong>and</strong><br />

freshwater sources<br />

(species<br />

specific)<br />

Birds<br />

Supplement freshwater in lower estuary<br />

Revegetate fringing envir<strong>on</strong>ments with plants able to<br />

cope with <str<strong>on</strong>g>change</str<strong>on</strong>g>d c<strong>on</strong>diti<strong>on</strong>s<br />

Decline <strong>and</strong> fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fringing<br />

vegetati<strong>on</strong> <strong>and</strong> increases in poor water<br />

quality<br />

Develop models to assess how fisheries <strong>and</strong> <strong>the</strong>ir supporting<br />

ecosystems may resp<strong>on</strong>d to <str<strong>on</strong>g>change</str<strong>on</strong>g>s in <strong>the</strong><br />

envir<strong>on</strong>ment <strong>and</strong> to different management acti<strong>on</strong>s.<br />

*High<br />

C<strong>on</strong>sider how <strong>the</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lifecycle<br />

categories, <strong>and</strong> recreati<strong>on</strong>al <strong>and</strong> commercial<br />

fishing amenity, might <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

Direct resp<strong>on</strong>se to <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g><br />

through changing distributi<strong>on</strong> <strong>and</strong><br />

abundance<br />

Fish High<br />

Indirect resp<strong>on</strong>se via <str<strong>on</strong>g>change</str<strong>on</strong>g>s to <strong>the</strong>ir<br />

habitat <strong>and</strong> food supply<br />

Incorporate this knowledge into WAMSI Node 4, Project<br />

4.3 to enable <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> more precise<br />

predicti<strong>on</strong>s<br />

Assess <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> CC <strong>on</strong> water clarity<br />

Map distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> macrophytes<br />

Less extreme salinity regime is favourable<br />

to seagrass<br />

Predict sea grass distributi<strong>on</strong> with <str<strong>on</strong>g>change</str<strong>on</strong>g> in sea level<br />

to ensure no decrease in distributi<strong>on</strong><br />

Rise in sea level may result in some loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sea grass<br />

High<br />

Medium<br />

Assess reserves to determine <strong>the</strong> extent to which<br />

l<strong>and</strong>ward extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seagrass is possible<br />

(gradual)<br />

Seagrass <strong>and</strong><br />

macro-algae<br />

Establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> marine sea grass species<br />

Development should accommodate l<strong>and</strong>ward extensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> seagrass<br />

Decline in freshwater macro-algae <strong>and</strong><br />

aquatic flowering plants<br />

C<strong>on</strong>tinue l<strong>on</strong>g-term catchment management to reduce<br />

nutrient loads<br />

65


Area / issue Likelihood Adverse impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> Mitigati<strong>on</strong> <strong>and</strong> adaptati<strong>on</strong> Risk rating<br />

Reducti<strong>on</strong> in downstream extent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

freshwater reaches<br />

Freshwater<br />

biodiversity<br />

High<br />

Reduced run<str<strong>on</strong>g>of</str<strong>on</strong>g>f in upper reaches <strong>and</strong><br />

increased retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments <strong>and</strong><br />

nutrients<br />

Increased fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> freshwater<br />

reaches into disc<strong>on</strong>nected river<br />

pools<br />

Reduced depth <strong>and</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> water in<br />

<strong>the</strong> freshwater reaches (especially in<br />

<strong>the</strong> pools).<br />

Survey pool habitats in freshwater tributaries to<br />

show <strong>the</strong> spatial extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se regi<strong>on</strong>s.<br />

Assess <strong>the</strong> extent <strong>and</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> weirs <strong>on</strong> <strong>the</strong> Av<strong>on</strong> as<br />

freshwater species refuges <strong>and</strong> prepare management<br />

strategies with relevant stakeholders<br />

Assess increasing envir<strong>on</strong>mental flows<br />

*High<br />

Reduced biodiversity <str<strong>on</strong>g>of</str<strong>on</strong>g> flora <strong>and</strong> fauna<br />

within <strong>the</strong> freshwater habitat that remains<br />

Mudflats<br />

Low - medium<br />

L<strong>and</strong>ward migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> intertidal<br />

z<strong>on</strong>e <strong>and</strong> shallow subtidal z<strong>on</strong>e in <strong>the</strong><br />

lower estuary (providing undeveloped<br />

l<strong>and</strong> to accommodate sea level rise).<br />

Determine spatial extent <strong>and</strong> total area <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal<br />

<strong>and</strong> shallow subtidal mudlflats at present <strong>and</strong> with<br />

<strong>the</strong> expected sea level rises to ensure <strong>the</strong>re is no<br />

significant diminuti<strong>on</strong> in this important habitat<br />

Assess reserves to determine <strong>the</strong> extent to which<br />

l<strong>and</strong>ward extensi<strong>on</strong> is possible<br />

Low - medium<br />

Development should accommodate l<strong>and</strong>ward extensi<strong>on</strong><br />

Acidificati<strong>on</strong>/<br />

buffering capacity<br />

Low<br />

(slow)<br />

Calcificati<strong>on</strong> process inhibited<br />

Potential <str<strong>on</strong>g>change</str<strong>on</strong>g> in biodiversity<br />

Review <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> acidificati<strong>on</strong> <strong>on</strong> <strong>the</strong><br />

ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan Canning ecosystem, so that <strong>the</strong><br />

<str<strong>on</strong>g>potential</str<strong>on</strong>g> risks can be assessed<br />

Low<br />

* not a high return for investment., limited opti<strong>on</strong>s for mitigati<strong>on</strong>/ adaptati<strong>on</strong><br />

66


To adapt to <str<strong>on</strong>g>change</str<strong>on</strong>g> in community structure <strong>and</strong> trophic dynamics, ecological resilience models<br />

predicting <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> water quality <str<strong>on</strong>g>change</str<strong>on</strong>g>s (particularly salinity <strong>and</strong> dissolved oxygen) from <strong>the</strong><br />

lower to upper estuary should be developed. They will assist in <strong>the</strong> predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spatial distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> community structures.<br />

Adaptati<strong>on</strong> acti<strong>on</strong>s to ameliorate <strong>the</strong> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> up<strong>on</strong> <strong>the</strong> river system, <strong>and</strong> subsequently<br />

up<strong>on</strong> birds, include:<br />

• Where possible, allow tidal habitats to shift l<strong>and</strong>ward (see mudfl at adaptati<strong>on</strong>);<br />

• Create s<strong>and</strong>bars;<br />

• Reduce disturbance at shoreline roosting sites;<br />

• Supplement freshwater sources in <strong>the</strong> lower estuary; <strong>and</strong><br />

• Revegetate fringing envir<strong>on</strong>ments with plants able to cope with <str<strong>on</strong>g>change</str<strong>on</strong>g>d c<strong>on</strong>diti<strong>on</strong>s.<br />

To better underst<strong>and</strong> <strong>the</strong> likely impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> fi sh communities, appropriate scenarios<br />

need to be explored as part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Western Australian Marine Science Institute (WAMSI) initiative<br />

(under project 4.3). This project is designed to provide an improved underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> how food webs<br />

in <strong>the</strong> Swan <strong>and</strong> adjacent estuaries are affected by fi shing, through <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> qualitative<br />

<strong>and</strong> quantitative models.<br />

The models will assess how fi sheries <strong>and</strong> <strong>the</strong>ir supporting ecosystems may resp<strong>on</strong>d to <str<strong>on</strong>g>change</str<strong>on</strong>g>s<br />

in <strong>the</strong> envir<strong>on</strong>ment <strong>and</strong> to different management acti<strong>on</strong>s. An initial recommendati<strong>on</strong> for acti<strong>on</strong> is to<br />

c<strong>on</strong>sider how <strong>the</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> life-cycle categories, <strong>and</strong> as a c<strong>on</strong>sequence recreati<strong>on</strong>al<br />

<strong>and</strong> commercial fi shing amenity, might <str<strong>on</strong>g>change</str<strong>on</strong>g> as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>. Subsequently, every<br />

effort should be made to incorporate this underst<strong>and</strong>ing into <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> appropriate <str<strong>on</strong>g>climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>change</str<strong>on</strong>g> scenario evaluati<strong>on</strong> built into <strong>the</strong> WAMSI Node 4, Project 4.3. This will enable <strong>the</strong> development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> more precise predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> likely effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> fi sh <strong>and</strong> fi sheries <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Swan.<br />

Seagrass <strong>and</strong> macro-algae are an important habitat <strong>and</strong> food source for fi sh <strong>and</strong> invertebrates, <strong>and</strong><br />

play an important role in nutrient dynamics (e.g. enhancing denitrifi cati<strong>on</strong> rates). The distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong>se macrophytes in <strong>the</strong> lower Swan Canning estuary appears to be fairly stable, but needs to be<br />

mapped as this has not been d<strong>on</strong>e for several decades. The predicted distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seagrass that<br />

is possible with <strong>the</strong> expected sea level rise needs to be examined, to ensure <strong>the</strong>re is no signifi cant<br />

diminuti<strong>on</strong> in this important habitat. Fur<strong>the</strong>r, <strong>the</strong> reserves adjacent to important areas <str<strong>on</strong>g>of</str<strong>on</strong>g> seagrass –<br />

<strong>and</strong> al<strong>on</strong>g <strong>the</strong> entire lower estuary – need to be assessed for <strong>the</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> any l<strong>and</strong>ward extensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> seagrass that could occur. Planning <str<strong>on</strong>g>of</str<strong>on</strong>g> development adjacent to <strong>the</strong> <strong>rivers</strong> will need to accommodate<br />

any l<strong>and</strong>ward extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seagrass that is necessary for <strong>the</strong> ecological health <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan<br />

Canning river system. A research priority in this area is <strong>the</strong> predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> water clarity.<br />

Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater biodiversity will result in <str<strong>on</strong>g>change</str<strong>on</strong>g>s in <strong>the</strong> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong>.<br />

Freshwater tributaries are important summer refugia <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater fauna. Changes to salinity in<br />

<strong>the</strong> main channel <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan River, may result in <strong>the</strong> fur<strong>the</strong>r isolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se refuge habitats <strong>and</strong><br />

this should be m<strong>on</strong>itored. An adaptati<strong>on</strong> strategy to maintain <strong>the</strong>se residual envir<strong>on</strong>ments may be<br />

through envir<strong>on</strong>mental fl ows in systems downstream from reservoirs. However, a preliminary requirement<br />

is to establish <strong>the</strong> spatial extent <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater tributaries, which can be achieved through<br />

surveys. In additi<strong>on</strong>, <strong>the</strong> extent <strong>and</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> weirs <strong>on</strong> <strong>the</strong> Av<strong>on</strong> as freshwater species refuges should<br />

be assessed <strong>and</strong> management strategies prepared with relevant stakeholders.<br />

To adapt to <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> mudfl ats, <strong>the</strong>re is <strong>the</strong> need to ascertain <strong>the</strong> current spatial extent<br />

<strong>and</strong> total area <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal <strong>and</strong> shallow sub-tidal mudfl ats. Fur<strong>the</strong>r, <strong>the</strong> spatial extent <str<strong>on</strong>g>of</str<strong>on</strong>g> existing mudfl<br />

ats should be determined under <strong>the</strong> expected sea level rises - to ensure <strong>the</strong>re is no signifi cant diminuti<strong>on</strong><br />

in this important habitat. The reserves adjacent to important areas <str<strong>on</strong>g>of</str<strong>on</strong>g> mudfl ats – <strong>and</strong> al<strong>on</strong>g<br />

<strong>the</strong> entire lower estuary – need to be assessed to determine <strong>the</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> any <str<strong>on</strong>g>potential</str<strong>on</strong>g> l<strong>and</strong>ward<br />

67


extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mudfl ats. Planning for development adjacent to <strong>the</strong> <strong>rivers</strong> will need to accommodate<br />

any l<strong>and</strong>ward extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mudfl ats that is necessary for <strong>the</strong> ecological health <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan Canning<br />

river system. As such, establishing this informati<strong>on</strong> is a priority for <strong>the</strong> regi<strong>on</strong>. A more radical approach<br />

would be to investigate <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> to use treated wastewater to augment envir<strong>on</strong>mental<br />

fl ows, such as in <strong>the</strong> Hawkesbury River, NSW.<br />

To adapt to <str<strong>on</strong>g>change</str<strong>on</strong>g>s in geomorphology, a spatially-based risk matrix should be developed to identify<br />

high-risk areas <strong>and</strong> likely c<strong>on</strong>sequences. In additi<strong>on</strong>, <strong>the</strong> existing riparian vegetati<strong>on</strong> should be<br />

mapped <strong>on</strong>to <strong>the</strong> risk matrix <strong>and</strong> projected <str<strong>on</strong>g>change</str<strong>on</strong>g>s modelled. This will show where <strong>the</strong>re are risks<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bank erosi<strong>on</strong> <strong>and</strong> sediment remobilisati<strong>on</strong> - <strong>and</strong> during what time frames. Management strategies<br />

can <strong>the</strong>n be developed, such as biological stabilisati<strong>on</strong> or engineering structures such as revetment<br />

works.<br />

Finally, to manage <strong>the</strong> uncertainty <strong>and</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>, a clear underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> key<br />

social, cultural <strong>and</strong> amenity values for <strong>the</strong> community with respect to <strong>the</strong> forecast <str<strong>on</strong>g>change</str<strong>on</strong>g>s in <strong>the</strong><br />

Swan Canning must be established using appropriate models to express envir<strong>on</strong>mental/ecological<br />

risks (to partiti<strong>on</strong> risk into ‘likelihood’ <strong>and</strong> ‘c<strong>on</strong>sequence’). These models can be used to facilitate<br />

<strong>the</strong> management <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g> process, including intergenerati<strong>on</strong>al expectati<strong>on</strong>s <strong>and</strong> to help focus<br />

where resources should be committed. This adaptati<strong>on</strong> strategy is in line with adaptati<strong>on</strong> priorities to<br />

address human health <strong>and</strong> social <str<strong>on</strong>g>impacts</str<strong>on</strong>g>.<br />

3.2.2 Adapting to human health <strong>and</strong> social <str<strong>on</strong>g>impacts</str<strong>on</strong>g><br />

The nature <strong>and</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong> to meet aes<strong>the</strong>tic <strong>and</strong> cultural needs will depend <strong>on</strong> <strong>the</strong> reacti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> community to <strong>the</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g>s. To some planners <strong>and</strong> community members <strong>the</strong>re will be a<br />

desire for as little <str<strong>on</strong>g>change</str<strong>on</strong>g> as possible. For o<strong>the</strong>rs, <str<strong>on</strong>g>change</str<strong>on</strong>g> will be tolerated in some areas <strong>and</strong> to<br />

some extent but <strong>the</strong>re will be a desire to protect key features. For still o<strong>the</strong>rs <strong>the</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g> will provide<br />

an opportunity to alter <strong>the</strong> l<strong>and</strong>scape to what <strong>the</strong>y perceive as a more aes<strong>the</strong>tic or accessible<br />

l<strong>and</strong>scape through urban developments <str<strong>on</strong>g>of</str<strong>on</strong>g> different kinds. It will be important that <strong>the</strong>se views are<br />

understood <strong>and</strong> incorporated in iterative planning with a high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> public involvement to create<br />

<strong>the</strong> best possible l<strong>and</strong>scape in aes<strong>the</strong>tic terms. Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> needs to be a central focus <str<strong>on</strong>g>of</str<strong>on</strong>g> river<br />

planning <strong>and</strong> management so that <str<strong>on</strong>g>change</str<strong>on</strong>g> can be planned for holistically. A piecemeal approach is<br />

almost certain to create a disjointed <strong>and</strong> less than satisfactory l<strong>and</strong>scape.<br />

Signifi cant investment in <strong>the</strong> modifi cati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> recreati<strong>on</strong>-based infrastructure such as jetties <strong>and</strong><br />

bridges in order to adapt to <strong>the</strong> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>, whilst ensuring adequate access to<br />

<strong>the</strong> river, may be required. These modifi cati<strong>on</strong>s would be bey<strong>on</strong>d that required from <strong>the</strong> expected<br />

increased dem<strong>and</strong> without <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>. Walking paths may have to be relocated or even ab<strong>and</strong><strong>on</strong>ed<br />

if <strong>the</strong> setback required for housing is no l<strong>on</strong>ger available in some areas. The open areas that<br />

provide for family <strong>and</strong> group activities <strong>and</strong> for <strong>the</strong> exercising <str<strong>on</strong>g>of</str<strong>on</strong>g> pets may have to be signifi cantly<br />

curtailed. Potentially, more restricti<strong>on</strong>s <strong>on</strong> <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> open space may have to be c<strong>on</strong>sidered. Regulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> types <str<strong>on</strong>g>of</str<strong>on</strong>g> boats <strong>and</strong> <strong>the</strong>ir activities in <strong>the</strong> river may also be required to assist in preventing<br />

fur<strong>the</strong>r bank erosi<strong>on</strong> as that is already a signifi cant c<strong>on</strong>cern.<br />

Adaptati<strong>on</strong> strategies to human health risks are under assessment in <strong>the</strong> Health Impact Assessment<br />

Program related to <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> in Western Australia. The program involves <strong>the</strong> Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Health, Curtin University <strong>and</strong> <strong>the</strong> World Health Organisati<strong>on</strong>. Through <strong>the</strong> program, waterborne<br />

disease has been recognised as a <str<strong>on</strong>g>potential</str<strong>on</strong>g> area that will require signifi cant adaptati<strong>on</strong>. From <strong>the</strong><br />

Swan River Trust’s viewpoint active participati<strong>on</strong> in this statewide program to identify areas in which<br />

management <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan may have to <str<strong>on</strong>g>change</str<strong>on</strong>g> over time is <str<strong>on</strong>g>of</str<strong>on</strong>g> high priority.<br />

Finally, <strong>the</strong>re is a need to identify <strong>and</strong> develop mitigati<strong>on</strong> strategies for any threats to infrastructure<br />

that have historical signifi cance or value for <strong>the</strong> l<strong>on</strong>g-term values in relati<strong>on</strong> to stewardship. There<br />

will be an important need to work with <strong>the</strong> Nyungah community to ensure that areas <str<strong>on</strong>g>of</str<strong>on</strong>g> importance<br />

are identifi ed <strong>and</strong> appropriate strategies put in place to provide sustainable management for signifi -<br />

68


cant indigenous sites. This work could parallel <strong>the</strong> systematic programs to tackle <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

challenges for indigenous communities that are now evolving in Nor<strong>the</strong>rn <strong>and</strong> remote Australia.<br />

Table 21 Human health <strong>and</strong> social <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>, adaptati<strong>on</strong> strategies <strong>and</strong> risk<br />

rating<br />

Area / risk Likelihood Adverse Impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

Mitigati<strong>on</strong> <strong>and</strong> adaptati<strong>on</strong> Risk rating<br />

River<br />

l<strong>and</strong>scape<br />

<strong>and</strong><br />

management<br />

Recreati<strong>on</strong><br />

<strong>and</strong> tourism<br />

Recreati<strong>on</strong>al<br />

fishing<br />

Low<br />

Medium -<br />

high<br />

High<br />

Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> beach envir<strong>on</strong>ment<br />

Physical <str<strong>on</strong>g>change</str<strong>on</strong>g>s will<br />

alter <strong>the</strong> aes<strong>the</strong>tics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

l<strong>and</strong>scape<br />

Restricti<strong>on</strong>s to access<br />

Change in ephemeral<br />

parts <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<strong>and</strong>s<br />

Altered fishing<br />

Depends <strong>on</strong> species<br />

specific <str<strong>on</strong>g>change</str<strong>on</strong>g>s. Some<br />

species will be favoured<br />

o<strong>the</strong>rs disadvantaged<br />

Incorporate social values<br />

into iterative planning<br />

Investment in recreati<strong>on</strong><br />

based infrastructure<br />

Possible restricti<strong>on</strong>s <strong>on</strong><br />

availability <str<strong>on</strong>g>of</str<strong>on</strong>g> open space<br />

Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> access – boat<br />

<strong>and</strong> pedestrian<br />

Refer to Table 20 above.<br />

Limited opti<strong>on</strong>s for mitigati<strong>on</strong><br />

<strong>and</strong> adaptati<strong>on</strong><br />

Low<br />

Low<br />

-medium<br />

High*<br />

Human<br />

health<br />

Low<br />

Increase numbers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mosquitoes<br />

Fish dangerous for<br />

c<strong>on</strong>sumpti<strong>on</strong><br />

Active participati<strong>on</strong> in<br />

statewide programs that<br />

address human health <str<strong>on</strong>g>impacts</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

**<br />

Water c<strong>on</strong>tact health<br />

risks exacerbated<br />

Cultural <strong>and</strong><br />

Indigenous<br />

issues<br />

Low<br />

Alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> River to<br />

<strong>the</strong> community<br />

Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> scared sites<br />

Identify <strong>and</strong> develop<br />

mitigati<strong>on</strong> strategies for<br />

threatened infrastructure<br />

<strong>and</strong> sites<br />

Low<br />

* not a high return for investment, limited opti<strong>on</strong>s for mitigati<strong>on</strong>/adaptati<strong>on</strong><br />

** refer to Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Health WA (2007)<br />

3.2.3 Adapting to Impacts <strong>on</strong> Infrastructure<br />

The key <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong> infrastructure are rising water levels <strong>and</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g> in <strong>the</strong> frequency<br />

<strong>and</strong> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> storms. There are a number <str<strong>on</strong>g>of</str<strong>on</strong>g> procedures that can be c<strong>on</strong>sidered to mitigate<br />

<strong>the</strong>se effects, including:<br />

• provide increased protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> foreshore assets by <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> protective walls <strong>and</strong><br />

revetments (i.e. c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> larger <strong>and</strong> str<strong>on</strong>ger structures);<br />

• increase <strong>the</strong> elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure suffi ciently to avoid <strong>and</strong>/or remove <strong>the</strong><br />

possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> damage;<br />

•<br />

•<br />

•<br />

•<br />

•<br />

69


• apply planning legislati<strong>on</strong> to limit fur<strong>the</strong>r development in threatened areas <strong>and</strong><br />

progressively move valuable infrastructure to higher elevati<strong>on</strong>s; <strong>and</strong><br />

• c<strong>on</strong>sider <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> submerged structures to reduce <strong>the</strong> fetch <str<strong>on</strong>g>of</str<strong>on</strong>g> storm surges <strong>and</strong><br />

reduce <strong>the</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> waves reaching <strong>the</strong> shoreline.<br />

Research priorities to determine <strong>the</strong> appropriate adaptati<strong>on</strong> resp<strong>on</strong>se include:<br />

• obtain a detailed knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tours <str<strong>on</strong>g>of</str<strong>on</strong>g> low-lying l<strong>and</strong> around <strong>the</strong> perimeter <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Swan Canning river system. To be <str<strong>on</strong>g>of</str<strong>on</strong>g> suitable value this would need to provide data<br />

discriminati<strong>on</strong> in 10 cm intervals (now available <strong>and</strong> under development through <strong>the</strong><br />

Urban M<strong>on</strong>itor project); <strong>and</strong><br />

• obtain informati<strong>on</strong> <strong>on</strong> <strong>the</strong> frequency <strong>and</strong> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme events that would have<br />

<strong>the</strong> greatest impact <strong>on</strong> infrastructure.<br />

The more specifi c adaptati<strong>on</strong> resp<strong>on</strong>ses to rising sea levels, by marine infrastructure type, are<br />

provided in Table 22. These adaptati<strong>on</strong> approaches account for <strong>the</strong> service life <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> various structures.<br />

When <strong>the</strong> current structures are replaced, during <strong>the</strong> coming decades, <strong>the</strong> design <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

replacements should account for <strong>the</strong> <str<strong>on</strong>g>change</str<strong>on</strong>g>s anticipated during <strong>the</strong>ir service life.<br />

Table 22 - Adaptati<strong>on</strong> strategies for marine infrastructure<br />

Item Likelihood Adverse impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

Suggested Resp<strong>on</strong>se to Impacts<br />

from <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

Jetties & boat<br />

pens<br />

Seawalls & revetments<br />

Low -<br />

medium<br />

Low -<br />

medium<br />

Flooding / waves<br />

Sedimentati<strong>on</strong> /<br />

accreti<strong>on</strong><br />

Flooding / waves<br />

Sedimentati<strong>on</strong> /<br />

accreti<strong>on</strong><br />

Groynes Low Flooding / waves<br />

Sedimentati<strong>on</strong> /<br />

accreti<strong>on</strong><br />

Boat ramps Low Flooding / waves<br />

Sedimentati<strong>on</strong> /<br />

accreti<strong>on</strong><br />

Include 0.1 to 0.3* m sea level<br />

rise into designs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

replacement jetties <strong>and</strong> mooring<br />

pens as <strong>the</strong>y are replaced<br />

Where practical include 0.1 to<br />

0.3* m sea level rise into<br />

designs <str<strong>on</strong>g>of</str<strong>on</strong>g> replacement<br />

seawalls as <strong>the</strong>y are replaced<br />

Retro-fit low seawalls with wave<br />

deflectors if required<br />

Drainage systems may preclude<br />

raising crest levels <str<strong>on</strong>g>of</str<strong>on</strong>g> seawalls<br />

Raise crest level to<br />

accommodate 0.1 to 0.3* m sea<br />

level rise via maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

groynes as required<br />

Include 0.1 to 0.3* m sea level<br />

rise into design <str<strong>on</strong>g>of</str<strong>on</strong>g> replacement<br />

ramps<br />

* The variati<strong>on</strong> in sea level rise design (i.e. 0.1 to 0.3) relates to infrastructure service life (see Table 18).<br />

Risk<br />

Low<br />

Low<br />

Low<br />

Low<br />

3.2.4 Adapting to ec<strong>on</strong>omic <str<strong>on</strong>g>impacts</str<strong>on</strong>g><br />

A review <str<strong>on</strong>g>of</str<strong>on</strong>g> past <strong>and</strong> existing adaptive <strong>and</strong> mitigati<strong>on</strong> strategies, locally <strong>and</strong> in o<strong>the</strong>r regi<strong>on</strong>s, is<br />

necessary to identify future practical adaptive <strong>and</strong> mitigati<strong>on</strong> strategies for <strong>the</strong> Swan <strong>and</strong> Canning<br />

<strong>rivers</strong>.<br />

In short, funding will have to be set aside for ei<strong>the</strong>r adaptive or mitigati<strong>on</strong> measures. Those costs<br />

70


will likely be:<br />

• associated with improved stability <str<strong>on</strong>g>of</str<strong>on</strong>g> river banks;<br />

• associated with ensuring riparian z<strong>on</strong>es are vegetated in order to reduce erosi<strong>on</strong>;<br />

• used to prevent fur<strong>the</strong>r degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> estuaries; <strong>and</strong><br />

• associated with repairing or altering existing infrastructure.<br />

However, certain expenses may be shared between <strong>the</strong> government <strong>and</strong> private instituti<strong>on</strong>s. For<br />

example, costs associated with infrastructure upgrades can <str<strong>on</strong>g>potential</str<strong>on</strong>g>ly be partly subsidised leaseholders<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> river estates <strong>and</strong> <strong>the</strong> cost <str<strong>on</strong>g>of</str<strong>on</strong>g> building dams or walls to prevent fl oods could be shared with<br />

local businesses that are going to be directly affected. Some costs can be fully covered by private<br />

ownership, such as <strong>the</strong> cost <str<strong>on</strong>g>of</str<strong>on</strong>g> raising low-lying private l<strong>and</strong>. Private owners will have a vested interest<br />

in paying for <strong>the</strong>se adaptive measures as <strong>the</strong>y may result in lower insurance premiums.<br />

It is important to note that any costs associated with mitigati<strong>on</strong> or adaptive measures should always<br />

be weighed against <strong>the</strong> benefi ts prior to any decisi<strong>on</strong> <strong>on</strong> implementati<strong>on</strong>. With certain problems, mitigati<strong>on</strong><br />

measures may be more feasible <strong>and</strong> more cost effective both in <strong>the</strong> short <strong>and</strong> l<strong>on</strong>g run than<br />

adaptive measures. Also, accurate predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> types <strong>and</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

are crucial in determining <strong>the</strong> cost <strong>and</strong> benefi ts <str<strong>on</strong>g>of</str<strong>on</strong>g> each mitigati<strong>on</strong> or adaptive measure. Review <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

current adaptive <strong>and</strong> mitigati<strong>on</strong> strategies in o<strong>the</strong>r regi<strong>on</strong>s will prove useful in this regard. However,<br />

<strong>the</strong> south west <str<strong>on</strong>g>of</str<strong>on</strong>g> Western Australia is experiencing as severe a <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> as anywhere in <strong>the</strong><br />

world <strong>and</strong> <strong>the</strong>refore, answers may not be found in o<strong>the</strong>r regi<strong>on</strong>s at this stage.<br />

Decisi<strong>on</strong> support tools <strong>and</strong> tools for measuring ec<strong>on</strong>omic impact are important for assessing <strong>the</strong><br />

ec<strong>on</strong>omic <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>. Adopti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> decisi<strong>on</strong> support tools such as Cost Benefi t Analysis<br />

(CBA) <strong>and</strong> Multi-Criteria Analysis (MCA) can help in effi cient allocati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> funds to projects that<br />

will provide <strong>the</strong> most desired outcome (Hajkowicz et al. 2006). This is achieved through a better<br />

underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic effi ciencies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> adaptati<strong>on</strong> investments.<br />

Costs <strong>and</strong> benefi ts <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong> can be tangible <strong>and</strong> intangible. Tangible costs <strong>and</strong> benefi ts can be<br />

observed from <strong>the</strong> market, such as reduced revenue from tourism due to poor water quality in lakes<br />

<strong>and</strong> <strong>rivers</strong>. Intangible costs, such as reduced welfare, although not observable in market transacti<strong>on</strong>s,<br />

can still be measured using n<strong>on</strong>-market valuati<strong>on</strong> techniques, such as willingness-to-pay.<br />

Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> has social, envir<strong>on</strong>mental <strong>and</strong> ec<strong>on</strong>omic <str<strong>on</strong>g>impacts</str<strong>on</strong>g>. The <str<strong>on</strong>g>impacts</str<strong>on</strong>g> from <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

should <strong>the</strong>refore be c<strong>on</strong>sidered in c<strong>on</strong>juncti<strong>on</strong> with o<strong>the</strong>r issues affecting <strong>the</strong> same management<br />

strategies. Full ec<strong>on</strong>omic evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> increased risk <str<strong>on</strong>g>of</str<strong>on</strong>g> damage to existing infrastructure assets<br />

from <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall intensity during storms, or as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> drying<br />

<str<strong>on</strong>g>climate</str<strong>on</strong>g>, is recommended <strong>on</strong>ce <strong>the</strong> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se <str<strong>on</strong>g>impacts</str<strong>on</strong>g> is better known <strong>and</strong> <strong>the</strong> effi cacy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

interventi<strong>on</strong> is established. Cost <str<strong>on</strong>g>of</str<strong>on</strong>g> externalities from social <strong>and</strong> envir<strong>on</strong>mental <str<strong>on</strong>g>impacts</str<strong>on</strong>g> should also<br />

be incorporated into <strong>the</strong> marginal cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> projects to refl ect <strong>the</strong> social marginal benefi t.<br />

Increased investment in underst<strong>and</strong>ing <strong>the</strong> social <strong>and</strong> ec<strong>on</strong>omic impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> is also<br />

necessary. For example, <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> changing water quality <strong>and</strong> water level in <strong>rivers</strong> <strong>and</strong> lakes,<br />

which result in reduced aes<strong>the</strong>tic values, increased health risks, <strong>and</strong> reduced tourism should be<br />

assessed. Revealed preference ec<strong>on</strong>omic valuati<strong>on</strong> techniques such as <strong>the</strong> hed<strong>on</strong>ic property price<br />

approach can be applied to estimate <strong>the</strong> capitalised amenity value <strong>on</strong> property prices as a result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

being closer to lakes <strong>and</strong> <strong>rivers</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different qualities. This will enable a better underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> how<br />

water quality can improve social welfare.<br />

Finally, social <strong>and</strong> ec<strong>on</strong>omic impact from health risks due to <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> can be evaluated using<br />

health ec<strong>on</strong>omics (i.e. <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> people hospitalised <strong>and</strong> <strong>the</strong> cost <str<strong>on</strong>g>of</str<strong>on</strong>g> working hours lost due to<br />

hospitalisati<strong>on</strong>) or n<strong>on</strong>-market valuati<strong>on</strong> techniques (i.e. willingness-to-pay to avoid health risks).<br />

The risk rating for <strong>the</strong> Swan River Trust, to adapting to ec<strong>on</strong>omic <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> are presented<br />

in Table 23.<br />

71


Table 23 Ec<strong>on</strong>omic <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>, adaptati<strong>on</strong> strategies <strong>and</strong> risk rating<br />

Area Likelihood Impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

River health High Reduced water<br />

quality <strong>and</strong> increased<br />

costs for<br />

interventi<strong>on</strong> <strong>and</strong><br />

m<strong>on</strong>itoring programs<br />

Utility<br />

infrastructure<br />

(power, water,<br />

drainage &<br />

roads)<br />

High<br />

Increased risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

infrastructure degradati<strong>on</strong><br />

<strong>and</strong> failure<br />

Insurance Low Increased premiums<br />

<strong>and</strong>/or reduced<br />

coverage<br />

3.3 Summary<br />

Adaptati<strong>on</strong><br />

Apply valuati<strong>on</strong> techniques<br />

to aid allocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> funds to<br />

areas <strong>and</strong> projects.<br />

Incorporate social marginal<br />

benefit into <strong>the</strong> marginal<br />

costs <str<strong>on</strong>g>of</str<strong>on</strong>g> projects<br />

Apply valuati<strong>on</strong> techniques<br />

to aid allocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> funds to<br />

areas <strong>and</strong> projects<br />

Incorporate social marginal<br />

benefit into <strong>the</strong> marginal<br />

costs <str<strong>on</strong>g>of</str<strong>on</strong>g> projects<br />

Full ec<strong>on</strong>omic evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

increased risk <str<strong>on</strong>g>of</str<strong>on</strong>g> damage to<br />

existing infrastructure recommended<br />

Full ec<strong>on</strong>omic evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

increased risk <str<strong>on</strong>g>of</str<strong>on</strong>g> damage to<br />

existing infrastructure<br />

recommended<br />

Risk<br />

High<br />

Medium<br />

Low<br />

The key management strategies <strong>and</strong> research priorities for <strong>the</strong> adaptati<strong>on</strong> to <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g><br />

in <strong>the</strong> Swan Canning river system have been outlined in this chapter. The strategies are baseline<br />

adaptati<strong>on</strong> resp<strong>on</strong>ses that can be, <strong>and</strong> should be, implemented now, to reduce <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Swan Canning river system. As <strong>the</strong> Swan River Trust addresses <strong>the</strong> adaptati<strong>on</strong> priorities<br />

outlined in this chapter, <strong>and</strong> as <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> science is updated, <strong>the</strong> Trust will reassess its<br />

management positi<strong>on</strong>, <strong>and</strong> c<strong>on</strong>sequently update its research <strong>and</strong> adaptati<strong>on</strong> priorities. This adaptive<br />

management approach will ensure that <strong>the</strong> Trust is in <strong>the</strong> best positi<strong>on</strong> to adjust to <strong>the</strong> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>.<br />

72


4 Planning for adaptati<strong>on</strong><br />

The Swan River Trust was established in 1989 with planning, protecti<strong>on</strong> <strong>and</strong> management functi<strong>on</strong>s<br />

for <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong> <strong>and</strong> associated l<strong>and</strong>. During <strong>the</strong> last few years <strong>the</strong>se functi<strong>on</strong>s<br />

have been streamlined to address <strong>the</strong> need to improve l<strong>and</strong> use planning, water quality <strong>and</strong> <strong>the</strong><br />

health <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan Canning river system.<br />

The Trust plays an important role in protecting <strong>and</strong> enhancing <strong>the</strong> ecology, health, visual <strong>and</strong> social<br />

amenity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong> through statutory planning programs. Programs ensure<br />

l<strong>and</strong> use planning <strong>and</strong> development in <strong>the</strong> Trust’s Development C<strong>on</strong>trol Area c<strong>on</strong>tinue to protect<br />

community <strong>and</strong> ecological values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system. This chapter provides a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> planning in <strong>the</strong> Swan Canning river system.<br />

4.1 Planning legislati<strong>on</strong><br />

The Swan <strong>and</strong> Canning Rivers Management Act 2006 (‘SCRM Act’) was proclaimed in September<br />

2007 <strong>and</strong> brings <str<strong>on</strong>g>change</str<strong>on</strong>g>s to <strong>the</strong> statutory <strong>and</strong> regulatory processes (Swan <strong>and</strong> Canning Rivers<br />

Management Regulati<strong>on</strong>s 2007 - SCRM Regulati<strong>on</strong>s 2007) <strong>and</strong> functi<strong>on</strong>s previously performed by<br />

<strong>the</strong> Trust under <strong>the</strong> Swan River Trust Act 1988. The Trust has overall planning, protecti<strong>on</strong> <strong>and</strong> management<br />

resp<strong>on</strong>sibility for <strong>the</strong> Swan Canning river system under Part 5 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> SCRM Act. The Trust<br />

provides advice, makes recommendati<strong>on</strong>s to <strong>and</strong> comes under <strong>the</strong> jurisdicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Minister for <strong>the</strong><br />

Envir<strong>on</strong>ment.<br />

The extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Trust’s planning <strong>and</strong> development c<strong>on</strong>trol is defi ned by a Development C<strong>on</strong>trol<br />

Area (DCA). It comprises generally <strong>the</strong> waters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan Canning river system, including areas<br />

reserved under <strong>the</strong> Metropolitan Regi<strong>on</strong> Scheme (MRS) for ‘waterways’ <strong>and</strong> l<strong>and</strong>s adjoining those<br />

waters that are reserved Parks <strong>and</strong> Recreati<strong>on</strong>. The Riverpark area, managed by <strong>the</strong> Trust, comprises<br />

all <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> above excluding freehold l<strong>and</strong> in private ownership. The DCA can be amended from<br />

time to time by Regulati<strong>on</strong>, to refl ect <str<strong>on</strong>g>change</str<strong>on</strong>g>s to river c<strong>on</strong>diti<strong>on</strong>s or management needs.<br />

The Trust provides advice, c<strong>on</strong>siders <strong>and</strong> makes recommendati<strong>on</strong>s <strong>on</strong> development <strong>and</strong> l<strong>and</strong> use<br />

applicati<strong>on</strong>s that affect <strong>the</strong> DCA under fi ve different statutory processes <strong>and</strong> under two State Government<br />

Acts.<br />

The Trust’s statutory planning functi<strong>on</strong>s:<br />

1. Make recommendati<strong>on</strong>s to <strong>the</strong> Minister for <strong>the</strong> Envir<strong>on</strong>ment c<strong>on</strong>cerning development proposals in<br />

<strong>the</strong> DCA.<br />

2. Provide advice to <strong>the</strong> Western Australian Planning Commissi<strong>on</strong> (WAPC) c<strong>on</strong>cerning amendments<br />

to <strong>the</strong> MRS <strong>and</strong> o<strong>the</strong>r strategic planning instruments.<br />

3. Provide advice to <strong>the</strong> WAPC in relati<strong>on</strong> to subdivisi<strong>on</strong> proposals.<br />

4. Provide advice to <strong>the</strong> WAPC in relati<strong>on</strong> to development proposals in accordance with Clause 30A<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> MRS.<br />

5. Provide advice to local governments <strong>on</strong> development applicati<strong>on</strong>s, local planning scheme proposals<br />

or o<strong>the</strong>r local planning proposals that may affect <strong>the</strong> DCA such as structure plans <strong>and</strong> outline<br />

development plans.<br />

6. Provide advice to <strong>and</strong> obtain advice from public authorities c<strong>on</strong>cerning <strong>the</strong>ir resp<strong>on</strong>sibilities in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> SCRM Act 2006.<br />

7. Provide clearance <str<strong>on</strong>g>of</str<strong>on</strong>g> development <strong>and</strong> subdivisi<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> approval <strong>and</strong> provide advice <strong>on</strong><br />

<strong>the</strong> implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> approvals.<br />

8. Update <strong>the</strong> procedural matters associated with development assessment, review <strong>the</strong> Trust’s development<br />

c<strong>on</strong>trol policies, model c<strong>on</strong>diti<strong>on</strong>s <strong>and</strong> review <strong>the</strong> Trust DCA boundary as necessary.<br />

74


State <strong>and</strong> local government planning <strong>and</strong> regulatory instruments c<strong>on</strong>trol adjoining l<strong>and</strong> use <strong>and</strong><br />

development that can directly or indirectly impact <strong>the</strong> river system. The MRS <strong>and</strong> any o<strong>the</strong>r regi<strong>on</strong><br />

planning scheme applicable to <strong>the</strong> metropolitan regi<strong>on</strong> cannot be made in a manner that is inc<strong>on</strong>sistent<br />

with <strong>the</strong> provisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> SCRM Act. Also, if a strategic document in force under <strong>the</strong> SCRM<br />

Act 2006 Part 4 relates to l<strong>and</strong> or waters that are within or abut <strong>the</strong> district <str<strong>on</strong>g>of</str<strong>on</strong>g> a local government<br />

referred to in Schedule 7 <str<strong>on</strong>g>of</str<strong>on</strong>g> that Act, <strong>the</strong> local government in preparing or amending a local planning<br />

scheme is to have due regard to that management program.<br />

L<strong>and</strong> use planning legislati<strong>on</strong> provides measures by which planning for <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> can be addressed.<br />

The legislati<strong>on</strong> can be implemented through <strong>the</strong> head powers c<strong>on</strong>tained in <strong>the</strong> Planning<br />

<strong>and</strong> Development Act 2005 (P&D Act) or through applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> local planning schemes <strong>and</strong> o<strong>the</strong>r<br />

statutory instruments prepared under <strong>the</strong> P&D Act.<br />

The principal measures by which planning for <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> can be addressed include:<br />

• c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>and</strong> use <strong>and</strong> development (through z<strong>on</strong>ing, reservati<strong>on</strong> <strong>and</strong> special c<strong>on</strong>trol<br />

areas);<br />

• c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> subdivisi<strong>on</strong> (including reservati<strong>on</strong>, works <strong>and</strong> infrastructure);<br />

• funding <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure (in c<strong>on</strong>juncti<strong>on</strong> with subdivisi<strong>on</strong> <strong>and</strong>/or development); <strong>and</strong><br />

• acquisiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> property <strong>and</strong> redevelopment or reservati<strong>on</strong>.<br />

In additi<strong>on</strong> to <strong>the</strong> powers available under <strong>the</strong> l<strong>and</strong> use planning legislati<strong>on</strong>, local <strong>and</strong> State governments<br />

also have a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> powers available under various o<strong>the</strong>r legislative tools. In some<br />

cases, <strong>the</strong>se provide alternatives to planning powers while in o<strong>the</strong>rs <strong>the</strong>y are complementary.<br />

Building c<strong>on</strong>trols <strong>and</strong> powers to undertake public works are <str<strong>on</strong>g>of</str<strong>on</strong>g> particular relevance in resp<strong>on</strong>ding to<br />

<str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>. These will be addressed in this chapter, in additi<strong>on</strong> to measures comm<strong>on</strong>ly applied<br />

under <strong>the</strong> auspices <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>and</strong> use planning.<br />

4.2 Adaptati<strong>on</strong> resp<strong>on</strong>ses to <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong><br />

existing development<br />

Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> relevant to l<strong>and</strong> use planning, <strong>and</strong> those <str<strong>on</strong>g>potential</str<strong>on</strong>g>ly amenable to planning<br />

or associated resp<strong>on</strong>ses, include:<br />

• sea level rise;<br />

• foreshore erosi<strong>on</strong>;<br />

• storm surge inundati<strong>on</strong>;<br />

• stormwater run-<str<strong>on</strong>g>of</str<strong>on</strong>g>f reducti<strong>on</strong>;<br />

• salt water intrusi<strong>on</strong>;<br />

• reduced rainfall; <strong>and</strong><br />

• increased temperature.<br />

75


Table 24 Adaptati<strong>on</strong> measures<br />

Planning instrument<br />

L<strong>and</strong> use planning<br />

Adaptati<strong>on</strong> measure<br />

Adjust foreshore reserves to provide an extended buffer to accommodate<br />

encroachment due to higher water levels.<br />

Impose special c<strong>on</strong>trol areas over private l<strong>and</strong> affected by occasi<strong>on</strong>al<br />

inundati<strong>on</strong>. These might limit l<strong>and</strong> uses, types <str<strong>on</strong>g>of</str<strong>on</strong>g> development, including<br />

buildings, structures <strong>and</strong> materials.<br />

Public works<br />

Require ‘memorials’ <strong>on</strong> title or o<strong>the</strong>r similar caveats to ensure prospective<br />

purchasers <strong>and</strong>/or lessees <str<strong>on</strong>g>of</str<strong>on</strong>g> affected property will be aware <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g><br />

for inundati<strong>on</strong>.<br />

Relocate <strong>and</strong>/or re-c<strong>on</strong>struct foreshore development such as restaurants/<br />

cafes, yacht/rowing clubs <strong>and</strong> amenity buildings.<br />

Re-c<strong>on</strong>struct facilities such as boat launching ramps, parking areas, jetties<br />

<strong>and</strong> ports.<br />

Re-engineer drainage utilities, including <strong>the</strong> re-positi<strong>on</strong>ing <strong>and</strong>/or re-sizing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> drainage outlets so as to facilitate discharge <strong>and</strong>/or maintain wetl<strong>and</strong><br />

ecology.<br />

Re-engineer <strong>and</strong>/or realignment <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure such as roads, paths <strong>and</strong><br />

bridges which will be affected by frequent high water levels.<br />

Provide foreshore protecti<strong>on</strong> works such as walls, breakwaters <strong>and</strong> stabilisati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> near-shore river-beds.<br />

Re-development<br />

Provide foreshore stabilisati<strong>on</strong> <strong>and</strong>/or rehabilitati<strong>on</strong> such as s<strong>and</strong>/soil<br />

replenishment <strong>and</strong> associated plantings, to protect facilities <strong>and</strong> maintain<br />

envir<strong>on</strong>mental values.<br />

Re-develop <strong>and</strong>/or modifi cati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> existing buildings to provide protecti<strong>on</strong><br />

from frequent inundati<strong>on</strong>.<br />

Remove buildings that will be seriously affected by frequent inundati<strong>on</strong><br />

<strong>and</strong> where protective measures would compromise <strong>the</strong> river envir<strong>on</strong>ment.<br />

76


Ameliorati<strong>on</strong><br />

/ adaptati<strong>on</strong> Provide detenti<strong>on</strong> <strong>and</strong>/or retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stormwater run-<str<strong>on</strong>g>of</str<strong>on</strong>g>f to limit fl ow-rate<br />

into <strong>the</strong> existing drainage system <strong>and</strong> increase recharge <str<strong>on</strong>g>of</str<strong>on</strong>g> aquifers.<br />

Limit clearing <strong>and</strong>/or replanting <str<strong>on</strong>g>of</str<strong>on</strong>g> catchment areas to maintain water-table<br />

clearances, facilitate <strong>the</strong> re-charge <str<strong>on</strong>g>of</str<strong>on</strong>g> stormwater <strong>and</strong> reduce stormwater<br />

run-<str<strong>on</strong>g>of</str<strong>on</strong>g>f.<br />

Limit groundwater abstracti<strong>on</strong> in <strong>rivers</strong>ide areas so as to reduce salt-water<br />

intrusi<strong>on</strong> caused by reduced aquifer re-charge.<br />

Require rainwater tanks <strong>and</strong> grey water recycling facilities so as to reduce<br />

<strong>the</strong> pressure <strong>on</strong> public water supplies <strong>and</strong> groundwater aquifers.<br />

Increase <strong>the</strong> requirements for energy effi ciency, in particular <strong>the</strong> energy<br />

required for space cooling, due to increasing temperatures.<br />

Implementing <strong>the</strong> adaptati<strong>on</strong> opti<strong>on</strong>s presented in Table 24 would involve signifi cant expenditure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

funds by public authorities. Therefore, a fi nancial plan including l<strong>on</strong>g-term funding will be an essential<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> any resp<strong>on</strong>se strategy. As indicated previously (secti<strong>on</strong> 3.2.4 - Adapting to Ec<strong>on</strong>omic<br />

Impacts) it is likely <strong>the</strong>se costs will need to be shared between public authorities <strong>and</strong> private l<strong>and</strong>owners.<br />

Many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se measures will be achieved through normal life-cycle costs or replacement.<br />

Additi<strong>on</strong>ally, private investment in recycling <str<strong>on</strong>g>of</str<strong>on</strong>g> property <strong>and</strong> infrastructure will be determined through<br />

time <strong>and</strong> be c<strong>on</strong>trolled by applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> emerging planning policy or statutory planning processes.<br />

By adopting a staged resp<strong>on</strong>se, based <strong>on</strong> <strong>the</strong> timing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>and</strong> its effects, <strong>the</strong> fi nancial<br />

burden could be managed more sustainably. Clear defi niti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> public <strong>and</strong> private good comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong> investment will facilitate staged adaptati<strong>on</strong> by minimising equity arguments between<br />

instituti<strong>on</strong>s <strong>and</strong> l<strong>and</strong>holders. Staging <str<strong>on</strong>g>of</str<strong>on</strong>g> development <strong>and</strong> re-development would also provide time<br />

for adjustment to <str<strong>on</strong>g>change</str<strong>on</strong>g>s, including adjustment <str<strong>on</strong>g>of</str<strong>on</strong>g> expectati<strong>on</strong>s by those directly affected.<br />

4.3 Resp<strong>on</strong>se to planning <str<strong>on</strong>g>of</str<strong>on</strong>g> new areas<br />

Any planning instruments to c<strong>on</strong>trol l<strong>and</strong> use <strong>and</strong> development <strong>on</strong> l<strong>and</strong> likely to be affected by <str<strong>on</strong>g>climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>change</str<strong>on</strong>g>, including inundati<strong>on</strong> or storm surges, requires an accurate <strong>and</strong> detailed underst<strong>and</strong>ing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> those <str<strong>on</strong>g>impacts</str<strong>on</strong>g> as well as <strong>the</strong> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> appropriate, sound, technical or scientifi c advice<br />

<strong>on</strong> which to base <strong>the</strong> c<strong>on</strong>trol measures. To avoid, or at least minimise <strong>the</strong> need for expensive ameliorati<strong>on</strong><br />

as discussed above, planning <strong>and</strong> development decisi<strong>on</strong>s in relati<strong>on</strong> to new areas need to<br />

give greater recogniti<strong>on</strong> to <strong>the</strong> <str<strong>on</strong>g>potential</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>.<br />

While some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> resp<strong>on</strong>ses to <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> for new development will be similar to those for<br />

existing development, <strong>the</strong>re will be opportunities for a more precauti<strong>on</strong>ary approach than has sometimes<br />

been <strong>the</strong> case in past planning. In additi<strong>on</strong> to <strong>the</strong> proposed approaches for existing development,<br />

issues to be addressed in c<strong>on</strong>juncti<strong>on</strong> with <strong>the</strong> planning <strong>and</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> new areas<br />

include:<br />

• l<strong>and</strong> suitability assessment (exclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>and</strong> that is susceptible to frequent inundati<strong>on</strong>,<br />

including storm-surge, from permanent physical development);<br />

• regi<strong>on</strong>al development <strong>and</strong> growth-management strategies to identify <strong>and</strong> limit <strong>the</strong> use<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>and</strong> likely to be ‘at risk’, <strong>and</strong><br />

• negotiate cost sharing between public <strong>and</strong> private investment (through development<br />

c<strong>on</strong>tributi<strong>on</strong>s at <strong>the</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> subdivisi<strong>on</strong> or development <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> l<strong>and</strong>).<br />

77


5 Key findings<br />

This report has identifi ed <strong>the</strong> main <str<strong>on</strong>g>potential</str<strong>on</strong>g> threats <strong>and</strong> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> to <strong>the</strong> health <strong>and</strong><br />

amenity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan Canning river system based <strong>on</strong> available knowledge. It also provides strategies<br />

for <strong>the</strong> community to help reduce vulnerability <strong>and</strong> increase resilience to <strong>the</strong> <str<strong>on</strong>g>impacts</str<strong>on</strong>g>.<br />

5.1 Projected <str<strong>on</strong>g>change</str<strong>on</strong>g>s<br />

The most recent scientifi c informati<strong>on</strong> derived from current <str<strong>on</strong>g>climate</str<strong>on</strong>g> observati<strong>on</strong>s, predictive modelling<br />

<strong>and</strong> expert opini<strong>on</strong> suggests that in <strong>the</strong> future <strong>the</strong> Swan Canning river system will experience:<br />

1. c<strong>on</strong>tinued increases in atmospheric <strong>and</strong> water temperatures;<br />

2. an accelerati<strong>on</strong> in sea <strong>and</strong> river-system water level rise;<br />

3. decreases in winter rainfall <strong>and</strong> streamfl ow;<br />

4. decreases in groundwater levels <strong>and</strong> c<strong>on</strong>sequent fl ows to drains <strong>and</strong> streams; <strong>and</strong><br />

5. increases in warm spells <strong>and</strong> heat wave frequency.<br />

5.2 Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

This report explores <strong>the</strong> major implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> projected <str<strong>on</strong>g>change</str<strong>on</strong>g>s <strong>on</strong> important comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> catchment, ecology, social values, infrastructure <strong>and</strong> ec<strong>on</strong>omics in <strong>the</strong> next 20 – 70 years. Major<br />

<str<strong>on</strong>g>impacts</str<strong>on</strong>g> include.<br />

Av<strong>on</strong> Catchment<br />

Water, sediment, nutrients <strong>and</strong> salt loads from <strong>the</strong> Av<strong>on</strong> Catchment to <strong>the</strong> estuary are expected to<br />

reduce with widespread drying. The hotter <strong>and</strong> more arid <str<strong>on</strong>g>climate</str<strong>on</strong>g> will alter <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> native<br />

vegetati<strong>on</strong> <strong>and</strong> l<strong>and</strong> use practices in <strong>the</strong> regi<strong>on</strong>. Fuel loads will take l<strong>on</strong>ger to accumulate but fi re<br />

seas<strong>on</strong>s will be l<strong>on</strong>ger.<br />

Ecology<br />

The key <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan Canning river system will be driven by sea level rise<br />

<strong>and</strong> reduced streamfl ow, which will increase <strong>the</strong> period <str<strong>on</strong>g>of</str<strong>on</strong>g> salinity stratifi cati<strong>on</strong> <strong>and</strong> <strong>the</strong> penetrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> marine water upstream. Key biological processes will be affected, including biological oxygen<br />

dem<strong>and</strong>, nutrient cycling <strong>and</strong> sediment retenti<strong>on</strong>. Changes in <strong>the</strong> distributi<strong>on</strong> <strong>and</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

species are very likely <strong>and</strong> seas<strong>on</strong>al patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> productivity <strong>and</strong> food-web dynamics will almost<br />

certainly be altered. The lower estuary, which experiences marine c<strong>on</strong>diti<strong>on</strong>s for much <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> year<br />

will be least affected. The upper estuary will be most affected with increased <strong>and</strong> <strong>on</strong>going problems<br />

associated with eutrophicati<strong>on</strong>, such as algal blooms <strong>and</strong> fi sh kills.<br />

Social values<br />

The social values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system are likely to be threatened by a reducti<strong>on</strong> in passive recreati<strong>on</strong>al<br />

facilities through loss <str<strong>on</strong>g>of</str<strong>on</strong>g> beaches, wetl<strong>and</strong>s <strong>and</strong> associated vegetati<strong>on</strong> throughout <strong>the</strong> lower, middle<br />

<strong>and</strong> upper estuary. Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> aes<strong>the</strong>tic value may occur due to a greater frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> algal blooms<br />

<strong>and</strong> fi sh kills in <strong>the</strong> upper estuary, which lead to public percepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an unhealthy envir<strong>on</strong>ment. Increased<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> infrastructure to mitigate sea level rise, including seawalls, revetments <strong>and</strong><br />

barrages will alter <strong>the</strong> current ic<strong>on</strong>ic Western Australian l<strong>and</strong>scape to produce a more ‘European’ or<br />

‘artifi cial’ l<strong>and</strong>scape.<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> uncertainty involved it will be important to maintain good communicati<strong>on</strong>s with river<br />

users <strong>and</strong> residents so that every<strong>on</strong>e agrees <strong>and</strong> underst<strong>and</strong>s <strong>the</strong> means <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong> <strong>and</strong> ways to<br />

78


increase system resilience.<br />

Ec<strong>on</strong>omics<br />

The main ec<strong>on</strong>omic <str<strong>on</strong>g>impacts</str<strong>on</strong>g> relate to <strong>the</strong> increasing costs <str<strong>on</strong>g>of</str<strong>on</strong>g> water quality management. Reduced<br />

water quality has already necessitated c<strong>on</strong>siderable investment in a range <str<strong>on</strong>g>of</str<strong>on</strong>g> remedial projects in<br />

<strong>the</strong> system. Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> is likely to exacerbate eutrophicati<strong>on</strong> <strong>and</strong> fi sh deaths in <strong>the</strong> upper estuary,<br />

<strong>and</strong> increased river <strong>and</strong> l<strong>and</strong> values may require corresp<strong>on</strong>ding increased costs associated with<br />

m<strong>on</strong>itoring <strong>and</strong> interventi<strong>on</strong> programs such as oxygenati<strong>on</strong>.<br />

The increased fi sh deaths <strong>and</strong> algal blooms may reduce <strong>the</strong> recreati<strong>on</strong>al amenity <strong>and</strong> value for recreati<strong>on</strong>al<br />

users, which may in turn impact local businesses in <strong>the</strong> regi<strong>on</strong>.<br />

Ec<strong>on</strong>omic loss will also result from a need to protect, retr<str<strong>on</strong>g>of</str<strong>on</strong>g>i t, repair or replace infrastructure due to<br />

increased sea levels <strong>and</strong> storm surges. Mitigati<strong>on</strong> or modifi cati<strong>on</strong> measures may also be required to<br />

protect <strong>rivers</strong>ide suburbs into <strong>the</strong> future.<br />

5.3 Adaptati<strong>on</strong><br />

Climate <str<strong>on</strong>g>change</str<strong>on</strong>g> will have a pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound infl uence <strong>on</strong> <strong>the</strong> Swan Canning river system. ‘Adaptati<strong>on</strong>’ in<br />

this report means reducing or accommodating to <strong>the</strong> adverse <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>. As critical<br />

thresholds are likely to be exceeded, knowledge <strong>and</strong> ways to increase system resilience will also be<br />

essential. The ability to adapt to <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> will be aided by <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> appropriate <strong>and</strong> robust<br />

informati<strong>on</strong> <strong>on</strong> key indicators, which may <strong>the</strong>n be used to develop strategies for protecti<strong>on</strong>, accommodati<strong>on</strong>,<br />

avoidance or retreat.<br />

The collecti<strong>on</strong> <strong>and</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> high quality l<strong>on</strong>g-term data <strong>on</strong> key <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> variables has been<br />

clearly identifi ed in this report as a priority goal for management <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan Canning river system.<br />

Fur<strong>the</strong>rmore, any new data should be incorporated into predictive models so that <strong>the</strong> uncertainty <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> risks can be assessed <strong>and</strong> improved into <strong>the</strong> future. Acti<strong>on</strong> towards improving <strong>the</strong><br />

underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system’s resp<strong>on</strong>se to <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> will act as a basis for timely implementati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cost effective management measures in <strong>the</strong> future.<br />

To successfully adapt to <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>, funding needs to be allocated for practical adaptati<strong>on</strong> <strong>and</strong><br />

mitigati<strong>on</strong> strategies in <strong>the</strong> following key areas.<br />

• Improving <strong>the</strong> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> river structures such as banks, seawalls <strong>and</strong> riparian vegetati<strong>on</strong>.<br />

• Repair or alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> existing infrastructure. Signifi cant investment in <strong>the</strong> modifi cati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> recreati<strong>on</strong>al based infrastructure will be necessary, bey<strong>on</strong>d that required from<br />

expected increased dem<strong>and</strong> without <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>.<br />

• Preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fur<strong>the</strong>r degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water quality.<br />

In additi<strong>on</strong>, exp<strong>and</strong>ed m<strong>on</strong>itoring <strong>and</strong> modelling programs are recommended to develop a more<br />

thorough underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> system resp<strong>on</strong>se <strong>and</strong> resilience for <strong>the</strong> ecological comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

catchment <strong>and</strong> estuary. In particular, emphasis should be focused <strong>on</strong> underst<strong>and</strong>ing <strong>the</strong> risks associated<br />

with <str<strong>on</strong>g>change</str<strong>on</strong>g>s in nutrient, sediment <strong>and</strong> salt loads, stratifi cati<strong>on</strong> <strong>and</strong> light penetrati<strong>on</strong>, <strong>and</strong> <strong>the</strong><br />

ramifi cati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se <strong>on</strong> <strong>the</strong> biological c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system.<br />

Key biological processes <str<strong>on</strong>g>of</str<strong>on</strong>g> biological oxygen dem<strong>and</strong>, nutrient cycling <strong>and</strong> sediment retenti<strong>on</strong><br />

should be m<strong>on</strong>itored <strong>and</strong> c<strong>on</strong>tinually assessed so that interventi<strong>on</strong> measures can be implemented<br />

where necessary to address <str<strong>on</strong>g>change</str<strong>on</strong>g>s in ecosystem functi<strong>on</strong>.<br />

Informati<strong>on</strong> <strong>and</strong> c<strong>on</strong>sultati<strong>on</strong> exercises that can dem<strong>on</strong>strate <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> ic<strong>on</strong>ic<br />

species will help enlist public support. The biology <strong>and</strong> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> ic<strong>on</strong>ic Swan Canning species<br />

should be fur<strong>the</strong>r investigated (<strong>and</strong> models developed) to underst<strong>and</strong> <strong>and</strong> predict <strong>the</strong>ir resp<strong>on</strong>se to<br />

envir<strong>on</strong>mental <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>and</strong> management acti<strong>on</strong>.<br />

79


There is a need to identify <strong>and</strong> develop mitigati<strong>on</strong> strategies for any threats to infrastructure with<br />

cultural, historical or ec<strong>on</strong>omic signifi cance. Investigati<strong>on</strong>s are also needed to fur<strong>the</strong>r underst<strong>and</strong> <strong>the</strong><br />

social <strong>and</strong> ec<strong>on</strong>omic <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>.<br />

80


Acknowledgements<br />

Technical Advisory Panel<br />

Roy Green - Chair (Director, Green C<strong>on</strong>sulting Pty Ltd)<br />

Charitha Pattiaratchi (Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Systems Engineering, UWA)<br />

Bruce Hamilt<strong>on</strong> (Director, Hamilt<strong>on</strong> Integrated Management)<br />

Karen Hillman (Director, Oceanica C<strong>on</strong>sulting Pty Ltd)<br />

Peter Davies (Director, Centre for Excellence in Natural Resource Management, UWA)<br />

T<strong>on</strong>y Chiffi ngs (Principal Research Fellow, Centre for Marine Studies, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Queensl<strong>and</strong>)<br />

Greg Ivey (Head, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Systems Engineering, UWA)<br />

Des Lord (Director, D A Lord <strong>and</strong> Associates)<br />

Ge<str<strong>on</strong>g>of</str<strong>on</strong>g>f Syme (Research Director, CSIRO L<strong>and</strong> <strong>and</strong> Water)<br />

S<strong>and</strong>y Toussaint (Associate Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, Anthropology <strong>and</strong> Sociology, UWA)<br />

Grant Douglas (Principal Research Scientist, CSIRO L<strong>and</strong> <strong>and</strong> Water)<br />

D<strong>on</strong> McFarlane (Water for a Healthy Country Flagship Coordinator, CSIRO)<br />

T<strong>on</strong>y van Merwk (Partner, Freehills)<br />

Rod Lenant<strong>on</strong> (Supervising Scientist – Finfi sh, Research Divisi<strong>on</strong>, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisheries Western<br />

Australia)<br />

Sim<strong>on</strong> Holthouse (Retired Architect <strong>and</strong> Town Planner)<br />

C<strong>on</strong>sultants<br />

Brian Sadler (Water Policy Services)<br />

Sorada Tap<strong>swan</strong> (CSIRO)<br />

Mike Bamford (Bamford C<strong>on</strong>sulting)<br />

Mick Rogers (M P Rogers & Associates PL)<br />

Chris O’Neill (Chris O’Neill & Associates)<br />

Robert Kay, Carmen Elrick, Ailbhe Travers (Coastal Z<strong>on</strong>e Management Pty Ltd)<br />

Disclaimer<br />

The informati<strong>on</strong> summarised here is based <strong>on</strong> results from computer models that involve simplifi cati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> real physical processes that are not fully understood. Accordingly, no resp<strong>on</strong>sibility will be<br />

accepted by <strong>the</strong> Technical Advisory Panel or <strong>the</strong> Swan River Trust for <strong>the</strong> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> assessments<br />

inferred from this work or for any pers<strong>on</strong>’s interpretati<strong>on</strong>s, deducti<strong>on</strong>s, c<strong>on</strong>clusi<strong>on</strong>s or acti<strong>on</strong>s<br />

in reliance <strong>on</strong> this informati<strong>on</strong><br />

81


References<br />

Ali, R., Viney, N., Hodgs<strong>on</strong>, G., Aryal, S., Dawes, W. <strong>and</strong> John, M. (2007) A summary report <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Wheatbelt Drainage Evaluati<strong>on</strong> – Av<strong>on</strong> River Basin. Water for a Healthy Country Nati<strong>on</strong>al Research<br />

Flagship, Canberra.<br />

Bamford, M.J., Bamford, A.R. & Bancr<str<strong>on</strong>g>of</str<strong>on</strong>g>t, W (2003) Swan Estuary Marine Park; Human Usage,<br />

Waterbirds <strong>and</strong> Disturbance Study 2002-2003, Report prepared for <strong>the</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>servati<strong>on</strong><br />

<strong>and</strong> L<strong>and</strong> Management, Perth, Western Australia.<br />

Berti, M.A., Bari, M.L., Charles, S.P. & Hauck, E.J. (2004) Climate Change, Catchment Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>and</strong><br />

Risks to Water Supply in <strong>the</strong> south west <str<strong>on</strong>g>of</str<strong>on</strong>g> Western Australia, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment.<br />

Bunn, S.E & Davies P.M. (1990) ‘Community structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> macroinvertebrate fauna <strong>and</strong> water<br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> a saline river system in south western Australia’, Hydrobiologia, 248 (2) 143-160.<br />

Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Meteorology (2007) Global Climate Change <strong>and</strong> Variability <strong>and</strong> Australian Climate<br />

Change <strong>and</strong> Variability, Available from: http://www.bom.gov.au/silo/products/cli_chg/<br />

Charles, S. P., Bates, B. C., Smith, I. N. & Hughes, J. P. (2004) ‘Statistical downscaling <str<strong>on</strong>g>of</str<strong>on</strong>g> daily precipitati<strong>on</strong><br />

from observed <strong>and</strong> modelled atmospheric fi elds’, Hydrological Processes, 18, 1373-1394.<br />

Church, J. (2007) Underst<strong>and</strong>ing sea level rise: implicati<strong>on</strong>s for <strong>the</strong> future. Presentati<strong>on</strong> at Greenhouse<br />

2007 Sydney: CSIRO. Available <strong>on</strong>line from: http://www.greenhouse2007.com<br />

C<strong>on</strong>structi<strong>on</strong> Industry Research <strong>and</strong> Informati<strong>on</strong> Associati<strong>on</strong> (CIRIA no date) Manual <strong>on</strong> <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rock in coastal <strong>and</strong> shoreline engineering, C<strong>on</strong>structi<strong>on</strong> Industry Research <strong>and</strong> Informati<strong>on</strong> Associati<strong>on</strong><br />

– Special Publicati<strong>on</strong> 83.<br />

Cox (2006) Pg 53 (48)<br />

CSIRO (2007) Climate Change in Australia – Technical Report 2007, Available <strong>on</strong>line from: www.<br />

<str<strong>on</strong>g>climate</str<strong>on</strong>g><str<strong>on</strong>g>change</str<strong>on</strong>g>inaustralia.gov.au, pp 17-29.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Health (2007) Health Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>: Adaptati<strong>on</strong> strategies for Western<br />

Australia, Available <strong>on</strong>line from: http://www.health.wa.gov.au/envirohealth/home/ [accessed 26 September<br />

2007].<br />

Durack, P. (2002) The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> predicted <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> Western Australian regi<strong>on</strong>al oceanography.<br />

H<strong>on</strong>ours Thesis, Murdoch University.<br />

Gibs<strong>on</strong>, D. (2007) Multi-Milli<strong>on</strong>aires Fuel Price Boom at Top End, The West Australian; Issue May<br />

14.<br />

Hajkowicz, S., Higgins, A., Marin<strong>on</strong>i, O., Collins, K. & Peras<strong>on</strong>, L. (2006) Portfolio analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

quality projects using cost utility analysis. CSIRO Sustainable Ecosystems Report.<br />

Henders<strong>on</strong>, B. & Kuhnert, P. (2006) Water quality trend analyses for <strong>the</strong> Swan-Canning Rivers:<br />

1995-2004: A report for <strong>the</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment, Western Australia. CSIRO Ma<strong>the</strong>matical &<br />

Informati<strong>on</strong> Sciences Technical Report Number 05/197<br />

Hillman K., McComb A.J. <strong>and</strong> Walker D.I. (1995) The distributi<strong>on</strong>, biomass <strong>and</strong> primary producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> seagrass Halophila ovalis in <strong>the</strong> Swan/Canning Estuary, Western Australia. Aquatic Botany,<br />

51, 1-54.<br />

Hoeksema, S.D. & Potter, I. C. (2006) ‘Diel, seas<strong>on</strong>al, regi<strong>on</strong>al <strong>and</strong> annual variati<strong>on</strong>s in <strong>the</strong> characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ichthy<str<strong>on</strong>g>of</str<strong>on</strong>g>auna <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> upper reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> a large Australian microtidal estuary’, Estuarine<br />

<strong>and</strong> Coastal Shelf Science, 67, 503 - 520.<br />

Howe, C., J<strong>on</strong>es, R.N., Maheepala, S. & Rhodes, B. (2005) Melbourne Water Climate Change<br />

Study: Implicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Potential <str<strong>on</strong>g>climate</str<strong>on</strong>g> Change for Melbourne’s Water Resources. CSIRO Urban<br />

Water <strong>and</strong> <str<strong>on</strong>g>climate</str<strong>on</strong>g> Impact Groups. Melbourne.<br />

82


Intergovernmental Panel <strong>on</strong> Climate Change (IPCC) (1990) Climate Change: The IPCC Impacts Assessment,<br />

Report prepared for <strong>the</strong> IPCC Working Group II, Tegart, W.J., Sheld<strong>on</strong>, G.W., & Griffths,<br />

D.C (eds.), Comm<strong>on</strong>wealth <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia.<br />

Intergovernmental Panel <strong>on</strong> Climate Change (IPCC) (2000) Emissi<strong>on</strong> Scenarios – Special Report <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> IPCC, Cambridge University Press UK, Available <strong>on</strong>line from: http://www.ipcc.ch/pub/reports.htm<br />

Intergovernmental Panel <strong>on</strong> Climate Change (IPCC) (2001) Climate Change 2001. Impacts, adaptati<strong>on</strong><br />

<strong>and</strong> vulnerability. Chapters 10, 11, 17 <strong>and</strong> 18. C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working Group II to <strong>the</strong> 3rd<br />

Assessment Report <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> IPCC.<br />

Intergovernmental Panel <strong>on</strong> Climate Change (IPCC) (2007a) Climate Change 2007 - The Physical<br />

Science Basis, C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working Group I to <strong>the</strong> Fourth Assessment Report <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> IPCC, Published<br />

for <strong>the</strong> Intergovernmental Panel <strong>on</strong> Climate Change, Cambridge University Press.<br />

Intergovernmental Panel <strong>on</strong> Climate Change (IPCC) (SPM) (2007b), Fourth Assessment Report,<br />

Summary for Policy Makers, Paris, Feb 2, 2007, Available <strong>on</strong>line from: http://www.ipcc.ch/SPM2-<br />

feb07.pdf<br />

IOCI (2005a) Climate Note 5/05, August 2005, Available <strong>on</strong>line from: http://www.ioci.org.au/<br />

IOCI (2005b) Climate Change Note 7/05, August 2005, Available <strong>on</strong>line from:<br />

http://www.ioci.org.au/<br />

IOCI (2005c) How our temperatures have <str<strong>on</strong>g>change</str<strong>on</strong>g>d, IOCI Note 2, John Cramb, Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Meteorology,<br />

Perth, Available <strong>on</strong>line from: http://www.ioci.org.au/<br />

IOCI (2005d) Stage 2: Phase 1 Report, July 2005; pg14. Available <strong>on</strong>line from: http://www.ioci.org.<br />

au/<br />

IOCI (2005e) Climate Note 6/05, August 2005, Available <strong>on</strong>line from: http://www.ioci.org.au/<br />

John, M, Pannell, D, & Kingwell, R (2005). ‘Climate Change <strong>and</strong> <strong>the</strong> Ec<strong>on</strong>omics <str<strong>on</strong>g>of</str<strong>on</strong>g> Farm Management<br />

in <strong>the</strong> Face <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>and</strong> Degradati<strong>on</strong>: Dryl<strong>and</strong> Salinity in Western Australia’, Canadian J Agricultural<br />

Ec<strong>on</strong>omics, 53, 443 - 459.<br />

Kan<strong>and</strong>jembo, A. N., Potter, I. C., & Platell, M. E. (2001) ‘Abrupt shifts in <strong>the</strong> fi sh community <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

hydrologically variable upper estuary <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan River’, Hydrological Processes, 15 (13), 2503 –<br />

2517.<br />

Li, Y., Cai, W. & Campbell, E.P. (2005) ‘Statistical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme rainfall in southwest Western<br />

Australia’, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Climate, 18, 852 - 863.<br />

Linderfelt & Turner (2001) Interacti<strong>on</strong> between shallow groundwater, saline surface water <strong>and</strong> nutrient<br />

discharge in a seas<strong>on</strong>al estuary: <strong>the</strong> Swan–Canning system. Hydrological Processes 15, 2631-<br />

2653.<br />

L<strong>on</strong>eragan, N. R., Potter, I. C. & Lenant<strong>on</strong>, R.C. J. (1989) ‘Infl uence <str<strong>on</strong>g>of</str<strong>on</strong>g> site, seas<strong>on</strong> <strong>and</strong> year <strong>on</strong><br />

c<strong>on</strong>tributi<strong>on</strong>s made by marine, estuarine, diadromous <strong>and</strong> freshwater species to <strong>the</strong> fi sh fauna <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

temperate Australian estuary’, Marine Biology 103, 461 - 479.<br />

O’C<strong>on</strong>nor, M.H., McFarlane, M., MacRae, D. & Lefroy, E.C. (2004). Av<strong>on</strong> River Basin 2050: four regi<strong>on</strong>al<br />

scenarios for <strong>the</strong> next half-century. A report prepared for <strong>the</strong> partners <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ARB2050 project.<br />

CSIRO Sustainable Ecosystems, Canberra. Available <strong>on</strong>line from: www.arb2050.com<br />

Pears<strong>on</strong>, T.H. & Rosenberg, R. (1978) ‘Macrobenthic successi<strong>on</strong> in relati<strong>on</strong> to organic enrichment<br />

<strong>and</strong> polluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> marine envir<strong>on</strong>ment’, Oceanogr Mar Biol Annu Rev, 16, 229–311.<br />

Pittock, B. (2003) Climate Change: An Australian Guide to <strong>the</strong> Science <strong>and</strong> Potential Impacts. Australian<br />

Greenhouse Offi ce. Canberra.<br />

Sedd<strong>on</strong>, G. (1972) A Sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Place, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Western Australia Press, Perth.<br />

83


Stephens R. & Imberger (1996) ‘Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Swan River Estuary: Seas<strong>on</strong>al dynamics’, Marine<br />

<strong>and</strong> Freshwater Research, 47, 517-529.<br />

84


Appendix 1:<br />

Draft Scenarios for Swan River Trust<br />

Climate Working Group<br />

Global Scenarios<br />

Themes underlying <strong>the</strong> proposed scenarios<br />

Two key scenarios for south west Western Australia are used in this draft. These scenarios are derived<br />

from two key scenarios (A2 <strong>and</strong> B1) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> recent IPCC Fourth Assessment Summary <strong>and</strong> are<br />

described in more detail <strong>the</strong> appendix <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> IPCC (2007a) report.<br />

The A2 scenario represents a future in which global resp<strong>on</strong>se to mitigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>climate</str<strong>on</strong>g> is <strong>on</strong>ly marginally<br />

successful. It might be typifi ed as a politically weak scenario, but not a worst case <str<strong>on</strong>g>of</str<strong>on</strong>g> business<br />

as usual.<br />

The B1 scenario represents a future in which <strong>the</strong> world community achieves outcomes c<strong>on</strong>sistent<br />

with early <strong>and</strong> aggressive commitment to stabilisati<strong>on</strong> <strong>and</strong> reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> greenhouse gas emissi<strong>on</strong>s.<br />

It might be typifi ed as a politically str<strong>on</strong>g resp<strong>on</strong>se since, in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> human behaviour<br />

<strong>and</strong> global cooperati<strong>on</strong> it represents a challenge that is near <strong>the</strong> limits <str<strong>on</strong>g>of</str<strong>on</strong>g> political credibility. The<br />

scenario might be labelled aspirati<strong>on</strong>al but it is a scenario that falls short <str<strong>on</strong>g>of</str<strong>on</strong>g> achieving <strong>the</strong> safe CO 2<br />

quivalent goal <str<strong>on</strong>g>of</str<strong>on</strong>g> 450 ppm.<br />

e<br />

A third scenario A1B was c<strong>on</strong>sidered. It is intermediate between <strong>the</strong> A2 <strong>and</strong> B1 scenarios <strong>and</strong> <strong>on</strong>e<br />

that implies belated success in emissi<strong>on</strong>s c<strong>on</strong>trol <strong>and</strong> a better end <str<strong>on</strong>g>of</str<strong>on</strong>g> century outcome than A2. It<br />

might be typifi ed as a compromise scenario. However, in mid-century time frames <strong>the</strong>re is insuffi<br />

cient differentiati<strong>on</strong> to warrant a third scenario for most purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> this report.<br />

The equivalent CO 2<br />

equivalent c<strong>on</strong>centrati<strong>on</strong>s at 2100 associated with <strong>the</strong>se scenarios is shown in<br />

Table A1.<br />

Table A1 Year 2100 carb<strong>on</strong> dioxide equivalents <str<strong>on</strong>g>of</str<strong>on</strong>g> key scenarios<br />

SRES scenario Approx. CO 2<br />

equivalent at 2100<br />

A2 1250<br />

A1B 850<br />

B1 600 (~550)<br />

*Approximate CO2 equivalent c<strong>on</strong>centrati<strong>on</strong>s ppm corresp<strong>on</strong>ding to <strong>the</strong> computed radiative forcing due to anthropogenic<br />

greenhouse gases <strong>and</strong> aerosols in 2100<br />

B1 is a stabilisati<strong>on</strong> scenario with CO2Equiv levelling out at 550 to 600 ppm. A2 is not a stabilisati<strong>on</strong> scenario <strong>and</strong><br />

reaches 1250 ppm at 2100. A1B achieves belated stabilisati<strong>on</strong> at around 850 ppm.<br />

South west Western Australian scenarios<br />

Themes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> proposed scenarios<br />

Two main scenarios are proposed for <strong>the</strong> Swan Canning Catchment <str<strong>on</strong>g>of</str<strong>on</strong>g> south west Western Australia.<br />

They are labelled A2# <strong>and</strong> B1#.<br />

85


The scenarios are interpretati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> A2 <strong>and</strong> B1 type global scenarios based <strong>on</strong> local interpretive<br />

material from sources such as IOCI <strong>and</strong> CSIRO/BMRC studies, including studies commissi<strong>on</strong>ed by<br />

State bodies such as <strong>the</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Water.<br />

The scenarios have also been supplemented by data recently available from <strong>the</strong> Technical Report –<br />

Climate in Australia (CSIRO 2007), which was released in October 2007 in c<strong>on</strong>juncti<strong>on</strong> with Greenhouse<br />

2007.<br />

The scenarios are driven by <strong>and</strong> broadly c<strong>on</strong>sistent with global warming projected in Table A2 following.<br />

Table A2 Projected mean surface global warming for <strong>the</strong> selected scenarios<br />

Data source: IPCC fourth assessment summary for policy makers (Fig. SPM-5), February 2007<br />

SRES Scenario<br />

Warming °C relative to 1990<br />

2030 2070 2100<br />

B1 0.8 1.6 1.9<br />

A1B 1 2.2 2.8<br />

A2 0.8 2.3 3.6<br />

SD range* 0.6 to 1.2 1.3 to 2.6 1.4 to 4.1<br />

Mid range 0.9 2 2.8<br />

* Envelope <str<strong>on</strong>g>of</str<strong>on</strong>g> st<strong>and</strong>ard deviati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> three scenarios roughly 90% probability <str<strong>on</strong>g>of</str<strong>on</strong>g> outcome in this range<br />

To rec<strong>on</strong>cile with observed local <str<strong>on</strong>g>change</str<strong>on</strong>g>, which may be affected by o<strong>the</strong>r anthropogenic factors (e.g.<br />

l<strong>and</strong> clearing) as well as multi-decadal variability, some adjustments have been assumed, most particularly<br />

in respect to rainfall <strong>and</strong> streamfl ow where priority has been given to available local studies<br />

that have down-scaled from global forcing.<br />

Large gaps remain in local interpretive material that has currency with <strong>the</strong> science underpinning <strong>the</strong><br />

Fourth IPCC Assessment. However, <strong>the</strong> recent Climate in Australia report has enabled some late<br />

improvements. Where necessary gaps have been fi lled by judgements: interpolating; extrapolating;<br />

or factoring in available data. However, with <strong>the</strong> availability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> October 2007 material, such infi ll<br />

has been minimal.<br />

The scenarios are drafts <strong>and</strong> must be viewed as such. They are not predicti<strong>on</strong>s, but refl ect plausible<br />

alternative circumstances that might be encountered in future river management. The selected<br />

‘marker’ scenarios seek to encompass higher <strong>and</strong> lower levels <str<strong>on</strong>g>of</str<strong>on</strong>g> success in mitigati<strong>on</strong> whilst remaining<br />

in a realm judged as realistic (not extreme) <strong>and</strong> <strong>the</strong> range embraces:<br />

• fragmented <strong>and</strong> <strong>on</strong>ly weakly effectual global resp<strong>on</strong>ses (A2); <strong>and</strong><br />

• str<strong>on</strong>gly effectual global resp<strong>on</strong>ses aiming at ‘safe’ levels <str<strong>on</strong>g>of</str<strong>on</strong>g> stabilisati<strong>on</strong> (B1).<br />

For adaptive policy <strong>the</strong>re is a need for scenario selecti<strong>on</strong> to be mildly pragmatic about human political<br />

achievement. At <strong>the</strong> side <str<strong>on</strong>g>of</str<strong>on</strong>g> mitigative failure, <strong>the</strong> A2 <strong>and</strong> A1B scenarios do better than a business<br />

as usual scenario but refl ect ‘s<str<strong>on</strong>g>of</str<strong>on</strong>g>t’ political resp<strong>on</strong>ses. At <strong>the</strong> success side, <strong>the</strong> B1 scenario<br />

achieves a 550 ppm CO 2<br />

equivalent stabilisati<strong>on</strong>, which would dem<strong>and</strong> a str<strong>on</strong>g political resp<strong>on</strong>se<br />

but, even so, would fall short <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> preferred aspirati<strong>on</strong>al goal <str<strong>on</strong>g>of</str<strong>on</strong>g> 450 ppm CO 2<br />

equivalent.<br />

As with <strong>the</strong> IPCC Fourth Assessment <strong>the</strong> scenarios generally exclude <strong>the</strong> c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> possibly<br />

86


dangerous instabilities in global <str<strong>on</strong>g>climate</str<strong>on</strong>g> <strong>and</strong> in this sense are inclined towards c<strong>on</strong>servative optimism<br />

with regard to extremes. This is a limitati<strong>on</strong> in risk management for l<strong>on</strong>g-term time scales <strong>and</strong><br />

where matters such as l<strong>on</strong>g-term sea level are relevant to decisi<strong>on</strong>-making, some risk averse emphasis<br />

may be required. However, <strong>the</strong> scenarios do imply c<strong>on</strong>diti<strong>on</strong>s that will force inevitable <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

in regi<strong>on</strong>al envir<strong>on</strong>ment. The scenarios can be refi ned <strong>and</strong> exp<strong>and</strong>ed by fur<strong>the</strong>r work <strong>and</strong> dialogue.<br />

This is desirable.<br />

87


Table A3(a) Projected annual mean warming* - south west (surface level) relative to 1990<br />

Multi model means <strong>and</strong> 90 percentile ranges<br />

NOTE: The italicised figures are <strong>the</strong> 90 percentile range <str<strong>on</strong>g>of</str<strong>on</strong>g> a multimodel<br />

ensemble<br />

Scenario<br />

Warming ° C relative to 1990<br />

2030 2070 2100<br />

B1#* 0.8 *<br />

1.4 ##<br />

(1-2) ## 1.6 *<br />

A1B#*<br />

0.8 ##<br />

2* 2.4 *<br />

(0.6-1.2) ##<br />

A2#* 0.8 * 2 * 3.0 *<br />

2.7 ##<br />

A1F1 0.8 *<br />

3.4 *<br />

(1.9-3.8) ##<br />

*Approximati<strong>on</strong>s <strong>on</strong> assumpti<strong>on</strong> that S/W <str<strong>on</strong>g>change</str<strong>on</strong>g>s are 0.85 <str<strong>on</strong>g>of</str<strong>on</strong>g> projected global mean given in <strong>the</strong> SPM<br />

## Perth fi gures from CSIRO, 2007, p 135<br />

Table A3 (b) Projected mean surface warming <strong>and</strong> evaporati<strong>on</strong> - south west<br />

Element<br />

Scenario<br />

Change<br />

relative to<br />

1990 2030 2070 2100<br />

Mean l<strong>and</strong> temperature<br />

increase °C - south-west<br />

Hot days >35°C<br />

Perth Airport<br />

based <strong>on</strong><br />

CSIRO, 2007, p 135<br />

Mean sea temp<br />

increase - south-westbased<br />

<strong>on</strong><br />

CSIRO, 2007, p 100<br />

Potential evaporati<strong>on</strong><br />

increase based <strong>on</strong><br />

CSIRO, 2007, pp 80-81<br />

B1#<br />

0.6 1.4 °C 2.0 °C 2.2 °C<br />

1890<br />

A2# °C 1.4 °C 2.6 °C 3.6 °C<br />

B1#<br />

>35 ~41 ?<br />

A2#<br />

NA 27<br />

~35 ~54 ?<br />

B1#<br />

1.0-1.2°C 1.8-2.0 °C -<br />

~0.6<br />

1890<br />

A2# °C 1.0-1.2 °C 2.1-2.6 °C -<br />

B1#<br />

- +2% -<br />

A2#<br />

1990 NA<br />

- +7% -<br />

88


Table A4 Projected mean winter rainfall decrease - south west<br />

Element<br />

Total winter rain<br />

decrease from 1925-75<br />

Observed<br />

Scenario<br />

1990 as %<br />

decrease from<br />

1925-75<br />

B1# 10%*<br />

A2# *Possibly not all<br />

GHG driven<br />

Rainfall decrease as % <str<strong>on</strong>g>change</str<strong>on</strong>g> from<br />

1925-75<br />

2030 2070 2100<br />

7~14% 16~25% 17~27%<br />

12~20% 22~34% 26~40%<br />

Assumpti<strong>on</strong>s<br />

Scenario range 7~20% 16~34% 17~40%<br />

Greenhouse Gas driven (GHG) rainfall decrease coefficients (50 percentile range <str<strong>on</strong>g>of</str<strong>on</strong>g> ensemble runs)<br />

bey<strong>on</strong>d 1990, are derived from multi-model studies by Charles. Their 1990 baseline needed adjustment<br />

to accommodate GHG <strong>and</strong> o<strong>the</strong>r attributed causes in <strong>the</strong> observed post 70s decrease. This<br />

adjustment (Appendix 2) involved <strong>the</strong> following assumpti<strong>on</strong>s -<br />

1. At 1990 <strong>the</strong> gross observed shift in winter rainfall reduced it to 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> 1925-75 mean (IOCI Climate<br />

Note No. 5/2004)<br />

2. GHG was assumed to have reduced it to 95%, o<strong>the</strong>r anthropogenic (OA) effects to 98% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

95% <strong>and</strong> multi decadal variability (MDV) combined with OA to 94.5% <str<strong>on</strong>g>of</str<strong>on</strong>g> 95% (equivalent to<br />

MDV causing 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> observed reducti<strong>on</strong>)<br />

3. As <strong>the</strong> GHG affected rainfall fur<strong>the</strong>r decreases <strong>the</strong> OA <strong>and</strong> MDV c<strong>on</strong>tributi<strong>on</strong>s were assumed to<br />

remain as a fi xed proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> base rainfall. In some scenarios <strong>the</strong> MDV effect might disappear<br />

with time <strong>and</strong> this possibility was allowed to widen <strong>the</strong> projected uncertainty range.<br />

Table A5 Projected streamflow decrease - south west<br />

Element Scenario 1990 as %<br />

decrease from<br />

1925-75<br />

Flow decrease as % <str<strong>on</strong>g>change</str<strong>on</strong>g> from 1925-75<br />

Streamflow<br />

decrease from<br />

1925-75<br />

B1# – A2#<br />

scenario<br />

range<br />

2030 2070 2100<br />

30% 22~55% 45~75% 50~80%<br />

Assumpti<strong>on</strong>s<br />

See rainfall assumpti<strong>on</strong>s above<br />

Streamfl ow at 1990 was 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> 1925-75. Fur<strong>the</strong>r decrease estimated as follows-<br />

10% rain decrease ~ reduces to 67% <str<strong>on</strong>g>of</str<strong>on</strong>g> original (1925-75) fl ow,<br />

20% rain decrease ~ reduces to 67% <str<strong>on</strong>g>of</str<strong>on</strong>g> 67% = 45% <str<strong>on</strong>g>of</str<strong>on</strong>g> original (1925-75) fl ow,<br />

30% rain decrease ~ reduces to 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> original (1925-75) fl ow,<br />

40% rain decrease ~ reduces to 20% <str<strong>on</strong>g>of</str<strong>on</strong>g> original (1925-75) fl ow<br />

89


Table A6 Projected sea level rise - south west<br />

Element Scenario Change<br />

relative to<br />

Sea level rise<br />

excluding future<br />

rapid dynamic<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g> in ice flow<br />

Sea level rise -<br />

including future<br />

rapid dynamic<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g> in ice flow<br />

B1#<br />

A2#<br />

B1#<br />

A2#<br />

1897 ~0.16m<br />

2000 2030 2070 2100<br />

0.22m-<br />

0.33m<br />

0.28m-0.43m<br />

0.3m-0.5m<br />

0.35m-0.55m<br />

0.4m-0.7m<br />

0.5m-0.7m<br />

0.6m-0.9m<br />

Table A7 Projected <str<strong>on</strong>g>change</str<strong>on</strong>g>s in extreme rainfall - south west<br />

Element<br />

Scenario<br />

Change<br />

relative to<br />

1990 2030 2070 2100<br />

Winter daily<br />

rainfall intensity<br />

99th percentile<br />

Winter rain day<br />

frequency **<br />

B1#, A2# 1925-75 lower (see CSIRO, 2007 p74)<br />

A2#<br />

1990<br />

100% 94-97% 80-90% 70-85%<br />

B1# 100% 97-100% 95-97% 80-90%<br />

Summer daily<br />

rainfall intensity<br />

99th percentile<br />

Summer rain day<br />

frequency<br />

B1#, A2# 1925-75 similar**<br />

B1#, A2# 1925-75 similar<br />

no robust data - no significant<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g> more likely than not<br />

(see CSIRO, 2007 p74)<br />

no robust data - no significant<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g> more likely than not<br />

** See IOCI Stage 2 Draft Full Report (CMIS Paper)<br />

Table A8 Projected <str<strong>on</strong>g>change</str<strong>on</strong>g>s in extreme flood flows - south west<br />

Element Scenario Change relative<br />

1990 2030 2070 2100<br />

to<br />

Winter 10 to 25 yr<br />

annual extremes<br />

B1#, A2# 1925-75 lower<br />

Winter flood<br />

event frequency<br />

Summer 10 to 25 yr<br />

annual extremes<br />

Summer flood<br />

event frequency<br />

B1#, A2# 1990 lower<br />

B1#, A2# 1925-75 similar<br />

B1#, A2# 1925-75 similar<br />

no robust data - no significant<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g> more likely than not<br />

no robust data - no significant<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g> more likely than not<br />

90


Table A9 Qualitative summary <str<strong>on</strong>g>of</str<strong>on</strong>g> trends<br />

Observed <strong>and</strong> projected (south western Australia/Swan Canning river system) climatic or climatically<br />

associated trends from global human development<br />

Phenomen<strong>on</strong> <strong>and</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> trend<br />

Likelihood that<br />

<strong>the</strong> trend established<br />

or c<strong>on</strong>solidated<br />

in late 20th<br />

century<br />

Likelihood that<br />

anthropogenic<br />

<str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

has c<strong>on</strong>tributed t<br />

to <strong>the</strong> observed<br />

trend<br />

Likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> future<br />

trend under A2#/<br />

B1# scenarios<br />

Accelerating atmospheric <strong>and</strong> ocean warming<br />

(now rising at 0.2O C per decade)<br />

Autumn seas<strong>on</strong>al rainfall decrease<br />

(significant<br />

Winter seas<strong>on</strong>al rainfall decrease<br />

(significant)<br />

Spring seas<strong>on</strong>al rainfall increase (small)<br />

Summer seas<strong>on</strong>al rainfall increase (small)<br />

Decrease in total winter stream-flows<br />

(large)<br />

Virtually certain Virtually certain Virtually certain<br />

Very likely Very likely Likely<br />

Very likely Very likely Extremely likely<br />

Low significance<br />

Low significance<br />

No robust<br />

evidence<br />

No robust<br />

evidence<br />

Likely decrease<br />

Small decrease<br />

more likely than<br />

not<br />

Virtually certain Very likely Extremely likely<br />

Increased frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> droughts Very likely Very likely Extremely likely<br />

Decrease in frequency/intensity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extreme winter rainfalls<br />

(1 to 10 year return period)<br />

Likely<br />

More likely<br />

than not<br />

More likely than not<br />

Increase in frequency/intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme<br />

summer rainfalls<br />

(1 to 10 year return period)<br />

Small or n<strong>on</strong>-existent<br />

Statistically<br />

inc<strong>on</strong>clusive<br />

No evidence<br />

No evidence for<br />

significant <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

Decrease in frequency/intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> winter<br />

flood flows (Swan tributaries)<br />

Extremely likely Extremely likely Likely<br />

Increase in frequency/intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> summer<br />

flood flows (Swan tributaries)<br />

No clear evidence<br />

No clear evidence<br />

No evidence for<br />

significant <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

Accelerating sea <strong>and</strong><br />

tidal estuary level rise<br />

Virtually certain Virtually certain Virtually certain<br />

Increase/decreased risk <str<strong>on</strong>g>of</str<strong>on</strong>g> storm surges<br />

which superimpose <strong>on</strong> sea level rise <strong>and</strong><br />

flood flows<br />

Uncertain- No c<strong>on</strong>clusive<br />

evidence<br />

Uncertain- No c<strong>on</strong>clusive<br />

evidence<br />

Uncertain- No c<strong>on</strong>clusive<br />

evidence<br />

Increase in extreme tidal estuary levels Virtually certain Virtually certain Virtually certain<br />

Increased frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> warm spells <strong>and</strong><br />

heat waves<br />

Increased <str<strong>on</strong>g>potential</str<strong>on</strong>g> evapo-transpirati<strong>on</strong><br />

Likely Likely Extremely likely<br />

More likely than<br />

not<br />

More likely than<br />

not<br />

Likely<br />

91


Vegetative <str<strong>on</strong>g>change</str<strong>on</strong>g> (xeric shift) in upl<strong>and</strong>s<br />

catchments<br />

Vegetative <str<strong>on</strong>g>change</str<strong>on</strong>g> (xeric shift) in coastal<br />

catchments<br />

Very likely Very likely Extremely likely<br />

Unlikely ** Unlikely Very likely<br />

More likely More likely<br />

Increased fire hazard##<br />

Extremely likely<br />

than not<br />

than not<br />

** Observed <str<strong>on</strong>g>change</str<strong>on</strong>g> <strong>on</strong> coastal plain appears to have been dominated by n<strong>on</strong>-climatic infl uences (so far)<br />

## Relates to underlying risk before management interventi<strong>on</strong><br />

In this report <strong>the</strong> following IPCC (2007) terms are used to indicate <strong>the</strong> assessed likelihood, using<br />

expert judgement, <str<strong>on</strong>g>of</str<strong>on</strong>g> an outcome:<br />

Likelihood as % probability <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence<br />

Virtually certain Extremely likely Very likely Likely More likely than not<br />

> 99% > 95% > 90% > 66% > 50%<br />

Extremely unlikely Very unlikely Unlikely<br />

< 5% < 10% < 33%<br />

92


Appendix 2:<br />

Rainfall/streamflow scenario calculati<strong>on</strong>s<br />

The issue<br />

The time series <str<strong>on</strong>g>of</str<strong>on</strong>g> annual (winter) south west rainfall totals shows a marked step reducti<strong>on</strong> in <strong>the</strong><br />

mid 1970s. The observed relative <str<strong>on</strong>g>change</str<strong>on</strong>g> was bigger <strong>and</strong> more sudden than expected from <str<strong>on</strong>g>climate</str<strong>on</strong>g><br />

modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> global warming (see Secti<strong>on</strong> 2.6.6). The favoured opini<strong>on</strong> from IOCI research is that<br />

<strong>the</strong> step ‘<str<strong>on</strong>g>change</str<strong>on</strong>g>’ was due to some combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>:<br />

• trends driven by global warming from GHG emissi<strong>on</strong>s (GHG);<br />

• a possible temporary perturbati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> multi-decadal variability <strong>and</strong> chaos (MDV); <strong>and</strong><br />

• o<strong>the</strong>r sec<strong>on</strong>dary anthropogenic causes, including l<strong>and</strong> clearing (OA).<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> recent statistically downscaled modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> greatest value in future projecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> south<br />

west rainfall uses analyses that project percentage <str<strong>on</strong>g>change</str<strong>on</strong>g> (decrease) from 1990 as a base year.<br />

Given that <strong>the</strong>re was a previous marked percentage decrease around 1970, judged as most likely<br />

to have been <strong>on</strong>ly partly driven by (GHG) warming, <strong>the</strong> questi<strong>on</strong> arises as to what is <strong>the</strong> appropriate<br />

rainfall to assign to 1990 when used as a base for 21 st century projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cumulative decrease.<br />

Projecting from a 1990 base - high, optimistic <strong>and</strong> middle<br />

baseline opti<strong>on</strong>s<br />

The 1970s <str<strong>on</strong>g>climate</str<strong>on</strong>g> shift was suffi ciently pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound <strong>and</strong> sustained that, whatever its cause, <strong>and</strong> however<br />

much <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> shift was permanent, it has created a new climatic experience that must be<br />

taken into account in defining future expectati<strong>on</strong>s.<br />

Future modelled scenarios which project from a 1990 base, need to rec<strong>on</strong>cile in some meaningful<br />

way with <strong>the</strong> observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1970s <strong>and</strong> <strong>the</strong> fact that <strong>the</strong> 1970s shift was an ‘apparent’ <str<strong>on</strong>g>change</str<strong>on</strong>g><br />

that exceeded modelling expectati<strong>on</strong>s.<br />

The most extreme high-end assumpti<strong>on</strong> for projecting <strong>on</strong> from <strong>the</strong> 1990 base would be to assume<br />

that all <strong>the</strong> 1990 recorded observed decrease represents a “permanent” shift entirely<br />

due to GHG warming trends <strong>and</strong> that (relative) post 1990 GHG projecti<strong>on</strong>s proceed from that new<br />

base. This extreme high-end assumpti<strong>on</strong>, that all <strong>the</strong> apparent rainfall decrease at 1990 was due to<br />

GHG warming (<strong>and</strong> modelling has been signifi cantly underestimating) has not been used in c<strong>on</strong>structing<br />

A2# <strong>and</strong> B1# scenarios for this report.<br />

The most optimistic assumpti<strong>on</strong> would be that <strong>on</strong>ly part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1990 shift was ’permanent‘<br />

<strong>and</strong> <strong>the</strong> rest was a temporary perturbati<strong>on</strong> due to chaos <strong>and</strong> o<strong>the</strong>r unknown effects all <str<strong>on</strong>g>of</str<strong>on</strong>g> which<br />

will (GHG excepted) ’recover’ nearer to <strong>the</strong> norm in due course.<br />

A middle-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<strong>the</strong>-road assumpti<strong>on</strong> would be that a “permanent” anthropogenic base shift occurred<br />

which was a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> GHG <strong>and</strong> o<strong>the</strong>r causes (OA) <strong>and</strong> that this was coupled with<br />

a multi-decadal perturbati<strong>on</strong> which might or might not ‘recover’ in relevant time scales.<br />

The scenario ranges (built <strong>on</strong>to post 1990 A2, B1 rainfall <str<strong>on</strong>g>change</str<strong>on</strong>g> ensembles from downscaling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Charles) <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall <strong>and</strong> stream-fl ow in this report, <strong>and</strong> labelled A2# <strong>and</strong> B1#, are based <strong>on</strong> <strong>the</strong><br />

middle-<str<strong>on</strong>g>of</str<strong>on</strong>g>-road c<strong>on</strong>cept. It is assumed that:<br />

<strong>the</strong> base shift at 1990 was GHG driven;<br />

some o<strong>the</strong>r anthropogenic effects factored more-or-less permanently <strong>on</strong> this shift (collectively explaining,<br />

with GHG warming about 70 per cent <str<strong>on</strong>g>of</str<strong>on</strong>g> observed decrease) <strong>and</strong>;<br />

<strong>the</strong>se were all overlaid by factor <str<strong>on</strong>g>of</str<strong>on</strong>g> multi-decadal variability which might (optimistic end <str<strong>on</strong>g>of</str<strong>on</strong>g> range) or<br />

93


might not (pessimistic end <str<strong>on</strong>g>of</str<strong>on</strong>g> range) ‘go away’ in <strong>the</strong> period <str<strong>on</strong>g>of</str<strong>on</strong>g> interest being projected; <strong>and</strong><br />

<strong>the</strong> A2# <strong>and</strong> B1# rainfall <strong>and</strong> stream-fl ow ranges were formed into an optimistic <strong>and</strong> pessimistic<br />

range by <strong>the</strong> optimistic assumpti<strong>on</strong> that <strong>the</strong> multi-decadal-variability factor goes away or <strong>the</strong> pessimistic<br />

assumpti<strong>on</strong> that it persists.<br />

Post 1990 GHG Ensembles for A2 <strong>and</strong> B1 Scenarios<br />

The most satisfactory available modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>al rainfall applies statistical downscaling methodologies,<br />

developed for IOCI to achieve regi<strong>on</strong>al resoluti<strong>on</strong> from global modelling. In practical terms,<br />

interpretati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall <str<strong>on</strong>g>change</str<strong>on</strong>g> from model evaluati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> GHG effects are essentially relative ra<strong>the</strong>r<br />

than absolute. Rainfall scenarios Tables 2-1 <strong>and</strong> 2-2 below, are drawn from multi-model (CSIRO<br />

Mk3 <strong>and</strong> CCAM models <strong>on</strong>ly) trends for A2 <strong>and</strong> B1 scenarios inferred from ensembles (mostly from<br />

a 1990 <str<strong>on</strong>g>climate</str<strong>on</strong>g> base) analysed by Charles et al (2004) <strong>and</strong> reported in unpublished unabridged<br />

reports <str<strong>on</strong>g>of</str<strong>on</strong>g> IOCI Stage 2 (Bates pers. comm). Streamfl ow scenario development refl ects associated<br />

studies applied to <strong>the</strong> Stirling Catchment (Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment 2004).<br />

Some interpolati<strong>on</strong>s <strong>on</strong> a rainfall decrease per degree Celsius global warming were used,<br />

where necessary, to adjust <strong>the</strong>se data to 2070 <strong>and</strong> 2100 horiz<strong>on</strong>s used in this report.<br />

Tables 2-3 <strong>and</strong> 2-4 <strong>the</strong>n apply <strong>the</strong> base-line adjustments discussed above to broadly represent:<br />

<strong>the</strong> median ensemble estimate;<br />

<strong>the</strong> 50 percentile range <str<strong>on</strong>g>of</str<strong>on</strong>g> (chaos affected) ensemble runs for <strong>the</strong> A2 <strong>and</strong> B1 scenarios; <strong>and</strong><br />

with <strong>the</strong> underlying stated assumpti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> baseline adjustment (<strong>on</strong> <strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r anthropogenic<br />

factors <strong>and</strong> chaos in <strong>the</strong> actual <str<strong>on</strong>g>climate</str<strong>on</strong>g> outcomes realised at 1990).<br />

Assumpti<strong>on</strong>s for Baseline adjustment<br />

Greenhouse Gas driven (GHG) rainfall decrease coeffi cients (50 percentile range <str<strong>on</strong>g>of</str<strong>on</strong>g> ensemble runs)<br />

bey<strong>on</strong>d 1990, are derived from multi-model studies by Charles et al. (2004). Their 1990 baseline<br />

required adjustment to accommodate GHG <strong>and</strong> o<strong>the</strong>r attributed causes in <strong>the</strong> observed post 1970s<br />

decrease. This adjustment involved <strong>the</strong> following assumpti<strong>on</strong>s.<br />

At 1990 <strong>the</strong> gross observed shift in winter rainfall reduced it to 90 per cent <str<strong>on</strong>g>of</str<strong>on</strong>g> 1925-75 mean (IOCI<br />

Climate Note No. 5/2004)<br />

GHG was assumed to have reduced it to 95 %, o<strong>the</strong>r anthropogenic (OA) effects to 98 per<br />

cent <str<strong>on</strong>g>of</str<strong>on</strong>g> 95 per cent <strong>and</strong> multi decadal variability (MDV) combined with OA to 94.5 per cent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

95 per cent (equivalent to MDV causing 30 per cent <str<strong>on</strong>g>of</str<strong>on</strong>g> observed reducti<strong>on</strong>)<br />

As <strong>the</strong> GHG-affected rainfall fur<strong>the</strong>r decreases, <strong>the</strong> OA <strong>and</strong> MDV c<strong>on</strong>tributi<strong>on</strong>s were assumed to<br />

remain as a fi xed proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> base rainfall. In some scenarios <strong>the</strong> MDV effect might disappear<br />

with time <strong>and</strong> this possibility was allowed to widen <strong>the</strong> projected uncertainty range.<br />

Streamflow<br />

Streamfl ow projecti<strong>on</strong>s in this Appendix (Tables 2-3 <strong>and</strong> 2-4) aim to refl ect streamfl ows <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Intermediate<br />

<strong>and</strong> West Agricultural Z<strong>on</strong>e (using analyses for Stirling). They are built as a simple geometric<br />

progressi<strong>on</strong> (graphed below) assuming that each 10 per cent reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall produces a 1/3<br />

decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> fl ow. As observed elsewhere in this report, stream-fl ow decreases in <strong>the</strong> high rainfall<br />

z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> scarp-l<strong>and</strong>s are more marked than in <strong>the</strong> intermediate/agricultural hinterl<strong>and</strong>.<br />

94


Parameter<br />

Temperature<br />

increase deg C<br />

relative to 1990<br />

Temperature<br />

increase deg C<br />

relative to 1900<br />

Rain relative to<br />

1990 Charles’<br />

% points<br />

decrease per<br />

degree <str<strong>on</strong>g>of</str<strong>on</strong>g> temp<br />

rise<br />

Rain relative to<br />

1990 Interpolated<br />

(<strong>on</strong> %/deg<br />

basis)<br />

RED FIGURES<br />

ARE INTERPOLA-<br />

TIONS<br />

Rain relative to<br />

1975 - Charles<br />

% points per decrease<br />

degree<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> temp rise<br />

TABLE 2-1<br />

Percentage increase or decrease from nominated base - observed record <strong>and</strong> A2 projecti<strong>on</strong>s<br />

1950<br />

(1925-<br />

1975)<br />

1975<br />

(1960-<br />

89)<br />

1990<br />

(1975-<br />

2004)<br />

2000<br />

(1985-<br />

2014)<br />

2010<br />

(1995-<br />

2024)<br />

2030<br />

(2015-<br />

2044)<br />

2050<br />

(2035-<br />

2064)<br />

2070<br />

(2055-<br />

2084)<br />

2085<br />

(2070-<br />

2099)<br />

2095<br />

(2090-<br />

2099)<br />

2100 (2095-<br />

2104)<br />

-0.33 -0.2 0 0.18 0.36 0.8 1.6 2.3 3 3.4 3.6<br />

0.27 0.4 0.6 0.78 0.96 1.4 2.2 2.9 3.6 4 4.2<br />

Percentage relative to nominated base - observed record <strong>and</strong> A2 projecti<strong>on</strong>s<br />

89-95 (92) 77-89 (83)<br />

8%/0.8 =<br />

10<br />

17%/1.6 =<br />

10.6<br />

89-95 (92) 77-89 (83)<br />

decrease <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

17.6(d/<br />

ward) 24.4<br />

(upward)<br />

(21av)<br />

gives<br />

74- 84 (79)<br />

adjustment<br />

to<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

7.65*3.0 =<br />

22.9<br />

c<strong>on</strong>verts<br />

from<br />

1975 to<br />

1990 base<br />

72-82<br />

(77.1)<br />

70-81<br />

(75.5)<br />

decrease<br />

7.65*3.4 =<br />

26 gives<br />

68-80 (74)<br />

66.5-78.5<br />

(72.5)<br />

24.5%/3.2=<br />

7.65<br />

95


Parameter<br />

Temperature<br />

increase deg C<br />

relative to 1990<br />

Temperature<br />

increase deg C<br />

relative to 1900<br />

Rain decrease<br />

relative to<br />

1990 Charles’<br />

% points per degree<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> temp rise<br />

Rain relative<br />

to 1990 Interpolated<br />

(<strong>on</strong><br />

%/deg basis)<br />

RED FIGURES<br />

ARE INTERPO-<br />

LATIONS<br />

Rain decrease<br />

relative to 1975<br />

% points per degree<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> temp rise<br />

TABLE 2- 2 Percentage increase or decrease from nominated base - observed record <strong>and</strong> B1 projecti<strong>on</strong>s<br />

1950<br />

1925-<br />

1975)<br />

1975<br />

1960-<br />

89)<br />

1990<br />

1975-<br />

2004)<br />

2000<br />

1985-<br />

2014)<br />

2010<br />

1995-<br />

2024)<br />

2030<br />

(2015-<br />

2044)<br />

2050<br />

(2035-<br />

2064)<br />

2070<br />

(2055-<br />

2084)<br />

2085<br />

(2070-<br />

2099)<br />

2095<br />

(2090-<br />

2099)<br />

2100 (2095-<br />

2104)<br />

-0.33 -0.2 0 0.18 0.36 0.8 1.2 1.6 1.7 1.8 1.8<br />

0.27 0.4 0.6 0.78 0.96 1.4 1.8 2.2 2.3 2.4 2.4<br />

Percentage relative to nominated base - observed record <strong>and</strong> B1 projecti<strong>on</strong>s<br />

96-100 (98) 97-99 (98)<br />

2/0.8 = 2.5 2/1.2 = 1.67<br />

96-100 (98) 95-99 (97)<br />

decrease<br />

13.5 d/<br />

nward interpolati<strong>on</strong><br />

83 - 90<br />

(86.5)<br />

decrease<br />

8.4*1.7 =<br />

14.3 82- 90<br />

(85.7)<br />

8.4*1.8<br />

=15.2 81-<br />

89 (85)<br />

80-88 (84)<br />

16/1.9 =<br />

8.4<br />

96


Table 2-3 Projected winter rainfall <strong>and</strong> streamflow <str<strong>on</strong>g>change</str<strong>on</strong>g>s— ensemble median S/W<br />

Projected Change in Intermediate <strong>and</strong> West Agricultural Z<strong>on</strong>e** Rainfall <strong>and</strong> Streamfl ow<br />

Development for <strong>the</strong> Nominal A2#, B1# Scenarios (Ensemble Medians)(1)<br />

Change 1990 as fracti<strong>on</strong><br />

Rainfall decrease coeffi cients(1)<br />

Element<br />

Scenario Relative <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Scenario - adjustments to 1925-75 base<br />

to 1925-75<br />

2030 2070 2100<br />

Model estimates A2<br />

GHG <strong>on</strong>ly coeff.<br />

.92x.95 = .83x.95 = .725x.95<br />

(3) ~0.95 A2<br />

GHG effect <strong>on</strong>ly<br />

.87 .79 = .69<br />

<strong>on</strong> winter rainfall<br />

1925-75 See below<br />

B1<br />

.98x.95 = .87x.95 = .85x.95 =<br />

GHG + OA + B1<br />

Relative to past<br />

.93 .83 .80<br />

MDV =(~0.90)<br />

A2 + o<strong>the</strong>r<br />

O<strong>the</strong>r anthropogenic<br />

anthropogenic<br />

+GHG A2<br />

.98x.87 = .98x.79 = .98x.69 =<br />

<strong>on</strong>ly<br />

Coeff.(3) = +OA<br />

.85 .77 .68<br />

A2 +OA +<br />

(~0.98)*GHG<br />

Total winter rainfall multi decadal<br />

O<strong>the</strong>r anthropogenic<br />

+ MDV A2<br />

.945x.87 .945x.79 .945x.69<br />

relative to past variability<br />

Assumed<br />

B1 + o<strong>the</strong>r<br />

coeff. (3) = +OA +MDV = .82 = .75 = .65<br />

n<strong>on</strong> GHG comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> observed <strong>on</strong>ly<br />

anthropogenic<br />

1925-75<br />

(~0.945)*GHG<br />

O<strong>the</strong>r anthropogenic<br />

+GHG B1<br />

.98x.93 = .98x.83 = .98x.80 =<br />

decrease (40%MDV)<br />

Combined with modelled<br />

GHG<br />

B1 +OA +<br />

(~0.98)*GHG<br />

coeff.(3) = +OA<br />

.91 .81 .78<br />

multi decadal<br />

variability<br />

O<strong>the</strong>r anthropogenic<br />

+ MDV<br />

coeff. (3) =<br />

B1<br />

+OA +MDV<br />

.945x.93<br />

= .88<br />

.945x.83<br />

= .78<br />

.945x.80<br />

= .76<br />

(~0.945)*GHG<br />

A2 range<br />

A2# 82 - 85% 75 – 77% 65 – 68%<br />

Total % winter rainfall<br />

relative to past<br />

(Observed) Scenario<br />

~ 90%<br />

B1 range 1925-75<br />

B1# 88 – 91% 78 – 81% 76 – 78%<br />

Range<br />

82 - 91% 75 – 81% 65 – 78%<br />

Range<br />

Total winter rain decrease<br />

from 1925-75 B1# % decrease 9-12% 19-22% 22-24%<br />

A2#<br />

~ 10%<br />

% decrease 15-18% 23-25% 32-35%<br />

1925-75<br />

(Observed)<br />

Scenario range % decrease 9-18% 19-25% 22-35%<br />

Streamfl ow decrease B1# – A2#<br />

~ 30%<br />

% decrease<br />

from 1925-75 scenario range 1925-75<br />

30 - 50% 50 - 65% 55 – 75%<br />

rounded<br />

(Observed) from 1925-75<br />

Assumpti<strong>on</strong>s<br />

GHG rainfall decrease coeffi cients (ensemble medians) are derived from multi-model studies by<br />

Charles (associated Tables). Their 1990 baseline needs adjustment to accommodate GHG <strong>and</strong><br />

o<strong>the</strong>r attributed causes in <strong>the</strong> observed post 70s decrease.<br />

At 1990 <strong>the</strong> gross observed shift in winter rainfall reduced it to 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> 1925-75 mean (IOCI Climate<br />

Note NO 5/2004<br />

GHG was assumed to have reduced it to 95 %, o<strong>the</strong>r anthropogenic (OA) effects to 98% <str<strong>on</strong>g>of</str<strong>on</strong>g> 95% <strong>and</strong><br />

multi decadal variability (MDV) combined with OA to 94.5% <str<strong>on</strong>g>of</str<strong>on</strong>g> 95% (equivalent to MDV causing 30%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> observed reducti<strong>on</strong>)<br />

As <strong>the</strong> GHG affected rainfall baseline fur<strong>the</strong>r decreases <strong>the</strong> OA <strong>and</strong> MDV c<strong>on</strong>tributi<strong>on</strong>s were assumed<br />

to remain as a fi xed proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> base rainfall. In some scenarios <strong>the</strong> MDV effect might<br />

disappear with time <strong>and</strong> this possibility is allowed to widen <strong>the</strong> uncertainty range.<br />

97


Streamfl ow** (intermediate rainfall <strong>and</strong> west agricultural z<strong>on</strong>e) at 1990 was 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> 1925-75.<br />

An approximate n<strong>on</strong>-linear assumpti<strong>on</strong> was made relating streamfl ow to rainfall decrease for intermediate<br />

<strong>and</strong> agricultural z<strong>on</strong>e catchments.<br />

The assumpti<strong>on</strong>, discussed fur<strong>the</strong>r in <strong>the</strong> text, is as follows -<br />

10 % rain decrease ~ 67% fl ow, 20% rain decrease ~ 67% <str<strong>on</strong>g>of</str<strong>on</strong>g> 67% = 45% fl ow,<br />

30 % rain decrease ~ 30% fl ow, 40% rain decrease ~ 20% fl ow<br />

Table 2-4 Projected winter rainfall <strong>and</strong> streamflow <str<strong>on</strong>g>change</str<strong>on</strong>g>s<br />

50 percentile ensemble range S/W<br />

Element<br />

Model estimates<br />

GHG effect <strong>on</strong>ly<br />

<strong>on</strong> winter rainfall<br />

relative to past<br />

Total winter<br />

rainfall<br />

relative to past<br />

Assumed<br />

n<strong>on</strong> GHG comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> observed<br />

decrease<br />

(40%MDV)<br />

Combined with<br />

modelled GHG<br />

Total % winter<br />

rainfall relative<br />

to past<br />

Total winter rain<br />

decrease from<br />

1925-75<br />

Streamfl ow<br />

decrease from<br />

1925-75<br />

Assumpti<strong>on</strong>s<br />

Projected <str<strong>on</strong>g>change</str<strong>on</strong>g> in intermediate <strong>and</strong> west agricultural z<strong>on</strong>e** rainfall <strong>and</strong> streamfl ow<br />

development for <strong>the</strong> nominal A2#, B1# scenarios (50 percentile ensemble range) (1)<br />

1990 as fracti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Scenario - adjustments to 1925-75 base<br />

Rainfall decrease coeffi cients<br />

Change<br />

Scenario<br />

relative to<br />

1925-75<br />

2030 2070 2100<br />

GHG <strong>on</strong>ly coeff.<br />

A2<br />

(.89~.95)<br />

(.74~.84)x.95 = (.665~.785)x.95<br />

~0.95<br />

A2<br />

x.95 =<br />

.70~.80 = .63~.75<br />

1925-75 See below<br />

.85~.90<br />

B1<br />

(.96-1.0)x.95 (.83-.90)x.95 = (.81-.89)x.95 =<br />

GHG + OA + B1<br />

= .91~.95 .79~.86 .77~.85<br />

MDV =(~0.90)<br />

A2 + o<strong>the</strong>r anthropogenic<br />

O<strong>the</strong>r anthropogenic<br />

<strong>on</strong>ly<br />

A2<br />

98x(.85~.90) .98x(.70~.80) = .98x(.63~.75) =<br />

A2 +OA +<br />

+GHG coeff. (3) = +OA<br />

= .83~.88 .69~.78 .62~.74<br />

multi decadal<br />

(~0.98)*GHG<br />

variability<br />

O<strong>the</strong>r anthropogenic<br />

B1 + o<strong>the</strong>r anthropogenic<br />

+ A2<br />

45x(.85~.90) .945x(.70~.80) .945x(.63~.75) =<br />

<strong>on</strong>ly<br />

MDV coeff. (3) = +OA +MDV = .80~.85 = .66~.76 .60~.71<br />

1925-75 (~0.945)*GHG<br />

O<strong>the</strong>r anthropogenic<br />

B1<br />

98x(.91~.95) .98x. (.79~.86) .98x(.77~.85) =<br />

B1 +OA +<br />

+GHG coeff. (3) = +OA<br />

= .89~.93 = .77~.84 .75~.83<br />

multi decadal<br />

(~0.98)*GHG<br />

variability<br />

O<strong>the</strong>r anthropogenic<br />

+ B1<br />

45x(.91~.95) .945x(.79~.86) .945x(.77~.85) =<br />

MDV coeff. (3) = +OA +MDV = .86~.90 = .75~.81 .73~.80<br />

(~0.945)*GHG<br />

A2 range<br />

A2# 80 ~ 88% 66 ~ 78% 60 ~ 74%<br />

~ 90%<br />

B1 range 1925-75<br />

B1# 86 ~ 93% 75 ~ 84% 73 ~ 83%<br />

Range<br />

(observed) Scenario<br />

range<br />

80 ~ 93% 66 ~ 84% 60 ~ 83%<br />

A2#<br />

B1#<br />

Scenario range<br />

B1# – A2#<br />

scenario range<br />

rounded<br />

1925-75<br />

1925-75<br />

~ 10%<br />

(observed)<br />

~ 30%<br />

(observed)<br />

% decrease 12~20% 22~34% 26~40%<br />

% decrease 7~14% 16~25% 17~27%<br />

decrease<br />

% decrease<br />

7~20% 16~34% 17~40%<br />

from 1925- 22~55% 45~75% 50~80%<br />

75<br />

GHG rainfall decrease coeffi cients (50 percentile range <str<strong>on</strong>g>of</str<strong>on</strong>g> ensemble runs) are derived from multi-model studies by Charles<br />

(associated Tables). Their 1990 baseline needs adjustment to accommodate GHG <strong>and</strong> o<strong>the</strong>r causes in <strong>the</strong> observed post<br />

70s decrease.<br />

At 1990 <strong>the</strong> gross effect <strong>on</strong> winter rainfall was to reduce it to 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> 1925-75 mean (IOCI Climate Note NO 5/2004<br />

98


GHG reduced it to 95 %, o<strong>the</strong>r anthropogenic (OA) effects to 98% <str<strong>on</strong>g>of</str<strong>on</strong>g> 95% <strong>and</strong> multi decadal variability (MDV) combined<br />

with OA to 94.5% <str<strong>on</strong>g>of</str<strong>on</strong>g> 95% (equivalent to MDV causing 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> observed reducti<strong>on</strong>)<br />

As <strong>the</strong> GHG affected rainfall baseline decreases <strong>the</strong> OA <strong>and</strong> MDV c<strong>on</strong>tributi<strong>on</strong>s remain as a fi xed proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> base<br />

rainfall. In some scenarios <strong>the</strong> MDV effect might disappear with time. This occurs through <strong>the</strong> B2# scenario, when <strong>the</strong> A2#<br />

B1# Ranges are taken in <strong>the</strong> Table.<br />

Streamfl ow** (intermediate rainfall <strong>and</strong> west agricultural z<strong>on</strong>e) at 1990 was 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> 1925-75.<br />

An approximate n<strong>on</strong>-linear assumpti<strong>on</strong> was made relating streamfl ow to rainfall decrease for intermediate <strong>and</strong> agricultural<br />

z<strong>on</strong>e catchments.<br />

The assumpti<strong>on</strong>, discussed fur<strong>the</strong>r in <strong>the</strong> text, is as follows -<br />

10 % rain decrease ~ 67% fl ow, 20% rain decrease ~ 67% <str<strong>on</strong>g>of</str<strong>on</strong>g> 67% = 45% fl ow,<br />

30 % rain decrease ~ 30% fl ow, 40% rain decrease ~ 20% fl ow<br />

Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f calculati<strong>on</strong>s<br />

Flow related to Rain Decrease<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Cumulative<br />

10<br />

Flow Reducti<strong>on</strong> Percent <str<strong>on</strong>g>of</str<strong>on</strong>g> Original<br />

0<br />

0 10 20 30 40 50 60<br />

Cumulative Rain Decrease Percent <str<strong>on</strong>g>of</str<strong>on</strong>g> Original<br />

99


Scenario<br />

Rainfall decrease ranges <strong>and</strong> <strong>the</strong> corresp<strong>on</strong>ding run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>change</str<strong>on</strong>g>s from above graph<br />

A2<br />

B1<br />

Range<br />

50 percentile ensemble rain decrease<br />

50 percentile ensemble flow as % <str<strong>on</strong>g>of</str<strong>on</strong>g> original<br />

50 percentile ensemble rain decrease<br />

50 percentile ensemble flow as % <str<strong>on</strong>g>of</str<strong>on</strong>g> original<br />

50 percentile ensemble rain decrease<br />

50 percentile ensemble flow as % <str<strong>on</strong>g>of</str<strong>on</strong>g> original<br />

12~20% 22~34% 26~40%<br />

36~54% 58~76% 65~81%<br />

7~14% 16~25% 17~27%<br />

23~42% 46~63% 48~66%<br />

7~20 16~34 17~40<br />

23~54 46~76 48~81<br />

100


Appendix 3:<br />

Emissi<strong>on</strong> Scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> IPCC Special Report <strong>on</strong><br />

Emissi<strong>on</strong> Scenarios (SRES)<br />

The Storylines<br />

Four different narrative storylines were developed to describe driving forces <strong>and</strong> <strong>the</strong>ir evoluti<strong>on</strong> <strong>and</strong><br />

to add c<strong>on</strong>text for <strong>the</strong> scenario quantifi cati<strong>on</strong>. Each storyline represents different demographic, social,<br />

ec<strong>on</strong>omic, technological, <strong>and</strong> envir<strong>on</strong>mental developments, which may be viewed positively by<br />

some people <strong>and</strong> negatively by o<strong>the</strong>rs.<br />

In each storyline a number <str<strong>on</strong>g>of</str<strong>on</strong>g> scenarios were developed covering a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> driving forces<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> greenhouse gas (GHG) <strong>and</strong> sulphur emissi<strong>on</strong>s. All scenarios based <strong>on</strong> <strong>the</strong> same storyline form a<br />

scenario ‘family’.<br />

The scenarios do not include additi<strong>on</strong>al <str<strong>on</strong>g>climate</str<strong>on</strong>g> initiatives, which means that no scenarios are included<br />

that explicitly assume implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> UN Framework C<strong>on</strong>venti<strong>on</strong> <strong>on</strong> Climate Change<br />

or <strong>the</strong> emissi<strong>on</strong>s targets <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Kyoto Protocol. However, GHG emissi<strong>on</strong>s are affected by n<strong>on</strong>-<str<strong>on</strong>g>climate</str<strong>on</strong>g><br />

<str<strong>on</strong>g>change</str<strong>on</strong>g> policies designed for a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> purposes. This infl uence is broadly refl ected in<br />

<strong>the</strong> storylines <strong>and</strong> resultant scenarios.<br />

A1 Storyline<br />

The A1 storyline <strong>and</strong> scenario family describes a future world <str<strong>on</strong>g>of</str<strong>on</strong>g> very rapid ec<strong>on</strong>omic growth, global<br />

populati<strong>on</strong> that peaks in mid-century <strong>and</strong> declines <strong>the</strong>reafter, <strong>and</strong> <strong>the</strong> rapid introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new <strong>and</strong><br />

more effi cient technologies. Major underlying <strong>the</strong>mes are c<strong>on</strong>vergence am<strong>on</strong>g regi<strong>on</strong>s, capacity<br />

building <strong>and</strong> increased cultural <strong>and</strong> social interacti<strong>on</strong>s, with a substantial reducti<strong>on</strong> in regi<strong>on</strong>al differences<br />

in per capita income.<br />

The A1 scenario family develops into three groups that describe alternative directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> technological<br />

<str<strong>on</strong>g>change</str<strong>on</strong>g> in <strong>the</strong> energy system. The three A1 groups are distinguished by <strong>the</strong>ir technological<br />

emphasis:<br />

(1) fossil intensive (A1FI), (2) n<strong>on</strong>-fossil energy sources (A1T), or (3) a balance (A1B) across all<br />

sources (where balanced is defi ned as not relying too heavily <strong>on</strong> <strong>on</strong>e particular energy source, <strong>on</strong><br />

<strong>the</strong> assumpti<strong>on</strong> that similar improvement rates apply to all energy supply <strong>and</strong> end use technologies).<br />

A2 Storyline<br />

The A2 storyline <strong>and</strong> scenario family describes a very heterogeneous world. The underlying <strong>the</strong>me<br />

is self-reliance <strong>and</strong> preservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> local identities. Fertility patterns across regi<strong>on</strong>s c<strong>on</strong>verge very<br />

slowly, which results in c<strong>on</strong>tinuously increasing populati<strong>on</strong>. Ec<strong>on</strong>omic development is primarily<br />

regi<strong>on</strong>ally oriented <strong>and</strong> per capita ec<strong>on</strong>omic growth <strong>and</strong> technological <str<strong>on</strong>g>change</str<strong>on</strong>g> more fragmented <strong>and</strong><br />

slower than o<strong>the</strong>r storylines.<br />

B1 Storyline<br />

The B1 storyline <strong>and</strong> scenario family describes a c<strong>on</strong>vergent world with <strong>the</strong> same global populati<strong>on</strong>,<br />

that peaks in mid-century <strong>and</strong> declines <strong>the</strong>reafter, as in <strong>the</strong> A1 storyline, but with rapid <str<strong>on</strong>g>change</str<strong>on</strong>g> in<br />

ec<strong>on</strong>omic structures toward a service <strong>and</strong> informati<strong>on</strong> ec<strong>on</strong>omy, with reducti<strong>on</strong>s in material intensity<br />

<strong>and</strong> <strong>the</strong> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> clean <strong>and</strong> resource effi cient technologies. The emphasis is <strong>on</strong> global soluti<strong>on</strong>s<br />

to ec<strong>on</strong>omic, social <strong>and</strong> envir<strong>on</strong>mental sustainability, including improved equity, but without<br />

101


additi<strong>on</strong>al <str<strong>on</strong>g>climate</str<strong>on</strong>g> initiatives.<br />

B2 Storyline<br />

The B2 storyline <strong>and</strong> scenario family describes a world in which <strong>the</strong> emphasis is <strong>on</strong> local soluti<strong>on</strong>s<br />

to ec<strong>on</strong>omic, social <strong>and</strong> envir<strong>on</strong>mental sustainability. It is a world with c<strong>on</strong>tinuously increasing global<br />

populati<strong>on</strong>, at a rate lower than A2, intermediate levels <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic development, <strong>and</strong> less rapid<br />

<strong>and</strong> more diverse technological <str<strong>on</strong>g>change</str<strong>on</strong>g> than in <strong>the</strong> B1 <strong>and</strong> A1 storylines. While <strong>the</strong> scenario is also<br />

oriented towards envir<strong>on</strong>mental protecti<strong>on</strong> <strong>and</strong> social equity, it focuses <strong>on</strong> local <strong>and</strong> regi<strong>on</strong>al levels.<br />

An illustrative scenario was chosen for each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> six scenario groups A1B, A1FI, A1T, A2, B1 <strong>and</strong><br />

B2. All should be c<strong>on</strong>sidered equally sound.<br />

The SRES scenarios do not include additi<strong>on</strong>al <str<strong>on</strong>g>climate</str<strong>on</strong>g> initiatives, which means that no scenarios<br />

are included that explicitly assume implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> United Nati<strong>on</strong>s Framework C<strong>on</strong>venti<strong>on</strong> <strong>on</strong><br />

Climate Change or <strong>the</strong> emissi<strong>on</strong>s targets <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Kyoto Protocol.<br />

Interpreting <strong>the</strong> SRES A2, B1, A1B1 as markers for stabilisati<strong>on</strong> scenarios<br />

The selected scenarios are chosen as a b<strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> realistic scenarios in outcome terms <strong>and</strong> which<br />

give access to a signifi cant quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> model analysis.<br />

The highest, A2, is not a stabilisati<strong>on</strong> scenario but in cumulative GHG emissi<strong>on</strong>s is less severe than<br />

<strong>the</strong> high growth (late stabilisati<strong>on</strong>) extreme represented by A1F1. The 2070/2100 c<strong>on</strong>centrati<strong>on</strong>s<br />

are a realistic upper bound marker refl ective <str<strong>on</strong>g>of</str<strong>on</strong>g> global political weakness.<br />

The B1 scenario as a lower bound marker is a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> optimism <strong>and</strong> realism. It is an aggressive<br />

<strong>and</strong> politically challenging stabilisati<strong>on</strong> scenario, but short <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> more ideal 450 ppm safe target<br />

level.<br />

The A1B1 scenario is a useful middle-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<strong>the</strong>-road scenario. It is useful as a marker for 2030 <strong>and</strong><br />

mid-century outcomes because it more closely refl ects <strong>the</strong> current rapid growth <str<strong>on</strong>g>of</str<strong>on</strong>g> global emissi<strong>on</strong>s.<br />

A2 Nominal 1250 ppm CO 2<br />

equivalent by 2100<br />

Politically weak: The world fails to get its act toge<strong>the</strong>r but, because <str<strong>on</strong>g>of</str<strong>on</strong>g> slow growth, <strong>the</strong> outcome<br />

is better than a business as usual extreme (e.g. A1F1) in <strong>the</strong> short or l<strong>on</strong>g-term.<br />

This is a very heterogeneous world. The underlying <strong>the</strong>me is self-reliance <strong>and</strong> preservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

local identities. Fertility patterns across regi<strong>on</strong>s c<strong>on</strong>verge very slowly, which results in c<strong>on</strong>tinuously<br />

increasing populati<strong>on</strong>. Ec<strong>on</strong>omic development is primarily regi<strong>on</strong>ally oriented <strong>and</strong> per capita ec<strong>on</strong>omic<br />

growth <strong>and</strong> technological <str<strong>on</strong>g>change</str<strong>on</strong>g> more fragmented <strong>and</strong> slower than o<strong>the</strong>r storylines.<br />

A1B Nominal 850 ppm CO 2<br />

equivalent stabilisati<strong>on</strong> by 2100<br />

Belated compromise: After rapid business-as-usual growth <strong>the</strong> world achieves partial c<strong>on</strong>trol c<strong>on</strong>sistent<br />

with human compromise, but <strong>the</strong> stabilisati<strong>on</strong> level achieved falls well short <str<strong>on</strong>g>of</str<strong>on</strong>g> aspirati<strong>on</strong>s.<br />

This scenario with its rapid early emissi<strong>on</strong>s growth is nearest to current behaviour for short-term<br />

expectati<strong>on</strong>s<br />

This is a world <str<strong>on</strong>g>of</str<strong>on</strong>g> very rapid ec<strong>on</strong>omic growth, global populati<strong>on</strong> that peaks in mid-century <strong>and</strong><br />

declines <strong>the</strong>reafter. There is rapid introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new <strong>and</strong> more efficient technologies. Major<br />

underlying <strong>the</strong>mes are c<strong>on</strong>vergence am<strong>on</strong>g regi<strong>on</strong>s, capacity building <strong>and</strong> increased cultural <strong>and</strong><br />

social interacti<strong>on</strong>s, with a substantial reducti<strong>on</strong> in regi<strong>on</strong>al differences in per capita income.<br />

This is a balanced scenario <str<strong>on</strong>g>of</str<strong>on</strong>g> alternative technological trends in energy. Nei<strong>the</strong>r fossil fuel intensive<br />

nor heavily reliant <strong>on</strong> n<strong>on</strong>-fossil energy sources, A1B follows a balance <str<strong>on</strong>g>of</str<strong>on</strong>g> measures with similar<br />

102


improvement rates in all supply <strong>and</strong> end use technologies. The SRES scenario does not incorporate<br />

specifi c additi<strong>on</strong>al <str<strong>on</strong>g>climate</str<strong>on</strong>g> initiatives <strong>and</strong> its outcomes imply that <strong>the</strong> world community has not<br />

overlaid policies vigorously tied to minimising CO 2<br />

accumulati<strong>on</strong>.<br />

B1 Nominal 550/600 ppm CO 2<br />

equivalent stabilisati<strong>on</strong> by 2100<br />

Str<strong>on</strong>g resp<strong>on</strong>se, short <str<strong>on</strong>g>of</str<strong>on</strong>g> aspirati<strong>on</strong>s: The world achieves outcomes c<strong>on</strong>sistent which c<strong>on</strong>trasted<br />

with current acti<strong>on</strong> implies comparatively aggressive <strong>and</strong> early commitment to stabilisati<strong>on</strong>.<br />

However, <strong>the</strong> stabilisati<strong>on</strong> level achieved is short <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> more aggressive 450 ppm target judged<br />

necessary to minimise dangerous risks.<br />

This is a c<strong>on</strong>vergent world with <strong>the</strong> same global populati<strong>on</strong> as in A1, that peaks in mid-century <strong>and</strong><br />

declines <strong>the</strong>reafter. It has rapid <str<strong>on</strong>g>change</str<strong>on</strong>g> in ec<strong>on</strong>omic structures toward a service <strong>and</strong> informati<strong>on</strong><br />

ec<strong>on</strong>omy, with reducti<strong>on</strong>s in material intensity <strong>and</strong> <strong>the</strong> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> clean <strong>and</strong> resource efficient<br />

technologies. The emphasis is <strong>on</strong> global soluti<strong>on</strong>s to ec<strong>on</strong>omic, social <strong>and</strong> envir<strong>on</strong>mental<br />

sustainability, including improved equity.<br />

This SRES scenario does not incorporate specifi c additi<strong>on</strong>al <str<strong>on</strong>g>climate</str<strong>on</strong>g> initiatives. However, c<strong>on</strong>siderati<strong>on</strong><br />

in stabilisati<strong>on</strong> terms implies that <strong>the</strong> world community has acted early <strong>and</strong> aggressively<br />

in a manner that causes emissi<strong>on</strong>s growth to cease, return to present levels by 2030,<br />

<strong>and</strong> steadily fall to 50 per cent <str<strong>on</strong>g>of</str<strong>on</strong>g> present by 2100.<br />

103


Appendix 4<br />

Work File<br />

Linear Interpolati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Sea Level Rise<br />

Fremantle<br />

Observed Sea Level Rise to 2000 from 1897 @ .0154m/decade<br />

= (0.0154*10)m + (3* 0.0154)m = 0.154 + 0.0462 = 0.16m<br />

Rise to 1990 = 0.16 – 0.0154 - 0.145<br />

Global A2<br />

Projected rise from 1990 to 2095 = 0.23 m to 0.51m<br />

Per decade linear av rate = 0.0242 to 0.0537<br />

Per 5 yrs (2095-2100) = 0.012 to 0.027<br />

Per 25 yrs (2070-2095) = 0.061 to 0.141<br />

Per 30 yrs (2000-2030) = 0.073 to 0.168<br />

Linear Interpolati<strong>on</strong>s A2 Fremantle relative to 1897<br />

2000 2030 2070 2095 2100<br />

0.16<br />

0.145 + 0.23 to<br />

0.145 + 0.51 =<br />

0.38 to 0.66<br />

0.16<br />

(0.16) +<br />

(0.073 to 0.168) =<br />

0.233 to 0.328 =<br />

0.23 to 0.33<br />

(0.38 to 0.66) –<br />

(0.061 to 0.141) =<br />

0.319 to 0.519 =<br />

0.32 to 0.52<br />

0.38 to 0.66<br />

(0.38 to 0.66) +<br />

0.012 to 0.027 =<br />

0.392 to 0.687 =<br />

0.4 to 0.7<br />

Add<br />

accelerati<strong>on</strong><br />

comp<strong>on</strong>ent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2 m<br />

0.6 to 0.9<br />

Global B1<br />

Projected rise from 1990 to 2095 = 0.18 m to 0.38m<br />

Per decade linear av rate = 0.01894 to 0.04<br />

Per 5 yrs (2095-2100) = 0.010 to 0.02<br />

Per 25 yrs (2070-2095) = 0.047 to 0.10<br />

104


Per 30 yrs (2000-2030) = 0.057 to 0.12<br />

Linear Interpolati<strong>on</strong>s B1 Fremantle relative to 1897<br />

2000 2030 2070 2095 2100<br />

0.16<br />

0.145 + 0.18 to<br />

0.145 + 0.38 =<br />

0.33 to 0.53<br />

0.16<br />

(0.16) +<br />

(0.06 to 0.12) =<br />

0.22 to 0.28 =<br />

0.22 to 0.28<br />

(0.33 to 0.53) –<br />

(0.05 to 0.10) =<br />

0.28 to 0.43 =<br />

0.28 to 0.43<br />

0.33 to 0.53<br />

(0.33 to 0.53) +<br />

(0.01 to 0.02) =<br />

0.34 to 0.55 =<br />

0.35 to 0.55<br />

Add<br />

accelerati<strong>on</strong><br />

comp<strong>on</strong>ent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ~ 0.15 m<br />

0.5 to 0.7<br />

105


Appendix 5<br />

Birds in <strong>the</strong> Swan Canning River System<br />

The upper reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two <strong>rivers</strong> (upstream <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Garret Road Bridge <strong>on</strong> <strong>the</strong> Swan River <strong>and</strong><br />

upstream <str<strong>on</strong>g>of</str<strong>on</strong>g> Shelley Bridge <strong>on</strong> <strong>the</strong> Canning River) are weakly tidal, retain extensive fringing riparian<br />

vegetati<strong>on</strong> <strong>and</strong> have associated wetl<strong>and</strong>s in some areas. These upper reaches support a small<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> ducks, cormorants <strong>and</strong> some o<strong>the</strong>r waterbirds, while <strong>the</strong> fringing vegetati<strong>on</strong> is important<br />

for l<strong>and</strong>birds, in what is o<strong>the</strong>rwise a largely urban l<strong>and</strong>scape.<br />

In c<strong>on</strong>trast, <strong>the</strong> lower reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>rivers</strong> are c<strong>on</strong>sistently tidal <strong>and</strong> <strong>the</strong> shorelines have been modifi<br />

ed, with large secti<strong>on</strong>s replaced with c<strong>on</strong>crete retaining walls. The numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> waterbirds in <strong>the</strong>se<br />

lower reaches can be very high, particularly around Melville Water <strong>and</strong> <strong>the</strong> three reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Swan Estuary Marine Park. Numbers are highest in summer, when counts <str<strong>on</strong>g>of</str<strong>on</strong>g> waders or shorebirds<br />

regularly exceed two thous<strong>and</strong>, <strong>and</strong> counts <str<strong>on</strong>g>of</str<strong>on</strong>g> ducks <strong>and</strong> <strong>swan</strong>s regularly exceed fi ve hundred.<br />

Cormorants can also be very abundant in <strong>the</strong>se lower reaches, with counts <str<strong>on</strong>g>of</str<strong>on</strong>g> hundreds <strong>and</strong> even<br />

thous<strong>and</strong>s. Although <strong>the</strong> shoreline in <strong>the</strong>se lower reaches is generally modifi ed, <strong>the</strong>re are still areas<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> remnant vegetati<strong>on</strong>, such as at Alfred Cove, that are important urban refuges for l<strong>and</strong>birds. The<br />

South Perth foreshore <strong>and</strong> its associated wetl<strong>and</strong>s are important for waterbirds.<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lower estuary by waterbirds has been recently studied to quantify <strong>the</strong> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> human<br />

disturbance (Bamford et al. 2003). Research has found that levels <str<strong>on</strong>g>of</str<strong>on</strong>g> use are highest in summer<br />

<strong>and</strong> are driven by tidal c<strong>on</strong>diti<strong>on</strong>s. During low tides, waders <strong>and</strong> many o<strong>the</strong>r waterbirds forage<br />

<strong>on</strong> <strong>the</strong> tidal mudfl ats at Alfred Cove, roosting <strong>on</strong> <strong>the</strong> s<strong>and</strong>bars at Alfred Cove <strong>and</strong> <strong>the</strong> beaches <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Milyu as <strong>the</strong> tide rises. Pelican Point, a former roosting site, is infrequently used due to high levels<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> disturbance. Some waders fl y to <strong>the</strong> lakes <str<strong>on</strong>g>of</str<strong>on</strong>g> Rottnest Isl<strong>and</strong> to roost at night. Black Swans <strong>and</strong>,<br />

to some extent ducks, forage <strong>on</strong> <strong>the</strong> sea-grass (Halophila sp.) beds at Alfred Cove, <strong>and</strong> both <strong>swan</strong>s<br />

<strong>and</strong> ducks rely <strong>on</strong> sources <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater such as drains at Alfred Cove <strong>and</strong> wetl<strong>and</strong>s <strong>on</strong> <strong>the</strong> South<br />

Perth foreshore.<br />

Waders require daily exposed mudfl ats to forage successfully. C<strong>on</strong>sequently, <strong>the</strong> tidal nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Swan River, with periods <str<strong>on</strong>g>of</str<strong>on</strong>g> persistent high water levels results in very low numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> waders. Regi<strong>on</strong>al<br />

c<strong>on</strong>diti<strong>on</strong>s also affect <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> waders <strong>and</strong> waterbirds in <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong>.<br />

The lakes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surrounding Swan Coastal Plain provide alternative foraging <strong>and</strong> roosting habitat,<br />

but are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten dry by mid-summer. In additi<strong>on</strong>, cycl<strong>on</strong>ic events in <strong>the</strong> arid z<strong>on</strong>e can create alternative<br />

wetl<strong>and</strong>s that attract waterbirds away from <strong>the</strong> coastal plain system.<br />

Higher water levels, leading to str<strong>on</strong>ger tidal infl uences upstream, reduced freshwater infl ow (reduced<br />

rainfall) <strong>and</strong> increased temperatures are <strong>the</strong> key <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> <str<strong>on</strong>g>impacts</str<strong>on</strong>g> that will affect birds<br />

in <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong>. Fur<strong>the</strong>r, <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> increased water levels <strong>and</strong> tidal infl uences<br />

will be enhanced by <strong>the</strong> reduced freshwater infl ow. These climatic variati<strong>on</strong>s will result in <str<strong>on</strong>g>change</str<strong>on</strong>g>s in<br />

salinity levels, sedimentati<strong>on</strong>, nutrient levels, vegetati<strong>on</strong>, trophic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> marine species, <strong>and</strong> pH<br />

levels. Fur<strong>the</strong>r, <str<strong>on</strong>g>change</str<strong>on</strong>g>s in development patterns surrounding <strong>the</strong> <strong>rivers</strong>, as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> both<br />

increased residential populati<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g>, will impact <strong>the</strong> Swan <strong>and</strong> Canning river system<br />

birds.<br />

Although increased sedimentati<strong>on</strong> in <strong>the</strong> mid to upper estuary may lead to <strong>the</strong> creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new tidal<br />

mudfl ats, a rise in sea level may see <strong>the</strong> decline <str<strong>on</strong>g>of</str<strong>on</strong>g> major tidal mudfl ats in <strong>the</strong> lower estuary. The<br />

Alfred Cove mudfl ats could <str<strong>on</strong>g>potential</str<strong>on</strong>g>ly exp<strong>and</strong> at <strong>the</strong> expense <str<strong>on</strong>g>of</str<strong>on</strong>g> samphire marshes. However, <strong>the</strong><br />

area into which mudfl ats can exp<strong>and</strong> is small comparative to <strong>the</strong> existing mudfl at spatial extent.<br />

Sedimentati<strong>on</strong> is not expected to increase in <strong>the</strong> lower estuary so <strong>the</strong>re is no reas<strong>on</strong> to expect <strong>the</strong><br />

existing mudfl ats to accrete <strong>and</strong> <strong>the</strong>refore maintain <strong>the</strong>ir current depth in relati<strong>on</strong> to <strong>the</strong> rising sea<br />

level. This loss <str<strong>on</strong>g>of</str<strong>on</strong>g> mudfl at will likely lead to an expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-grass beds, which will benefi t <strong>the</strong><br />

106


Black Swan <strong>and</strong> some ducks but will negatively impact waders, notably <strong>the</strong> internati<strong>on</strong>al migrants,<br />

for which <strong>the</strong> estuary is recognised as <str<strong>on</strong>g>of</str<strong>on</strong>g> signifi cance.<br />

The catastrophic loss <str<strong>on</strong>g>of</str<strong>on</strong>g> samphire marsh from <strong>the</strong> mid to lower estuary through <strong>the</strong> 1950s <strong>and</strong><br />

1960s is presumed to have led to <strong>the</strong> near disappearance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Sharp-tailed S<strong>and</strong>piper. The samphire<br />

at Alfred Cove is used for foraging <strong>and</strong> roosting by some waders <strong>and</strong> ducks, particularly during<br />

very high water levels. It is likely that such sheltered roosts will be lost but may be replaced in <strong>the</strong><br />

mid to upper estuary.<br />

Waders <strong>and</strong> o<strong>the</strong>r waterbirds roost <strong>on</strong> <strong>the</strong> s<strong>and</strong>bars at Alfred Cove, <strong>and</strong> <strong>the</strong> beaches at Milyu <strong>and</strong><br />

Pelican Point. During high tides, under existing c<strong>on</strong>diti<strong>on</strong>s, <strong>the</strong>se sites are lost <strong>and</strong> are <strong>the</strong>refore<br />

likely to disappear during moderate tides under c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> higher sea level. This will impact<br />

ducks, <strong>swan</strong>s, cormorants, pelicans <strong>and</strong> terns, as <strong>the</strong>se species rely <strong>on</strong> secure roosts. It is not<br />

known how <strong>the</strong> s<strong>and</strong>bars at Alfred Cove will be affected by a rise in sea level.<br />

Freshwater wetl<strong>and</strong>s (e.g. South Perth foreshore <strong>and</strong> minor storm water drains that feed freshwater<br />

into <strong>the</strong> <strong>rivers</strong>) are important watering points for <strong>the</strong> Black Swan <strong>and</strong> some duck species. Under<br />

scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> increased salinity, <strong>the</strong> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se watering points will increase. Unfortunately,<br />

<strong>the</strong>y are likely to be threatened by <strong>the</strong> rise in sea level.<br />

Freshwater reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>rivers</strong> provide a drought refuge for waterbirds during summer <strong>and</strong> autumn.<br />

Whilst <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> waterbirds, especially ducks, is not very high, <strong>the</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se upper<br />

reaches as a drought refuge is likely to increase with declining rainfall because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> impact <strong>on</strong><br />

nearby seas<strong>on</strong>al wetl<strong>and</strong>s. The predicted decline in freshwater envir<strong>on</strong>ments in <strong>the</strong> upper reaches<br />

under <str<strong>on</strong>g>climate</str<strong>on</strong>g> <str<strong>on</strong>g>change</str<strong>on</strong>g> scenarios is <strong>the</strong>refore <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern.<br />

In <strong>the</strong> lower to mid estuary, fringing riparian vegetati<strong>on</strong> <strong>and</strong> nearby upl<strong>and</strong> vegetati<strong>on</strong> will decline<br />

due to a rise in sea level <strong>and</strong> intrusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> salt water. In <strong>the</strong> upper reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>rivers</strong>, reduced<br />

freshwater fl ows will also result in a decline in fringing vegetati<strong>on</strong>. In both areas, <strong>the</strong> decline will<br />

have greatest impact <strong>on</strong> l<strong>and</strong>birds, as this fringing <strong>and</strong> nearby vegetati<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten <strong>the</strong> <strong>on</strong>ly envir<strong>on</strong>ment<br />

remaining in an o<strong>the</strong>rwise urban l<strong>and</strong>scape. Of particular c<strong>on</strong>cern are areas where <strong>the</strong> fringing<br />

vegetati<strong>on</strong> forms a wildlife corridor that may become fragmented due to <strong>the</strong> decline <strong>and</strong> death <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

shrubs <strong>and</strong> trees.<br />

In <strong>the</strong> mid to upper estuary, a decline in water quality could lead to problems such as toxic algae<br />

<strong>and</strong> a decline in benthic invertebrates, which would adversely affect waterbirds.<br />

107


Swan River Trust<br />

Street: Level 1, Hyatt Business Centre, 20 Terrace Road, East Perth<br />

Post: PO Box 6740 East Perth 6892<br />

Ph<strong>on</strong>e: (08) 9278 0900<br />

Fax: (08) 9325 7149<br />

Email: info@<strong>swan</strong>rivertrust.wa.gov.au<br />

Web: www.<strong>swan</strong>rivertrust.wa.gov.au<br />

Caring for <strong>the</strong> Swan <strong>and</strong> Canning <strong>rivers</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!