24.04.2014 Views

Impact of offshore wind generation on the Belgian high ... - KU Leuven

Impact of offshore wind generation on the Belgian high ... - KU Leuven

Impact of offshore wind generation on the Belgian high ... - KU Leuven

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore <str<strong>on</strong>g>wind</str<strong>on</strong>g> <str<strong>on</strong>g>generati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>the</strong><br />

<strong>Belgian</strong> <strong>high</strong> voltage grid<br />

Peter Van Roy, Joris Soens, Johan Driesen, R<strong>on</strong>nie Belmans<br />

Department Electrical Engineering ESAT/ELECTA (K.U.<strong>Leuven</strong>)<br />

Kasteelpark Arenberg 10<br />

B-3001 <strong>Leuven</strong>, Belgium<br />

Tel: +32 16 32 10 20 Fax: +32 16 32 19 85<br />

joris.soens@esat.kuleuven.ac.be<br />

http://www.esat.kuleuven.ac.be/electa/<br />

Summary<br />

Recently, various project developers have shown interest to c<strong>on</strong>struct large-scale <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore <str<strong>on</strong>g>wind</str<strong>on</strong>g> farms in <strong>the</strong><br />

<strong>Belgian</strong> part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North Sea. In this c<strong>on</strong>text, a multidisciplinary research project has been started up, to<br />

quantify <strong>the</strong> total potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore <str<strong>on</strong>g>wind</str<strong>on</strong>g> power in Belgium, taking into account physical, technological and<br />

ec<strong>on</strong>omical c<strong>on</strong>straints. As part <str<strong>on</strong>g>of</str<strong>on</strong>g> this project, load flow studies are executed to determine <strong>the</strong> maximum<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> power that can be injected at <strong>the</strong> coastal substati<strong>on</strong>s without overloading <strong>the</strong> <strong>high</strong> voltage grid. For<br />

this study, <strong>the</strong> data <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Belgium <strong>high</strong>-voltage grid and <strong>the</strong> main foreign substati<strong>on</strong>s and lines are used as<br />

input, toge<strong>the</strong>r with reference scenarios for load and <str<strong>on</strong>g>generati<strong>on</strong></str<strong>on</strong>g> patterns and cross-border power transits. The<br />

load flow calculati<strong>on</strong>s take <strong>on</strong>ly static regimes into account, and are d<strong>on</strong>e to assess <strong>the</strong> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> static voltage<br />

instability, system overload or (N-1)-uncertainty.<br />

The results show that, even with <str<strong>on</strong>g>wind</str<strong>on</strong>g> power plants that c<strong>on</strong>sume reactive power, no static voltage instabilities<br />

are expected. However, <strong>high</strong>-voltage lines from <strong>the</strong> coast towards <strong>the</strong> inland regi<strong>on</strong> may be c<strong>on</strong>gested as a<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore <str<strong>on</strong>g>wind</str<strong>on</strong>g> power. Depending <strong>on</strong> <strong>the</strong> circumstances, <strong>on</strong>ly 100 MW can be injected at <strong>the</strong> coastal<br />

substati<strong>on</strong>s without overloading <strong>the</strong> system. Therefore, <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore <str<strong>on</strong>g>wind</str<strong>on</strong>g> power will require<br />

investments in grid reinforcement, not <strong>on</strong>ly in <strong>the</strong> coastal regi<strong>on</strong> but especially more inland. Also <strong>the</strong> grid<br />

operator will have to take <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> new producti<strong>on</strong> into account. In Belgium, <strong>the</strong> grid operator is<br />

required to give priority dispatch to renewable producers over traditi<strong>on</strong>al producers, e.g. in case <str<strong>on</strong>g>of</str<strong>on</strong>g> incidents in<br />

<strong>the</strong> grid.<br />

1. Introducti<strong>on</strong><br />

Offshore <str<strong>on</strong>g>wind</str<strong>on</strong>g> <str<strong>on</strong>g>generati<strong>on</strong></str<strong>on</strong>g> proves to be a very promising c<strong>on</strong>tributi<strong>on</strong> towards <strong>the</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> renewable energy <strong>on</strong> a<br />

large scale. In Belgium, various project developers have shown interest to c<strong>on</strong>struct <str<strong>on</strong>g>wind</str<strong>on</strong>g> farms in <strong>the</strong> North Sea, with<br />

installed powers <str<strong>on</strong>g>of</str<strong>on</strong>g> several hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> megawatts. In this c<strong>on</strong>text, <strong>the</strong> <strong>Belgian</strong> Federal Office for Scientific, Technical<br />

and Cultural Affairs has set up a multidisciplinary research project, entitled Optimal Offshore Wind Energy Developments<br />

in Belgium 1 . It started at <strong>the</strong> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> 2002 and aims at quantifying <strong>the</strong> total potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore <str<strong>on</strong>g>wind</str<strong>on</strong>g> power in<br />

1 See http://www.esat.kuleuven.ac.be/electa/research/descripti<strong>on</strong>s/OffshoreWind.pdf


Belgium, taking into account physical, technical and ec<strong>on</strong>omical c<strong>on</strong>straints. As part <str<strong>on</strong>g>of</str<strong>on</strong>g> this project, <strong>the</strong> possible<br />

limitati<strong>on</strong>s that <strong>the</strong> existing <strong>Belgian</strong> <strong>high</strong>-voltage grid imposes <strong>on</strong> <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore <str<strong>on</strong>g>wind</str<strong>on</strong>g> power need to be<br />

identified. Load flow studies are d<strong>on</strong>e to assess <strong>the</strong> static impact <str<strong>on</strong>g>of</str<strong>on</strong>g> an <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore <str<strong>on</strong>g>wind</str<strong>on</strong>g> power injecti<strong>on</strong> <strong>on</strong> line loading,<br />

voltage level and (N-1)-safety. The result <str<strong>on</strong>g>of</str<strong>on</strong>g> this study is a set <str<strong>on</strong>g>of</str<strong>on</strong>g> values for <strong>the</strong> maximum amount <str<strong>on</strong>g>of</str<strong>on</strong>g> extra power that can<br />

be injected into <strong>the</strong> coastal substati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Belgian</strong> <strong>high</strong> voltage grid without overloading <strong>the</strong> system. The results will<br />

be discussed in this paper.<br />

2. Present <strong>Belgian</strong> Power system<br />

The total installed power in Belgium is ca. 15000 MW. The largest power plants are:<br />

- 4 nuclear power plants in Doel (2 x 400MW and 2 x 1000MW) and 3 in Tihange (3 x 1000MW)<br />

- around 40 c<strong>on</strong>venti<strong>on</strong>al fossil fuel plants (ranging from 30MW to 400MW)<br />

- 6 combined cycle (steam and gas) power plants (50 – 460 MW)<br />

- <strong>the</strong> pumped-storage stati<strong>on</strong> in Coo (1160MW)<br />

Figure 1 shows <strong>the</strong> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> main power plants in Belgium. They are geographically well spread over <strong>the</strong> country.<br />

The heaviest load c<strong>on</strong>centrati<strong>on</strong> is located in <strong>the</strong> regi<strong>on</strong> Antwerp – Brussels. In <strong>the</strong> western part <str<strong>on</strong>g>of</str<strong>on</strong>g> Flanders, at <strong>the</strong> coast<br />

regi<strong>on</strong>, <strong>the</strong> electrical c<strong>on</strong>sumpti<strong>on</strong> is ra<strong>the</strong>r low. With <strong>the</strong> power plants <str<strong>on</strong>g>of</str<strong>on</strong>g> Herdersbrug and, fur<strong>the</strong>r inland, Ruien, Gent-<br />

Ringvaart and Rodenhuize, <strong>the</strong>re is already overcapacity <str<strong>on</strong>g>of</str<strong>on</strong>g> power in Western Flanders, resulting in a net power flow from<br />

Western Flanders towards <strong>the</strong> Antwerp-Brussels regi<strong>on</strong>.<br />

Doel<br />

Herdersbrug<br />

Gent-Ringvaart<br />

Rodenhuize<br />

Kallo<br />

Schelle<br />

Vilvoorde<br />

Mol<br />

Genk-<br />

Langerlo<br />

Ruien<br />

Drogenbos<br />

Le Val<br />

Saint Ghislain<br />

Amercoeur<br />

Pér<strong>on</strong>nes<br />

M<strong>on</strong>ceau<br />

Nuclear power plant<br />

Plate-Taille<br />

C<strong>on</strong>venti<strong>on</strong>al fossil fuel plant<br />

Tihange<br />

Chooz (F)<br />

Awirs<br />

Coo<br />

Pumped storage plant<br />

Combined Cycle plant<br />

Figure 1: Main power plants in Belgium<br />

Figure 2 shows <strong>the</strong> <strong>high</strong>-voltage grid. It c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a 400 kV (and partially 220 kV) backb<strong>on</strong>e, and a transmissi<strong>on</strong> grid<br />

with voltage levels <str<strong>on</strong>g>of</str<strong>on</strong>g> 150 kV and 70 kV. There are border crossings at <strong>the</strong> 400 kV-level that c<strong>on</strong>nect <strong>the</strong> <strong>Belgian</strong> grid<br />

with <strong>the</strong> French and with <strong>the</strong> Dutch grid, and <strong>the</strong>re is also a 220 kV-c<strong>on</strong>necti<strong>on</strong> with Luxemburg. There is no direct<br />

c<strong>on</strong>necti<strong>on</strong> with Germany.


The lines coming from France (i.e. Avelin-Avelgem and to a lesser extent L<strong>on</strong>ny-Achène) are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten heavily loaded, due<br />

to ei<strong>the</strong>r a net electricity import from France to Belgium, but more <str<strong>on</strong>g>of</str<strong>on</strong>g>ten as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> loop flows: <strong>the</strong>se are physical flows<br />

through <strong>the</strong> <strong>Belgian</strong> grid that find <strong>the</strong>ir origin in internati<strong>on</strong>al power transacti<strong>on</strong>s between <strong>the</strong> neighbouring countries (as<br />

shown in Figure 3).<br />

There are three 150kV-substati<strong>on</strong>s at <strong>the</strong> coast: (from south to north: Koksijde, Slijkens and Zeebrugge). These three<br />

substati<strong>on</strong>s are <strong>the</strong> end points <str<strong>on</strong>g>of</str<strong>on</strong>g> two radial branches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 150kV grid. However, in order to have a str<strong>on</strong>ger 150kV-grid<br />

in <strong>the</strong> coastal regi<strong>on</strong>, <strong>the</strong> grid operator Elia has obtained <strong>the</strong> permits to make a 150kV-c<strong>on</strong>necti<strong>on</strong> between Koksijde and<br />

Slijkens.<br />

Koksijde<br />

Slijkens<br />

Zeebrugge<br />

400 kV<br />

220 kV<br />

150kV<br />

Figure 2: <strong>Belgian</strong> <strong>high</strong> voltage grid<br />

1 MW<br />

physical<br />

flow<br />

1 MW<br />

c<strong>on</strong>tract 2<br />

1 MW<br />

c<strong>on</strong>tract 1<br />

Figure 3: Loop flows through Belgium as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> internati<strong>on</strong>al power trading<br />

With <strong>the</strong> grid situati<strong>on</strong> described above, it can be expected that <strong>the</strong> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> already present overcapacity in<br />

Western Flanders, toge<strong>the</strong>r with <strong>the</strong> additi<strong>on</strong>al power injecti<strong>on</strong> from <str<strong>on</strong>g>wind</str<strong>on</strong>g> farms, may lead to c<strong>on</strong>gesti<strong>on</strong> <strong>on</strong> <strong>the</strong> lines


going in-land ( Figure 4). Especially <strong>the</strong> two parallel 150kV lines between Rodenhuize (near Gent) and Heimolen (near<br />

Antwerp) may suffer c<strong>on</strong>gesti<strong>on</strong>. This has been c<strong>on</strong>firmed by calculati<strong>on</strong>s, described below.<br />

Sites for 100 MW <str<strong>on</strong>g>wind</str<strong>on</strong>g>parks<br />

Planned grid<br />

extensi<strong>on</strong><br />

Zeebrugge<br />

(1)<br />

C<strong>on</strong>gesti<strong>on</strong><br />

Koksijde<br />

Slijkens<br />

(2)<br />

(3)<br />

Main power flow, 150 kV<br />

(4)<br />

Existing power plants<br />

(1) Herdersbrug<br />

(2) Gent-Ringvaart<br />

(3) Rodenhuize<br />

(4) Ruien<br />

Figure 4: Sites for <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore <str<strong>on</strong>g>wind</str<strong>on</strong>g> power, and main power flow<br />

3. Potential static impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore <str<strong>on</strong>g>wind</str<strong>on</strong>g> power<br />

The potential static impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore <str<strong>on</strong>g>wind</str<strong>on</strong>g> power <strong>on</strong> <strong>the</strong> <strong>Belgian</strong> grid can be: overloading, (N-1)-uncertainty or voltage<br />

instability.<br />

System overload occurs when <strong>the</strong> transmitted power through certain lines or transformers is above <strong>the</strong>ir capacity.<br />

System static voltage instability may be caused by a <strong>high</strong> reactive power demand <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>wind</str<strong>on</strong>g> turbine generators. Depending<br />

<strong>on</strong> <strong>the</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> generator system chosen, <strong>the</strong> reactive power demand (in MVAr) can be as <strong>high</strong> as 40% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> active power<br />

produced (in MW). Generally speaking, a <strong>high</strong> reactive power demand causes <strong>the</strong> system voltage to drop. By a static<br />

voltage stability study, <strong>the</strong> system voltage in steady state is investigated. For <strong>the</strong> calculati<strong>on</strong>s, a worst case scenario was<br />

used, i.e. <str<strong>on</strong>g>wind</str<strong>on</strong>g> turbines equipped with inducti<strong>on</strong> generators without compensati<strong>on</strong> for <strong>the</strong> <strong>high</strong> reactive power demand.<br />

(N-1)-safety means that any single element in <strong>the</strong> power system may fail without causing a successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r failures<br />

leading to a system collapse. Toge<strong>the</strong>r with avoiding c<strong>on</strong>stant overloading grid elements, (N-1)-safety is a main c<strong>on</strong>cern<br />

for <strong>the</strong> grid operator.<br />

Apart from static impacts, <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore <str<strong>on</strong>g>wind</str<strong>on</strong>g> farms may also have dynamic impacts <strong>on</strong> <strong>the</strong> grid, e.g. voltage transients during<br />

switching operati<strong>on</strong>s, unwanted disc<strong>on</strong>necti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> farm in case <str<strong>on</strong>g>of</str<strong>on</strong>g> a grid voltage disturbance etc. To assess <strong>the</strong>se<br />

impacts, more extensive calculati<strong>on</strong>s are necessary, using <strong>the</strong> dynamic data <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>wind</str<strong>on</strong>g> farm and also <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> most relevant<br />

generators <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Belgian</strong> grid.


4. Calculati<strong>on</strong> method<br />

The input data for <strong>the</strong> load flow calculati<strong>on</strong>s are grid data, load and producti<strong>on</strong> scenarios, and power transit scenarios.<br />

Grid Data<br />

The following grid data are included in <strong>the</strong> model:<br />

- all <strong>Belgian</strong> substati<strong>on</strong>s at <strong>the</strong> 400kV, 220kV, 150kV and 70kV level, toge<strong>the</strong>r with <strong>the</strong> main substati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

neighbouring countries;<br />

- full model <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Belgian</strong>, and part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> neighbouring <strong>high</strong> voltage system (400–70 kV)<br />

- rating and operati<strong>on</strong> status <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> installed capacitor banks at <strong>the</strong> 150kV and <strong>the</strong> 70kV level.<br />

The apparent power rating <str<strong>on</strong>g>of</str<strong>on</strong>g> a line depends <strong>on</strong> <strong>the</strong> seas<strong>on</strong>: it is slightly <strong>high</strong>er in winter than in summer due to <strong>the</strong> lower<br />

ambient temperature.<br />

Three grid topologies are c<strong>on</strong>sidered for <strong>the</strong> calculati<strong>on</strong>s:<br />

- <strong>the</strong> actual grid;<br />

- <strong>the</strong> actual grid with an additi<strong>on</strong>al link between Koksijde and Slijkens (which will be installed in <strong>the</strong> near future);<br />

- <strong>the</strong> actual grid with <strong>the</strong> link Koksijde-Slijkens and various reinforcements inland. These reinforcements imply<br />

an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> transmissi<strong>on</strong> capacity between Rodenhuize and Heimolen.<br />

Load and transit reference scenarios<br />

The load in <strong>the</strong> <strong>Belgian</strong> power system varies, and is modelled with 24 reference scenarios, 8 for each type <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>, as<br />

given in table 1. For instance, in summer, <strong>the</strong> overall load in Belgium varies from 6 GW in weekend nights to 10.5 GW<br />

during peak hours <strong>on</strong> weekdays. For each reference scenario, a proper number <str<strong>on</strong>g>of</str<strong>on</strong>g> power plants are assumed to be <strong>on</strong> line,<br />

with some random element.<br />

Loading, GW Summer Intermediate Winter<br />

Weekends night 6 7 8<br />

day low 7.25 8 9<br />

<strong>high</strong> 8.5 9 10<br />

Weekdays night low 8 8 9<br />

<strong>high</strong> 8.5 9 10<br />

day low 9 10 11<br />

<strong>high</strong> 10 11 12<br />

peak 10.5 12 13<br />

Table I : Load levels <str<strong>on</strong>g>of</str<strong>on</strong>g> reference scenarios<br />

Fur<strong>the</strong>rmore, <strong>the</strong> power transit from France to <strong>the</strong> Ne<strong>the</strong>rlands, partially passing through Belgium and partially through<br />

Germany, is taken into account. The power transit was modelled by an extra power flow from Avelin (F) to Avelgem (B)


and from L<strong>on</strong>ny (F) to Achène (B), and an extra power demand at <strong>the</strong> Dutch border nodes. Five power transit levels are<br />

c<strong>on</strong>sidered (T1-T5), in which <strong>the</strong> extra power injecti<strong>on</strong> from France ranges from 800 to 2000 MW in total.<br />

5. Results<br />

With <strong>the</strong> input data and reference scenarios described above, <strong>the</strong> maximum power that can be injected into <strong>the</strong> nodes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Zeebrugge or Slijkens, before system overload, (N-1)-uncertainty or voltage instability occurs, is calculated.<br />

Static voltage instability<br />

Even with <strong>the</strong> assumed worst case scenario (<str<strong>on</strong>g>wind</str<strong>on</strong>g> turbines equiped with inducti<strong>on</strong> generators with a <strong>high</strong> reactive power<br />

demand), static voltage stability problems <strong>on</strong>ly occurred at extreme levels <str<strong>on</strong>g>of</str<strong>on</strong>g> line overloading, i.e. at power flow levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

several times <strong>the</strong> rated capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lines. Therefore, static voltage stability is not relevant, compared with <strong>the</strong> system<br />

overload and (N-1)-uncertainty.<br />

System overload and (N-1)-uncertainty<br />

Table II,Table III and Table IV give <strong>the</strong> maximum active power injecti<strong>on</strong> in <strong>the</strong> 150-kV node at Slijkens, before overload<br />

or (N-1)-uncertainty occurs, for summer, intermediate and winter seas<strong>on</strong>s respectively. Results are given for <strong>the</strong> present<br />

grid, <strong>the</strong> grid with <strong>the</strong> planned Koksijde-Slijkens link, and with Koksijde-Slijkens plus inland grid reinforcement. A<br />

certain degree <str<strong>on</strong>g>of</str<strong>on</strong>g> variability in <strong>the</strong> results, as e.g. for <strong>the</strong> weekday scenarios in winter, with 11, 12 or 13 GW overall load,<br />

is due to <strong>the</strong> random nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> power plant commitment. In <strong>the</strong> 12 GW scenario, <strong>the</strong> power plant in Herdersbrug <strong>on</strong>ly<br />

operates at half power, causing less <str<strong>on</strong>g>of</str<strong>on</strong>g> an overproducti<strong>on</strong> in <strong>the</strong> Brugge-Gent regi<strong>on</strong>.<br />

Two limiting factors can be recognised:<br />

- During weekends and weeknights, <strong>the</strong> limiting factor in <strong>the</strong> present grid is simply <strong>the</strong> power line capacity from<br />

Slijkens to Brugge, i.e. 300 MW. With a local load in Slijkens, injecti<strong>on</strong> capacity can become 350 MW. With a<br />

c<strong>on</strong>necti<strong>on</strong> Koksijde-Slijkens, power can be transported to Koksijde, increasing <strong>the</strong> injecti<strong>on</strong> limit, up to 500<br />

MW (<strong>the</strong> <strong>high</strong>est value that was checked). The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extra transmissi<strong>on</strong> capacity fur<strong>the</strong>r inland (e.g.<br />

Rodenhuize-Heimolen) does not influence this limit.<br />

- Very <str<strong>on</strong>g>of</str<strong>on</strong>g>ten, lower limits are found. These are due to overloads fur<strong>the</strong>r inland, well bey<strong>on</strong>d Brugge and even<br />

bey<strong>on</strong>d Gent. This overload is <strong>on</strong>ly slightly alleviated by <strong>the</strong> Koksijde-Slijkens link. Obviously, <strong>the</strong> inland<br />

reinforcement does alleviate this overload.


Maximum power injecti<strong>on</strong> in Slijkens, summer scenarios [MW]<br />

Present grid<br />

Load level [GW] 6 7.25 8.5 8 8.5 9 10 10.5<br />

T1 300 300 300 300 300 150 150 150<br />

T2 300 300 300 250 300 100 100 100<br />

T3 300 300 300 200 300 50 50 50<br />

T4 300 300 250 200 250 - - -<br />

T5 300 300 250 150 200 - - -<br />

Grid with c<strong>on</strong>necti<strong>on</strong> Koksijde-Slijkens<br />

Load level [GW] 6 7.25 8.5 8 8.5 9 10 10.5<br />

T1 400 450 450 450 450 300 250 250<br />

T2 400 400 400 400 400 200 200 150<br />

T3 350 400 400 300 400 100 100 100<br />

T4 350 400 350 250 350 100 50 50<br />

T5 350 400 300 200 300 50 - -<br />

Grid with Koksijde-Slijkens and inland grid reinforcement<br />

Load level [GW] 6 7.25 8.5 8 8.5 9 10 10.5<br />

T1 400 400 400 450 400 450 450 450<br />

T2 400 400 400 450 400 450 450 450<br />

T3 350 400 400 400 400 450 450 450<br />

T4 350 400 400 400 400 450 450 450<br />

T5 350 400 400 400 400 450 400 400<br />

Table II: Maximum power injecti<strong>on</strong> in Slijkens, summer scenarios [MW]<br />

Maximum power injecti<strong>on</strong> in Slijkens, intermediate scenarios [MW]<br />

Present grid<br />

Load level [GW] 7 8 9 8 9 10 11 12<br />

T1 300 300 150 300 100 200 200 50<br />

T2 300 300 100 300 50 100 100 -<br />

T3 300 300 50 300 - 50 50 -<br />

T4 300 300 - 300 - 50 50 -<br />

T5 300 300 - 300 - - - -<br />

Grid with c<strong>on</strong>necti<strong>on</strong> Koksijde-Slijkens<br />

Load level [GW] 7 8 9 8 9 10 11 12<br />

T1 450 450 250 450 250 300 300 150<br />

T2 450 450 150 450 150 250 200 50<br />

T3 450 450 100 450 50 150 150 -<br />

T4 450 450 50 450 - 100 100 -<br />

T5 450 450 - 450 - 50 50 -<br />

Grid with Koksijde-Slijkens and inland grid reinforcement<br />

Load level [GW] 7 8 9 8 9 10 11 12<br />

T1 450 450 450 450 450 500 450 450<br />

T2 450 450 450 450 450 500 450 450<br />

T3 450 450 450 450 450 450 450 450<br />

T4 450 450 450 450 450 450 450 450<br />

T5 400 450 450 450 450 450 450 450<br />

Table III: Maximum power injecti<strong>on</strong> in Slijkens, intermediate scenarios [MW]


Maximum power injecti<strong>on</strong> in Slijkens, winter scenarios [MW]<br />

Present grid<br />

Load level [GW] 8 9 10 9 10 11 12 13<br />

T1 350 350 350 350 350 100 250 50<br />

T2 350 350 350 350 350 50 200 -<br />

T3 350 350 350 350 350 - 150 -<br />

T4 350 350 350 350 350 - 100 -<br />

T5 350 350 350 350 350 - 50 -<br />

Grid with c<strong>on</strong>necti<strong>on</strong> Koksijde-Slijkens<br />

Load level [GW] 8 9 10 9 10 11 12 13<br />

T1 500 500 500 500 500 200 400 150<br />

T2 500 500 500 500 500 150 300 50<br />

T3 500 500 500 500 500 50 250 -<br />

T4 450 500 500 500 500 - 200 -<br />

T5 450 500 500 500 500 - 150 -<br />

Grid with Koksijde-Slijkens and inland grid reinforcement<br />

Load level [GW] 8 9 10 9 10 11 12 13<br />

T1 500 500 500 500 500 550 500 550<br />

T2 500 500 500 500 500 550 500 500<br />

T3 450 500 500 500 500 500 500 500<br />

T4 450 500 500 500 500 500 500 500<br />

T5 450 500 500 500 500 500 500 500<br />

Table IV: Maximum power injecti<strong>on</strong> in Slijkens, winter scenarios [MW]<br />

The results for Zeebrugge are not shown here, as <strong>the</strong>y turned out to be very similar to those for Slijkens, c<strong>on</strong>firming that<br />

<strong>the</strong> main limiting factor is located bey<strong>on</strong>d Brugge. The main difference is <strong>the</strong> very limited beneficial effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Koksijde-Slijkens link. The maximum allowed power injecti<strong>on</strong> after grid improvements is slightly lower than for Slijkens,<br />

due to <strong>the</strong> already existing (small) power injecti<strong>on</strong> in Zeebrugge, loading <strong>the</strong> Zeebrugge-Brugge lines.<br />

Finally, <strong>the</strong> opti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> injecting <strong>the</strong> power partly in Slijkens and partly in Zeebrugge (in a 50/50 ratio) was studied. In those<br />

cases where <strong>the</strong> bottleneck is bey<strong>on</strong>d Brugge, results are again very similar to those in Table II, Table III and Table IV. In<br />

<strong>the</strong> o<strong>the</strong>r cases, i.e. mainly during weekends and weeknights, more than 500 MW can <str<strong>on</strong>g>of</str<strong>on</strong>g>ten be injected in normal grid<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

For Koksijde, it has been calculated that 300 MW (without Koksijde-Slijkens) up to 600 MW (with Koksijde-Slijkens and<br />

grid improvement inland) can be injected.<br />

6. C<strong>on</strong>clusi<strong>on</strong>s<br />

With <strong>the</strong> present grid and <strong>the</strong> presently existing power plants operating at <strong>the</strong>ir normal output level, <strong>on</strong>ly a very limited<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> power from <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore <str<strong>on</strong>g>wind</str<strong>on</strong>g> farms can be transported during weekdays, which is <strong>the</strong> period when electricity has<br />

<strong>the</strong> <strong>high</strong>est ec<strong>on</strong>omic value.<br />

It must be stressed that <strong>the</strong> possible cases <str<strong>on</strong>g>of</str<strong>on</strong>g> line overload and (N-1)-uncertainty are not <strong>on</strong>ly a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore <str<strong>on</strong>g>wind</str<strong>on</strong>g><br />

power. They are a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>:


- <strong>the</strong> already present net power flow from Western Flanders towards <strong>the</strong> Antwerp-Brussels regi<strong>on</strong>;<br />

- cross-border power transits;<br />

- <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore <str<strong>on</strong>g>wind</str<strong>on</strong>g> power.<br />

Without attaching too much importance to <strong>the</strong> precise values obtained here (calculati<strong>on</strong>s are based partly <strong>on</strong> precise<br />

informati<strong>on</strong>, partly <strong>on</strong> educated guesses and reference scenarios), it is clear that grid improvements are required to give<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fshore <str<strong>on</strong>g>wind</str<strong>on</strong>g> power a real chance in <strong>the</strong> market place. Often, <strong>the</strong>se improvements are not <strong>on</strong>ly at <strong>the</strong> coastal regi<strong>on</strong>, but<br />

also fur<strong>the</strong>r inland. Grid improvements inland would incidentally also allow <strong>high</strong>er transit levels.<br />

Finally, system operati<strong>on</strong> will have to take <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> new producti<strong>on</strong> into account. In Belgium, <strong>the</strong> grid operator<br />

is required to give priority dispatch to renewable producers over traditi<strong>on</strong>al producers, e.g. in case <str<strong>on</strong>g>of</str<strong>on</strong>g> incidents in <strong>the</strong> grid.<br />

7. Acknowledgements<br />

The authors wish to thank <strong>the</strong> <strong>Belgian</strong> Federal Office for Scientific, Technical and Cultural Affairs for <strong>the</strong> financial<br />

support <str<strong>on</strong>g>of</str<strong>on</strong>g> this project. Also <strong>the</strong> financial support <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> F<strong>on</strong>ds voor Wetenschappelijk Onderzoek (F.W.O.) – Vlaanderen<br />

is greatly acknowledged. J. Soens is a doctoral research assistant <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> F.W.O.-Vlaanderen. J. Driesen holds a<br />

postdoctoral research fellowship <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> F.W.O. Vlaanderen.<br />

The authors also wish to thank <strong>the</strong> <strong>Belgian</strong> grid operator Elia for <strong>the</strong>ir input in this project.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!