20.05.2014 Views

BG Fernandes Department of Electrical Engineering II T - Power ...

BG Fernandes Department of Electrical Engineering II T - Power ...

BG Fernandes Department of Electrical Engineering II T - Power ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

EE 660<br />

Application <strong>of</strong> <strong>Power</strong> Electronics<br />

in<br />

<strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

<strong>Department</strong> <strong>of</strong> <strong>Electrical</strong> <strong>Engineering</strong><br />

I. I. T Bombay<br />

bgf@ee.iitb.ac.in<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

1/454


• Introduction<br />

• Load Compensation<br />

Course Outline<br />

• Shunt Compensation<br />

• Series Compensation<br />

• HVDC Transmission<br />

Theory<br />

Equipment<br />

Theory<br />

Equipment<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

2/454


Books for Reference<br />

• T. J. E. Miller “Reactive power control in <strong>Electrical</strong><br />

system,” John Wiley & Sons, New York, 1982.<br />

• K. R. Padiyar “FACTS CONTROLLERS in <strong>Power</strong><br />

Transmission & Distribution,” New Age International<br />

(P) Ltd.,” 2007.<br />

• K. R. Padiyar “HVDC POWER TRANSMISSION<br />

SYSTEMS Technology and System Interactions,” New<br />

Age International (P) Ltd.,” 1990.<br />

• Hingorani N. G “Understanding FACTS Concepts &<br />

Technology <strong>of</strong> FACTS Systems,” IEEE PRESS, 2000.<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

3/454


Introduction<br />

“<strong>Power</strong> Electronics has grown as a major &<br />

extremely important discipline in <strong>Electrical</strong><br />

Engg.”<br />

• What are major applications <strong>of</strong> <strong>Power</strong><br />

Electronics ?<br />

• Major role in <strong>Power</strong> Transmission &<br />

Distribution<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

4/454


• Consumption <strong>of</strong> Electricity are Demanding<br />

Customers<br />

• Loss <strong>of</strong> <strong>Power</strong> for single cycle can make<br />

computer screen go blank<br />

• Can interrupt sensitive Electronic equipment<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

5/454


• Consumption <strong>of</strong> Electricity is also<br />

• Transmission lines are being operated close<br />

to their limits<br />

• <strong>Power</strong> is being transmitted through long<br />

overhead transmission lines & they are<br />

interconnected<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

6/454


• Thermal limit (depends on ambient<br />

conditions)<br />

• Voltage limit<br />

P<br />

THERMAL LIMIT<br />

• Stability limit<br />

Voltage and Stability<br />

Constraints<br />

SIL<br />

Distance<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

7/454


Type <strong>of</strong> conductors<br />

• Thermal limit No. <strong>of</strong> Conductors<br />

Ambient conditions<br />

• Voltage limitations<br />

• For typical 400 kV line Z c = 300 Ω<br />

SIL = 540 MW<br />

• For cable SIL is large<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

8/454


• Voltage pr<strong>of</strong>ile along the line is flat<br />

if P = SIL<br />

• If V S = V R = 1, V ↓ as we move towards<br />

the midpoint, if Ps > SIL<br />

P < SIL<br />

P = SIL<br />

V S<br />

P > SIL<br />

V R<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

9/454


• Line absorbs reactive power<br />

• V ↑ if P S < SIL<br />

• Voltage swell, line generates ‘Q’<br />

P, Q<br />

P, Q<br />

V s<br />

i s i R<br />

Transmission Line<br />

V R<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

10/454


• To control V R & ↑ power transfer capacity<br />

<strong>of</strong> the line, ‘Q’ generation is required at the<br />

receiving end<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

11/454


Q<br />

V<br />

2<br />

= ↓ As V R ↓<br />

X C<br />

‘Q’ requirement ↑ as V R ↓<br />

• Other limitations<br />

• ‘L’ required during over voltage<br />

• Separate ‘L’ & ‘C ’ are required<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

12/454


• High ‘V’ & high KVar source<br />

• 3-ph inverter can supply<br />

±<br />

Q<br />

• Requires only ΔP<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

13/454


O/P V => PWM<br />

• 2- level inverter<br />

• Harmonic spectrum depends on switching<br />

frequency (F S )<br />

• PWM<br />

Constant F S<br />

Variable F S => Not suitable<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

14/454


• What sort <strong>of</strong> PWM technique to use ?<br />

• With low switching frequency how to<br />

improve the harmonic spectrum<br />

• Do we need to change the power circuit<br />

configuration ?<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

15/454


Ρ =<br />

V<br />

S<br />

V<br />

X<br />

R<br />

Sinδ<br />

• To have sufficient stability margin max.<br />

length <strong>of</strong> line = 450 km<br />

• Provide shunt reactive power<br />

compensation, there by P↑ & maintain<br />

V pr<strong>of</strong>ile.<br />

• Use a mid point compensator<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

16/454


V = V = V =<br />

m S R<br />

V<br />

It can be shown, for loss- less line<br />

2V<br />

2 ⎛ δ ⎞<br />

P = Sin⎜<br />

⎟ = 2<br />

X ⎝ 2 ⎠<br />

P Uncompensated<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

17/454


• “If shunt compensation is applied at<br />

sufficient close interval, it may be possible to<br />

transmit power up to thermal limit <strong>of</strong> line”<br />

• P transmitted over long lines is limited by<br />

series reactance ‘X’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

18/454


Provide<br />

• Series capacitive compensation to cancel a<br />

portion <strong>of</strong> series ‘X’<br />

δ<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

19/454


V = V = 1pu<br />

S R<br />

P<br />

2<br />

V<br />

= 1<br />

( − K )<br />

X<br />

Sinδ<br />

K = Degree <strong>of</strong> compensation = X<br />

X C<br />

• C is not permanently connected in series<br />

• During fault condition, X eff should be<br />

increased<br />

• May require ‘L’ also<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

20/454


• Is it possible to change the phase angle<br />

difference between two ends <strong>of</strong> the line<br />

and there by control the power flow<br />

• “Phase angle regulator” ?<br />

• Inject a voltage in series with the line &<br />

proportional to the current flow (voltage<br />

should lag the I )<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

21/454


δ<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

22/454


• Injecting V in series with line and with<br />

any phase angle with respect to V S<br />

δ<br />

• Both magnitude & phase angle <strong>of</strong> I has<br />

changed<br />

• Both P & Q flow has changed<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

23/454


• Consider an AC network<br />

• <strong>Power</strong> flow in Line-1 & 2 depends on circuit<br />

conditions<br />

• Lower X line may be over loaded<br />

• Not possible to set the amount <strong>of</strong> power that<br />

should flow through a particular line!<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

24/454


• Definite amount <strong>of</strong> power that should flow<br />

through HVDC line can be set<br />

• If power transfer over long distances<br />

• Two near by areas having different<br />

frequencies ( Back to Back connection)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

25/454


Review<br />

• <strong>Power</strong> flow control through AC lines is not<br />

“FLEXIBLE”<br />

• Depending upon the loading, there could be<br />

voltage swell or sag as we go towards the<br />

mid point<br />

R+jX<br />

V 1<br />

V 2<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

26/454


• To control the power flow & to maintain<br />

voltage pr<strong>of</strong>ile, provide<br />

• Shunt compensation<br />

{<br />

Passive elements with<br />

P.E switches or<br />

• Series compensation Inverter<br />

• At Tr. voltage levels PWM with high<br />

switching frequency may not be possible<br />

• Modify the existing power circuit<br />

• Can we regulate the power flow by converting<br />

AC-DC-AC => HVDC Transmission ?<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

27/454


Introduction ( contd…)<br />

Load compensation<br />

• Loads are unbalanced<br />

• P.F is lagging<br />

No compensation<br />

<strong>of</strong> harmonics<br />

• Source should supply only active power &<br />

see a balanced load<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

28/454


• Most <strong>of</strong> the loads are Non-linear<br />

• Harmonics are generated<br />

• Voltage at P.C.C is non sinusoidal<br />

• P.F is lagging<br />

• Circuit to filter the harmonics (on-line) +<br />

compensate the loads<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

29/454


P.C.C<br />

→<br />

Point <strong>of</strong> common coupling<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

30/454


Current drawn by the load fed from P.E. equipment<br />

flows through system impedance.<br />

Voltage at P.C.C is non-sinusoidal<br />

(We had assumed that 'V' is sinusoidal).<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

31/454


2 3 ⎡ 1 1<br />

⎤<br />

i<br />

a= I0<br />

sinωt- sin5ωt+ sin7ωt-.............<br />

π ⎢<br />

5 7<br />

⎥<br />

⎣<br />

⎦<br />

= 6N ± 1 , Harmonics<br />

⇒ Line Commutated converter → causes notches<br />

in the source voltage waveform.<br />

→ Source current has harmonics.<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

32/454


Effect <strong>of</strong> harmonics:<br />

A. In the Rotating machine → Increases heating.<br />

→ They produce noise.<br />

→ Torque pulsations.<br />

B. In Transformers → Cu losses ↑ .<br />

→ Audible noise & heating.<br />

C. In Cables → Additional heating.<br />

D. P.F correction capacitors.<br />

→<br />

Thermal voltage stress.<br />

E. Electronic Equipments → Affects control system.<br />

→ Maloperation <strong>of</strong> relays.<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

33/454


• Load compensation + Active filter<br />

• Depending upon the voltage & power level,<br />

circuit configuration & control should<br />

change<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

34/454


Conclusions<br />

• Load compensator + Active filter to<br />

compensate non-linear loads<br />

• <strong>Power</strong> flow in AC network is determined by<br />

circuit conditions<br />

• <strong>Power</strong> transfer capability can be increased<br />

through shunt & series compensation<br />

• HVDC can be used for bulk power<br />

transmission & to inter connect the systems <strong>of</strong><br />

different frequencies<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

35/454


Load compensation<br />

• In ideal power system<br />

• V & F should be constant<br />

• V should be sinusoidal<br />

• P.F = 1<br />

• The above should be independent <strong>of</strong> size &<br />

characteristics <strong>of</strong> load<br />

• No interference between different loads<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

36/454


Notation <strong>of</strong> quality <strong>of</strong> supply<br />

• How nearly constant are V & F at the<br />

supply point ?<br />

• How near to unity is the P.F ?<br />

• In 3-ph system, degree to which V & I are<br />

balanced<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

37/454


• What are the characteristics <strong>of</strong> power system<br />

& loads which can deteriorate the quality <strong>of</strong><br />

supply ?<br />

• How to compensate ?<br />

Objectives <strong>of</strong> load compensation<br />

• <strong>Power</strong> factor correction<br />

• Improvement in voltage regulation<br />

• Load balancing<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

38/454


Ideal compensator<br />

• Correct the power factor to unity<br />

• Reduce the voltage regulation to an<br />

acceptable value<br />

• Balance the load current => not expected to<br />

compensate harmonics in V & I, also will<br />

not generate harmonics<br />

• Should consume zero avg. power<br />

• Response time = 0<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

39/454


Load requires P.F correction<br />

• Large no. <strong>of</strong> uncompensated industrial loads,<br />

P.F is less than 0.8 ( they are non linear also)<br />

• Arc furnace, induction furnace, steel rolling<br />

mills, large motor loads<br />

• ‘S’ rating <strong>of</strong> the compensator (P=0)<br />

P L<br />

=<br />

Q<br />

L<br />

=<br />

S<br />

L<br />

sinΦ<br />

L<br />

=<br />

S<br />

L<br />

2<br />

1−<br />

cos<br />

Φ<br />

L<br />

Ф L<br />

S L<br />

Q L<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

40/454


Voltage regulation<br />

• Which is the most important parameter <strong>of</strong> the<br />

load & supply system affects regulation ?<br />

E<br />

I S<br />

R S +jX S<br />

V<br />

I L<br />

S l = P L +jQ L<br />

Y L = G L +jB L<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

41/454


V reg<br />

=<br />

E<br />

−<br />

V<br />

V<br />

=<br />

E −V<br />

V<br />

No compensator I L = I S<br />

E<br />

ΔV = Z S<br />

I L<br />

V<br />

ΔV<br />

I S X S<br />

ΔV X<br />

I S R S<br />

ΔV R<br />

*<br />

L<br />

VI = P +<br />

L<br />

jQ<br />

L<br />

I L = I S<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

42/454


I<br />

L<br />

=<br />

P<br />

L<br />

−<br />

V<br />

jQ<br />

L<br />

ΔV<br />

=<br />

( R + jX )<br />

S<br />

S<br />

P<br />

L<br />

− jQ<br />

V<br />

L<br />

=<br />

R<br />

S<br />

P<br />

L<br />

+ Q<br />

V<br />

L<br />

X<br />

S<br />

+<br />

j<br />

X<br />

S<br />

P<br />

L<br />

−<br />

V<br />

R<br />

S<br />

Q<br />

L<br />

= ΔV<br />

+ jΔV R X<br />

• Change depends on both active & reactive<br />

power <strong>of</strong> the load<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

43/454


Adding a compensator in parallel with load<br />

E<br />

So that E = V<br />

I S<br />

Replace Q L by<br />

R S +jX S<br />

V<br />

E<br />

Q = Q +<br />

2<br />

S<br />

Such that<br />

=<br />

L<br />

Q<br />

C<br />

( V + Δ ) 2<br />

+ ( Δ ) 2<br />

V R<br />

V X<br />

I L<br />

I C<br />

=<br />

⎧ RS<br />

PL<br />

+ Q<br />

⎨V<br />

+<br />

⎩ V<br />

S<br />

X<br />

S<br />

⎫<br />

⎬<br />

⎭<br />

2<br />

+<br />

⎧<br />

⎨<br />

⎩<br />

X<br />

S<br />

P<br />

L<br />

−<br />

V<br />

R<br />

S<br />

Q<br />

S<br />

⎫<br />

⎬<br />

⎭<br />

2<br />

−<br />

−(<br />

A)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

44/454


Vary Q S => ΔV rotates till<br />

E =<br />

V<br />

Solve (A) with<br />

E = V<br />

E<br />

jI S X S<br />

I C<br />

ΔV<br />

• There is always a<br />

solution for Q C for any<br />

value <strong>of</strong> P<br />

I S<br />

V<br />

I S R S<br />

I L<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

45/454


• If the compensation is used to make<br />

P.F unity then<br />

ΔV<br />

=<br />

R<br />

P<br />

S L<br />

+<br />

V<br />

jX<br />

S<br />

P<br />

L<br />

=<br />

( )<br />

P<br />

R jX V<br />

S<br />

+<br />

S<br />

L<br />

• Independent <strong>of</strong> Q L<br />

• Not under the control <strong>of</strong> compensator<br />

• Passive reactive compensator can not<br />

maintain constant V & unity P.F at the same<br />

time<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

46/454


• Approximate relationship for voltage regulation<br />

Short circuit at the load bus<br />

S = P + jQ = EI =<br />

SC<br />

SC<br />

Z = R +<br />

SC S<br />

*<br />

SC<br />

Z SC<br />

Z =<br />

SC<br />

jX<br />

S ,<br />

*<br />

SC<br />

E<br />

Z<br />

2<br />

*<br />

SC<br />

I SC → S.C Current<br />

R<br />

X<br />

S<br />

S<br />

2<br />

E<br />

= Z<br />

SC<br />

cos Φ<br />

SC<br />

= cos Φ<br />

S<br />

SC<br />

2<br />

E<br />

= Z<br />

S<br />

sin Φ<br />

SC<br />

= sin<br />

S<br />

SC<br />

Φ<br />

SC<br />

SC<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

47/454


• Change in V influenced by ΔV R<br />

• Neglect ΔV X<br />

RS<br />

PL<br />

+<br />

ΔVR<br />

=<br />

V<br />

ΔV<br />

V<br />

R<br />

=<br />

P<br />

L<br />

Assume<br />

Z<br />

Sc<br />

E<br />

V<br />

Q<br />

L<br />

cosΦ<br />

≈ 1<br />

X<br />

SC<br />

S<br />

+ QLZ<br />

V<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

SC<br />

sinΦ<br />

Z<br />

SC<br />

=<br />

2 L SC L<br />

V<br />

1<br />

= PL<br />

cosΦ<br />

SC<br />

+ QL<br />

sin Φ<br />

S<br />

SC<br />

SC<br />

{ P cosΦ<br />

+ Q sin Φ }<br />

SC<br />

{ }<br />

SC<br />

V<br />

E<br />

ΔV R<br />

ΔV X<br />

48/454


• If short circuit resistance <strong>of</strong> source=0<br />

=> CosФ SC = 0<br />

ΔV =<br />

V<br />

Q<br />

S<br />

L<br />

SC<br />

E −V<br />

V<br />

=<br />

Q<br />

S<br />

L<br />

SC<br />

⎡<br />

E V ⎢1<br />

+<br />

⎣<br />

V<br />

Q<br />

= L<br />

S<br />

SC<br />

⎡<br />

⎢1<br />

+<br />

⎣<br />

Q<br />

= L<br />

E<br />

S<br />

SC<br />

≈<br />

⎡<br />

E ⎢1<br />

−<br />

⎣<br />

Q<br />

S<br />

L<br />

SC<br />

⎤<br />

⎥<br />

⎦<br />

⎤<br />

⎥<br />

⎦<br />

⎤<br />

⎥<br />

⎦<br />

−1<br />

Slope = -E/S SC<br />

V<br />

ΔV<br />

Q L<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

49/454


Load balancing<br />

• Assume all loads are fully compensated for<br />

reactive VA<br />

V<br />

V<br />

V<br />

ab<br />

bc<br />

ca<br />

I<br />

I<br />

I<br />

a<br />

b<br />

c<br />

=<br />

=<br />

=<br />

V<br />

V<br />

V<br />

L<br />

L<br />

L<br />

ca<br />

∠<br />

0,<br />

∠ −<br />

∠120<br />

bc<br />

120<br />

ab<br />

bc<br />

,<br />

=<br />

ab<br />

−<br />

ca V ca<br />

V ab<br />

=<br />

=<br />

I<br />

I<br />

I<br />

−<br />

−<br />

I<br />

I<br />

I<br />

V bc<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

50/454


I<br />

a<br />

=<br />

V<br />

R<br />

ab<br />

Vca<br />

−<br />

jX<br />

VL∠0 V∠120<br />

VL∠0<br />

V∠30<br />

= − = −<br />

R jX R X<br />

=<br />

=<br />

V<br />

V<br />

L<br />

L<br />

⎧ 1<br />

⎨<br />

⎩ R<br />

⎧ 1<br />

⎨<br />

⎩ R<br />

−<br />

−<br />

1<br />

X<br />

3<br />

2X<br />

( cos 30 + j sin 30)<br />

−<br />

2<br />

j<br />

X<br />

⎫<br />

⎬<br />

⎭<br />

⎫<br />

⎬<br />

⎭<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

51/454


I<br />

c<br />

I<br />

b<br />

=<br />

=<br />

Vbc<br />

− jX<br />

Vca<br />

jX<br />

−<br />

V<br />

−<br />

R<br />

Vbc<br />

− jX<br />

ab<br />

=<br />

=<br />

=<br />

=<br />

V<br />

L<br />

V L<br />

V L<br />

V<br />

VL∠30<br />

V∠ − 30<br />

= −<br />

X R<br />

VL<br />

= j − − − (3)<br />

X<br />

L<br />

∠ −120 VL∠0<br />

−<br />

− jX R<br />

∠30<br />

V −<br />

X R<br />

⎧ 3<br />

⎨<br />

⎩ 2 X<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

−<br />

∠120<br />

jX<br />

1<br />

R<br />

−<br />

−<br />

V<br />

L<br />

2<br />

j<br />

X<br />

⎫<br />

⎬<br />

⎭<br />

− − −<br />

∠ −120<br />

− jX<br />

(2)<br />

52/454


I b<br />

= I c<br />

∠120<br />

⎛<br />

⎜<br />

⎝<br />

3<br />

2X<br />

−<br />

1<br />

R<br />

⎞<br />

⎟<br />

⎠<br />

−<br />

2<br />

j<br />

X<br />

=<br />

j<br />

X<br />

⎛<br />

⎜<br />

−<br />

⎝<br />

1<br />

2<br />

+<br />

j<br />

3<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

⎛<br />

⎜<br />

⎝<br />

3 1 ⎞ 3<br />

− ⎟ = −<br />

2X R<br />

⎠ 2X<br />

X = 3R<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

53/454


Review<br />

• Using passive reactive element, it is possible to<br />

achieve ΔV = 0<br />

• ΔV X has negligible effect on ΔV<br />

• Determined by ΔV R (≠ i S R S )<br />

E<br />

E<br />

V<br />

ΔV<br />

I S X S<br />

ΔV X<br />

V<br />

ΔV R<br />

ΔV X<br />

I L = I S<br />

I S R S<br />

ΔV R<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

54/454


Contd..<br />

• Using passive reactive element it is not<br />

possible to have ΔV=0 & P.F =1<br />

• Load balancing<br />

• All three line currents are balanced if<br />

X = 3R<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

55/454


Load balancing (Contd..)<br />

I<br />

a<br />

= V<br />

L<br />

⎧<br />

⎨<br />

⎩<br />

1<br />

2<br />

R<br />

−<br />

j<br />

2<br />

1 ⎫<br />

⎬<br />

3R<br />

⎭<br />

3R<br />

∠ − 30<br />

⎧ 1 1 ⎫ VL<br />

Ib<br />

= VL<br />

⎨−<br />

− j ⎬ = ∠210<br />

⎩ 2R<br />

2 3R<br />

⎭ 3R<br />

1 ⎫<br />

⎨<br />

⎧ V<br />

= 0 +<br />

L<br />

Ic<br />

VL<br />

j ⎬ = ∠90<br />

⎩ 3R<br />

⎭ 3R<br />

• Rule: For the load connected between line a-b,<br />

capacitor should be connected between b-c, and<br />

Inductor should be connected between c-a<br />

=<br />

V<br />

L<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

56/454


Comments<br />

• Branch currents <strong>of</strong> Δ are unbalanced<br />

• Reactive power is balanced within Δ<br />

• Reactive power generated by C connected<br />

between line b & c = Q is absorbed by L<br />

connected between c & a<br />

• If the load is<br />

ab<br />

L<br />

ab<br />

L<br />

Y = G +<br />

jB<br />

ab<br />

L<br />

• Compensating susceptance<br />

B<br />

ab<br />

C<br />

=<br />

−B<br />

ab<br />

L<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

57/454


• Each branch <strong>of</strong> Δ will have 3-parallel<br />

compensating susceptances<br />

B<br />

ab<br />

C<br />

= −B<br />

ab<br />

L<br />

+<br />

⎛<br />

⎜<br />

⎝<br />

G<br />

ca<br />

L<br />

− G<br />

3<br />

bc<br />

L<br />

⎞<br />

⎟<br />

⎠<br />

B<br />

bc<br />

C<br />

= −B<br />

bc<br />

L<br />

+<br />

⎛<br />

⎜<br />

⎝<br />

G<br />

ab<br />

L<br />

− G<br />

3<br />

ca<br />

L<br />

⎞<br />

⎟<br />

⎠<br />

B<br />

ca<br />

C<br />

= −B<br />

ca<br />

L<br />

+<br />

⎛<br />

⎜<br />

⎝<br />

G<br />

bc<br />

L<br />

− G<br />

3<br />

ab<br />

L<br />

⎞<br />

⎟<br />

⎠<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

58/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

59/454


Observations<br />

• Any linear unbalanced 3-Ф load can be<br />

transformed into a equal 3-Ф balanced load<br />

• Net real power is the same<br />

• Corresponding elements are purely reactive<br />

X =<br />

R<br />

3<br />

Corresponding to power<br />

consumed by the load<br />

As the power varies, X also should change<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

60/454


• May not be possible<br />

• Most <strong>of</strong> the loads are non-linear =><br />

Harmonics + lagging P.F<br />

P.F ≠ cos<br />

I<br />

V<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

61/454


P<br />

=<br />

VC1V<br />

X<br />

S<br />

sinδ<br />

If δ = 0<br />

If<br />

V<br />

C1<br />

> V S<br />

I C1<br />

V S V C1<br />

jωLI C1<br />

• I C1 is leading V S<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

62/454


• Can be shown that if<br />

V <<br />

C1<br />

V<br />

S<br />

• I c1 is lagging<br />

Q<br />

=<br />

V<br />

S<br />

I<br />

C1<br />

⇒<br />

V<br />

S<br />

⎛<br />

⎜<br />

⎝<br />

V<br />

S<br />

−V<br />

ωL<br />

C1<br />

⎞<br />

⎟<br />

⎠<br />

V α<br />

C 1<br />

mV dc<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

63/454


I C1<br />

• Non ideal case<br />

V S<br />

δ<br />

• Var generated α m<br />

α V dc<br />

V C1<br />

jωLI C1<br />

I C1 R<br />

V C1<br />

δ<br />

V S<br />

I C1<br />

jωLI C1<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

64/454


• M => Magnitude <strong>of</strong> sine wave (not very popular)<br />

• Magnitude <strong>of</strong> space vector<br />

• T1 & T2 are to be determined<br />

T<br />

T<br />

1<br />

2<br />

sin(60 −θ<br />

)<br />

= m<br />

sin 60<br />

sinθ<br />

= TC<br />

m<br />

sin 60<br />

. T<br />

c<br />

Intelligent controller<br />

is required<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

65/454


• Vary V dc<br />

• Var supplied α V dc<br />

• Var generated is<br />

controlled by varying<br />

V C1 & i C1<br />

• O/P voltage <strong>of</strong> inverter<br />

• Indirect current controller Synchronous link<br />

converter Var compensator (SLCVC) or<br />

STATCOM<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

66/454


Review<br />

• Linear lagging load can be balanced using<br />

passive elements<br />

• Difficult to realize in<br />

real life<br />

bc<br />

Y L<br />

ca<br />

Y L<br />

• Use V.S.I to supply ‘Q’<br />

bc<br />

B C<br />

ab<br />

B C<br />

ca<br />

B C<br />

ab<br />

Y L<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

67/454


Contd..<br />

• Similar to over-excited<br />

Syn. motor on No-load<br />

• Draws only small ‘P’<br />

• ‘δ’ is very small<br />

δ<br />

E<br />

V<br />

• In V.S.I δ =<br />

V C1<br />

V S<br />

• ‘V C1 ’ is synthesized using PWM<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

68/454


Contd..<br />

• If space vector PWM is<br />

used at the Z.C instant <strong>of</strong><br />

supply voltage, V S* should<br />

lag by angle ‘δ’<br />

• In sinusoidal PWM<br />

technique, fundamental<br />

component <strong>of</strong> V C1 is in<br />

phase with modulating<br />

wave<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

69/454


Harmonic elimination Techniques<br />

Undesirable harmonics can be eliminated<br />

and fundamental can be controlled by creating<br />

notches at pre-determined angles<br />

• At the Z.C <strong>of</strong> supply voltage, modulating<br />

wave should lag by ‘δ’<br />

⇒<br />

1<br />

4<br />

If 'n' switchings / cycle<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

70/454


⇒ (n-1) harmonics are<br />

eliminated & magnitude<br />

<strong>of</strong> fundamental can be<br />

controlled<br />

⇒ 4 switchings /(1/4) cycle<br />

(α 1 , α 2 , α 3 , α 4 )<br />

α 1 < α 2 < α 3 < α 4 < π/2<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

71/454


• 3 significant harmonics = 0<br />

• Fundamental can be controlled<br />

• Square wave has quarter wave odd symmetry<br />

• Coefficient <strong>of</strong> the fundamental & harmonic<br />

components are given by<br />

b<br />

n<br />

m<br />

4 ⎧<br />

= ⎨1<br />

+ 2∑<br />

nπ<br />

⎩ k = 1<br />

( )<br />

k<br />

−1<br />

cos( nα<br />

) ⎬ ⎫<br />

⎭<br />

k<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

72/454


• Assume that there are 5 switchings / (1/4) cycle<br />

• 4 harmonics can be made zero<br />

• In 3 phase, 3 wire system, triple harmonics<br />

can be ignored<br />

• So harmonics to be eliminated are 5 th , 7 th ,<br />

11 th and 13 th<br />

4<br />

b1 = {1 − 2cosα1<br />

+ 2cosα<br />

2<br />

− 2cosα3<br />

π<br />

+ 2cosα 4<br />

− 2cosα5}<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

73/454


4<br />

b<br />

5<br />

= {1-2cos5 α1+2cos5α2-2cos5 α3+2cos5α4<br />

5π<br />

-2cos5 α5<br />

} = 0<br />

4<br />

b<br />

7<br />

= {1-2cos7 α1+2cos7α2-2cos7α3<br />

7π<br />

+2cos7α4-2cos7 α5<br />

} = 0<br />

4<br />

b<br />

11<br />

= {1-2cos11 α1+2cos11 α2........................<br />

11π<br />

-2cos11 α5<br />

} = 0<br />

4<br />

b<br />

13<br />

= {1-2cos13 α1+2cos13 α2........................<br />

13π<br />

-2cos13 α5<br />

} = 0<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

74/454


• Non-linear transcendental equations<br />

• Solve numerically<br />

• Choose required value for b 1<br />

⇒ Fundamental component<br />

α 1 = 10.514, α 2 = 23.228, α 3 = 29.289,<br />

α 4 = 46.421, α 5 = 50.157<br />

b 1 = 0.986 p.u.<br />

• Immediate dominant harmonic ‘V’ gets<br />

amplified<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

75/454


• Var supplied α V dc<br />

• Var generated is<br />

controlled by varying<br />

V C1 or i C1<br />

• O/P voltage <strong>of</strong> inverter<br />

• Indirect current controller Synchronous link<br />

converter Var compensator (SLCVC) or<br />

STATCOM<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

76/454


How to calculate Ref. Var ?<br />

i<br />

=<br />

I<br />

m<br />

( ωt<br />

− Φ) & V V cosωt<br />

cos =<br />

m<br />

= I<br />

P<br />

cos ωt<br />

+<br />

Multiply by cosωt<br />

I<br />

q<br />

sin<br />

ωt<br />

∴i<br />

=<br />

=<br />

I<br />

P<br />

I<br />

2<br />

P<br />

ω<br />

cos 2 t +<br />

I<br />

q<br />

sin<br />

ω<br />

t.<br />

cos<br />

( )<br />

q<br />

1−<br />

cos 2ωt<br />

+ sin 2 t<br />

I<br />

2<br />

ω<br />

ωt<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

77/454


• Use a low pass filter ⇒ I P /2 ≈ average<br />

• Remaining ⇒ Reactive power<br />

• Limitations: Response time is poor<br />

⇒ min. one cycle<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

78/454


Controlled current SLCVC<br />

• Compensator current is actually sensed &<br />

controlled to follow the reference<br />

• Source should supply<br />

active component <strong>of</strong> load<br />

current + compensate<br />

inverter loss<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

79/454


• Reactive component <strong>of</strong> load current (i qL )<br />

should come from inverter<br />

i C<br />

= i PC + i qL<br />

i qL ⇒ obtained from Var calculator<br />

i PC ⇒ Accounts for loss<br />

• If there is a mismatch in power supply and<br />

consumed ⇒ V dC will change<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

80/454


Control strategy -I<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

81/454


• To ↑i C close S 4 & S 3 , To ↓i C open S 4 & S 3<br />

• Response is fast<br />

• Switching frequency<br />

varies<br />

• Var calculator is<br />

required<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

82/454


Review<br />

• In harmonic elimination technique, if there are<br />

‘n’ switchings / (¼) cycle, (n-1) harmonics can be<br />

eliminated & fundamental can be controlled<br />

⇒ If ‘F’ <strong>of</strong> pre-dominant harmonic is > 2kHz<br />

at 50Hz, up to 40 th harmonic should be absent<br />

⇒ 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37<br />

⇒ 12 harmonics should be eliminated<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

83/454


Contd..<br />

• 13 switchings / (¼ ) cycle<br />

• 13 non linear transdential equations to be<br />

solved<br />

• H. S. Patel & R. G. H<strong>of</strong>t “Generalized<br />

technique <strong>of</strong> harmonic elimination and voltage<br />

control in thyristor inverters,” Part-1 harmonic<br />

elimination., IEEE Trans. Ind. Applicat., vol.<br />

IA-9, pp 310-317, May 1973.<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

84/454


Contd..<br />

Controlled current SLCVC<br />

• Compensator current<br />

i C = i PC + i qL ⇒<br />

sinusoidal if load is<br />

linear<br />

• If i qL has the<br />

information about the<br />

non-linear, ⇒ i C is non<br />

- sinusoidal<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

85/454


Control strategy -<strong>II</strong><br />

• Sense source current i S<br />

⇒ Compare with sinusoidal reference current i S<br />

*<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

86/454


• i S * is in phase with v S<br />

• i S is also in phase with v S<br />

• V dC is held constant<br />

• All the active power is supplied by the source<br />

• Rest (‘Q’ + Harmonic I) supplied by inverter<br />

• i S = i L + i C<br />

⇒ To ↑i S , ↑ i C<br />

⇒ To ↓ i S , ↓i C<br />

}<br />

Using inverter switchings<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

87/454


How <strong>of</strong>ten i S* is changed ?<br />

• Once in every cycle<br />

• If active power demand <strong>of</strong> the load has changed<br />

in between +ve Zero crossings<br />

• <strong>Power</strong> is supplied by inverter<br />

⇒ V dC will ↓<br />

• V dC > V m ⇒ peak <strong>of</strong> V S<br />

⇒ Large size ‘C’ is required<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

88/454


• If Inverter i S * is changed in between the cycle<br />

• Source ‘I’ will have a DC component<br />

• Smaller size ‘C’ may be sufficient<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

89/454


• Current control is suitable for low power<br />

• For high power loads switching ‘F’ ↓<br />

• Inverter ⇒ Voltage control<br />

• Harmonic spectrum is inferior<br />

• Load current has harmonics<br />

• In addition inverter with voltage control<br />

also generates harmonics<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

90/454


• Use two compensators & connect them in<br />

parallel<br />

• Var generator ⇒ High power inverter<br />

• High V & high I<br />

• Harmonic filter ⇒ Low power inverter<br />

• Switching frequency is high<br />

• Since low power, use current controlled<br />

PWM technique<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

91/454


Active filter +Var compensator for high power<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

92/454


• Main compensator ⇒ Voltage control mode<br />

• Aux. compensator ⇒ controlled current mode<br />

• Generate i ref ⇒ ref. I <strong>of</strong> suitable magnitude &<br />

in phase with source V<br />

• Force i S = i Cm + i Cx + i L to follow the reference<br />

within a hysterisis band<br />

• Error decides the switching instant <strong>of</strong> aux.<br />

compensator devices<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

93/454


• To ↑ i S , ↑ i Cx ⇒ close S 4 & S 3<br />

• To ↓ i S , ↓ i Cx ⇒ open S 4 & S 3<br />

• Now i ref = i L(p) + i Cm(p)<br />

Where i L(p) = Real component <strong>of</strong> load I<br />

i Cm(p) = Real component <strong>of</strong> the main<br />

compensator current<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

94/454


i<br />

Cm1<br />

=<br />

V<br />

S<br />

−VCm<br />

1∠ −δ<br />

Z∠θ<br />

=<br />

( V − mV cosδ<br />

)<br />

S<br />

dC<br />

+<br />

Z∠θ<br />

jKV<br />

dC<br />

sinδ<br />

I<br />

Cm1<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

I<br />

2<br />

Cm1<br />

p(<br />

real )<br />

2<br />

+<br />

I<br />

2<br />

Cm1<br />

p(<br />

q)<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

95/454


Control block diagram<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

96/454


• Var calculator determines V<br />

*<br />

dc (‘m’ is constant)<br />

V dc * - V dc ⇒ determines δ<br />

• µC ⇒ determines i ref using I p , δ, V dC & V S<br />

• Compare i S & i ref to generate switching<br />

signals for aux. inverter<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

97/454


• For low power<br />

Review<br />

Var generator + Active filter<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

98/454


Contd..<br />

• For high power<br />

application<br />

Use high power inverter<br />

for Var generation<br />

To compensate harmonics<br />

use active filter<br />

• Used Var calculator to<br />

determine ‘Q’ required by<br />

the load<br />

• Linear load is assumed<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

99/454


3-Phase to 2-phase conversion<br />

[v] = [z] [i]<br />

[v'] = [z'] [i']<br />

[v] = [A] [v']<br />

[i] = [A] [i']<br />

[v] = [z] [i]<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

100/454


[A] [v'] = [z] [A] [i']<br />

[v'] = [A] -1 [z] [A] [i]<br />

Z'<br />

⇒ Inverse should exist<br />

p = i 1 v 1 + i 2 v 2 + i 3 v 3 = [i] t [v]<br />

p' = i 1 'v 1 ' + i 2 'v 2 '+ i 3 'v 3 '<br />

= [i'] t [v']<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

101/454


p = p'<br />

[i t ][v] = { [A] [i'] } t [A] [v']<br />

= [i'] t [A] t<br />

[A] [v']<br />

[U] ⇒ Unit matrix<br />

[A] t = [A -1 ] or [A] = [A] t<br />

-1<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

102/454


Vector representation <strong>of</strong> instantaneous<br />

3-phase quantities<br />

• 3-current vectors ⇒ one vector ⇒ space vector<br />

i S = K[i a + i b e j2π/3 + i c e -j2π/3 ]<br />

Has 2-components ⇒ (α, β)<br />

i α = K d [i a -(1/2) i b –(1/2) i c ]<br />

i β = K q [0 + √3/2 i b - √3/2 i c ]<br />

i 0 = K 0 [i a + i b + i c ]<br />

i β<br />

i b<br />

i a<br />

i C<br />

i α<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

103/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

104/454<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

−<br />

−<br />

=<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

c<br />

b<br />

a<br />

q<br />

q<br />

d<br />

d<br />

d<br />

i<br />

i<br />

i<br />

K<br />

K<br />

K<br />

K<br />

K<br />

K<br />

K<br />

K<br />

i<br />

i<br />

i<br />

0<br />

0<br />

0<br />

0<br />

2)<br />

3<br />

(<br />

2)<br />

3<br />

(<br />

0<br />

2)<br />

1<br />

(<br />

2)<br />

1<br />

(<br />

β<br />

α<br />

[C]<br />

[ ]<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

−<br />

−<br />

=<br />

−<br />

0<br />

0<br />

0<br />

1<br />

3<br />

1<br />

3<br />

1<br />

3<br />

1<br />

3<br />

1<br />

3<br />

1<br />

3<br />

1<br />

3<br />

1<br />

0<br />

3<br />

2<br />

K<br />

K<br />

K<br />

K<br />

K<br />

K<br />

K<br />

K<br />

C<br />

q<br />

d<br />

q<br />

d<br />

d


[ C]<br />

t<br />

=<br />

⎡<br />

⎢<br />

⎢−<br />

⎢<br />

⎣−<br />

(1<br />

(1<br />

K<br />

d<br />

2) K<br />

2) K<br />

d<br />

d<br />

(<br />

( −<br />

3<br />

3<br />

0<br />

2) K<br />

q<br />

2) K<br />

q<br />

K<br />

K<br />

K<br />

0<br />

0<br />

0<br />

⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

If K d = K q = 2/3 & K 0 =√2/3<br />

[C] -1 = 3/2 [C] t<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

105/454


⎡i<br />

⎢<br />

⎢<br />

i<br />

⎢⎣<br />

i<br />

α<br />

β<br />

0<br />

⎤<br />

⎥<br />

⎥<br />

⎥⎦<br />

=<br />

2<br />

3<br />

⎡<br />

⎢<br />

⎢<br />

⎢⎣<br />

1<br />

1<br />

0<br />

2<br />

−1<br />

1<br />

−1<br />

2 ⎤⎡i<br />

− 3 2<br />

⎥⎢<br />

⎥⎢<br />

i<br />

1 2 ⎥⎦<br />

⎢⎣<br />

i<br />

Similarly 3-ph AC voltages ⇒ two phase voltages<br />

3<br />

2<br />

2<br />

2<br />

a<br />

b<br />

c<br />

⎤<br />

⎥<br />

⎥<br />

⎥⎦<br />

⎡e<br />

⎢<br />

⎢<br />

e<br />

⎢⎣<br />

e<br />

α<br />

β<br />

0<br />

⎤<br />

⎥<br />

⎥<br />

⎥⎦<br />

=<br />

2<br />

3<br />

⎡<br />

⎢<br />

⎢<br />

⎢⎣<br />

1<br />

1<br />

0<br />

2<br />

−1<br />

3<br />

1<br />

2<br />

2<br />

2<br />

−1<br />

2 ⎤⎡v<br />

− 3 2<br />

⎥⎢<br />

⎥⎢<br />

v<br />

1 2 ⎥⎦<br />

⎢⎣<br />

v<br />

a<br />

b<br />

c<br />

⎤<br />

⎥<br />

⎥<br />

⎥⎦<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

106/454


⎡v<br />

⎢<br />

⎢<br />

v<br />

⎢⎣<br />

v<br />

a<br />

b<br />

c<br />

⎤<br />

⎥<br />

⎥<br />

⎥⎦<br />

=<br />

⎡ 1<br />

⎢<br />

⎢−1<br />

⎢<br />

⎣<br />

−1<br />

2<br />

2<br />

−<br />

0<br />

3 2<br />

3 2<br />

1<br />

1<br />

1<br />

2⎤⎡e<br />

⎥<br />

2<br />

⎢<br />

⎥⎢<br />

e<br />

2⎥⎢<br />

⎦⎣<br />

0<br />

α<br />

β<br />

⎤<br />

⎥<br />

⎥<br />

⎥⎦<br />

p = v a i a + v b i b + v c i c<br />

p = e α i α +{ (-1/2 e α +√3/2 e β ) (-1/2 i α + √3/2 i β ) }<br />

+ { (-1/2 e α -√3/2e β ) (-1/2i α -√3/2i β ) }<br />

( )<br />

p = 3/2 (e α i α +e β i β ) = 3 2 e . i + e . i<br />

α<br />

α<br />

β<br />

β<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

107/454


Instantaneous reactive power compensation<br />

Instantaneous real power<br />

p = v a i a + v b i b + v c i c<br />

Definition <strong>of</strong> instantaneous reactive current:<br />

That part <strong>of</strong> the three phase current can be<br />

eliminated at any instant without affecting ‘P’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

108/454


e<br />

e<br />

i<br />

i<br />

α<br />

β<br />

α<br />

β<br />

=<br />

=<br />

V<br />

V<br />

S<br />

S<br />

cosψ<br />

sinψ<br />

= i cos ϕ + ψ<br />

S<br />

( )<br />

= i sin ϕ + ψ<br />

S<br />

( )<br />

i β i S<br />

e β<br />

V S<br />

φ<br />

ψ<br />

i α e α<br />

3<br />

p = V i ψ ϕ+ ψ + ψ ϕ+<br />

ψ<br />

2 S S<br />

{ cos .cos( ) sin .sin ( )}<br />

= 3 V { cos( )}<br />

3<br />

S<br />

iS ψ −ϕ− ψ = VSiS<br />

cosϕ<br />

2 2<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

109/454


• Can be concluded that 3/2 i S sinφ component <strong>of</strong><br />

current i S can be eliminated without effecting ‘P’<br />

Reactive power<br />

q = 32V i sinϕ<br />

S<br />

S<br />

= 32V<br />

i sinϕ+ ψ −ψ<br />

S<br />

S<br />

( )<br />

{ ( ϕ ψ) ψ ( ϕ ψ)<br />

ψ}<br />

= 32V<br />

i sin + cos − cos + sin<br />

S<br />

S<br />

{ V ψ i ( ϕ ψ) V ψ i ( ϕ ψ)<br />

}<br />

= 32 cos . sin + − sin . cos +<br />

S S S S<br />

{ ei ei} { e i e i}<br />

α β β α α β β α<br />

= 32 − = 32 × + ×<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

110/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

111/454<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

=<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

=<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

q<br />

p<br />

e<br />

e<br />

e<br />

e<br />

i<br />

i<br />

i<br />

i<br />

e<br />

e<br />

e<br />

e<br />

q<br />

p<br />

1<br />

3<br />

2<br />

2<br />

3<br />

α<br />

β<br />

β<br />

α<br />

β<br />

α<br />

β<br />

α<br />

α<br />

β<br />

β<br />

α<br />

In matrix form<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

+<br />

=<br />

q<br />

p<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

α<br />

β<br />

β<br />

α<br />

β<br />

α<br />

2<br />

2<br />

1<br />

*<br />

3<br />

2


⎡i<br />

⎢<br />

⎣<br />

i<br />

α<br />

β<br />

C<br />

⎤<br />

⎥<br />

⎦<br />

=<br />

e<br />

1<br />

+ e<br />

⎡e<br />

⎢<br />

⎣e<br />

−<br />

e<br />

e<br />

⎤⎡<br />

⎥⎢<br />

⎦⎣−<br />

2<br />

0<br />

C α β<br />

3<br />

.<br />

2<br />

α<br />

2<br />

β<br />

β<br />

α<br />

⎤<br />

q<br />

⎥<br />

⎦<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

112/454


e . q<br />

i<br />

*<br />

=<br />

β<br />

α C<br />

3 2 +<br />

(<br />

2 2<br />

) e e<br />

α<br />

− e .<br />

i<br />

*<br />

=<br />

α<br />

β C<br />

3 2 +<br />

α<br />

q<br />

β<br />

(<br />

2 2<br />

) e e<br />

β<br />

Where<br />

q<br />

= 2<br />

3<br />

[ ] e i − e i<br />

α<br />

β<br />

β<br />

α<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

113/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

114/454


• Frequency <strong>of</strong> e α , i α , e β & i β<br />

frequency<br />

is same as supply<br />

• ‘p’ & ‘q’ are calculated based on instantaneous<br />

values<br />

• Assume supply voltages & currents are nonsinusoidal<br />

and have few common harmonic<br />

components<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

115/454


• Avg. power due to these common harmonic<br />

components is finite<br />

• We can not eliminate these frequency<br />

components from source i !<br />

• Source ‘i’ is non-sinusoidal<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

116/454


Review<br />

Instantaneous real power<br />

P = v a i a + v b i b + v c i c<br />

i β i S<br />

e β<br />

V S<br />

φ<br />

ψ<br />

i α<br />

e α<br />

P<br />

=<br />

3<br />

2<br />

V<br />

( e . i + e i )<br />

S<br />

I<br />

S<br />

cosϕ<br />

= 3 2<br />

α α β<br />

.<br />

Instantaneous reactive current:<br />

That part <strong>of</strong> the three phase current can be<br />

eliminated at any instant without affecting ‘P’<br />

β<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

117/454


Contd..<br />

q=<br />

32V i sinϕ<br />

= 3 2<br />

S<br />

S<br />

{ e × i + e × i }<br />

α<br />

β<br />

β<br />

α<br />

• If ‘v’ is sinusoidal, i L is non-sinusoidal<br />

⇒<br />

If q=0, then i S will be sinusoidal and in phase<br />

with V s ( since average <strong>of</strong> the product <strong>of</strong><br />

fundamental ‘ω’ & higher ‘ω’ term = 0)<br />

p<br />

n<br />

=<br />

vsinωt<br />

∞ ∑<br />

n=<br />

2<br />

Avg. <strong>of</strong> p n = 0<br />

i<br />

n<br />

sin<br />

nωt<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

118/454


Contd..<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

119/454


Contd..<br />

• If ‘v’ is non-sinusoidal & i L is also non-sinusoidal<br />

⇒<br />

i S will have component corresponding to<br />

common frequency term <strong>of</strong> voltage & current<br />

• H. Akagi, Y. Kanzawa, and A. Nabae<br />

“Instantaneous Reactive <strong>Power</strong> Compensators<br />

Comprising Switching Devices without Energy<br />

Storage Components,” Part-1 harmonic elimination.,<br />

IEEE Trans. Ind. Applicat., vol. IA-20, No. 3,pp 625-<br />

630, May 1984.<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

120/454


Change <strong>of</strong> reference frame<br />

q S<br />

d<br />

S<br />

dt<br />

ω<br />

S<br />

q r<br />

ω S<br />

d r<br />

⎡d<br />

⎢<br />

⎣q<br />

⎡d<br />

⎢<br />

⎣q<br />

s<br />

s<br />

r<br />

r<br />

⎤<br />

⎥<br />

⎦<br />

⎤<br />

⎥<br />

⎦<br />

=<br />

=<br />

⎡cosθS<br />

⎢<br />

⎣sinθS<br />

⎡ cosθS<br />

⎢<br />

⎣−<br />

sinθS<br />

θ =<br />

⎥ ⎦<br />

⎤<br />

− sinθS<br />

⎤⎡d<br />

cosθ<br />

⎥⎢<br />

S ⎦⎣q<br />

sinθS<br />

⎤⎡d<br />

cosθ<br />

⎥⎢<br />

S ⎦⎣q<br />

r<br />

r<br />

s<br />

s<br />

⎤<br />

⎥<br />

⎦<br />

θ S<br />

d S<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

121/454


3 - phase<br />

(St. Frame)<br />

50 Hz<br />

⇒<br />

2 - phase<br />

(St. Frame)<br />

50 Hz<br />

⇒<br />

2 - phase<br />

(rotating.<br />

Frame at ω S )<br />

D. C<br />

⎡dr<br />

⎢<br />

⎢<br />

qr<br />

⎢⎣<br />

0<br />

⎤<br />

⎥<br />

⎥<br />

⎥⎦<br />

=<br />

2<br />

3<br />

⎡ cosθ<br />

S<br />

⎢<br />

⎢<br />

− sinθ<br />

S<br />

⎢⎣<br />

1 2<br />

cos<br />

− sin<br />

( θ − 2π<br />

3) cos( θ + 2π<br />

3)<br />

s<br />

( θ − 2π<br />

3) − sin( θ + 2π<br />

3)<br />

s<br />

1 2<br />

1 2<br />

s<br />

s<br />

⎤⎡a⎤<br />

⎥⎢<br />

⎥<br />

⎥⎢<br />

b<br />

⎥<br />

⎥⎦<br />

⎢⎣<br />

c⎥⎦<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

122/454


• Let us assume that v S is along d r - axis in the<br />

syn. Rotating frame & i S is making an angle φ<br />

3<br />

2<br />

V I S S<br />

cosϕ<br />

q r<br />

q S<br />

and<br />

P = θ S d r<br />

= 3 2V S I<br />

q 3<br />

=<br />

r q<br />

2 V S I<br />

r<br />

r d r<br />

φ<br />

i S<br />

v S<br />

ω S<br />

d S<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

123/454


• Transform all the variables to Syn. rotating<br />

frame (rotating at ω S )<br />

• Fundamental component <strong>of</strong> v & i will become dc<br />

• Other components will pulsates<br />

• Use a filter to eliminate these pulsating<br />

component<br />

• (Could have used a filter to eliminate harmonics<br />

from input signal)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

124/454


• AC filtering ⇒ phase shift<br />

• V S is filtered component<br />

• i q is made zero<br />

q r<br />

q s<br />

i S<br />

d r<br />

i q<br />

φ<br />

ψ<br />

i d<br />

V S<br />

d s<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

125/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

126/454


• Information about system frequency is<br />

required<br />

• Frequency varies over a narrow range<br />

• Should be insensitive to harmonics or multiple<br />

zero crossings<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

127/454


Harmonic Oscillator<br />

.<br />

⎡ ⎤<br />

⎢<br />

x<br />

⎥<br />

⎢ . ⎥<br />

⎣y⎦<br />

=<br />

⎡ 0 ω⎤⎡x⎤<br />

⎢ ⎥⎢<br />

⎥<br />

⎣-ω<br />

0⎦⎣y⎦<br />

• Has Eigen values at S =<br />

• If x(0) = 0 and y(0) =1<br />

± jω<br />

x( t)<br />

= sinωt<br />

y( t)<br />

= cosωt<br />

x&<br />

= ω y<br />

y&<br />

=<br />

−<br />

ω<br />

x<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

128/454


*<br />

x<br />

∫<br />

ω<br />

xt ()<br />

x<br />

y<br />

n<br />

+ 1<br />

−<br />

Δ t<br />

n +1<br />

−<br />

Δ t<br />

y<br />

x<br />

n<br />

n<br />

=<br />

=<br />

−<br />

ω y<br />

xω<br />

*<br />

y<br />

−ω<br />

∫<br />

y()<br />

t<br />

x<br />

n<br />

= x + ωyΔt<br />

+ 1 n<br />

y<br />

n<br />

= y − ωxΔt<br />

+ 1 n<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

129/454


How to generate 3-phase sinusoids?<br />

x sinωt<br />

a<br />

= y = cosωt<br />

v = Cosωt = y<br />

1 3<br />

vb<br />

= Cos( ωt− 120) =− y+<br />

x<br />

2 2<br />

1 3<br />

vc<br />

= Cos( ωt− 240) =− y−<br />

x<br />

2 2<br />

• Let e a , e b and e c are the 3φ instantaneous system<br />

voltages<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

130/454


e<br />

α<br />

=<br />

e<br />

a<br />

−<br />

1<br />

2<br />

e<br />

b<br />

−<br />

1<br />

2<br />

e<br />

c<br />

=<br />

3<br />

2<br />

e<br />

a<br />

e<br />

β<br />

=<br />

3<br />

2<br />

3<br />

e b<br />

− e c<br />

2<br />

e = e + je s α β<br />

• Space vector representation <strong>of</strong> v a , v b and v c<br />

v<br />

s<br />

=<br />

v<br />

a<br />

+<br />

v<br />

b<br />

e<br />

j<br />

2 π<br />

2<br />

− j<br />

π<br />

3<br />

+ v e<br />

3<br />

c<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

131/454


2π<br />

2π<br />

2π<br />

2π<br />

= cosωt<br />

+ cos( ωt<br />

−120)(cos<br />

+ jsin<br />

) + cos( ωt<br />

−240)(cos<br />

− jsin<br />

)<br />

3 3<br />

3 3<br />

1 3 1 3 1 3 1 3<br />

= cosω<br />

t + ( − cosω<br />

t + sinωt<br />

)( − + j ) + ( − cosω<br />

t − sinωt<br />

)( − − j )<br />

2 2 2 2 2 2 2 2<br />

3 3<br />

= cosωt + j sinωt<br />

= vα<br />

+<br />

2 2<br />

jv<br />

• Projection <strong>of</strong> e s on d r and<br />

v s<br />

q r<br />

• ( is aligned along d r )<br />

β<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

132/454


e<br />

d<br />

e d<br />

=<br />

=<br />

=<br />

e<br />

e s<br />

e<br />

s<br />

α<br />

cos( θ −ωt)<br />

{ cos θ cosωt<br />

+ sinθsinωt}<br />

cos ωt<br />

+<br />

e<br />

β<br />

sinωt<br />

e<br />

q<br />

=<br />

=<br />

e<br />

e s<br />

s<br />

sin( θ −ωt)<br />

{ sinθ<br />

cosωt<br />

−cosθ<br />

sinωt<br />

}<br />

e q<br />

=<br />

e<br />

β<br />

cos<br />

ωt<br />

−<br />

e<br />

α<br />

sin<br />

ωt<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

133/454


Objective<br />

• To make the phase and frequency <strong>of</strong> v a , v b ,v c and<br />

e a , e b ,e c same<br />

• v s and e s are in phase<br />

• e q =0<br />

v a<br />

=<br />

y<br />

v 1 3<br />

= − y + x<br />

b<br />

2 2 v 1 3<br />

= − y − x<br />

c<br />

2 2<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

134/454


Review<br />

• In synchronous rotating frame (speed <strong>of</strong> the<br />

frame = ω s ), supply frequency terms will<br />

become DC<br />

• If input ‘v’ are unbalanced<br />

→<br />

+ve sequence terms DC<br />

-ve sequence terms → oscillate at 2<br />

ω s<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

135/454


• Other higher frequency terms in the synchronous<br />

reference frame can be filtered out<br />

• They can also be filtered out in the input side<br />

• Phase shift is introduced – not an issue<br />

• Active filter control<br />

Contd..<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

136/454


To change MI using harmonic elimination PWM<br />

technique<br />

10.9091, 23.2907, 29.8505, 46.3408, 50.6781<br />

}<br />

10.7120, 23.2678, 29.5761, 46.3867, 50.4260 5, 7, 11, 13 are eliminated and<br />

10.5138, 23.2278, 29.2896, 46.4210, 50.1567 Magnitude <strong>of</strong> fundamental is<br />

different<br />

• Frequency information is required.<br />

• C. Schauder and H. Mehta, “Vector analysis and<br />

control advanced static Var compensators” IEE<br />

proc, vol.140, pp. 299-306, 1993<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

137/454


Through Hardware<br />

• Digitize the sine wave and store in EPROM<br />

(1024 part)<br />

• Address the EPROM using 10 bit counter<br />

( 2 10 =1024 )<br />

• Use a PLL as a multiplier<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

138/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

139/454


S<strong>of</strong>tware approach<br />

Harmonic oscillator<br />

.<br />

⎡ ⎤<br />

⎢<br />

x<br />

⎥ ⎡ 0 ω⎤⎡x⎤<br />

=<br />

⎢ . ⎥ ⎢ ⎥⎢<br />

⎥<br />

⎣-ω<br />

0⎦⎣y⎦<br />

⎣y⎦<br />

x( t)<br />

=<br />

x<br />

y<br />

n<br />

sinωt<br />

− x<br />

Δ t<br />

− y<br />

n<br />

Δt<br />

+ 1<br />

n +1<br />

ω → Instantaneous frequency<br />

• Input to harmonic oscillator is ω<br />

n<br />

y( t)<br />

= cosωt<br />

= ω y<br />

= − xω<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

140/454


• 3φ sinusoids which are in phase with supply<br />

fundamental component <strong>of</strong> the supply voltage<br />

are required<br />

• Input voltage may have harmonics<br />

• e a , e b ,e → c input system voltages may have<br />

harmonics + may be unbalanced<br />

e = e + je s α β<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

141/454


• Let v a<br />

, v b<br />

,v c<br />

are the<br />

3φ pure sinusoids<br />

e S<br />

• e s<br />

should be in phase with v s<br />

ω S t<br />

v S<br />

v a<br />

=<br />

y<br />

v 1 3<br />

= − y + x<br />

b<br />

2 2 v 1 3<br />

= − y − x<br />

c<br />

2 2<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

142/454


• This voltage waveform can be used as<br />

reference current waveform in hystersis<br />

current control PWM technique<br />

• Source current follows this reference ‘i’<br />

• Source current is in phase with fundamental<br />

component <strong>of</strong> input voltage<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

143/454


One cycle control <strong>of</strong> 3φ Var compensator<br />

and Active filter<br />

• No zero crossing detection<br />

}<br />

No reference wave<br />

• No PLL<br />

generation<br />

Basic Analysis :<br />

• Switching frequency is much higher than supply<br />

frequency<br />

• Let x(t) be an input to a switch operating at<br />

variable ON and OFF times<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

144/454


1 1<br />

• = = Switching frequency<br />

T T T<br />

ON<br />

+<br />

OFF s<br />

• Produces switched output with average<br />

y<br />

( t<br />

)<br />

=<br />

1<br />

T<br />

s<br />

T ON<br />

∫<br />

0<br />

x<br />

( t<br />

) dt<br />

= x(t) D(t)<br />

D= duty cycle<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

145/454


• Duty ratio has to be generated as control input<br />

based on some reference signal V ref (t)<br />

• If the duty ratio is controlled so that<br />

• Average output<br />

T<br />

ON T S<br />

∫ x(<br />

t)<br />

dt =<br />

0<br />

∫<br />

0<br />

y(<br />

t)<br />

=<br />

V<br />

1<br />

T<br />

s<br />

ref<br />

T s<br />

∫<br />

0<br />

( t)<br />

dt<br />

V<br />

ref<br />

( t)<br />

dt<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

146/454


• Assume that over one cycle V ref (t) is roughly<br />

constant<br />

y(t)=V ref (t)<br />

• Works for constant switching frequency<br />

• V ref could be a variable feedback signal<br />

• Can be implemented using a simple integrator<br />

with reset<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

147/454


• Generate reset pulse at required frequency<br />

• At the start <strong>of</strong> every cycle switch is turned ON<br />

by the reset pulse<br />

• Integrate the input<br />

• When the output <strong>of</strong> the integrator just exceeds<br />

V ref turn OFF the switch<br />

• Start the cycle again after T s when integrator<br />

resets<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

148/454


Rule to be followed<br />

• A term in the control equation which is being<br />

multiplied with duty cycle <strong>of</strong> the switch has to<br />

be passed through a reset integrator and<br />

compared with the appropriate reference<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

149/454


1φ AC-DC Active filter + Var generator<br />

Assumption:<br />

• In one switching cycle input is constant<br />

• V dc<br />

is constant and ripple free<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

150/454


S 4 , S 3 ON for DT S :<br />

di<br />

L = V s<br />

+ V DC<br />

dt<br />

S 1 , S 2 ON for (1-D)T S :<br />

L<br />

di<br />

dt<br />

=<br />

V s<br />

− V DC<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

151/454


• Assume i(t) is continuous and i(0) = i(T s )<br />

• Average ‘V’ across L = 0<br />

( V + V ) DT = ( V −V<br />

)(1 − D)<br />

T<br />

s<br />

DC<br />

S<br />

DC<br />

S<br />

s<br />

V<br />

DC<br />

Vs<br />

=<br />

1−2D<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

152/454


Aim<br />

• i s and V s should be in phase<br />

Vs= i s R e (R e = Emulated resistance) …..(a)<br />

(1-2D)V dc = i s R e<br />

i s = (1-2D)V dc /R e ……(b)<br />

• In each switching cycle if the duty ratio D is<br />

controlled in such a way that equation (b) is<br />

satisfied , equation (a) also gets satisfied<br />

• Control requirement is (1-2D)V m = i s<br />

Where V m = V dc /R e<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

153/454


Review<br />

• One cycle control<br />

}<br />

→<br />

→<br />

No PLL<br />

No ZCD<br />

Rule to be followed:<br />

• A term in the control equation which is being<br />

multiplied with duty cycle <strong>of</strong> the switch has to be<br />

passed through a reset integrator and compared<br />

with the appropriate reference<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

154/454


Contd..<br />

• Generate reset pulse at required frequency<br />

• At the start <strong>of</strong> every cycle switch is turned ON<br />

by the reset pulse<br />

• Integrate the input<br />

• When the output <strong>of</strong> the integrator just exceeds<br />

V ref turn OFF the switch<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

155/454


• Start the cycle again after T s when integrator<br />

resets<br />

• K. M. Smedley & C. Qiao, “Unified constantfrequency<br />

integration control <strong>of</strong> active power<br />

filters –steady –state and dynamics” IEEE<br />

Transaction on power electronics, vol. 16, No.<br />

3, May 2001<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

156/454


1φ AC-DC<br />

Control technique<br />

(1 − 2D ) V = i m s<br />

V<br />

R<br />

c<br />

V<br />

m<br />

= → Emulated resistance<br />

e<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

157/454


DT<br />

s<br />

1<br />

Vm<br />

− ∫Vmdt<br />

=<br />

Ti<br />

0<br />

Vm<br />

V<br />

m<br />

− DTs<br />

= i<br />

T<br />

i<br />

s<br />

i<br />

s<br />

T i<br />

= Integrator time constant<br />

F s = 1/T S<br />

= Switching frequency<br />

• V m remains constant in one cycle<br />

• If<br />

1<br />

T i<br />

T s<br />

2<br />

(1 − 2D ) V m<br />

= i<br />

= s<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

158/454


Alternate Approach DC-DC Converter<br />

( V )<br />

i<br />

avg<br />

=<br />

−V DT<br />

c<br />

+ V<br />

T<br />

c<br />

(1 −<br />

D)<br />

T<br />

= V c<br />

( 1−<br />

2D)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

159/454


• ‘L’ is small<br />

V + iω<br />

L =<br />

V<br />

i<br />

Buck Converter<br />

c<br />

V s<br />

= V<br />

s<br />

= V ( 1−2D)<br />

• ‘V o ’ to be maintained<br />

constant<br />

c<br />

• Compare with reference<br />

and vary D or depending<br />

upon V s change ‘D’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

160/454


• Information regarding V s should be known<br />

• Assume that V s and i s are in phase (required)<br />

• Instead <strong>of</strong> varying ‘D’ as function <strong>of</strong> V s<br />

• Vary ‘D’ as a function <strong>of</strong> i s<br />

• If V s and i s are not in phase chosen values <strong>of</strong><br />

‘D’ may not give the desired V o<br />

• If ‘V o ’ is regulated, our assumption that V s<br />

and i s are in phase is valid<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

161/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

162/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

163/454


• DC link voltage has to be regulated<br />

• Generate fixed frequency clock<br />

• At the rising edge reset the integrator and turn<br />

ON the switches S4 and S3<br />

• i s ↑<br />

• As t ↑ X ↓ When i s = X ; R = 1<br />

• Turn OFF the S 4 , S 3 and Turn ON S 1 , S 2<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

164/454


Inverter topology for high power application<br />

• For high power applications<br />

• Conventional 3φ Inverter with ‘V’ control<br />

• Switching ‘F’ is low<br />

• ‘F’ <strong>of</strong> predominant harmonic is low<br />

•<br />

•<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

165/454


• 2 converters<br />

→ Var Compensator<br />

→<br />

Low power inverter for<br />

active filtering<br />

• There are only two levels<br />

Instead<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

166/454


• Number <strong>of</strong> pulse should be high for superior<br />

harmonic spectrum<br />

• Instead modify the Inverter structure<br />

• More than two levels<br />

• Multi-level inverter<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

167/454


Diode clamp multilevel inverters<br />

3 Level Inverter:<br />

• Consider only<br />

one leg<br />

• Any time two switches are ON = (n-1)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

168/454


Switches ON<br />

V AX<br />

S1, S2 V dc<br />

S2, S3<br />

S3, S4<br />

V dc<br />

0<br />

2<br />

• Number <strong>of</strong> capacitors required = 2 =(n-1)<br />

• Number <strong>of</strong> switches required = 4/phase = 2(n-1)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

169/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

170/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

171/454


• Voltage across each capacitor = V dc /2 = V dc /(n-1)<br />

• Number <strong>of</strong> diodes = 2 ?<br />

4 level Inverter<br />

• Number <strong>of</strong> switches ON = 3 = (n-1)<br />

• Number <strong>of</strong> switches/leg = 6 = 2(n-1)<br />

• Number <strong>of</strong> capacitors = 3 = (n-1)<br />

• Voltage across each capacitor = V dc /3 = V dc /(n-1)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

172/454


Review<br />

• In one cycle control ‘i S ’ is compared with<br />

(1-2D)V m<br />

• V m is passed through<br />

reset integrator &<br />

compared with V m -R S i S<br />

⇒ R S is sensing resistor<br />

• No reference current waveform generation<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

173/454


Contd..<br />

• For high power ⇒ Use multi-level inverter<br />

• For 3-level ⇒ V AX = V dC , ½ V dC , 0<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

174/454


Contd..<br />

• At any time 2-devices (n-1) devices are ON<br />

• No. <strong>of</strong> Switches = 2(n-1)<br />

• ‘V’ across each ‘C’ = V dC / 2 = V dC /(n-1)<br />

• ‘V’ rating <strong>of</strong> switch = V dC /2 = V dC /(n-1)<br />

• ‘V’ rating <strong>of</strong> diode = V dC /2<br />

• No. <strong>of</strong> diodes = 2 = (m-1)*(m-2)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

175/454


References<br />

• Bum-Seok Suh and Dong-Seok Hyun “A New N-<br />

Level High Voltage Inversion System,” IEEE Trans.<br />

Ind. Electron., vol. 44, No. 1,pp 107-115, Feb 1997.<br />

• Nam S. Choi, Jung G. Cho and Gyu H. Cho “A<br />

General Circuit Topology <strong>of</strong> Multilevel Inverter,” in<br />

Proc. IEEE <strong>Power</strong> electron specialist conf. Rec., pp 96-<br />

103, 1991.<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

176/454


4-level inverter<br />

• Number <strong>of</strong> switches ON = 3 = (n-1)<br />

• Number <strong>of</strong> switches/leg = 6 = 2(n-1)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

177/454


• Number <strong>of</strong> capacitors = 3 = (n-1)<br />

• Voltage across each capacitor = V dc /3 =<br />

V dc /(n-1)<br />

S1, S2, S3 ON: ⇒ V AX = V dc<br />

• ‘V’ rating <strong>of</strong> each<br />

device = V dc /3<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

178/454


S2, S3, S4 ON :<br />

⇒ V AX = 2V dc /3<br />

S3, S4, S5 ON :<br />

⇒ V AX = V dc /3<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

179/454


S4, S5, S6 ON:<br />

⇒ V AX = 0<br />

Observations:<br />

• Duty cycle <strong>of</strong> switch is not the same<br />

• Lower switches are ON for longer time<br />

• Switch utilization is poor<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

180/454


• ‘V’ rating <strong>of</strong> D B = 2V dc /3<br />

• ‘V’ rating <strong>of</strong> D A = V dc /3<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

181/454


• ‘V’ rating <strong>of</strong> diodes is not the same<br />

• Number <strong>of</strong> diodes = (n-1) (n-2) = 6<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

182/454


Voltage space vectors for 3 level inverter<br />

Large voltage vectors<br />

CBA<br />

NNP→ NPP → NPN → PPN → PNN → PNP → NNP<br />

• Similar to conventional 2-level inverter<br />

• 6 active vectors and 2 zero vectors<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

183/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

184/454<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

=<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

co<br />

bo<br />

ao<br />

cn<br />

bn<br />

an<br />

V<br />

V<br />

V<br />

V<br />

V<br />

V<br />

2<br />

1<br />

1<br />

1<br />

2<br />

1<br />

1<br />

1<br />

2<br />

3<br />

1<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

−<br />

−<br />

=<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

cn<br />

bn<br />

an<br />

qs<br />

ds<br />

V<br />

V<br />

V<br />

V<br />

V<br />

2<br />

3<br />

2<br />

3<br />

0<br />

2<br />

1<br />

2<br />

1<br />

1


( NNP ) ⇒ ( 001 ) ⇒<br />

( PPN ) ⇒ ( 110 ) ⇒<br />

( NPN ) ⇒ ( 010 ) ⇒<br />

( PNP ) ⇒ ( 100 ) ⇒<br />

V dC<br />

∠0<br />

V dC<br />

∠π<br />

V dC<br />

∠2π /<br />

V dC<br />

∠ −π /<br />

3<br />

3<br />

( NPP ) ⇒ ( 011 ) ⇒<br />

/ V dC<br />

∠π<br />

3<br />

( PNN ) ⇒ ( 100 ) ⇒<br />

V dC<br />

∠ − 2π /<br />

3<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

185/454


Small voltage vectors<br />

C B A<br />

O P P<br />

P O P<br />

P P O<br />

C B A<br />

O O P<br />

O P O<br />

P O O<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

186/454


C B A<br />

O O N<br />

O N O<br />

N O O<br />

C B A<br />

O N N<br />

N O N<br />

N N O<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

187/454


C B A ⇒ O P P<br />

⇒ V AO = V BO = V dC /2, V CO = 0<br />

⇒ V an = V dC /6, V bn = V dC /6, V cn = - V dC /3<br />

VdC<br />

1 VdC<br />

1 VdC<br />

V<br />

d<br />

= − − =<br />

6 2 6 2 3<br />

V<br />

4<br />

dC<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

188/454


V<br />

q<br />

∴V<br />

S<br />

=<br />

=<br />

3<br />

2<br />

V<br />

2<br />

dC<br />

⎡V<br />

⎢<br />

⎣ 6<br />

dC<br />

∠π /<br />

V<br />

+<br />

3<br />

3<br />

dC<br />

⎤<br />

⎥<br />

⎦<br />

=<br />

3<br />

4<br />

V<br />

dC<br />

OPP<br />

∴POO<br />

⇒<br />

V<br />

S<br />

=<br />

V<br />

2<br />

dC<br />

∠4π<br />

/<br />

3<br />

POO<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

189/454


NOO :<br />

V AO = V BO = 0, V CO = -V dC /2<br />

V an = V dC /6, V bn = V dC /6, V cn = -V dC /3<br />

VdC<br />

V<br />

ds<br />

=<br />

2 6<br />

V<br />

4<br />

3<br />

dC<br />

3 ⎡VdC<br />

VdC<br />

⎤ 3<br />

= , Vqs<br />

= + = VdC<br />

V<br />

V<br />

dC<br />

dC<br />

∴VS<br />

= ∠π / 3 ⇒ ONN ⇒ VS<br />

= ∠4π<br />

/ 3<br />

2<br />

2<br />

2<br />

⎢<br />

⎣<br />

6<br />

3<br />

⎥<br />

⎦<br />

4<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

190/454


OOP :<br />

V AO = V dC /2, V BO = V CO = 0<br />

V an = V dC /3, V bn = V cn = -V dC /6<br />

VdC<br />

V<br />

ds<br />

= , V qs<br />

= 0<br />

2<br />

PPO<br />

OON<br />

OOP<br />

NNO<br />

∴ V<br />

S<br />

=<br />

VdC<br />

2 ∠0<br />

⇒<br />

PPO<br />

⇒<br />

V<br />

S<br />

=<br />

V<br />

2<br />

dC<br />

∠π<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

191/454


NNO :<br />

V AO = 0, V BO = V CO = -VdC / 2<br />

V an = 1/3[0 +V dc /2 + V dc /2] = V dC /3,<br />

V bn = V cn = 1/3[-2V dC / 2 + V dC / 2] = - V dC /6<br />

VdC<br />

V<br />

ds<br />

= , V qs<br />

= 0<br />

2<br />

∴ V<br />

S<br />

=<br />

VdC<br />

2 ∠0<br />

⇒ OON<br />

⇒ V<br />

S<br />

=<br />

V<br />

2<br />

dC<br />

∠π<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

192/454


OPO :<br />

V AO = V CO = 0, V BO = V dC /2<br />

V an = V cn = -V dC /6, V bn = V dC /3<br />

V<br />

ds<br />

V<br />

4<br />

,<br />

3<br />

2<br />

⎡<br />

⎢<br />

⎣<br />

V<br />

3<br />

V<br />

6<br />

3<br />

4<br />

dC<br />

dC dC<br />

= − Vqs<br />

= 6. + = VdC<br />

∴ V VdC<br />

S<br />

= ∠2π<br />

/ 3<br />

VdC<br />

⇒ POP ⇒ V = ∠5π<br />

/<br />

2<br />

2<br />

3<br />

S<br />

⎤<br />

⎥<br />

⎦<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

193/454


NON :<br />

V AO = V CO = -V dC /2, V BO = 0<br />

V an = V cn = -V dC /6, V bn = V dC /3<br />

V<br />

ds<br />

=<br />

V<br />

−<br />

4<br />

dC<br />

,<br />

3<br />

V qs<br />

= V dC<br />

4<br />

OPO<br />

NON<br />

VdC<br />

VdC<br />

∴VS<br />

= ∠2π<br />

/ 3 ⇒ ONO ⇒ VS<br />

= ∠5π<br />

/ 3<br />

2<br />

2<br />

POP<br />

ONO<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

194/454


Medium voltage vectors<br />

ONP :<br />

V AO = V dC /2, V BO = -V dC /2 , V CO = 0<br />

V an = V dC /2, V bn = -V dC /2 , V cn = 0<br />

3<br />

3<br />

V<br />

ds<br />

= V dC<br />

, V qs<br />

= − VdC<br />

4<br />

4<br />

3<br />

∴V S<br />

= V<br />

2<br />

dC<br />

∠ −π /<br />

6<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

195/454


NOP :<br />

V AO = V dC /2, V BO = 0 , V CO = -V dC /2<br />

V an = V dC /2, V bn = 0 , V cn = -1/2 V dC<br />

3<br />

3<br />

V<br />

ds<br />

= V dC<br />

, V qs<br />

= VdC<br />

4<br />

4<br />

3<br />

∴V S<br />

= V<br />

2<br />

dC<br />

∠π /<br />

6<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

196/454


NPO :<br />

V AO = 0, V BO = V dC /2 , V CO = -V dC /2<br />

V an = 0, V bn = V dC /2 , V cn = -V dC /2<br />

Vds<br />

= 0,<br />

3<br />

V qs<br />

= V<br />

2<br />

dC<br />

3<br />

∴V S<br />

= V<br />

2<br />

dC<br />

∠π /<br />

2<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

197/454


PNO :<br />

V AO = 0, V BO = -V dC /2 , V CO = V dC /2<br />

V an = 0, V bn = -V dC /2 , V cn = V dC /2<br />

Vds<br />

= 0,<br />

3<br />

∴V S<br />

= V<br />

2<br />

3<br />

V qs<br />

= − V<br />

2<br />

dC<br />

∠3π<br />

/<br />

2<br />

dC<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

198/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

199/454


Review<br />

3-Level Inverter<br />

• No. <strong>of</strong> large voltage vectors = 6<br />

⇒ V S = V dC<br />

• No. <strong>of</strong> small voltage vectors = 6<br />

⇒ V S = 1/2V dC<br />

⇒ 12 possible combinations<br />

+ ve or –ve bus<br />

&<br />

mid point<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

200/454


Contd..<br />

• No. <strong>of</strong> medium voltage vectors = 6<br />

⇒ + ve, - ve & mid-point bus<br />

⇒<br />

V = 3 2<br />

S<br />

V dC<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

201/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

202/454


Voltage control<br />

• Space vector PWM<br />

⇒ Depending upon the position <strong>of</strong> space<br />

vector, switch the corresponding switch<br />

NPP<br />

OPP<br />

NOO<br />

NOP<br />

PPP<br />

NNN<br />

OOO<br />

OOP<br />

NNO<br />

NNP<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

203/454


Voltage unbalance between DC-Line<br />

capacitance<br />

• Each leg ⇒ 3 possibilities<br />

• There are 27 switching instances are possible<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

204/454


• Unbalances has no effect on load<br />

• Load is connected across the DC bus<br />

• Somewhat effective<br />

in reducing voltage<br />

unbalance<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

205/454


• C 1 supplies the power<br />

• C 2 does not supply the power<br />

• ‘V’ across C 2 ↑<br />

• For remaining 2 configuration, V across C 1 ↑<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

206/454


• Passive elements<br />

Load compensation<br />

• Inverter<br />

⇒ Current control<br />

⇒ Voltage control<br />

⇒ Main compensator<br />

⇒ Aux. compensator<br />

• Instantaneous reactive power theory<br />

• One cycle controlled inverter<br />

• Multi level inverter<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

207/454


Transmission line voltage support<br />

• Provide mid-point compensation<br />

⇒ Shunt<br />

⇒ Series<br />

⇒ Combination <strong>of</strong> shunt & series<br />

⇒ Combination <strong>of</strong> series & series<br />

P < SIL<br />

P = SIL<br />

V S<br />

P > SIL<br />

V R<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

208/454


Shunt Compensation :<br />

• Inject current in to the system<br />

• If injected ‘I’ is in phase quadrature with the ‘V’<br />

• Only reactive power transfer<br />

• Else, it has to handle real ‘P’ as well<br />

Series Compensation :<br />

• Inject voltage in series with the line<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

209/454


• If ‘V’ is in quadrature with line ‘I’, only reactive<br />

power transfer<br />

Combination <strong>of</strong> series & Shunt Compensation :<br />

• Inject ‘I’ with the shunt part &<br />

• Inject ‘V’ with the series part<br />

• When combined there can be real power<br />

exchange between the series & shunt controllers<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

210/454


Mid point voltage regulator<br />

• Two machine model<br />

Ρ<br />

=<br />

V S<br />

V<br />

X<br />

R<br />

Sinδ<br />

⇒ If V s = V r = V<br />

P<br />

max =<br />

V<br />

X<br />

2<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

211/454


• Connect a compensator at the mid point &<br />

V m = V s = V r = V<br />

• Whether active power transfer is require ?<br />

• System is loss-less<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

212/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

213/454


• Let V sm & V mr are fictitious voltages in phase<br />

with I sm & I mr respectively<br />

Vsm = Vmr<br />

=<br />

V. Cos δ<br />

( / 4)<br />

( δ / 4)<br />

2V<br />

. Sin<br />

I<br />

sm<br />

= I<br />

mr<br />

=<br />

=<br />

X 2<br />

4V<br />

X<br />

Sin<br />

( δ / 4)<br />

P<br />

P<br />

= V<br />

. I<br />

r<br />

=<br />

sm sm<br />

=<br />

4V<br />

X<br />

2<br />

Sin<br />

2V<br />

2<br />

= Sin δ<br />

X<br />

( δ / 4) . Cos( δ / 4)<br />

( / 2)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

214/454


• Reactive power supplied by the<br />

compensator<br />

= V I = VI<br />

m<br />

c<br />

c<br />

=<br />

2.<br />

V.<br />

I Sin δ<br />

sm<br />

( / 4)<br />

=<br />

2<br />

8V<br />

2<br />

X<br />

Sin<br />

( δ / 4)<br />

=<br />

4V<br />

2 δ<br />

X<br />

( 1−<br />

Cos( / 2)<br />

)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

215/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

216/454


• Shunt compensator can increase ‘P’<br />

• ‘Q’ demand also ↑<br />

• Can have multiple compensators located at<br />

the equal distances<br />

• Theoretically ‘P’ would double for each<br />

doubling <strong>of</strong> the segments<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

217/454


• ↑ the no. <strong>of</strong> segments results in flat<br />

‘V’ pr<strong>of</strong>ile<br />

• Expensive<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

218/454


Review<br />

Mid-point shunt compensation<br />

⇒ If V s = V r = V<br />

P =<br />

2V<br />

2 Sin δ<br />

X<br />

( / 2)<br />

Q<br />

=<br />

4V<br />

2 δ<br />

X<br />

( 1−<br />

Cos( / 2)<br />

)<br />

⇒ ‘I’ is injected into the line<br />

(in quadrature with ‘v’)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

219/454


Contd..<br />

• For each doubling <strong>of</strong> the segments,<br />

transmittable ‘P’ also doubles<br />

• ‘V’ pr<strong>of</strong>ile is almost flat<br />

• Large no. <strong>of</strong> shunt compensators ⇒ expensive<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

220/454


Summary<br />

• Compensator must remain in synchronism<br />

with the ac system under all operating conditions<br />

including major disturbances<br />

• Must regulate the bus voltage<br />

• For the inter connecting two systems, best<br />

location is in middle<br />

• For radial feed to a load, best location is<br />

at the load end<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

221/454


Methods <strong>of</strong> controlling Var generation<br />

• Mechanically switched capacitor and/or<br />

inductor ⇒ course control<br />

⇒ in-rush current<br />

• Continuously variable Var generation or<br />

absorption ⇒ originally over excited syn. motor<br />

• Modern Var generators → use power<br />

semiconductor devices/equipment + energy<br />

storing elements<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

222/454


Variable impedance type S.V.C<br />

1. Thyristor controlled reactor (TCR):<br />

• T 1 & T 2 is triggered in the + ve<br />

& - ve half cycles respectively<br />

α ⇒ Can be measured w. r. t<br />

zero crossing or peak <strong>of</strong> ‘V’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

223/454


• ‘i’ flows from α to β<br />

di<br />

L = VmSinωt<br />

dt<br />

Vm ∴i ω<br />

ωL<br />

() t = ( Cosα<br />

− Cos t)<br />

i(t) =0 at ωt = β<br />

Cos α = Cosβ<br />

∴β<br />

= 2π<br />

−α<br />

⇒ β = extinction angle<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

224/454


• ‘i’ is continuous when α = π/2<br />

• ‘i’ is sinusoidal<br />

• No control ⇒ ’L’ is fixed & it is minimum<br />

• As α↑, all odd harmonics are introduced<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

225/454


• As α↑, L ↑<br />

∴<br />

I LF<br />

α V ⎛ 2 1 ⎞<br />

( ) = ⎜1−<br />

α − sin α ⎟<br />

ωL<br />

⎝ π π<br />

2<br />

⎠<br />

⇒<br />

B L<br />

α 1 ⎛ 2 1 ⎞<br />

( ) = ⎜1−<br />

α − sin α ⎟<br />

ωL<br />

⎝ π π<br />

2<br />

⎠<br />

• V L(MAX) ⇒ Voltage limit<br />

• I L(MAX) ⇒ current limit<br />

• B L(MAX) ⇒ Max. admittance <strong>of</strong> TCR<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

226/454


2. Thyristor switched capacitor (TSC):<br />

• Small ‘L’ is required to<br />

limit the surge current<br />

• Thyristors are switched<br />

when v c = v<br />

• ‘V’ rating <strong>of</strong> the switch ?<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

227/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

228/454


3. Fixed Capacitor, Thyristor controlled<br />

Reactor (FC-TCR):<br />

In TCR<br />

• ‘i L ’ is varied by varying ‘α’<br />

• i L = i L(max) when α = π/2<br />

• In FC-TCR, for any value <strong>of</strong><br />

i L , net effect <strong>of</strong> C ↓<br />

• ‘C’ also provides a low impedance path for<br />

harmonics generated by TCR<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

229/454


• ‘Q C ’is constant<br />

• Net Q = Q C when Q L = 0 (α = π)<br />

• To ↓ net Q, ↓ α<br />

• Net Q = 0, when Q C = Q L<br />

• If α is ↓ further, net Q is inductive<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

230/454


• At α = π/2, Q L = Q L(max)<br />

• Operating V-I region <strong>of</strong> FC-TCR<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

231/454


STATCOM<br />

• VSI can supply ± Q<br />

• Also known as static<br />

synchronous condenser<br />

• Similar to syn. motor<br />

I<br />

V − E<br />

X<br />

V − E<br />

= Q = . V<br />

X<br />

Q ⇒ reactive power received by the source<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

232/454


Control<br />

• ‘Q’ is controlled by M.I & δ ⇒ accounts for losses<br />

• Assumed that inverter is capable <strong>of</strong> injecting ‘Q’<br />

demand <strong>of</strong> the line<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

233/454


• If ‘Q’ demand >Var rating <strong>of</strong> inverter<br />

• It may fail due to over load<br />

• Have a inner ‘I’ loop<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

234/454


Operating V-I region<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

235/454


Review<br />

T.C.R<br />

• If α = π/2 ⇒ i = i max<br />

• As α↑, L eff ↑<br />

• Harmonics<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

236/454


Contd..<br />

T.S.C<br />

• Thyristors are triggered<br />

when v c = v<br />

F.C.T.C.R<br />

• T.S.C – T.C.R scheme<br />

is also possible<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

237/454


Contd..<br />

• Above schemes are variable impedance types<br />

STATCOM<br />

• Variable source type<br />

I<br />

=<br />

V<br />

−<br />

X<br />

E<br />

V − E<br />

Q = . V<br />

X<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

238/454


Advantages<br />

• Since voltage pr<strong>of</strong>ile is maintained<br />

(in radial system)<br />

⇒ Voltage instability is prevented<br />

⇒ Improves transient stability<br />

⇒ Damping <strong>of</strong> power oscillations<br />

⇒ Able to maintain ‘V’ pr<strong>of</strong>ile<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

239/454


Series compensation<br />

• Reciprocal <strong>of</strong> shunt compensation<br />

• Shunt compensator : Controlled reactive<br />

‘I’ source connected in parallel with the<br />

Tr. Line to control ‘V’<br />

• Series compensator : Controlled reactive<br />

‘V’ source connected in series with the<br />

Tr. Line to control ‘I’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

240/454


Series compensation<br />

• Injects voltage in series with the line<br />

• Could be variable ‘Z’ (such as ‘C’ or ‘L’)<br />

• Voltage source<br />

• Effective in controlling the power flow<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

241/454


Concept <strong>of</strong> series capacitive compensation<br />

⇒ To decrease reactance <strong>of</strong> the line<br />

P<br />

=<br />

V . V<br />

X<br />

S R<br />

.<br />

Sinδ<br />

X<br />

=<br />

( − )<br />

X L<br />

X C<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

242/454


X<br />

eff<br />

=<br />

( X − X )<br />

L C<br />

= ( 1− K ) X<br />

L<br />

K =<br />

X C<br />

X L<br />

⇒ 0 < K < 1<br />

⇒ Degree <strong>of</strong> series<br />

compensation<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

243/454


• If V S = V R =V<br />

I<br />

=<br />

V. Sinδ<br />

2 2V<br />

. Sinδ<br />

2<br />

=<br />

( 1−<br />

K ) X ( )<br />

L<br />

2 1−<br />

K X<br />

L<br />

P<br />

=<br />

V<br />

m<br />

I<br />

=<br />

2V<br />

. Sinδ<br />

2<br />

( VCosδ<br />

2 ).<br />

( 1−<br />

K ) X<br />

L<br />

2<br />

V . Sinδ<br />

= 1<br />

( − K ) X<br />

L<br />

2 2<br />

2 4V<br />

. Sin 2<br />

Q<br />

C<br />

= I X<br />

C<br />

=<br />

. X<br />

2<br />

X<br />

( 1−<br />

K )<br />

2<br />

δ 2V<br />

.( 1−<br />

Cosδ<br />

)<br />

C<br />

=<br />

2<br />

( 1−<br />

K ) . X<br />

L<br />

2<br />

L<br />

. K<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

244/454


Q<br />

Q<br />

se<br />

sh<br />

=<br />

tan<br />

⎛<br />

⎜<br />

⎝<br />

2 δ<br />

max<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

δ max ⇒ maximum angular difference<br />

between the two ends <strong>of</strong> the line<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

245/454


• If δ max ⇒ 30 - 40 o<br />

• Q se = 7- 13% <strong>of</strong> Q SL<br />

• Cost <strong>of</strong> series capacitor ?<br />

• Location <strong>of</strong> series capacitor is not very<br />

critical<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

246/454


Approaches to controllable series compensation<br />

Variable Z type :<br />

1. GTO controlled series capacitor (GCSC)<br />

Objective : Vary V C<br />

• GTO is closed when v c = 0<br />

• Open when ‘i’ charges ‘C’<br />

• Duality between TCR & GCSC<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

247/454


v<br />

• GTO is turned ON when v c = 0<br />

for α < ωt < α+γ<br />

c<br />

ωt<br />

1<br />

∫ ωC<br />

() t = i() t . d( ωt)<br />

∴i( t) = I.<br />

Cos t<br />

α<br />

ω<br />

=<br />

I<br />

ωC<br />

( Sinωt<br />

− Sinα<br />

)<br />

• v c is maximum when<br />

ωt = π/2 & v c = 0<br />

when ωt = π-α<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

248/454


• Amplitude <strong>of</strong> the fundamental<br />

V<br />

π<br />

4 2<br />

c1 = ∫ π<br />

0<br />

=<br />

π<br />

4 2<br />

= ∫<br />

v<br />

c<br />

() t . Sinωt.<br />

d( ωt)<br />

I<br />

C<br />

.( Sinωt<br />

− Sinα<br />

) Sinωt.<br />

d( ωt)<br />

π ω<br />

0<br />

IX c<br />

⎡ 2α Sin2α<br />

⎤<br />

⎢<br />

1−<br />

−<br />

⎣ π π ⎥<br />

⎦<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

249/454


Controlling modes<br />

(a). Voltage compensation mode:<br />

• GCSC ⇒ Should maintain rated compensation<br />

voltage when I min < I < I max<br />

⇒ V comp = V rated = I min X c<br />

⇒ As I↑, ↑ αSo that<br />

V comp is maintained constant<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

250/454


(b). Impedance compensation mode:<br />

V<br />

c(max)<br />

I<br />

max<br />

=<br />

X<br />

c<br />

Protection issues:<br />

• Required to have higher short time rating<br />

• During S.C, ‘I’ could be much higher than I rated<br />

• I fault > I GTO(rating)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

251/454


• If it flows through ‘C’, V c ↑<br />

• ‘V’ across GTO ↑<br />

• Use MOV<br />

Limitations:<br />

• Harmonics are generated<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

252/454


Review<br />

GTO controlled series capacitor (GCSC)<br />

• ‘α’ is measured w.r.t peak<br />

<strong>of</strong> ‘i’<br />

1<br />

⎛<br />

⎞<br />

X ( α ) = ⎜1−<br />

α − Sin α ⎟<br />

ωC<br />

⎝ π π<br />

2<br />

C<br />

⎠<br />

α ⇒ extinction angle<br />

2<br />

1<br />

• ‘V C ’ has harmonics<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

253/454


TCR<br />

Contd..<br />

GCSC<br />

• Switch is series with ‘L’<br />

• Supplied from a ‘V’<br />

source<br />

• ‘α’ (turn-ON delay) is<br />

measured w.r.t peak <strong>of</strong> ‘v’<br />

• Switch is parallel with ‘C’<br />

• Supplied from a ‘i’<br />

source<br />

• ‘α’ (turn-OFF delay) is<br />

measured w.r.t peak <strong>of</strong> ‘i’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

254/454


Contd..<br />

• Control ‘i’ in ‘L’ .<br />

Parallel with the source<br />

representing variable<br />

admittance to the source<br />

• Control ‘v’ across ‘C’<br />

developed by ‘i’ source<br />

representing variable<br />

reactance to the source<br />

V<br />

ωL<br />

⎡<br />

⎤<br />

⎡<br />

⎤<br />

I LF<br />

( α ) = 1−<br />

−<br />

⎥ ( α ) = 1−<br />

−<br />

⎦<br />

⎥ ⎦<br />

⎢<br />

⎣<br />

2α<br />

π<br />

Sin2α<br />

π<br />

V CF<br />

I<br />

ωC<br />

⎢<br />

⎣<br />

2α<br />

π<br />

Sin2α<br />

π<br />

⇒<br />

α 1 ⎛ 2 1 ⎞<br />

( ) = ⎜1−<br />

α − sin α ⎟<br />

ωL<br />

⎝ π π<br />

2<br />

⎠<br />

1 2α<br />

Sin2α<br />

α =<br />

⎢<br />

1−<br />

−<br />

ωC<br />

⎣ π π<br />

B ⎡<br />

⎤<br />

L ( )<br />

⎥ ⎦<br />

⇒<br />

X C<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

255/454


Thyristor switched series capacitor (TSSC)<br />

• Capacitors are disconnected by turning ON<br />

the thyristors<br />

• They turn OFF naturally (at Z.C <strong>of</strong> I )<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

256/454


Voltage compensating mode :<br />

• Reactance <strong>of</strong> ‘C’ bank is chosen so as to<br />

produce average rated V comp = n X C I min<br />

(‘n’ is the no. <strong>of</strong> banks)<br />

• As I ↑ above I min , ↓ n<br />

• By-pass ‘C’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

257/454


Impedance compensating mode :<br />

• TSSC should maintain maximum rated<br />

compensating reactance at any line current<br />

up to Rated current (I max )<br />

• Maximum series compensation<br />

nX<br />

C<br />

=<br />

V<br />

C(max)<br />

I<br />

max<br />

at rated ‘I’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

258/454


• In FCTCR continuously varying capacitive<br />

compensation is achieved by varying ‘α’<br />

<strong>of</strong> TCR<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

259/454


Thyristor controlled series capacitor (TCSC)<br />

• If ‘V’ is the applied voltage across the TCR<br />

• Fundamental component <strong>of</strong> ‘I’ for ‘α’<br />

(measured w.r.t peak <strong>of</strong> voltage) is<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

260/454


V 2 1<br />

I1 ⎜ Sin<br />

X ⎝ π π<br />

⎛<br />

⎞<br />

( α ) = 1−<br />

α − 2α<br />

⎟<br />

⎠<br />

X<br />

L<br />

L<br />

π<br />

⎜<br />

⎝ π − 2α<br />

− Sin2α<br />

⎛<br />

⎞<br />

( α ) = X<br />

⎟<br />

⎠<br />

L<br />

X < X ( α ) < ∞<br />

L L<br />

⇒ Combined ‘Z’ <strong>of</strong> TCR & fixed ‘C’<br />

X<br />

TCSC<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

− X<br />

X<br />

L<br />

( )<br />

( ) ⎟ ⎞<br />

C.<br />

X<br />

L<br />

α<br />

α − X<br />

C ⎠<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

261/454


• When α = π/2, X L (α) = ∞<br />

& X TCSC = -X C<br />

• When X L (α) = X C X TCSC ⇒ undefined<br />

• When X L (α) < X C X TCSC ⇒ Inductive<br />

At X L (α) = X L ⇒<br />

X<br />

TCSC<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

X<br />

X<br />

L<br />

C<br />

. X<br />

− X<br />

L<br />

C<br />

⎟ ⎞<br />

⎠<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

262/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

263/454


• Continuously varying series capacitor by<br />

‘α’ control<br />

ωL<br />

< X α<br />

L<br />

( ) < ∞<br />

• When<br />

X<br />

L<br />

( α ) < ∞,<br />

X<br />

TCSC<br />

=<br />

X<br />

C<br />

=1<br />

ωC<br />

• At X L (α) = X C ⇒ parallel resonance,<br />

X TCSC<br />

⇒<br />

∞<br />

∴ω =1<br />

LC<br />

As L(α) > L<br />

( )<br />

⇒ ω > ω α<br />

o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

264/454


• If X L (α) < X C , There are two operating zones<br />

α<br />

C(lim)<br />

≤<br />

α<br />

≤<br />

π<br />

2<br />

⇒ Capacitive, ‘i’ leads V C<br />

0 ≤α≤ α L(lim) ⇒ X TCSC is inductive<br />

• Not exactly similar to TCR<br />

connected in parallel With<br />

‘V’ source<br />

• Input ‘V’ is sinusoidal<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

265/454


• In TCSC, the ‘V’ is voltage across ‘C’<br />

• Switch is open ⇒ TCR is O.C, ‘i’ flows through ‘C’<br />

• Turn-on TCR at ‘α’<br />

(w.r.t peak <strong>of</strong> ‘v’)<br />

⇒ ‘i’ is +ve & ‘v c ’is -ve<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

266/454


• ‘V C ’ gets distorted<br />

• In phasor form ‘i’ leads V C<br />

in capacitor zone<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

267/454


• In inductive zone, ‘i’ lags V C<br />

• TCR current is high<br />

X<br />

TCSC<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

− jX<br />

j(<br />

X<br />

C<br />

TCR<br />

. jX<br />

− X<br />

TCR<br />

C<br />

)<br />

⎞<br />

⎟<br />

⎠<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

− jX<br />

C<br />

( 1−<br />

X<br />

C<br />

X<br />

TCR<br />

⎞<br />

⎟<br />

) ⎠<br />

i<br />

TCR<br />

=<br />

−<br />

j(<br />

X<br />

TCR<br />

jX<br />

−<br />

C<br />

X<br />

C<br />

)<br />

. I<br />

=<br />

I<br />

( 1−<br />

X X )<br />

TCR<br />

C<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

268/454


• If X TCR = 1.5X C ⇒ Capacitive<br />

X<br />

X<br />

TCSC<br />

C<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

(1 −<br />

X<br />

C<br />

1<br />

X<br />

TCR<br />

)<br />

⎞<br />

⎟<br />

⎠<br />

=<br />

• If X TCR = 0.75X C ⇒ Inductive 3<br />

1<br />

1−1 1.5<br />

=<br />

I TCR<br />

I<br />

=<br />

1<br />

1−1.5<br />

= −2<br />

X = 0. 75X<br />

TCR<br />

C<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

269/454


X<br />

X<br />

TCSC<br />

C<br />

=<br />

1<br />

1−1<br />

0.75<br />

= −3<br />

I TCR<br />

I<br />

=<br />

1−<br />

1<br />

0.75<br />

=<br />

4<br />

• For same magnitude <strong>of</strong> X TCSC , I TCR in ‘C’<br />

zone = (1/2)I TCR in ‘L’ zone<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

270/454


Modes <strong>of</strong> operation<br />

By pass mode :<br />

• ‘i L ’ is continuous & sinusoidal<br />

• Each thyristor conducts for 180 o<br />

• X TCSC ⇒ inductive<br />

• Most <strong>of</strong> the line ‘I’ flow through ‘L’ not ‘C’<br />

• Used to protect ‘C’ against over voltage<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

271/454


Thyristor blocked mode :<br />

• No ‘i’ through ‘L’<br />

• Fixed ‘C’ ⇒ Avoided<br />

Vernier control<br />

• Thyristors are gated and they conducts<br />

for part <strong>of</strong> cycle<br />

• X TCSC ↑ as conduction angle ↑ from zero<br />

to α C(lim)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

272/454


Static Synchronous Series Compensation<br />

• Function <strong>of</strong> series capacitor ⇒ produces an<br />

appropriate voltage <strong>of</strong> fundamental ‘F’ in<br />

quadrature with Tr. Line ‘I’<br />

P<br />

=<br />

V V<br />

( X − X )<br />

L<br />

S<br />

R<br />

C<br />

Sinδ<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

273/454


• Instead: Use VSI to inject a voltage in<br />

quadrature with ‘i’<br />

V = ± j.<br />

q<br />

V q<br />

( γ )<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

274/454


• Voltage across ‘L’ ⇒ V ( )<br />

L<br />

= 2VSin<br />

δ 2 + Vq<br />

I<br />

=<br />

2VSin<br />

δ<br />

( 2)<br />

X<br />

+ V<br />

q<br />

( )<br />

( δ 2) . 2VSin( δ )<br />

P = VCos<br />

2 +<br />

V q<br />

=<br />

V<br />

X<br />

2<br />

Sinδ<br />

+<br />

V.<br />

V<br />

X<br />

q<br />

Cos<br />

( δ 2)<br />

• If V q > I.X, power flow will reverse<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

275/454


T.C.S.C :<br />

Review<br />

• Used for vernier control <strong>of</strong> ‘C’.<br />

GCSC also provides this feature<br />

• Cost <strong>of</strong> GTO > that <strong>of</strong> thyristor<br />

• Effective capacitive<br />

compensation increases<br />

as α↓from π/2 to α C(lim)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

276/454


Contd..<br />

• For both region X L < X C (inductive & capacitive)<br />

• In inductive zone, I TCR > I Line and are in phase<br />

• In capacitive zone, I Line is out <strong>of</strong> phase with I TCR<br />

• ‘V’ across ‘C’ gets distorted<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

277/454


Contd..<br />

Static Synchronous Series Compensation:<br />

• Instead <strong>of</strong> passive elements<br />

use VSI<br />

P<br />

=<br />

V<br />

X<br />

2<br />

Sinδ<br />

+<br />

V.<br />

V<br />

X<br />

q<br />

Cos<br />

( δ 2)<br />

• Reverse power flow is possible<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

278/454


Control range:<br />

• Voltage compensation mode : SSSC can<br />

maintain the rated capacitive or inductive<br />

compensating ‘V’ for ‘I’ till I q(max)<br />

• Ideal condition (‘I’ line<br />

can not be zero)<br />

• ΔP is required for SSSC<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

279/454


impedance compensation mode :<br />

• Maintain rated X C or X L<br />

up to rated I<br />

Exchange <strong>of</strong> Active power by SSSC:<br />

• Can exchange active as well as reactive power<br />

• Some active source should be connected to<br />

DC side<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

280/454


• Compensation for both reactive and resistive<br />

compensation <strong>of</strong> series line impedance to keep<br />

X/R ratio high (3-10 is desirable)<br />

• With series compensation<br />

effective ( X X ) R ratio ↓<br />

L −<br />

C<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

281/454


• X/R ratio in case1 > X/R ratio in case2<br />

• Reactive component <strong>of</strong><br />

I q<br />

(<br />

1<br />

2 )<br />

= I. Sin δ + ϕ<br />

↑<br />

(<br />

1<br />

δ 2 + )<br />

• Real component <strong>of</strong> I = Ia<br />

= I. Cos ϕ<br />

transmitted to the receiving end decreases<br />

corresponding to R=0<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

282/454


• If V S = V R =V<br />

Per phase power received by the receiving end<br />

P<br />

( 90 +δ −ϕ)<br />

= V. I.<br />

Cos 2<br />

( ϕ − 2)<br />

= V. I.<br />

Sin δ<br />

2VSinδ<br />

/ 2<br />

= V. . Sin δ<br />

Z<br />

( ϕ − 2)<br />

=<br />

2 V<br />

2 . Sinδ<br />

/ 2<br />

Z<br />

δ<br />

{ Cosδ<br />

/ 2. Sinϕ<br />

− Cosϕ.<br />

Sin / 2}<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

283/454


=<br />

2 2<br />

V<br />

2<br />

Z<br />

{ Sinϕ.<br />

Sinδ<br />

/ 2. Cosδ<br />

/ 2 − Cosϕ.<br />

Sin δ / 2}<br />

2<br />

V<br />

= 1<br />

Z<br />

{ Sinϕ.<br />

Sinδ<br />

− Cosϕ.<br />

( − Cosδ<br />

)}<br />

2<br />

V ⎧ X R<br />

= ⎨ . Sinδ<br />

− . δ<br />

Z ⎩ Z Z<br />

( 1−<br />

Cos ) ⎬ ⎫<br />

⎭<br />

2<br />

V<br />

= 1<br />

2 2<br />

R + X<br />

{ X.<br />

Sinδ − R.<br />

( − Cosδ )}<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

284/454


⇒ Reactive VA associated with the receiving end<br />

Q<br />

( 90 +δ / −ϕ)<br />

= VI.Sin 2<br />

2V<br />

2 Sinδ<br />

/ 2<br />

= Cos 2 −<br />

Z<br />

( δ / ϕ)<br />

2<br />

= V<br />

R + X<br />

1<br />

2 2<br />

{ R.<br />

Sinδ + X ( − Cosδ )}<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

285/454


• Maximum transmittable active power ↓<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

286/454


Voltage & phase angle regulators<br />

Voltage regulator:<br />

• Injection <strong>of</strong> appropriate in phase<br />

component in series with ac system<br />

• Similar to transformer tap changer<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

287/454


Phase angle controller :<br />

• Inject ‘V’ at an angle ±90 o<br />

relative to the system ‘V’<br />

• Resultant angular change approx. proportional<br />

to injected ‘V’. Magnitude <strong>of</strong> ‘V’ is constant<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

288/454


<strong>Power</strong> flow control :<br />

• Optimal loading <strong>of</strong> transmission line in<br />

practical system can not always be achieved<br />

at the prevailing angle<br />

Occur when ?<br />

• <strong>Power</strong> between two buses is transmitted<br />

over parallel lines <strong>of</strong> different length, use<br />

phase angle regulator (PAR)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

289/454


PAR : A sinusoidal synchronous ac voltage<br />

source with controllable amplitude and<br />

phase angle<br />

V +<br />

Seff<br />

and<br />

V =<br />

V<br />

= VS<br />

Vr<br />

S Seff<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

290/454


• Basic idea is to keep the transmittable<br />

power at the desirable level<br />

independent <strong>of</strong> prevailing ‘δ’<br />

also<br />

V r<br />

V S<br />

> 90 o<br />

⇒ angle to be controlled<br />

is (δ-σ )<br />

2<br />

V<br />

P = Sin<br />

X<br />

( δ −σ )<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

291/454


• Multi functional FACTS controller :<br />

based on back-back VSI with a common<br />

DC-link<br />

• One converter in series (SSSC) and other<br />

is in shunt (SVC) ⇒ unified power flow<br />

controller (UPFC)<br />

• Both converters are connected in series but<br />

in two different lines (Inter line <strong>Power</strong> Flow<br />

Controller-IPFC)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

292/454


UPFC :<br />

• Able to control simultaneously or<br />

selectively all the parameters affecting the<br />

power flow in Tr. line<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

293/454


• Converter-1 supplies active power<br />

required by converter-2<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

294/454


• Independently control the reactive power<br />

flow at the point <strong>of</strong> connection<br />

UPFC can fulfill<br />

• Reactive power control<br />

• Series compensation<br />

• Phase angle regulator<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

295/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

296/454


Case1 :<br />

Control capabilities<br />

ρ = 0,<br />

Voltage regulator<br />

V pq<br />

= ± ΔV<br />

• Similar to tap changing transformer with<br />

large no. <strong>of</strong> steps<br />

Reactance compensator : Series reactive<br />

compensator<br />

V pq = V q at 90 o with I<br />

⇒ Similar to SSSC<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

297/454


Phase angle regulator :<br />

V pq<br />

= V σ<br />

⇒ at any angular relationship w.r.t V S<br />

so that desired phase shift is achieved<br />

Multi functional feature :<br />

V<br />

pq<br />

= ΔV<br />

+ Vq<br />

+ V σ<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

298/454


U.P.F.C :<br />

Review<br />

• Two VSI connected back to back with<br />

common DC-link<br />

• One connected in series with line and other is<br />

connected across the line<br />

• DC-link ‘V’ is maintained<br />

constant by converter-1<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

299/454


Contd..<br />

• Active power required by the<br />

system is drawn by converter-1<br />

Can function as<br />

• Voltage regulator ⇒ V+ΔV<br />

• SSSC ⇒ injects ‘V’ in quadrature with ‘I’<br />

• Phase angle regulator ⇒ injects ‘ΔV’ in<br />

quadrature with ‘V’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

300/454


Using UPFC<br />

• Active power flow and<br />

• Reactive power flow can be set<br />

• In SSSC : Quadrature injected ‘V’<br />

results in increase in power flow<br />

⇒ Magnitude <strong>of</strong> injected ‘V’ determines ‘P’<br />

⇒ Circuit conditions determines ‘Q’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

301/454


• Main function : Control the flow <strong>of</strong> ‘P’ & ‘Q’<br />

by injecting a voltage in series with the<br />

Tr. line<br />

• Both magnitude & phase angle are varied<br />

• Control <strong>of</strong> ‘P’ & ‘Q’ allows power flow in<br />

prescribed routes<br />

⇒ 2 port representation<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

302/454


⇒ A common DC-link voltage is regulated<br />

Re( )<br />

* *<br />

V I 1 V I 2 − P 0<br />

u1 +<br />

u2<br />

loss<br />

=<br />

• In addition to maintain real power balance,<br />

shunt branch can independently exchange<br />

reactive power with the system<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

303/454


• Transmitted active power and reactive power<br />

supplied by receiving end<br />

P<br />

r<br />

−<br />

jQ<br />

r<br />

= V<br />

r<br />

⎛V<br />

. ⎜<br />

⎝<br />

S<br />

+ V<br />

pq<br />

jX<br />

−V<br />

r<br />

⎞<br />

⎟<br />

⎠<br />

*<br />

V = Ve<br />

S<br />

jδ 2<br />

−<br />

V r<br />

= Ve<br />

jδ 2<br />

V<br />

pq<br />

=<br />

V<br />

pq<br />

e<br />

j<br />

( δ 2+ρ<br />

)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

304/454


= Ve<br />

⎧V<br />

⎨<br />

⎩<br />

( Cosδ 2 − jSinδ<br />

2 − Cosδ<br />

2 − jSinδ<br />

) Vpq<br />

− j( δ 2+<br />

ρ )<br />

− jδ<br />

2 2<br />

−<br />

jX<br />

−<br />

jX<br />

e<br />

⎫<br />

⎬<br />

⎭<br />

= Ve<br />

⎧<br />

⎨<br />

⎩<br />

VSin<br />

X<br />

Vpq<br />

−<br />

jX<br />

− jδ 2 2 δ 2<br />

− j 2<br />

e<br />

( δ + ρ )<br />

⎫<br />

⎬<br />

⎭<br />

=<br />

V V V<br />

Sinδ<br />

2<br />

.<br />

X<br />

jX<br />

2 2<br />

− j( δ + ρ )<br />

( Cosδ<br />

2 − jSinδ<br />

2) −<br />

pq e<br />

= 2 2<br />

V<br />

V.<br />

V<br />

2<br />

jSin<br />

X<br />

jX<br />

pq<br />

( Sinδ 2. Cosδ<br />

2 − jSin δ 2) − Cos( δ + ρ ) − ( δ + ρ )<br />

( )<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

305/454


P<br />

r<br />

−<br />

jQ<br />

r<br />

=<br />

V<br />

X<br />

2<br />

V.<br />

Vpq<br />

Sinδ − Sin +<br />

X<br />

( δ ρ )<br />

−<br />

⎧<br />

j⎨<br />

⎩<br />

V<br />

X<br />

2<br />

2 2<br />

Sin<br />

V.<br />

V<br />

δ 2 −<br />

X<br />

pq<br />

Cos<br />

( δ + ρ )<br />

⎫<br />

⎬<br />

⎭<br />

∴P<br />

r<br />

=<br />

V<br />

X<br />

2<br />

V.<br />

Vpq<br />

Sinδ − Sin +<br />

X<br />

( δ ρ )<br />

∴Q<br />

r<br />

=<br />

2<br />

2 2<br />

V<br />

X<br />

Sin<br />

V.<br />

Vpq<br />

δ 2 − Cos +<br />

X<br />

( δ ρ )<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

306/454


• ‘ρ’ can vary from 0 to 2π<br />

• ‘P’ & ‘Q’ are controllable from<br />

P<br />

V.<br />

V<br />

pq<br />

( δ ) − to P( δ )<br />

X<br />

+<br />

V.<br />

V<br />

X<br />

pq<br />

⇒ Transmitted real power<br />

2<br />

V V.<br />

V<br />

= Sinδ<br />

±<br />

X X<br />

( )<br />

pq max<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

307/454


Control strategy:<br />

• There are 3 degrees <strong>of</strong> freedom<br />

• Magnitude and angle <strong>of</strong> series V<br />

• Shunt reactive current<br />

⇒ Both are VSI<br />

⇒ Series injected ‘V’ can be instantaneously<br />

changed<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

308/454


⇒ Shunt current is controlled indirectly by<br />

varying output <strong>of</strong> shunt converter<br />

Series injected ‘V’ control :<br />

• Injected ‘V’ can be split into two components<br />

1. In phase with line ‘I’<br />

2. In quadrature with line ‘I’<br />

• ‘P’ can be controlled by varying series reactance<br />

<strong>of</strong> the line<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

309/454


• Reactive ‘V’ injection ⇒ similar to series<br />

connection <strong>of</strong> reactance except that injected ‘V’<br />

is independent <strong>of</strong> Tr. Line ‘I’<br />

Shunt current control :<br />

• Shunt current can be split into real & reactive<br />

components<br />

• Magnitude <strong>of</strong> real component ⇒ DC link ‘V’<br />

• Magnitude <strong>of</strong> reactive component ⇒ Bus ‘V’<br />

magnitude regulator<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

310/454


FACTS installments in India<br />

• TSC+TCR (400 kV) at Kanpur ⇒ ±240 MVar<br />

• TCR (400 kV) at Itarsi ⇒ ±50 MVar<br />

• TCSC (400 kV ) at ⇒ Raipur - Rourkela<br />

(Double ckt.)<br />

⇒ Gorakhpur - Mazaffarpur<br />

⇒ Kanpur - Ballabhgarh<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

311/454


Kanpur – Ballabhgarh 400 kV line:<br />

Fixed capacitor<br />

TCSC<br />

Rated V L-L 420 kV 420 kV<br />

Nominal Var 151.60 MVar 79.87 MVar<br />

Rated continuous<br />

‘V’ across ‘C’<br />

42.2 kV 16.6 kV<br />

TCR/ph<br />

-<br />

4.4 mH<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

312/454


HVDC<br />

• Long distance transmission ( Competing<br />

technology : AC with FACTS)<br />

• Cable transmission (> 40 Km) ⇒ HVDC<br />

• Asynchronous link ⇒ HVDC<br />

• HVDC lines are cheaper than AC lines<br />

• Terminal equipment costs are higher<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

313/454


In India :<br />

• Long distance HVDC<br />

• Rihand – Dadri : 1500 MW, ±500 kV<br />

• Chandrapur – Padghe : 1500MW, ±500 kV<br />

• Talcher – Kolar : 2000MW, ±500 kV<br />

• Barsur– Lower Sileru : 200MW, 200 kV<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

314/454


Back to Back :<br />

• Chandrapur – Ramagundam : 1000 MW<br />

(Asynchronous link)<br />

• Jeypore – Gajuwaka : 500 MW<br />

(Asynchronous link)<br />

• Vindhyachal<br />

: 500 MW<br />

• Sasaram : 500 MW<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

315/454


• ‘P’ through DC link can be regulated.<br />

• <strong>Power</strong> control through firing angle control<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

316/454


• ‘P’ through link can not be regulated<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

317/454


• P 1 + P 2 can be regulated<br />

• If alternator-1 generates 1000 MW &<br />

load 1100 MW<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

318/454


• If alternator-2 generates 1000 MW &<br />

load 900 MW<br />

• P 1 +P 2 has to be -100 MW<br />

(frequency <strong>of</strong> alternator-1 &2 are same)<br />

• P 1 + P 2 can be set<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

319/454


Types <strong>of</strong> HVDC system<br />

Two terminal : with DC transmission line<br />

One rectifier terminal + one inverter terminal<br />

Back to Back :<br />

• Two terminals with no DC line ⇒ used for<br />

asynchronous link<br />

Multi terminal : with DC line and several rectifier<br />

and/or inverter terminals connected to more than<br />

two nodes <strong>of</strong> AC network<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

320/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

321/454


Types <strong>of</strong> links :<br />

• Mono-polar<br />

• Bi-polar<br />

Mono-polar HVDC link :<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

322/454


• One conductor (generally –ve)<br />

• Return path ⇒ ground ⇒ Resistance should<br />

be low<br />

• Instead metallic return<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

323/454


Bi-polar HVDC link :<br />

• Has two conductors<br />

+ve<br />

-ve<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

324/454


• Each terminal has two converters <strong>of</strong> equal<br />

rating ‘V’ connected in series on the DC side<br />

• Junction is grounded<br />

• ‘I’ in two phases are equal<br />

• No ground ‘I’<br />

• Two poles can operate independently<br />

• If one is faulty, then other can operate with<br />

ground as the return<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

325/454


Review<br />

HVDC<br />

• Asynchronous link<br />

• Back to back<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

326/454


Components <strong>of</strong> HVDC transmission<br />

Bi-polar<br />

HVDC<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

327/454


Converter :<br />

• Perform AC – DC conversion<br />

DC – AC conversion<br />

• 12 pulse converter<br />

Transformer with tap changer<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

328/454


Smoothing Reactor : Large value <strong>of</strong> ‘L’ in<br />

Series with each pole<br />

Purpose :<br />

• ↓ harmonic voltage & current in DC line<br />

• Prevents ‘I’ from being discontinuous on<br />

light load<br />

• Limit the ‘I’ during S. C in the DC line<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

329/454


Harmonic filter :<br />

• Converter generates<br />

harmonic currents<br />

• Because <strong>of</strong> source ‘L’, ‘V’ gets distorted<br />

• Affects the other loads & interference<br />

with communication network<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

330/454


Reactive power support :<br />

• Both converter & inverter absorb<br />

reactive power<br />

• As α↑, ‘Q’ requirement ↑<br />

• ‘Q’ source is a must<br />

• If bus is strong, shunt capacitor can be used<br />

• ‘C’ associated AC filter also supply ‘Q’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

331/454


Basic module <strong>of</strong> converter :<br />

• 3-ph full bridge<br />

V an<br />

= V∠0<br />

= V∠ −120<br />

V cn<br />

= V∠ − 240<br />

V ab<br />

= 3V∠<br />

π 6,<br />

= 3V∠−<br />

π 2,<br />

V bn<br />

V bc = 3V∠<br />

− 210<br />

V ca<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

332/454


• If α 1 is trigger angle for bridge-1<br />

• If α 2 is trigger angle<br />

for bridge-2<br />

⇒ Neglect i dc r dc &<br />

Assuming ideal devices<br />

α = π −α 2 1<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

333/454


⇒α = 30 o (w.r.t natural<br />

commutation)<br />

or<br />

⇒ corresponding to Z.C <strong>of</strong><br />

phase-A α = 60 o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

334/454


⇒T 1 is turned <strong>of</strong>f at ωt= 30+ (30+120) = 180 o<br />

When T 3 is triggered, ‘V’ across T 1 = V ab<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

335/454


V a<br />

= Sin180 = 0,<br />

2<br />

V b<br />

2<br />

= Sin60 =<br />

3<br />

∴V<br />

ab<br />

= −<br />

3<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

336/454


At ωt = 210 o<br />

V a<br />

= Sin210 = −1<br />

= Sin90 = 1<br />

V b<br />

3<br />

2<br />

V ab<br />

= −1.5<br />

At ωt = 240 o<br />

V a<br />

− 3 2, V = 2<br />

=<br />

b<br />

3<br />

∴V<br />

ab<br />

= −<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

337/454


At ωt = 270 o<br />

V a<br />

−1 , V = 1<br />

=<br />

b<br />

2<br />

∴V<br />

ab<br />

= −1.5<br />

At ωt = 300 o -<br />

V − 3 2, V = 0 V = − 3 2<br />

a<br />

=<br />

b<br />

∴ ab<br />

At ωt = 300 o + , T 5 is triggered, ‘V’ across T 1 is V ac<br />

V − 3 2, V = 3 2 V = − 3<br />

a<br />

=<br />

c<br />

∴ ac<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

338/454


At ωt = 330 o<br />

V a<br />

−1 2, V = 1<br />

=<br />

c<br />

∴V<br />

ac<br />

= −1.5<br />

At ωt = 360 o<br />

V 0 , V = 3 2 V = − 3 2<br />

a<br />

=<br />

c<br />

∴ ac<br />

At ωt = 30 o<br />

V 1 2, V = 1 2 V = 0<br />

a<br />

=<br />

c<br />

∴ ac<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

339/454


At ωt = 60 o -<br />

V 3 2, V = 0 V = 3 2<br />

a<br />

=<br />

c<br />

∴ ac<br />

⇒ T 1 is reverse biased for 210 o<br />

What happen when α = 150 o<br />

T 1 is turned <strong>of</strong>f at ωt = 30+150+120 = 300 o<br />

(w.r.t +ve Z.C <strong>of</strong> Ph- A)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

340/454


At ωt = 300 o<br />

V − 3 2, V = 0 V = − 3 2<br />

a<br />

=<br />

b<br />

∴ ab<br />

At ωt = 330 o<br />

V −1 2, V = −1<br />

2 V = 0<br />

a<br />

=<br />

b<br />

∴ ab<br />

V<br />

a<br />

At ωt = 360 o<br />

0,<br />

V = − 2<br />

=<br />

b<br />

3<br />

∴V ab<br />

= 3 2 = + ve<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

341/454


⇒ T 2 must attain forward voltage blocking<br />

capability within 30 o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

342/454


Vdc = 2.34V<br />

ph.<br />

Cosα<br />

=1.35V LL<br />

.Cosα<br />

For α = 30 o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

343/454


Review<br />

HVDC<br />

• Two six pulse converters<br />

connected in series<br />

α<br />

= π −<br />

2<br />

α 1<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

344/454


Contd..<br />

• As α 1 ↑ (AC-DC converter), ‘Q’ requirement<br />

also ↑<br />

• As α 2 ↑, duration for which<br />

the devices is reverse biased↓<br />

• When α = 150 o , duration for which the devices<br />

is reverse biased = 30 o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

345/454


Harmonic component in converter i/p :<br />

• No even harmonics, only odd harmonics<br />

π 3<br />

2<br />

2I Ln<br />

= ∫ I0Cosnθ.<br />

dθ<br />

π<br />

−π<br />

3<br />

6<br />

I L 1<br />

= . I 0<br />

, I<br />

L 3<br />

= 0<br />

2 ⎛ nπ<br />

⎞ π<br />

I Ln<br />

= . I0⎜2Sin<br />

⎟<br />

2nπ<br />

⎝ 3 ⎠<br />

I<br />

I<br />

L1<br />

L1<br />

I<br />

L5<br />

= − , I<br />

L7<br />

= −<br />

7<br />

5<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

346/454


Phase relationship between phase V & I 1<br />

Neglect losses<br />

V<br />

⎛ Vm<br />

⎞<br />

= 3⎜<br />

⎟<br />

⎝ 2 ⎠<br />

dcI0 . I<br />

L1<br />

Cosϕ<br />

⎛ Vm<br />

⎞ 6 3 3<br />

3.<br />

⎜ ⎟.<br />

I0 Cosϕ<br />

= VmCosα.<br />

I<br />

⎝ 2 ⎠ π<br />

π<br />

Cosϕ<br />

= Cosα<br />

∴ϕ<br />

= α<br />

0<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

347/454


α + 60<br />

6<br />

V0 = ∫Vab.<br />

dωt<br />

2π<br />

α<br />

α + 60<br />

6<br />

= ∫<br />

2π<br />

α<br />

3V<br />

m<br />

Sin<br />

(<br />

o<br />

ωt<br />

+ 60 ).<br />

d t<br />

ω<br />

=<br />

3 3<br />

Vm Cosα<br />

= V<br />

π<br />

dco<br />

Cosα<br />

=<br />

3 3<br />

π<br />

2V rms<br />

Cosα<br />

= 2 .34V<br />

Cosα = 1. V Cosα<br />

rms<br />

35<br />

LL<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

348/454


As α↑:<br />

• V dc ↓<br />

• Displacement angle ↑ & P.F ↓<br />

• Q ↑<br />

Effect <strong>of</strong> source L :<br />

• T 1 , T 2 when conducting<br />

T 3 is triggered<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

349/454


i + =<br />

i I<br />

1 3 0<br />

di 1<br />

di<br />

= −<br />

3<br />

dt dt<br />

V<br />

ba<br />

= 2L<br />

c<br />

di<br />

dt<br />

3 V Sinωt<br />

= 2L<br />

m<br />

3<br />

c<br />

di<br />

dt<br />

3<br />

∴i<br />

3<br />

= −<br />

3V<br />

m<br />

Cosωt<br />

+<br />

2ωL<br />

c<br />

K<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

350/454


Boundary conditions :<br />

At ωt = α, i = I i = −I<br />

, i 0<br />

, =<br />

1 0 2 0 3<br />

= α+μ,<br />

i 0 i = I<br />

1<br />

= , i2<br />

= −I0,<br />

3<br />

0<br />

∴i<br />

3<br />

=<br />

3V<br />

2ωL<br />

m<br />

c<br />

( Cosα<br />

− Cosωt)<br />

At ωt = α+μ, i<br />

3<br />

= I0<br />

∴ I<br />

0<br />

=<br />

3V<br />

2ωL<br />

m<br />

c<br />

( Cosα<br />

− Cos( α + μ)<br />

)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

351/454


V<br />

V<br />

pn<br />

pn<br />

= V<br />

= V<br />

an<br />

bn<br />

−<br />

−<br />

L<br />

L<br />

di<br />

dt<br />

di<br />

dt<br />

1<br />

3<br />

2V<br />

pn<br />

= V<br />

an<br />

+ V<br />

bn<br />

−<br />

⎛<br />

L⎜<br />

⎝<br />

di<br />

dt<br />

1<br />

+<br />

di<br />

dt<br />

3<br />

⎞<br />

⎟<br />

⎠<br />

∴V<br />

pn<br />

=<br />

V<br />

an<br />

+ V<br />

2<br />

bn<br />

=<br />

V<br />

−<br />

2<br />

cn<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

352/454


∴V<br />

0<br />

=<br />

V pn<br />

−V mn<br />

V<br />

= −<br />

2<br />

cn<br />

−V<br />

cn<br />

= −1.5V<br />

cn<br />

Reduction in V 0 = (ΔV 0 ) :<br />

ΔV<br />

α + μ<br />

6<br />

0<br />

=<br />

2π<br />

∫<br />

α<br />

( V + 1.5V<br />

).<br />

d t<br />

bc<br />

cn<br />

ω<br />

α + μ<br />

6<br />

=<br />

2π<br />

∫<br />

α<br />

3V<br />

m<br />

Sin<br />

o<br />

( ωt<br />

+ 60 ) + 1.5V<br />

Sin( ωt<br />

−π<br />

2 ).<br />

d t<br />

m<br />

ω<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

353/454


V m<br />

3 3<br />

= Cos<br />

2π<br />

( Cosα<br />

− ( α + μ)<br />

)<br />

=<br />

V<br />

2<br />

dco<br />

I<br />

0<br />

2ωL<br />

3V<br />

c<br />

m<br />

=<br />

3ωL c<br />

π<br />

I<br />

0<br />

∴V<br />

0<br />

= V<br />

dc0<br />

Cosα −<br />

3ωL<br />

π<br />

c<br />

I<br />

0<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

354/454


Representation <strong>of</strong> inverter mode <strong>of</strong><br />

operation in presence <strong>of</strong> μ<br />

−V<br />

d<br />

=<br />

V<br />

dco<br />

cosα<br />

−<br />

R<br />

c<br />

I<br />

d<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

355/454


V = −V<br />

cosα<br />

+<br />

d<br />

dco<br />

R<br />

c<br />

I<br />

d<br />

= V cos( π −α)<br />

+ R<br />

dco<br />

= V cos β + R<br />

dco<br />

c<br />

I<br />

d<br />

c<br />

I<br />

d<br />

α →<br />

delay angle<br />

β<br />

→ Angle <strong>of</strong> advance<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

356/454


Converter<br />

α ⇒ delay angle<br />

μ ⇒ overlap angle<br />

Inverter<br />

β = π-α ⇒ advance angle<br />

μ ⇒ overlap angle<br />

γ = β-μ ⇒ extinction angle<br />

γ = π-(α+μ)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

357/454


ΔV<br />

o<br />

=<br />

V<br />

2<br />

dco<br />

[cosα − cos( α + μ)]<br />

V<br />

d<br />

=<br />

V<br />

dco<br />

−<br />

ΔV<br />

o<br />

V<br />

= dco<br />

2<br />

[cosα + cos( α + μ)]<br />

Also<br />

V<br />

d<br />

V<br />

2<br />

= dco<br />

[cosα + cos( α + μ)]<br />

= [cos( π − β )<br />

+<br />

cos( π −γ<br />

)]<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

358/454


V dco<br />

= [cos + cos γ ] − − − − −<br />

2<br />

− ( A)<br />

I<br />

d<br />

=<br />

3V<br />

2ωL<br />

m<br />

c<br />

β<br />

)]<br />

[cosα<br />

− cos( α + μ<br />

=<br />

3V<br />

2ωL<br />

m<br />

c<br />

[cos( π − β )<br />

− cos( π −γ<br />

)]<br />

3V<br />

m<br />

= [cosγ<br />

− cos β ] − − − − − − − ( B)<br />

2ωL<br />

c<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

359/454


Eq. A+B ⇒<br />

∴2cos<br />

2V<br />

V<br />

d<br />

γ = +<br />

dco<br />

I<br />

d<br />

2ωL<br />

3V<br />

c<br />

m<br />

V<br />

d<br />

= V<br />

dco<br />

cosγ −<br />

3 3<br />

π<br />

V<br />

m<br />

ωL<br />

c<br />

3V<br />

m<br />

= V<br />

dco<br />

dco<br />

cosγ<br />

−<br />

3ωL<br />

π<br />

= V cosγ<br />

− R<br />

c<br />

c<br />

I<br />

I<br />

d<br />

d<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

360/454


12-pulse converter<br />

• Series connection <strong>of</strong> two 6-pulse converters<br />

3-Φ voltages supplied to one<br />

bridge is displaced by 30 o<br />

from those applied to 2 nd bridge<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

361/454


• DC voltage is doubled<br />

• Harmonic spectrum has improved<br />

12n ± 1 on AC side<br />

12n on DC side<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

362/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

363/454


Relation between Ac and DC quantity :<br />

With multi phase bridge<br />

If ‘Β’ no. <strong>of</strong> bridges in series<br />

∴V =1.35. B.<br />

T.<br />

do<br />

V L<br />

⇒ No load<br />

Corresponding voltage drop :<br />

Output<br />

3<br />

V = Vd<br />

= VdoCosα − Id<br />

. B.<br />

X<br />

π<br />

3<br />

I d<br />

X C<br />

π<br />

C<br />

bridge<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

364/454


V<br />

d<br />

⎛ 3<br />

= VdoCosα<br />

− Id<br />

. B.<br />

⎜ X<br />

C<br />

⎝ π<br />

⎞<br />

⎟<br />

⎠<br />

⎛ 3<br />

= VdoCosγ<br />

− I<br />

d<br />

. B.<br />

⎜ X<br />

C<br />

⎝ π<br />

⎞<br />

⎟<br />

⎠<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

365/454


Summary <strong>of</strong> technical data <strong>of</strong> Padghe<br />

• Nominal line voltage ⇒ 400 kV<br />

• Maximum line voltage ⇒<br />

430 kV<br />

• Minimum line voltage ⇒ 380 kV<br />

• Total ‘Q’ at both stations ⇒ 800 MVar<br />

⇒ 4*200 MVar<br />

• 12 th harmonic filter ⇒ 2*120 MVar<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

366/454


• 24/36 harmonic filter ⇒ 2*80 MVar<br />

<strong>Power</strong> :<br />

• Nominal <strong>Power</strong> ⇒ 2*750 MW<br />

• Minimum (single pole) ⇒ 2*75 MW<br />

• 2 hours overload ⇒<br />

2*825 MW<br />

• 5 Sec. overload ⇒ 2*1000 MW<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

367/454


Direct voltage :<br />

• Nominal line voltage ⇒<br />

500 kV<br />

• Maximum line voltage ⇒ 512 kV<br />

• Minimum line voltage ⇒ 488 kV<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

368/454


Direct current :<br />

• Nominal I ⇒ 1500 A<br />

• Maximum I at nominal load ⇒ 1542 A<br />

• Max. I at 2 hour over load ⇒ 1695 A<br />

• Max. I at 5 sec. over load ⇒ 2140 A<br />

‣ Nominal line resistance = 7.5 Ω<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

369/454


Rectifier firing angle :<br />

• Minimum ‘α’ ⇒ 5 o<br />

• Mini. ‘α’ during normal operation ⇒ 12.5 o<br />

• Max. ‘α’ during normal operation ⇒ 17.5 o<br />

Inverter firing angle :<br />

• Minimum ‘γ’ ⇒ 16 o<br />

• Max. ‘γ’ during normal operation ⇒ 18 o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

370/454


Basic control :<br />

• DC voltage or I (or power) can be controlled<br />

by controlling the internal voltage (V dcor Cosα)<br />

and V dcoi Cosγ<br />

⇒ Gate control or using tap changing <strong>of</strong><br />

converter transformer<br />

⇒ Gate control is fast<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

371/454


⇒ Tap changing : Slow ( 5-6 sec/step)<br />

⇒ Gate control is used for initial rapid<br />

control action<br />

⇒ Followed by tap changing to restore the<br />

converter quantities ( ‘α’ <strong>of</strong> rectifier & ‘γ’<br />

for inverter) to their normal ranges<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

372/454


Basis for selection <strong>of</strong> control :<br />

Following considerations influences the selection<br />

<strong>of</strong> control characteristics<br />

• Prevention <strong>of</strong> large fluctuations <strong>of</strong> DC<br />

current due to variation in AC system<br />

• Maintaining DC voltage near rated value<br />

• Maintaining power factor at the sending &<br />

receiving end that are as high as possible<br />

• Prevention <strong>of</strong> commutation failure in inverter<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

373/454


• Rectifier control ⇒ To prevent large<br />

fluctuations in DC current<br />

I<br />

d<br />

=<br />

V<br />

dcor<br />

Cosα<br />

−V<br />

R + R −<br />

cr<br />

L<br />

Cosγ<br />

R<br />

dcoi<br />

ci<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

374/454


• Denominator is very small<br />

• A small change in V dcor or V dcoi cause a large<br />

change in I d<br />

• 25% change either in V dcor or V dcoi changes<br />

‘i d ’ by 100%<br />

• If ‘α’& ‘γ’ are kept constant, I dc can vary<br />

over a wide range for small change in i/p<br />

AC voltage at either end<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

375/454


• Not acceptable<br />

• Rapid converter control prevents fluctuation<br />

<strong>of</strong> I dc<br />

• For a given power transmitted V dc pr<strong>of</strong>ile<br />

along the line should be close to rated values<br />

• It minimizes I d & therefore line loss<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

376/454


• P.F should be as high as possible<br />

• Minimize losses and current rating <strong>of</strong><br />

equipment in the AC system<br />

• Reduce the voltage drop at the AC terminal<br />

as load ↑<br />

• ↓ the cost <strong>of</strong> reactive power supply to line<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

377/454


• So keep the rated power <strong>of</strong> the converter<br />

as high as possible for a given ‘V’ & ‘I’ rating<br />

<strong>of</strong> transformer<br />

• P.F depends on ‘α’& ‘γ’<br />

α min = 5 o (a +ve ‘V’ should appear across<br />

the device)<br />

• Normally operate at 15 – 20 o , so that<br />

V dcor can be ↑ to control DC power flow<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

378/454


• γ ⇒ necessary to maintain a certain minimum<br />

extinction angle to avoid commutation failure<br />

• Device should attain forward<br />

voltage blocking capability<br />

γ =<br />

β − μ<br />

= 15 o at 50 Hz<br />

μ ⇒ depends on I d & i/p ‘V’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

379/454


Control <strong>of</strong> HVDC system<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

380/454


I<br />

d<br />

=<br />

V<br />

dcor<br />

Cosα<br />

−V<br />

R + R +<br />

cr<br />

L<br />

Cosγ<br />

R<br />

dcoi<br />

ci<br />

<strong>Power</strong> at rectifier terminal, P dr = V dc .I d<br />

<strong>Power</strong> at inverter terminal = V di .I d<br />

= P dr -i d2 R L<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

381/454


Control characteristics<br />

Ideal characteristics :<br />

• Voltage regulation &<br />

current regulation<br />

Kept distinct & are<br />

assigned to separate<br />

terminals<br />

• Under normal operation :<br />

⇒ Rectifier maintains current control (CC) &<br />

⇒ Inverter operates constant extinction angle<br />

(CEA)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

382/454


• Maintains adequate commutation margin<br />

• V dc ⇒ measured at the rectifier terminals<br />

• Inverter characteristics includes I d .R L drop<br />

V<br />

d<br />

= V Cosγ<br />

+<br />

dcoi<br />

( R ) L<br />

− R ci<br />

I d<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

383/454


• Rectifier characteristics can be shifted<br />

horizontally by adjusting reference current<br />

or current command or current order<br />

• If measured current < current command,<br />

controller ↓ α<br />

• Inverter characteristics can be raised or<br />

lowered by means <strong>of</strong> transformer taps<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

384/454


• As taps are changed, CEA regulator quickly<br />

restores desired γ<br />

• I d changes<br />

• Current regulator <strong>of</strong> rectifier changes ‘α’<br />

and control ‘i’<br />

• Tap changer <strong>of</strong> rectifier acts to bring ‘α’in<br />

the desired range (10-20 o )<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

385/454


Review<br />

Rectifier firing angle :<br />

• Minimum ‘α’ ⇒ 5 o<br />

• Mini. ‘α’ during normal operation ⇒ 12.5 o<br />

• Max. ‘α’ during normal operation ⇒ 17.5 o<br />

Inverter firing angle :<br />

• Minimum ‘γ’ ⇒ 16 o<br />

• Max. ‘γ’ during normal operation ⇒ 18 o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

386/454


Basic control :<br />

• DC voltage or I (or power) can be controlled<br />

by controlling the internal voltage (V dco Cosα)<br />

and V dco Cosγ<br />

⇒ Gate control or using tap changing <strong>of</strong><br />

converter transformer<br />

⇒ Gate control is fast<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

387/454


⇒ Tap changing : Slow ( 5-6 sec/step)<br />

⇒ Gate control is used for initial rapid<br />

control action<br />

⇒ Followed by tap changing to restore the<br />

converter quantities ( ‘α’ <strong>of</strong> rectifier & ‘γ’<br />

for inverter) to their normal ranges<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

388/454


Basis for selection <strong>of</strong> control :<br />

Following considerations influences the selection<br />

<strong>of</strong> control characteristics<br />

(a). Prevention <strong>of</strong> large fluctuations <strong>of</strong> DC<br />

current due to variation in AC system<br />

R ≈ 10 Ω and L =250 mH ⇒ Back to back<br />

L =1H ⇒ for long line<br />

τ =20 m.sec ⇒ roughly<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

389/454


• Simulation study taking line L, R & C in<br />

addition L filter is required<br />

(b). Maintaining DC voltage near rated value<br />

(c). Maintaining power factor at the sending &<br />

receiving end that are as high as possible<br />

(d). Prevention <strong>of</strong> commutation failure in inverter<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

390/454


• Rectifier control ⇒ To prevent large<br />

fluctuations in DC current<br />

I<br />

d<br />

=<br />

V<br />

dcor<br />

Cosα<br />

−V<br />

R + R −<br />

cr<br />

L<br />

Cosγ<br />

R<br />

dcoi<br />

ci<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

391/454


• γ ⇒ necessary to maintain a certain minimum<br />

extinction angle to avoid commutation failure<br />

• Device should attain forward<br />

voltage blocking capability<br />

γ =<br />

β − μ<br />

= 15 o at 50 Hz<br />

μ ⇒ depends on I d & i/p ‘V’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

392/454


Control <strong>of</strong> HVDC system<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

393/454


Control characteristics<br />

Ideal characteristics :<br />

• Voltage regulation &<br />

current regulation<br />

Kept distinct & are<br />

assigned to separate<br />

terminals<br />

• Under normal operation :<br />

⇒ Rectifier maintains current control (CC) &<br />

⇒ Inverter operates constant extinction angle<br />

(CEA)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

394/454


• Quantities forming the co-ordinates are<br />

measured at some common point in the DC line<br />

• Converter terminal can be one such possibility<br />

V<br />

d<br />

= V Cosγ<br />

+<br />

dcoi<br />

( R ) L<br />

− R ci<br />

I d<br />

• Has a small –ve slope<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

395/454


• Maintains adequate commutation margin<br />

• Inverter characteristics includes I d .R L drop<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

396/454


• Rectifier characteristics can be shifted<br />

horizontally by adjusting reference current<br />

or current command or current order<br />

• If measured current < current command,<br />

controller ↓ α<br />

• Inverter characteristics can be raised or<br />

lowered by means <strong>of</strong> transformer taps<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

397/454


• As taps are changed, CEA regulator quickly<br />

restores desired γ<br />

• I d changes<br />

• Current regulator <strong>of</strong> rectifier changes ‘α’<br />

and control ‘i’<br />

• Tap changer <strong>of</strong> rectifier acts to bring ‘α’in<br />

the desired range (10-20 o )<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

398/454


• Constant current characteristics could be a<br />

line parallel to y-axis<br />

• If proportional controller ⇒ slope could be -ve<br />

• Generally current control is<br />

given to both the converters<br />

• Ref. current for rectifier > Ref. current for<br />

inverter<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

399/454


• I ref(conv) –I ref(inv) = I margin = +ve<br />

• Assume that power flows in the line to be ↑<br />

• α conv ⇒ takes the value <strong>of</strong> α min<br />

• Incase I d approaches I ref(conv) , then<br />

⇒ rectifier is working under constant ignition control<br />

⇒ Inverter is working under constant extinction control<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

400/454


• After some time, tap changer changes the tap<br />

⇒ ‘α’ <strong>of</strong> the converter ↑ to attain its normal<br />

operating value (12- 17 o )<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

401/454


Actual characteristics :<br />

• Rectifier maintains constant ‘I’ by changing ‘α’<br />

• ‘α’ can not be < α min<br />

• Once α min is reached, no further ↑‘V’ is possible<br />

• Rectifier will operate constant ignition angle<br />

(CIA)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

402/454


• Therefore rectifier characteristics has two<br />

segments (AB & FA)<br />

• Constant current<br />

characteristics may not be<br />

truly vertical<br />

⇒ Depends on the current<br />

regulator<br />

• With proportional control<br />

C.C characteristics has – ve slope<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

403/454


∴V<br />

dco<br />

Cosα<br />

=<br />

K<br />

[ I − I ]<br />

order<br />

d<br />

= V + R<br />

d<br />

cr<br />

I<br />

d<br />

I ord ⇒ current order<br />

V = KI − +<br />

d<br />

order<br />

( K R ) cr<br />

I d<br />

ΔV<br />

d<br />

= −<br />

( K + R )<br />

cr<br />

ΔI<br />

d<br />

∴<br />

ΔV<br />

ΔI<br />

d<br />

d<br />

= −<br />

( K + R )<br />

cr<br />

⇒ (with PI it is vertical)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

404/454


• At normal voltage , characteristics is defined<br />

by FAB<br />

• At reduced ‘V’, it<br />

shifts down ⇒ F 1 A 1 B 1<br />

• CEA characteristics <strong>of</strong> the inverter intersect<br />

at ‘E’ for normal ‘V’ condition<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

405/454


• At reduced ‘V’, it does not intersect F 1 A 1 B<br />

• A big reduction in rectifier ‘V’ would cause<br />

I d & ‘P’ ↓<br />

⇒ System could shut down<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

406/454


• In order to avoid the problem, inverter is<br />

provided with current control<br />

• Inverter I ord < rectifier I ord<br />

I ord(R) –I ord(I) ≈ 0.1 I rated<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

407/454


• Under normal condition<br />

• Rectifier ⇒ C. C<br />

• Inverter ⇒ CEA<br />

• When i/p ‘V’ ↓ ⇒ rectifier ‘V’↓<br />

⇒ Operating point E 1<br />

• Changes from one mode to another is known<br />

as mode shift<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

408/454


• When inverter is on current control<br />

V<br />

V<br />

d<br />

doi<br />

=<br />

R<br />

L<br />

I<br />

d<br />

−<br />

Cosγ<br />

= V<br />

R<br />

d<br />

ci<br />

I<br />

−<br />

d<br />

R<br />

+ V<br />

L<br />

I<br />

d<br />

doi<br />

+<br />

Cosγ<br />

With proportional controller<br />

R<br />

ci<br />

I<br />

d<br />

−<br />

( I )<br />

ord<br />

− I<br />

d<br />

= Vd<br />

− RLI<br />

d<br />

RcrId<br />

K +<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

409/454


Δ<br />

( V Cosγ<br />

) = −KΔ( I − I ),<br />

doi<br />

ref<br />

d<br />

K >1<br />

= ΔV<br />

d<br />

− ΔI<br />

d<br />

( R − R )<br />

L<br />

ci<br />

d<br />

( R L<br />

− R ci<br />

K ) I d<br />

ΔV = Δ +<br />

ΔV<br />

ΔI<br />

d<br />

d<br />

=<br />

( R L<br />

− R ci<br />

+ K ) I d<br />

⇒ Slope is +ve<br />

⇒ ↑ V dor to ↑ i d<br />

⇒ ↓ V doi to ↑ i d<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

410/454


When does change over take place ?<br />

• Current order is given to both the converters<br />

I ref(C) > I ref(I)<br />

I ref(C) > I ref(I) -I margin ⇒ +ve (assume)<br />

I margin = 0.1 – 0.15 I rated<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

411/454


• Assume that i/p AC has dipped due to fault,<br />

I dc ↓ ,<br />

‣ α conv ⇒ α min<br />

and with this new value<br />

<strong>of</strong> ‘α’, I dc is ↓<br />

• If I dc < (I ref(C) -I mar ), inverter takes over the<br />

current control & converter is working under<br />

C.I.A, after some time tap changer changes the tap<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

412/454


Review<br />

Rectifier<br />

characteristics<br />

Constant current<br />

by ‘α’ control<br />

Constant ignition<br />

angle control<br />

C.C<br />

Can have a –ve slope<br />

Can be parallel to Y-axis<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

413/454


Contd..<br />

• Current control is given to both converters<br />

But I ref(R) > I ref(I)<br />

I ref(R) -I ref(I) = I margin ≈ 0.1I rated<br />

• Current control loop <strong>of</strong> inverter is inactive<br />

when current ≈ I ref(R)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

414/454


• ‘e’ is –ve, ‘K’ is +ve ⇒ I act should be ↓<br />

I act > (I ref –I mar )<br />

⇒ ‘γ’ should be decreased<br />

⇒ o/p <strong>of</strong> PI is zero<br />

⇒ selector switch selects γ min<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

415/454


• ‘e’ is +ve, I act < (I ref –I mar )<br />

⇒ ‘γ, should be ↑ , so that I act ↑, ‘K’ is +ve,<br />

o/p <strong>of</strong> PI starts increasing<br />

⇒<br />

Selector switch selects maximum <strong>of</strong> two inputs<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

416/454


• Due to line fault or during low i/p AC voltage<br />

condition V dco(R) will drop<br />

⇒ Assume V dco(R) Cosα min<br />

< V dco(I) Cosγ<br />

• If there is no current control by the inverter ,<br />

i d will ↓ and eventually becomes zero<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

417/454


• In order to avoid this situation inverter is also<br />

provided with current control<br />

• Operate at E ' till tap changer changes the tap<br />

What happen If I mar is –ve ?<br />

⇒ Rectifier is trying to control I ref(R)<br />

⇒ Inverter is trying to control I ref(R) + I mar<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

418/454


Inverter side :<br />

• I d can be ↑ by ↑ ‘γ’<br />

• As γ↑ , I d ↑, but rectifier<br />

controller tries to ↓ the current (I ref(R) < I ref(I) )<br />

• Since I d is ↑ due to increase in γ ,<br />

rectifier controller ↑ αto reduce I d<br />

α ⇒ towards 90 o<br />

γ ⇒ towards 90 o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

419/454


⇒ New operating point could be ‘D ' ’<br />

⇒ Correct sign to I mar is<br />

very important<br />

• I mar should not be too small<br />

because there could be<br />

measurement error<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

420/454


Mode stabilization :<br />

• Intersection <strong>of</strong> α min characteristics <strong>of</strong> converter<br />

and inverter CEA may not be well defined<br />

• There could be multiple crossings<br />

• Instead change the slope <strong>of</strong> the<br />

inverter characteristics<br />

near the crossing<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

421/454


Alternative inverter γ control<br />

• Instead <strong>of</strong> regulating ‘γ’ (CEA)<br />

• Maintain a constant DC voltage at a desired<br />

point<br />

• Could be sending end<br />

• Required inverter voltage to maintain the above<br />

voltage is estimated by computing I.R drop<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

422/454


• ‘V’ pr<strong>of</strong>ile is flat<br />

• Constant ‘γ’ characteristics has drooping<br />

characteristics<br />

γ≈18 o in voltage<br />

control mode<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

423/454


Constant ‘β’ control :<br />

β = μ + γ<br />

μ ⇒ function <strong>of</strong> i d & V ac<br />

⇒ Choose ‘β’ for worst case<br />

⇒ At low loads additional security against<br />

commutation failure<br />

⇒ As i d ↑, minimum ‘γ’ may be encountered<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

424/454


• V dcoi Cosβ remains constant<br />

• As i d ↑, V d = V doi Cosβ + (R L +R ci )I d also ↑<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

425/454


• Use either constant V dc or constant β control<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

426/454


Current limit<br />

Maximum current limit :<br />

Max. short term current = (1.2 -1.3) I rated<br />

Minimum current limit : if i d ↓ below a<br />

certain limit due to finite ripple in I,<br />

current will become discontinuous<br />

• 12-pulse converter<br />

• 12 times in one cycle current become zero<br />

(current interruption)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

427/454


• There could be lightly damped oscillations<br />

(smoothing L & line C)<br />

• Over voltage across the device<br />

• Simulation study is required<br />

• Ensure I min in DC link<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

428/454


Voltage depend current-order limit (VDCOL)<br />

• Under L.V condition it may not be desirable<br />

or possible to maintain rated current<br />

• Commutation failure<br />

• At one converter end V ac has ↓<br />

∴V α dco<br />

Cos ↓<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

429/454


• To maintain the current, voltage at the other<br />

end <strong>of</strong> the line is adjusted<br />

• Either ‘α’ or γ↑<br />

• Reactive power demand ↑<br />

• V ac has ↓, ‘Q’ supplied by ‘C’ or filter also ↓<br />

• Above problems can be addressed using<br />

voltage dependent current order limit<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

430/454


• VDCOL characteristics could be a function <strong>of</strong><br />

AC voltage or DC voltage<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

431/454


Review<br />

Rectifier<br />

characteristics<br />

Constant current<br />

by ‘α’ control<br />

Constant ignition<br />

angle control<br />

• Inverter ⇒ Constant extinction angle control<br />

• Current control is given to both converters<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

432/454


Contd..<br />

But I ref(R) > I ref(I)<br />

I ref(R) -I ref(I) = I margin ≈ 0.1I rated<br />

• Current control loop <strong>of</strong> inverter is inactive<br />

when current ≈ I ref(R)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

433/454


I mar should +ve :<br />

Contd..<br />

• If I mar is –ve, reversal <strong>of</strong> power takes place<br />

(only academic interest)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

434/454


Contd..<br />

Mode stabilization :<br />

• Intersection is not well defined<br />

⇒ Change the slope<br />

Constant V dc<br />

Constant ‘β’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

435/454


Current limit :<br />

Contd..<br />

⇒ I max = (1.2 -1.3) I rated<br />

⇒ I min<br />

⇒ Should not be allowed to go into<br />

discontinuous<br />

• There could be lightly damped oscillations<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

436/454


Voltage depend current-order limit (VDCOL)<br />

• Under L.V condition it may not be desirable<br />

or possible to maintain rated current<br />

• Commutation failure<br />

• At one converter end V ac has ↓<br />

∴V α dco<br />

Cos ↓<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

437/454


• To maintain the current, voltage at the other<br />

end <strong>of</strong> the line is adjusted<br />

• Either ‘α’ or γ↑<br />

• Reactive power demand ↑<br />

• V ac has ↓, ‘Q’ supplied by ‘C’ or filter also ↓<br />

• Above problems can be addressed using<br />

voltage dependent current order limit<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

438/454


• VDCOL characteristics could be a function <strong>of</strong><br />

AC voltage or DC voltage<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

439/454


Rectifier inverter V-I characteristics<br />

• <strong>Power</strong> transfer over the line can be controlled<br />

by varying I mar<br />

• Signals are transmitted through<br />

telecommunication lines<br />

• Communication may fail or DC line fault<br />

⇒ Reverse power flow may occur<br />

⇒ Inverter is provided with min. α limit<br />

≈ 95- 110 o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

440/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

441/454


Summary <strong>of</strong> basic control principle :<br />

• HVDC system is basically current control<br />

⇒ To limit over current<br />

⇒ To prevent the system from running down<br />

due to fluctuations in AC voltage<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

442/454


Significant aspects <strong>of</strong> basic control :<br />

Rectifier<br />

Current control<br />

‘α’ limit<br />

• In current control mode closed loop regulator<br />

controls the firing angle to regulate I d at I ord<br />

• Tap changer control <strong>of</strong> the converter brings ‘α’<br />

within 10-20 o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

443/454


• Inverter is functioned with CEA control and a<br />

current control<br />

• In CEA mode, γ is regulated at around 15 o<br />

• Inverter control could have constant ‘β’ control<br />

• Under normal operation rectifier is in current<br />

control & inverter is on CEA control mode<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

444/454


• If there is a ↓ in AC voltage,<br />

‘α’ <strong>of</strong> rectifier ⇒ α min (CIA mode)<br />

• If current falls to a certain limit, inverter<br />

will assume C.C<br />

Valve blocking & by passing :<br />

• If one bridge is to be taken out <strong>of</strong> service<br />

⇒ Only blocking will not extinguish the current<br />

that was flowing through the thyristor pair<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

445/454


⇒ Inject AC voltage in the link<br />

⇒ There could be ‘V’ & ‘I’ oscillations due to<br />

lightly damped circuit<br />

⇒ Transformer feeding the bridge is also subjected<br />

to DC magnetization<br />

⇒ By pass the bridge when the devices (valves)<br />

are blocked<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

446/454


⇒ Achieved using by pass valve and by pass switch<br />

⇒ Assume T 2 & T 3 are conducting & blocking<br />

command is given<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

447/454


⇒ Commutation for T 2 to T 4 is in usual manner<br />

⇒ But incoming device T 5 is prevented by not<br />

triggering T 5 . When T 1 get F.B (V AB +ve )<br />

trigger T 1<br />

⇒ Current by pass pair is shunted by closing S 1<br />

& open S<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

448/454


• For energization <strong>of</strong> blocked bridge<br />

⇒ Current is first diverted from S 1 to bypass pair<br />

⇒ S 1 will generate arc voltage<br />

⇒ Trigger bypass pair<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

449/454


Modern techniques<br />

• HVDC using line commutated converters<br />

• Requires AC voltage for commutation<br />

• Requires reactive power<br />

• DC link is equivalent to a current source<br />

• ‘V’ can reverse but ‘I’ can not reverse<br />

• Devices should be able to block –ve voltage<br />

• Not suitable for weak grid<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

450/454


• Instead use VSI<br />

• ‘I’ could be in phase with ‘V i ’<br />

• Inverter devices are self commutated<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

451/454


• No AC voltage is required for commutation<br />

• Conversion at UPF is possible<br />

• DC link is voltage source<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

452/454


• ‘V’ can not reverse, but ‘I’ can reverse<br />

• Devices should be able to carry ‘I’ in<br />

both directions<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

453/454


Thank you<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

454/454

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!