20.05.2014 Views

BG Fernandes Department of Electrical Engineering II T - Power ...

BG Fernandes Department of Electrical Engineering II T - Power ...

BG Fernandes Department of Electrical Engineering II T - Power ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

EE 660<br />

Application <strong>of</strong> <strong>Power</strong> Electronics<br />

in<br />

<strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

<strong>Department</strong> <strong>of</strong> <strong>Electrical</strong> <strong>Engineering</strong><br />

I. I. T Bombay<br />

bgf@ee.iitb.ac.in<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

1/454


• Introduction<br />

• Load Compensation<br />

Course Outline<br />

• Shunt Compensation<br />

• Series Compensation<br />

• HVDC Transmission<br />

Theory<br />

Equipment<br />

Theory<br />

Equipment<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

2/454


Books for Reference<br />

• T. J. E. Miller “Reactive power control in <strong>Electrical</strong><br />

system,” John Wiley & Sons, New York, 1982.<br />

• K. R. Padiyar “FACTS CONTROLLERS in <strong>Power</strong><br />

Transmission & Distribution,” New Age International<br />

(P) Ltd.,” 2007.<br />

• K. R. Padiyar “HVDC POWER TRANSMISSION<br />

SYSTEMS Technology and System Interactions,” New<br />

Age International (P) Ltd.,” 1990.<br />

• Hingorani N. G “Understanding FACTS Concepts &<br />

Technology <strong>of</strong> FACTS Systems,” IEEE PRESS, 2000.<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

3/454


Introduction<br />

“<strong>Power</strong> Electronics has grown as a major &<br />

extremely important discipline in <strong>Electrical</strong><br />

Engg.”<br />

• What are major applications <strong>of</strong> <strong>Power</strong><br />

Electronics ?<br />

• Major role in <strong>Power</strong> Transmission &<br />

Distribution<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

4/454


• Consumption <strong>of</strong> Electricity are Demanding<br />

Customers<br />

• Loss <strong>of</strong> <strong>Power</strong> for single cycle can make<br />

computer screen go blank<br />

• Can interrupt sensitive Electronic equipment<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

5/454


• Consumption <strong>of</strong> Electricity is also<br />

• Transmission lines are being operated close<br />

to their limits<br />

• <strong>Power</strong> is being transmitted through long<br />

overhead transmission lines & they are<br />

interconnected<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

6/454


• Thermal limit (depends on ambient<br />

conditions)<br />

• Voltage limit<br />

P<br />

THERMAL LIMIT<br />

• Stability limit<br />

Voltage and Stability<br />

Constraints<br />

SIL<br />

Distance<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

7/454


Type <strong>of</strong> conductors<br />

• Thermal limit No. <strong>of</strong> Conductors<br />

Ambient conditions<br />

• Voltage limitations<br />

• For typical 400 kV line Z c = 300 Ω<br />

SIL = 540 MW<br />

• For cable SIL is large<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

8/454


• Voltage pr<strong>of</strong>ile along the line is flat<br />

if P = SIL<br />

• If V S = V R = 1, V ↓ as we move towards<br />

the midpoint, if Ps > SIL<br />

P < SIL<br />

P = SIL<br />

V S<br />

P > SIL<br />

V R<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

9/454


• Line absorbs reactive power<br />

• V ↑ if P S < SIL<br />

• Voltage swell, line generates ‘Q’<br />

P, Q<br />

P, Q<br />

V s<br />

i s i R<br />

Transmission Line<br />

V R<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

10/454


• To control V R & ↑ power transfer capacity<br />

<strong>of</strong> the line, ‘Q’ generation is required at the<br />

receiving end<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

11/454


Q<br />

V<br />

2<br />

= ↓ As V R ↓<br />

X C<br />

‘Q’ requirement ↑ as V R ↓<br />

• Other limitations<br />

• ‘L’ required during over voltage<br />

• Separate ‘L’ & ‘C ’ are required<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

12/454


• High ‘V’ & high KVar source<br />

• 3-ph inverter can supply<br />

±<br />

Q<br />

• Requires only ΔP<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

13/454


O/P V => PWM<br />

• 2- level inverter<br />

• Harmonic spectrum depends on switching<br />

frequency (F S )<br />

• PWM<br />

Constant F S<br />

Variable F S => Not suitable<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

14/454


• What sort <strong>of</strong> PWM technique to use ?<br />

• With low switching frequency how to<br />

improve the harmonic spectrum<br />

• Do we need to change the power circuit<br />

configuration ?<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

15/454


Ρ =<br />

V<br />

S<br />

V<br />

X<br />

R<br />

Sinδ<br />

• To have sufficient stability margin max.<br />

length <strong>of</strong> line = 450 km<br />

• Provide shunt reactive power<br />

compensation, there by P↑ & maintain<br />

V pr<strong>of</strong>ile.<br />

• Use a mid point compensator<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

16/454


V = V = V =<br />

m S R<br />

V<br />

It can be shown, for loss- less line<br />

2V<br />

2 ⎛ δ ⎞<br />

P = Sin⎜<br />

⎟ = 2<br />

X ⎝ 2 ⎠<br />

P Uncompensated<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

17/454


• “If shunt compensation is applied at<br />

sufficient close interval, it may be possible to<br />

transmit power up to thermal limit <strong>of</strong> line”<br />

• P transmitted over long lines is limited by<br />

series reactance ‘X’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

18/454


Provide<br />

• Series capacitive compensation to cancel a<br />

portion <strong>of</strong> series ‘X’<br />

δ<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

19/454


V = V = 1pu<br />

S R<br />

P<br />

2<br />

V<br />

= 1<br />

( − K )<br />

X<br />

Sinδ<br />

K = Degree <strong>of</strong> compensation = X<br />

X C<br />

• C is not permanently connected in series<br />

• During fault condition, X eff should be<br />

increased<br />

• May require ‘L’ also<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

20/454


• Is it possible to change the phase angle<br />

difference between two ends <strong>of</strong> the line<br />

and there by control the power flow<br />

• “Phase angle regulator” ?<br />

• Inject a voltage in series with the line &<br />

proportional to the current flow (voltage<br />

should lag the I )<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

21/454


δ<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

22/454


• Injecting V in series with line and with<br />

any phase angle with respect to V S<br />

δ<br />

• Both magnitude & phase angle <strong>of</strong> I has<br />

changed<br />

• Both P & Q flow has changed<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

23/454


• Consider an AC network<br />

• <strong>Power</strong> flow in Line-1 & 2 depends on circuit<br />

conditions<br />

• Lower X line may be over loaded<br />

• Not possible to set the amount <strong>of</strong> power that<br />

should flow through a particular line!<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

24/454


• Definite amount <strong>of</strong> power that should flow<br />

through HVDC line can be set<br />

• If power transfer over long distances<br />

• Two near by areas having different<br />

frequencies ( Back to Back connection)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

25/454


Review<br />

• <strong>Power</strong> flow control through AC lines is not<br />

“FLEXIBLE”<br />

• Depending upon the loading, there could be<br />

voltage swell or sag as we go towards the<br />

mid point<br />

R+jX<br />

V 1<br />

V 2<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

26/454


• To control the power flow & to maintain<br />

voltage pr<strong>of</strong>ile, provide<br />

• Shunt compensation<br />

{<br />

Passive elements with<br />

P.E switches or<br />

• Series compensation Inverter<br />

• At Tr. voltage levels PWM with high<br />

switching frequency may not be possible<br />

• Modify the existing power circuit<br />

• Can we regulate the power flow by converting<br />

AC-DC-AC => HVDC Transmission ?<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

27/454


Introduction ( contd…)<br />

Load compensation<br />

• Loads are unbalanced<br />

• P.F is lagging<br />

No compensation<br />

<strong>of</strong> harmonics<br />

• Source should supply only active power &<br />

see a balanced load<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

28/454


• Most <strong>of</strong> the loads are Non-linear<br />

• Harmonics are generated<br />

• Voltage at P.C.C is non sinusoidal<br />

• P.F is lagging<br />

• Circuit to filter the harmonics (on-line) +<br />

compensate the loads<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

29/454


P.C.C<br />

→<br />

Point <strong>of</strong> common coupling<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

30/454


Current drawn by the load fed from P.E. equipment<br />

flows through system impedance.<br />

Voltage at P.C.C is non-sinusoidal<br />

(We had assumed that 'V' is sinusoidal).<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

31/454


2 3 ⎡ 1 1<br />

⎤<br />

i<br />

a= I0<br />

sinωt- sin5ωt+ sin7ωt-.............<br />

π ⎢<br />

5 7<br />

⎥<br />

⎣<br />

⎦<br />

= 6N ± 1 , Harmonics<br />

⇒ Line Commutated converter → causes notches<br />

in the source voltage waveform.<br />

→ Source current has harmonics.<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

32/454


Effect <strong>of</strong> harmonics:<br />

A. In the Rotating machine → Increases heating.<br />

→ They produce noise.<br />

→ Torque pulsations.<br />

B. In Transformers → Cu losses ↑ .<br />

→ Audible noise & heating.<br />

C. In Cables → Additional heating.<br />

D. P.F correction capacitors.<br />

→<br />

Thermal voltage stress.<br />

E. Electronic Equipments → Affects control system.<br />

→ Maloperation <strong>of</strong> relays.<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

33/454


• Load compensation + Active filter<br />

• Depending upon the voltage & power level,<br />

circuit configuration & control should<br />

change<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

34/454


Conclusions<br />

• Load compensator + Active filter to<br />

compensate non-linear loads<br />

• <strong>Power</strong> flow in AC network is determined by<br />

circuit conditions<br />

• <strong>Power</strong> transfer capability can be increased<br />

through shunt & series compensation<br />

• HVDC can be used for bulk power<br />

transmission & to inter connect the systems <strong>of</strong><br />

different frequencies<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

35/454


Load compensation<br />

• In ideal power system<br />

• V & F should be constant<br />

• V should be sinusoidal<br />

• P.F = 1<br />

• The above should be independent <strong>of</strong> size &<br />

characteristics <strong>of</strong> load<br />

• No interference between different loads<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

36/454


Notation <strong>of</strong> quality <strong>of</strong> supply<br />

• How nearly constant are V & F at the<br />

supply point ?<br />

• How near to unity is the P.F ?<br />

• In 3-ph system, degree to which V & I are<br />

balanced<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

37/454


• What are the characteristics <strong>of</strong> power system<br />

& loads which can deteriorate the quality <strong>of</strong><br />

supply ?<br />

• How to compensate ?<br />

Objectives <strong>of</strong> load compensation<br />

• <strong>Power</strong> factor correction<br />

• Improvement in voltage regulation<br />

• Load balancing<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

38/454


Ideal compensator<br />

• Correct the power factor to unity<br />

• Reduce the voltage regulation to an<br />

acceptable value<br />

• Balance the load current => not expected to<br />

compensate harmonics in V & I, also will<br />

not generate harmonics<br />

• Should consume zero avg. power<br />

• Response time = 0<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

39/454


Load requires P.F correction<br />

• Large no. <strong>of</strong> uncompensated industrial loads,<br />

P.F is less than 0.8 ( they are non linear also)<br />

• Arc furnace, induction furnace, steel rolling<br />

mills, large motor loads<br />

• ‘S’ rating <strong>of</strong> the compensator (P=0)<br />

P L<br />

=<br />

Q<br />

L<br />

=<br />

S<br />

L<br />

sinΦ<br />

L<br />

=<br />

S<br />

L<br />

2<br />

1−<br />

cos<br />

Φ<br />

L<br />

Ф L<br />

S L<br />

Q L<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

40/454


Voltage regulation<br />

• Which is the most important parameter <strong>of</strong> the<br />

load & supply system affects regulation ?<br />

E<br />

I S<br />

R S +jX S<br />

V<br />

I L<br />

S l = P L +jQ L<br />

Y L = G L +jB L<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

41/454


V reg<br />

=<br />

E<br />

−<br />

V<br />

V<br />

=<br />

E −V<br />

V<br />

No compensator I L = I S<br />

E<br />

ΔV = Z S<br />

I L<br />

V<br />

ΔV<br />

I S X S<br />

ΔV X<br />

I S R S<br />

ΔV R<br />

*<br />

L<br />

VI = P +<br />

L<br />

jQ<br />

L<br />

I L = I S<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

42/454


I<br />

L<br />

=<br />

P<br />

L<br />

−<br />

V<br />

jQ<br />

L<br />

ΔV<br />

=<br />

( R + jX )<br />

S<br />

S<br />

P<br />

L<br />

− jQ<br />

V<br />

L<br />

=<br />

R<br />

S<br />

P<br />

L<br />

+ Q<br />

V<br />

L<br />

X<br />

S<br />

+<br />

j<br />

X<br />

S<br />

P<br />

L<br />

−<br />

V<br />

R<br />

S<br />

Q<br />

L<br />

= ΔV<br />

+ jΔV R X<br />

• Change depends on both active & reactive<br />

power <strong>of</strong> the load<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

43/454


Adding a compensator in parallel with load<br />

E<br />

So that E = V<br />

I S<br />

Replace Q L by<br />

R S +jX S<br />

V<br />

E<br />

Q = Q +<br />

2<br />

S<br />

Such that<br />

=<br />

L<br />

Q<br />

C<br />

( V + Δ ) 2<br />

+ ( Δ ) 2<br />

V R<br />

V X<br />

I L<br />

I C<br />

=<br />

⎧ RS<br />

PL<br />

+ Q<br />

⎨V<br />

+<br />

⎩ V<br />

S<br />

X<br />

S<br />

⎫<br />

⎬<br />

⎭<br />

2<br />

+<br />

⎧<br />

⎨<br />

⎩<br />

X<br />

S<br />

P<br />

L<br />

−<br />

V<br />

R<br />

S<br />

Q<br />

S<br />

⎫<br />

⎬<br />

⎭<br />

2<br />

−<br />

−(<br />

A)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

44/454


Vary Q S => ΔV rotates till<br />

E =<br />

V<br />

Solve (A) with<br />

E = V<br />

E<br />

jI S X S<br />

I C<br />

ΔV<br />

• There is always a<br />

solution for Q C for any<br />

value <strong>of</strong> P<br />

I S<br />

V<br />

I S R S<br />

I L<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

45/454


• If the compensation is used to make<br />

P.F unity then<br />

ΔV<br />

=<br />

R<br />

P<br />

S L<br />

+<br />

V<br />

jX<br />

S<br />

P<br />

L<br />

=<br />

( )<br />

P<br />

R jX V<br />

S<br />

+<br />

S<br />

L<br />

• Independent <strong>of</strong> Q L<br />

• Not under the control <strong>of</strong> compensator<br />

• Passive reactive compensator can not<br />

maintain constant V & unity P.F at the same<br />

time<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

46/454


• Approximate relationship for voltage regulation<br />

Short circuit at the load bus<br />

S = P + jQ = EI =<br />

SC<br />

SC<br />

Z = R +<br />

SC S<br />

*<br />

SC<br />

Z SC<br />

Z =<br />

SC<br />

jX<br />

S ,<br />

*<br />

SC<br />

E<br />

Z<br />

2<br />

*<br />

SC<br />

I SC → S.C Current<br />

R<br />

X<br />

S<br />

S<br />

2<br />

E<br />

= Z<br />

SC<br />

cos Φ<br />

SC<br />

= cos Φ<br />

S<br />

SC<br />

2<br />

E<br />

= Z<br />

S<br />

sin Φ<br />

SC<br />

= sin<br />

S<br />

SC<br />

Φ<br />

SC<br />

SC<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

47/454


• Change in V influenced by ΔV R<br />

• Neglect ΔV X<br />

RS<br />

PL<br />

+<br />

ΔVR<br />

=<br />

V<br />

ΔV<br />

V<br />

R<br />

=<br />

P<br />

L<br />

Assume<br />

Z<br />

Sc<br />

E<br />

V<br />

Q<br />

L<br />

cosΦ<br />

≈ 1<br />

X<br />

SC<br />

S<br />

+ QLZ<br />

V<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

SC<br />

sinΦ<br />

Z<br />

SC<br />

=<br />

2 L SC L<br />

V<br />

1<br />

= PL<br />

cosΦ<br />

SC<br />

+ QL<br />

sin Φ<br />

S<br />

SC<br />

SC<br />

{ P cosΦ<br />

+ Q sin Φ }<br />

SC<br />

{ }<br />

SC<br />

V<br />

E<br />

ΔV R<br />

ΔV X<br />

48/454


• If short circuit resistance <strong>of</strong> source=0<br />

=> CosФ SC = 0<br />

ΔV =<br />

V<br />

Q<br />

S<br />

L<br />

SC<br />

E −V<br />

V<br />

=<br />

Q<br />

S<br />

L<br />

SC<br />

⎡<br />

E V ⎢1<br />

+<br />

⎣<br />

V<br />

Q<br />

= L<br />

S<br />

SC<br />

⎡<br />

⎢1<br />

+<br />

⎣<br />

Q<br />

= L<br />

E<br />

S<br />

SC<br />

≈<br />

⎡<br />

E ⎢1<br />

−<br />

⎣<br />

Q<br />

S<br />

L<br />

SC<br />

⎤<br />

⎥<br />

⎦<br />

⎤<br />

⎥<br />

⎦<br />

⎤<br />

⎥<br />

⎦<br />

−1<br />

Slope = -E/S SC<br />

V<br />

ΔV<br />

Q L<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

49/454


Load balancing<br />

• Assume all loads are fully compensated for<br />

reactive VA<br />

V<br />

V<br />

V<br />

ab<br />

bc<br />

ca<br />

I<br />

I<br />

I<br />

a<br />

b<br />

c<br />

=<br />

=<br />

=<br />

V<br />

V<br />

V<br />

L<br />

L<br />

L<br />

ca<br />

∠<br />

0,<br />

∠ −<br />

∠120<br />

bc<br />

120<br />

ab<br />

bc<br />

,<br />

=<br />

ab<br />

−<br />

ca V ca<br />

V ab<br />

=<br />

=<br />

I<br />

I<br />

I<br />

−<br />

−<br />

I<br />

I<br />

I<br />

V bc<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

50/454


I<br />

a<br />

=<br />

V<br />

R<br />

ab<br />

Vca<br />

−<br />

jX<br />

VL∠0 V∠120<br />

VL∠0<br />

V∠30<br />

= − = −<br />

R jX R X<br />

=<br />

=<br />

V<br />

V<br />

L<br />

L<br />

⎧ 1<br />

⎨<br />

⎩ R<br />

⎧ 1<br />

⎨<br />

⎩ R<br />

−<br />

−<br />

1<br />

X<br />

3<br />

2X<br />

( cos 30 + j sin 30)<br />

−<br />

2<br />

j<br />

X<br />

⎫<br />

⎬<br />

⎭<br />

⎫<br />

⎬<br />

⎭<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

51/454


I<br />

c<br />

I<br />

b<br />

=<br />

=<br />

Vbc<br />

− jX<br />

Vca<br />

jX<br />

−<br />

V<br />

−<br />

R<br />

Vbc<br />

− jX<br />

ab<br />

=<br />

=<br />

=<br />

=<br />

V<br />

L<br />

V L<br />

V L<br />

V<br />

VL∠30<br />

V∠ − 30<br />

= −<br />

X R<br />

VL<br />

= j − − − (3)<br />

X<br />

L<br />

∠ −120 VL∠0<br />

−<br />

− jX R<br />

∠30<br />

V −<br />

X R<br />

⎧ 3<br />

⎨<br />

⎩ 2 X<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

−<br />

∠120<br />

jX<br />

1<br />

R<br />

−<br />

−<br />

V<br />

L<br />

2<br />

j<br />

X<br />

⎫<br />

⎬<br />

⎭<br />

− − −<br />

∠ −120<br />

− jX<br />

(2)<br />

52/454


I b<br />

= I c<br />

∠120<br />

⎛<br />

⎜<br />

⎝<br />

3<br />

2X<br />

−<br />

1<br />

R<br />

⎞<br />

⎟<br />

⎠<br />

−<br />

2<br />

j<br />

X<br />

=<br />

j<br />

X<br />

⎛<br />

⎜<br />

−<br />

⎝<br />

1<br />

2<br />

+<br />

j<br />

3<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

⎛<br />

⎜<br />

⎝<br />

3 1 ⎞ 3<br />

− ⎟ = −<br />

2X R<br />

⎠ 2X<br />

X = 3R<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

53/454


Review<br />

• Using passive reactive element, it is possible to<br />

achieve ΔV = 0<br />

• ΔV X has negligible effect on ΔV<br />

• Determined by ΔV R (≠ i S R S )<br />

E<br />

E<br />

V<br />

ΔV<br />

I S X S<br />

ΔV X<br />

V<br />

ΔV R<br />

ΔV X<br />

I L = I S<br />

I S R S<br />

ΔV R<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

54/454


Contd..<br />

• Using passive reactive element it is not<br />

possible to have ΔV=0 & P.F =1<br />

• Load balancing<br />

• All three line currents are balanced if<br />

X = 3R<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

55/454


Load balancing (Contd..)<br />

I<br />

a<br />

= V<br />

L<br />

⎧<br />

⎨<br />

⎩<br />

1<br />

2<br />

R<br />

−<br />

j<br />

2<br />

1 ⎫<br />

⎬<br />

3R<br />

⎭<br />

3R<br />

∠ − 30<br />

⎧ 1 1 ⎫ VL<br />

Ib<br />

= VL<br />

⎨−<br />

− j ⎬ = ∠210<br />

⎩ 2R<br />

2 3R<br />

⎭ 3R<br />

1 ⎫<br />

⎨<br />

⎧ V<br />

= 0 +<br />

L<br />

Ic<br />

VL<br />

j ⎬ = ∠90<br />

⎩ 3R<br />

⎭ 3R<br />

• Rule: For the load connected between line a-b,<br />

capacitor should be connected between b-c, and<br />

Inductor should be connected between c-a<br />

=<br />

V<br />

L<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

56/454


Comments<br />

• Branch currents <strong>of</strong> Δ are unbalanced<br />

• Reactive power is balanced within Δ<br />

• Reactive power generated by C connected<br />

between line b & c = Q is absorbed by L<br />

connected between c & a<br />

• If the load is<br />

ab<br />

L<br />

ab<br />

L<br />

Y = G +<br />

jB<br />

ab<br />

L<br />

• Compensating susceptance<br />

B<br />

ab<br />

C<br />

=<br />

−B<br />

ab<br />

L<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

57/454


• Each branch <strong>of</strong> Δ will have 3-parallel<br />

compensating susceptances<br />

B<br />

ab<br />

C<br />

= −B<br />

ab<br />

L<br />

+<br />

⎛<br />

⎜<br />

⎝<br />

G<br />

ca<br />

L<br />

− G<br />

3<br />

bc<br />

L<br />

⎞<br />

⎟<br />

⎠<br />

B<br />

bc<br />

C<br />

= −B<br />

bc<br />

L<br />

+<br />

⎛<br />

⎜<br />

⎝<br />

G<br />

ab<br />

L<br />

− G<br />

3<br />

ca<br />

L<br />

⎞<br />

⎟<br />

⎠<br />

B<br />

ca<br />

C<br />

= −B<br />

ca<br />

L<br />

+<br />

⎛<br />

⎜<br />

⎝<br />

G<br />

bc<br />

L<br />

− G<br />

3<br />

ab<br />

L<br />

⎞<br />

⎟<br />

⎠<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

58/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

59/454


Observations<br />

• Any linear unbalanced 3-Ф load can be<br />

transformed into a equal 3-Ф balanced load<br />

• Net real power is the same<br />

• Corresponding elements are purely reactive<br />

X =<br />

R<br />

3<br />

Corresponding to power<br />

consumed by the load<br />

As the power varies, X also should change<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

60/454


• May not be possible<br />

• Most <strong>of</strong> the loads are non-linear =><br />

Harmonics + lagging P.F<br />

P.F ≠ cos<br />

I<br />

V<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

61/454


P<br />

=<br />

VC1V<br />

X<br />

S<br />

sinδ<br />

If δ = 0<br />

If<br />

V<br />

C1<br />

> V S<br />

I C1<br />

V S V C1<br />

jωLI C1<br />

• I C1 is leading V S<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

62/454


• Can be shown that if<br />

V <<br />

C1<br />

V<br />

S<br />

• I c1 is lagging<br />

Q<br />

=<br />

V<br />

S<br />

I<br />

C1<br />

⇒<br />

V<br />

S<br />

⎛<br />

⎜<br />

⎝<br />

V<br />

S<br />

−V<br />

ωL<br />

C1<br />

⎞<br />

⎟<br />

⎠<br />

V α<br />

C 1<br />

mV dc<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

63/454


I C1<br />

• Non ideal case<br />

V S<br />

δ<br />

• Var generated α m<br />

α V dc<br />

V C1<br />

jωLI C1<br />

I C1 R<br />

V C1<br />

δ<br />

V S<br />

I C1<br />

jωLI C1<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

64/454


• M => Magnitude <strong>of</strong> sine wave (not very popular)<br />

• Magnitude <strong>of</strong> space vector<br />

• T1 & T2 are to be determined<br />

T<br />

T<br />

1<br />

2<br />

sin(60 −θ<br />

)<br />

= m<br />

sin 60<br />

sinθ<br />

= TC<br />

m<br />

sin 60<br />

. T<br />

c<br />

Intelligent controller<br />

is required<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

65/454


• Vary V dc<br />

• Var supplied α V dc<br />

• Var generated is<br />

controlled by varying<br />

V C1 & i C1<br />

• O/P voltage <strong>of</strong> inverter<br />

• Indirect current controller Synchronous link<br />

converter Var compensator (SLCVC) or<br />

STATCOM<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

66/454


Review<br />

• Linear lagging load can be balanced using<br />

passive elements<br />

• Difficult to realize in<br />

real life<br />

bc<br />

Y L<br />

ca<br />

Y L<br />

• Use V.S.I to supply ‘Q’<br />

bc<br />

B C<br />

ab<br />

B C<br />

ca<br />

B C<br />

ab<br />

Y L<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

67/454


Contd..<br />

• Similar to over-excited<br />

Syn. motor on No-load<br />

• Draws only small ‘P’<br />

• ‘δ’ is very small<br />

δ<br />

E<br />

V<br />

• In V.S.I δ =<br />

V C1<br />

V S<br />

• ‘V C1 ’ is synthesized using PWM<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

68/454


Contd..<br />

• If space vector PWM is<br />

used at the Z.C instant <strong>of</strong><br />

supply voltage, V S* should<br />

lag by angle ‘δ’<br />

• In sinusoidal PWM<br />

technique, fundamental<br />

component <strong>of</strong> V C1 is in<br />

phase with modulating<br />

wave<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

69/454


Harmonic elimination Techniques<br />

Undesirable harmonics can be eliminated<br />

and fundamental can be controlled by creating<br />

notches at pre-determined angles<br />

• At the Z.C <strong>of</strong> supply voltage, modulating<br />

wave should lag by ‘δ’<br />

⇒<br />

1<br />

4<br />

If 'n' switchings / cycle<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

70/454


⇒ (n-1) harmonics are<br />

eliminated & magnitude<br />

<strong>of</strong> fundamental can be<br />

controlled<br />

⇒ 4 switchings /(1/4) cycle<br />

(α 1 , α 2 , α 3 , α 4 )<br />

α 1 < α 2 < α 3 < α 4 < π/2<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

71/454


• 3 significant harmonics = 0<br />

• Fundamental can be controlled<br />

• Square wave has quarter wave odd symmetry<br />

• Coefficient <strong>of</strong> the fundamental & harmonic<br />

components are given by<br />

b<br />

n<br />

m<br />

4 ⎧<br />

= ⎨1<br />

+ 2∑<br />

nπ<br />

⎩ k = 1<br />

( )<br />

k<br />

−1<br />

cos( nα<br />

) ⎬ ⎫<br />

⎭<br />

k<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

72/454


• Assume that there are 5 switchings / (1/4) cycle<br />

• 4 harmonics can be made zero<br />

• In 3 phase, 3 wire system, triple harmonics<br />

can be ignored<br />

• So harmonics to be eliminated are 5 th , 7 th ,<br />

11 th and 13 th<br />

4<br />

b1 = {1 − 2cosα1<br />

+ 2cosα<br />

2<br />

− 2cosα3<br />

π<br />

+ 2cosα 4<br />

− 2cosα5}<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

73/454


4<br />

b<br />

5<br />

= {1-2cos5 α1+2cos5α2-2cos5 α3+2cos5α4<br />

5π<br />

-2cos5 α5<br />

} = 0<br />

4<br />

b<br />

7<br />

= {1-2cos7 α1+2cos7α2-2cos7α3<br />

7π<br />

+2cos7α4-2cos7 α5<br />

} = 0<br />

4<br />

b<br />

11<br />

= {1-2cos11 α1+2cos11 α2........................<br />

11π<br />

-2cos11 α5<br />

} = 0<br />

4<br />

b<br />

13<br />

= {1-2cos13 α1+2cos13 α2........................<br />

13π<br />

-2cos13 α5<br />

} = 0<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

74/454


• Non-linear transcendental equations<br />

• Solve numerically<br />

• Choose required value for b 1<br />

⇒ Fundamental component<br />

α 1 = 10.514, α 2 = 23.228, α 3 = 29.289,<br />

α 4 = 46.421, α 5 = 50.157<br />

b 1 = 0.986 p.u.<br />

• Immediate dominant harmonic ‘V’ gets<br />

amplified<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

75/454


• Var supplied α V dc<br />

• Var generated is<br />

controlled by varying<br />

V C1 or i C1<br />

• O/P voltage <strong>of</strong> inverter<br />

• Indirect current controller Synchronous link<br />

converter Var compensator (SLCVC) or<br />

STATCOM<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

76/454


How to calculate Ref. Var ?<br />

i<br />

=<br />

I<br />

m<br />

( ωt<br />

− Φ) & V V cosωt<br />

cos =<br />

m<br />

= I<br />

P<br />

cos ωt<br />

+<br />

Multiply by cosωt<br />

I<br />

q<br />

sin<br />

ωt<br />

∴i<br />

=<br />

=<br />

I<br />

P<br />

I<br />

2<br />

P<br />

ω<br />

cos 2 t +<br />

I<br />

q<br />

sin<br />

ω<br />

t.<br />

cos<br />

( )<br />

q<br />

1−<br />

cos 2ωt<br />

+ sin 2 t<br />

I<br />

2<br />

ω<br />

ωt<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

77/454


• Use a low pass filter ⇒ I P /2 ≈ average<br />

• Remaining ⇒ Reactive power<br />

• Limitations: Response time is poor<br />

⇒ min. one cycle<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

78/454


Controlled current SLCVC<br />

• Compensator current is actually sensed &<br />

controlled to follow the reference<br />

• Source should supply<br />

active component <strong>of</strong> load<br />

current + compensate<br />

inverter loss<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

79/454


• Reactive component <strong>of</strong> load current (i qL )<br />

should come from inverter<br />

i C<br />

= i PC + i qL<br />

i qL ⇒ obtained from Var calculator<br />

i PC ⇒ Accounts for loss<br />

• If there is a mismatch in power supply and<br />

consumed ⇒ V dC will change<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

80/454


Control strategy -I<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

81/454


• To ↑i C close S 4 & S 3 , To ↓i C open S 4 & S 3<br />

• Response is fast<br />

• Switching frequency<br />

varies<br />

• Var calculator is<br />

required<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

82/454


Review<br />

• In harmonic elimination technique, if there are<br />

‘n’ switchings / (¼) cycle, (n-1) harmonics can be<br />

eliminated & fundamental can be controlled<br />

⇒ If ‘F’ <strong>of</strong> pre-dominant harmonic is > 2kHz<br />

at 50Hz, up to 40 th harmonic should be absent<br />

⇒ 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37<br />

⇒ 12 harmonics should be eliminated<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

83/454


Contd..<br />

• 13 switchings / (¼ ) cycle<br />

• 13 non linear transdential equations to be<br />

solved<br />

• H. S. Patel & R. G. H<strong>of</strong>t “Generalized<br />

technique <strong>of</strong> harmonic elimination and voltage<br />

control in thyristor inverters,” Part-1 harmonic<br />

elimination., IEEE Trans. Ind. Applicat., vol.<br />

IA-9, pp 310-317, May 1973.<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

84/454


Contd..<br />

Controlled current SLCVC<br />

• Compensator current<br />

i C = i PC + i qL ⇒<br />

sinusoidal if load is<br />

linear<br />

• If i qL has the<br />

information about the<br />

non-linear, ⇒ i C is non<br />

- sinusoidal<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

85/454


Control strategy -<strong>II</strong><br />

• Sense source current i S<br />

⇒ Compare with sinusoidal reference current i S<br />

*<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

86/454


• i S * is in phase with v S<br />

• i S is also in phase with v S<br />

• V dC is held constant<br />

• All the active power is supplied by the source<br />

• Rest (‘Q’ + Harmonic I) supplied by inverter<br />

• i S = i L + i C<br />

⇒ To ↑i S , ↑ i C<br />

⇒ To ↓ i S , ↓i C<br />

}<br />

Using inverter switchings<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

87/454


How <strong>of</strong>ten i S* is changed ?<br />

• Once in every cycle<br />

• If active power demand <strong>of</strong> the load has changed<br />

in between +ve Zero crossings<br />

• <strong>Power</strong> is supplied by inverter<br />

⇒ V dC will ↓<br />

• V dC > V m ⇒ peak <strong>of</strong> V S<br />

⇒ Large size ‘C’ is required<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

88/454


• If Inverter i S * is changed in between the cycle<br />

• Source ‘I’ will have a DC component<br />

• Smaller size ‘C’ may be sufficient<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

89/454


• Current control is suitable for low power<br />

• For high power loads switching ‘F’ ↓<br />

• Inverter ⇒ Voltage control<br />

• Harmonic spectrum is inferior<br />

• Load current has harmonics<br />

• In addition inverter with voltage control<br />

also generates harmonics<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

90/454


• Use two compensators & connect them in<br />

parallel<br />

• Var generator ⇒ High power inverter<br />

• High V & high I<br />

• Harmonic filter ⇒ Low power inverter<br />

• Switching frequency is high<br />

• Since low power, use current controlled<br />

PWM technique<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

91/454


Active filter +Var compensator for high power<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

92/454


• Main compensator ⇒ Voltage control mode<br />

• Aux. compensator ⇒ controlled current mode<br />

• Generate i ref ⇒ ref. I <strong>of</strong> suitable magnitude &<br />

in phase with source V<br />

• Force i S = i Cm + i Cx + i L to follow the reference<br />

within a hysterisis band<br />

• Error decides the switching instant <strong>of</strong> aux.<br />

compensator devices<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

93/454


• To ↑ i S , ↑ i Cx ⇒ close S 4 & S 3<br />

• To ↓ i S , ↓ i Cx ⇒ open S 4 & S 3<br />

• Now i ref = i L(p) + i Cm(p)<br />

Where i L(p) = Real component <strong>of</strong> load I<br />

i Cm(p) = Real component <strong>of</strong> the main<br />

compensator current<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

94/454


i<br />

Cm1<br />

=<br />

V<br />

S<br />

−VCm<br />

1∠ −δ<br />

Z∠θ<br />

=<br />

( V − mV cosδ<br />

)<br />

S<br />

dC<br />

+<br />

Z∠θ<br />

jKV<br />

dC<br />

sinδ<br />

I<br />

Cm1<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

I<br />

2<br />

Cm1<br />

p(<br />

real )<br />

2<br />

+<br />

I<br />

2<br />

Cm1<br />

p(<br />

q)<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

95/454


Control block diagram<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

96/454


• Var calculator determines V<br />

*<br />

dc (‘m’ is constant)<br />

V dc * - V dc ⇒ determines δ<br />

• µC ⇒ determines i ref using I p , δ, V dC & V S<br />

• Compare i S & i ref to generate switching<br />

signals for aux. inverter<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

97/454


• For low power<br />

Review<br />

Var generator + Active filter<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

98/454


Contd..<br />

• For high power<br />

application<br />

Use high power inverter<br />

for Var generation<br />

To compensate harmonics<br />

use active filter<br />

• Used Var calculator to<br />

determine ‘Q’ required by<br />

the load<br />

• Linear load is assumed<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

99/454


3-Phase to 2-phase conversion<br />

[v] = [z] [i]<br />

[v'] = [z'] [i']<br />

[v] = [A] [v']<br />

[i] = [A] [i']<br />

[v] = [z] [i]<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

100/454


[A] [v'] = [z] [A] [i']<br />

[v'] = [A] -1 [z] [A] [i]<br />

Z'<br />

⇒ Inverse should exist<br />

p = i 1 v 1 + i 2 v 2 + i 3 v 3 = [i] t [v]<br />

p' = i 1 'v 1 ' + i 2 'v 2 '+ i 3 'v 3 '<br />

= [i'] t [v']<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

101/454


p = p'<br />

[i t ][v] = { [A] [i'] } t [A] [v']<br />

= [i'] t [A] t<br />

[A] [v']<br />

[U] ⇒ Unit matrix<br />

[A] t = [A -1 ] or [A] = [A] t<br />

-1<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

102/454


Vector representation <strong>of</strong> instantaneous<br />

3-phase quantities<br />

• 3-current vectors ⇒ one vector ⇒ space vector<br />

i S = K[i a + i b e j2π/3 + i c e -j2π/3 ]<br />

Has 2-components ⇒ (α, β)<br />

i α = K d [i a -(1/2) i b –(1/2) i c ]<br />

i β = K q [0 + √3/2 i b - √3/2 i c ]<br />

i 0 = K 0 [i a + i b + i c ]<br />

i β<br />

i b<br />

i a<br />

i C<br />

i α<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

103/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

104/454<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

−<br />

−<br />

=<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

c<br />

b<br />

a<br />

q<br />

q<br />

d<br />

d<br />

d<br />

i<br />

i<br />

i<br />

K<br />

K<br />

K<br />

K<br />

K<br />

K<br />

K<br />

K<br />

i<br />

i<br />

i<br />

0<br />

0<br />

0<br />

0<br />

2)<br />

3<br />

(<br />

2)<br />

3<br />

(<br />

0<br />

2)<br />

1<br />

(<br />

2)<br />

1<br />

(<br />

β<br />

α<br />

[C]<br />

[ ]<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

−<br />

−<br />

=<br />

−<br />

0<br />

0<br />

0<br />

1<br />

3<br />

1<br />

3<br />

1<br />

3<br />

1<br />

3<br />

1<br />

3<br />

1<br />

3<br />

1<br />

3<br />

1<br />

0<br />

3<br />

2<br />

K<br />

K<br />

K<br />

K<br />

K<br />

K<br />

K<br />

K<br />

C<br />

q<br />

d<br />

q<br />

d<br />

d


[ C]<br />

t<br />

=<br />

⎡<br />

⎢<br />

⎢−<br />

⎢<br />

⎣−<br />

(1<br />

(1<br />

K<br />

d<br />

2) K<br />

2) K<br />

d<br />

d<br />

(<br />

( −<br />

3<br />

3<br />

0<br />

2) K<br />

q<br />

2) K<br />

q<br />

K<br />

K<br />

K<br />

0<br />

0<br />

0<br />

⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

If K d = K q = 2/3 & K 0 =√2/3<br />

[C] -1 = 3/2 [C] t<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

105/454


⎡i<br />

⎢<br />

⎢<br />

i<br />

⎢⎣<br />

i<br />

α<br />

β<br />

0<br />

⎤<br />

⎥<br />

⎥<br />

⎥⎦<br />

=<br />

2<br />

3<br />

⎡<br />

⎢<br />

⎢<br />

⎢⎣<br />

1<br />

1<br />

0<br />

2<br />

−1<br />

1<br />

−1<br />

2 ⎤⎡i<br />

− 3 2<br />

⎥⎢<br />

⎥⎢<br />

i<br />

1 2 ⎥⎦<br />

⎢⎣<br />

i<br />

Similarly 3-ph AC voltages ⇒ two phase voltages<br />

3<br />

2<br />

2<br />

2<br />

a<br />

b<br />

c<br />

⎤<br />

⎥<br />

⎥<br />

⎥⎦<br />

⎡e<br />

⎢<br />

⎢<br />

e<br />

⎢⎣<br />

e<br />

α<br />

β<br />

0<br />

⎤<br />

⎥<br />

⎥<br />

⎥⎦<br />

=<br />

2<br />

3<br />

⎡<br />

⎢<br />

⎢<br />

⎢⎣<br />

1<br />

1<br />

0<br />

2<br />

−1<br />

3<br />

1<br />

2<br />

2<br />

2<br />

−1<br />

2 ⎤⎡v<br />

− 3 2<br />

⎥⎢<br />

⎥⎢<br />

v<br />

1 2 ⎥⎦<br />

⎢⎣<br />

v<br />

a<br />

b<br />

c<br />

⎤<br />

⎥<br />

⎥<br />

⎥⎦<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

106/454


⎡v<br />

⎢<br />

⎢<br />

v<br />

⎢⎣<br />

v<br />

a<br />

b<br />

c<br />

⎤<br />

⎥<br />

⎥<br />

⎥⎦<br />

=<br />

⎡ 1<br />

⎢<br />

⎢−1<br />

⎢<br />

⎣<br />

−1<br />

2<br />

2<br />

−<br />

0<br />

3 2<br />

3 2<br />

1<br />

1<br />

1<br />

2⎤⎡e<br />

⎥<br />

2<br />

⎢<br />

⎥⎢<br />

e<br />

2⎥⎢<br />

⎦⎣<br />

0<br />

α<br />

β<br />

⎤<br />

⎥<br />

⎥<br />

⎥⎦<br />

p = v a i a + v b i b + v c i c<br />

p = e α i α +{ (-1/2 e α +√3/2 e β ) (-1/2 i α + √3/2 i β ) }<br />

+ { (-1/2 e α -√3/2e β ) (-1/2i α -√3/2i β ) }<br />

( )<br />

p = 3/2 (e α i α +e β i β ) = 3 2 e . i + e . i<br />

α<br />

α<br />

β<br />

β<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

107/454


Instantaneous reactive power compensation<br />

Instantaneous real power<br />

p = v a i a + v b i b + v c i c<br />

Definition <strong>of</strong> instantaneous reactive current:<br />

That part <strong>of</strong> the three phase current can be<br />

eliminated at any instant without affecting ‘P’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

108/454


e<br />

e<br />

i<br />

i<br />

α<br />

β<br />

α<br />

β<br />

=<br />

=<br />

V<br />

V<br />

S<br />

S<br />

cosψ<br />

sinψ<br />

= i cos ϕ + ψ<br />

S<br />

( )<br />

= i sin ϕ + ψ<br />

S<br />

( )<br />

i β i S<br />

e β<br />

V S<br />

φ<br />

ψ<br />

i α e α<br />

3<br />

p = V i ψ ϕ+ ψ + ψ ϕ+<br />

ψ<br />

2 S S<br />

{ cos .cos( ) sin .sin ( )}<br />

= 3 V { cos( )}<br />

3<br />

S<br />

iS ψ −ϕ− ψ = VSiS<br />

cosϕ<br />

2 2<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

109/454


• Can be concluded that 3/2 i S sinφ component <strong>of</strong><br />

current i S can be eliminated without effecting ‘P’<br />

Reactive power<br />

q = 32V i sinϕ<br />

S<br />

S<br />

= 32V<br />

i sinϕ+ ψ −ψ<br />

S<br />

S<br />

( )<br />

{ ( ϕ ψ) ψ ( ϕ ψ)<br />

ψ}<br />

= 32V<br />

i sin + cos − cos + sin<br />

S<br />

S<br />

{ V ψ i ( ϕ ψ) V ψ i ( ϕ ψ)<br />

}<br />

= 32 cos . sin + − sin . cos +<br />

S S S S<br />

{ ei ei} { e i e i}<br />

α β β α α β β α<br />

= 32 − = 32 × + ×<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

110/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

111/454<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

=<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

=<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

q<br />

p<br />

e<br />

e<br />

e<br />

e<br />

i<br />

i<br />

i<br />

i<br />

e<br />

e<br />

e<br />

e<br />

q<br />

p<br />

1<br />

3<br />

2<br />

2<br />

3<br />

α<br />

β<br />

β<br />

α<br />

β<br />

α<br />

β<br />

α<br />

α<br />

β<br />

β<br />

α<br />

In matrix form<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

+<br />

=<br />

q<br />

p<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

α<br />

β<br />

β<br />

α<br />

β<br />

α<br />

2<br />

2<br />

1<br />

*<br />

3<br />

2


⎡i<br />

⎢<br />

⎣<br />

i<br />

α<br />

β<br />

C<br />

⎤<br />

⎥<br />

⎦<br />

=<br />

e<br />

1<br />

+ e<br />

⎡e<br />

⎢<br />

⎣e<br />

−<br />

e<br />

e<br />

⎤⎡<br />

⎥⎢<br />

⎦⎣−<br />

2<br />

0<br />

C α β<br />

3<br />

.<br />

2<br />

α<br />

2<br />

β<br />

β<br />

α<br />

⎤<br />

q<br />

⎥<br />

⎦<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

112/454


e . q<br />

i<br />

*<br />

=<br />

β<br />

α C<br />

3 2 +<br />

(<br />

2 2<br />

) e e<br />

α<br />

− e .<br />

i<br />

*<br />

=<br />

α<br />

β C<br />

3 2 +<br />

α<br />

q<br />

β<br />

(<br />

2 2<br />

) e e<br />

β<br />

Where<br />

q<br />

= 2<br />

3<br />

[ ] e i − e i<br />

α<br />

β<br />

β<br />

α<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

113/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

114/454


• Frequency <strong>of</strong> e α , i α , e β & i β<br />

frequency<br />

is same as supply<br />

• ‘p’ & ‘q’ are calculated based on instantaneous<br />

values<br />

• Assume supply voltages & currents are nonsinusoidal<br />

and have few common harmonic<br />

components<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

115/454


• Avg. power due to these common harmonic<br />

components is finite<br />

• We can not eliminate these frequency<br />

components from source i !<br />

• Source ‘i’ is non-sinusoidal<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

116/454


Review<br />

Instantaneous real power<br />

P = v a i a + v b i b + v c i c<br />

i β i S<br />

e β<br />

V S<br />

φ<br />

ψ<br />

i α<br />

e α<br />

P<br />

=<br />

3<br />

2<br />

V<br />

( e . i + e i )<br />

S<br />

I<br />

S<br />

cosϕ<br />

= 3 2<br />

α α β<br />

.<br />

Instantaneous reactive current:<br />

That part <strong>of</strong> the three phase current can be<br />

eliminated at any instant without affecting ‘P’<br />

β<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

117/454


Contd..<br />

q=<br />

32V i sinϕ<br />

= 3 2<br />

S<br />

S<br />

{ e × i + e × i }<br />

α<br />

β<br />

β<br />

α<br />

• If ‘v’ is sinusoidal, i L is non-sinusoidal<br />

⇒<br />

If q=0, then i S will be sinusoidal and in phase<br />

with V s ( since average <strong>of</strong> the product <strong>of</strong><br />

fundamental ‘ω’ & higher ‘ω’ term = 0)<br />

p<br />

n<br />

=<br />

vsinωt<br />

∞ ∑<br />

n=<br />

2<br />

Avg. <strong>of</strong> p n = 0<br />

i<br />

n<br />

sin<br />

nωt<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

118/454


Contd..<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

119/454


Contd..<br />

• If ‘v’ is non-sinusoidal & i L is also non-sinusoidal<br />

⇒<br />

i S will have component corresponding to<br />

common frequency term <strong>of</strong> voltage & current<br />

• H. Akagi, Y. Kanzawa, and A. Nabae<br />

“Instantaneous Reactive <strong>Power</strong> Compensators<br />

Comprising Switching Devices without Energy<br />

Storage Components,” Part-1 harmonic elimination.,<br />

IEEE Trans. Ind. Applicat., vol. IA-20, No. 3,pp 625-<br />

630, May 1984.<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

120/454


Change <strong>of</strong> reference frame<br />

q S<br />

d<br />

S<br />

dt<br />

ω<br />

S<br />

q r<br />

ω S<br />

d r<br />

⎡d<br />

⎢<br />

⎣q<br />

⎡d<br />

⎢<br />

⎣q<br />

s<br />

s<br />

r<br />

r<br />

⎤<br />

⎥<br />

⎦<br />

⎤<br />

⎥<br />

⎦<br />

=<br />

=<br />

⎡cosθS<br />

⎢<br />

⎣sinθS<br />

⎡ cosθS<br />

⎢<br />

⎣−<br />

sinθS<br />

θ =<br />

⎥ ⎦<br />

⎤<br />

− sinθS<br />

⎤⎡d<br />

cosθ<br />

⎥⎢<br />

S ⎦⎣q<br />

sinθS<br />

⎤⎡d<br />

cosθ<br />

⎥⎢<br />

S ⎦⎣q<br />

r<br />

r<br />

s<br />

s<br />

⎤<br />

⎥<br />

⎦<br />

θ S<br />

d S<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

121/454


3 - phase<br />

(St. Frame)<br />

50 Hz<br />

⇒<br />

2 - phase<br />

(St. Frame)<br />

50 Hz<br />

⇒<br />

2 - phase<br />

(rotating.<br />

Frame at ω S )<br />

D. C<br />

⎡dr<br />

⎢<br />

⎢<br />

qr<br />

⎢⎣<br />

0<br />

⎤<br />

⎥<br />

⎥<br />

⎥⎦<br />

=<br />

2<br />

3<br />

⎡ cosθ<br />

S<br />

⎢<br />

⎢<br />

− sinθ<br />

S<br />

⎢⎣<br />

1 2<br />

cos<br />

− sin<br />

( θ − 2π<br />

3) cos( θ + 2π<br />

3)<br />

s<br />

( θ − 2π<br />

3) − sin( θ + 2π<br />

3)<br />

s<br />

1 2<br />

1 2<br />

s<br />

s<br />

⎤⎡a⎤<br />

⎥⎢<br />

⎥<br />

⎥⎢<br />

b<br />

⎥<br />

⎥⎦<br />

⎢⎣<br />

c⎥⎦<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

122/454


• Let us assume that v S is along d r - axis in the<br />

syn. Rotating frame & i S is making an angle φ<br />

3<br />

2<br />

V I S S<br />

cosϕ<br />

q r<br />

q S<br />

and<br />

P = θ S d r<br />

= 3 2V S I<br />

q 3<br />

=<br />

r q<br />

2 V S I<br />

r<br />

r d r<br />

φ<br />

i S<br />

v S<br />

ω S<br />

d S<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

123/454


• Transform all the variables to Syn. rotating<br />

frame (rotating at ω S )<br />

• Fundamental component <strong>of</strong> v & i will become dc<br />

• Other components will pulsates<br />

• Use a filter to eliminate these pulsating<br />

component<br />

• (Could have used a filter to eliminate harmonics<br />

from input signal)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

124/454


• AC filtering ⇒ phase shift<br />

• V S is filtered component<br />

• i q is made zero<br />

q r<br />

q s<br />

i S<br />

d r<br />

i q<br />

φ<br />

ψ<br />

i d<br />

V S<br />

d s<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

125/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

126/454


• Information about system frequency is<br />

required<br />

• Frequency varies over a narrow range<br />

• Should be insensitive to harmonics or multiple<br />

zero crossings<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

127/454


Harmonic Oscillator<br />

.<br />

⎡ ⎤<br />

⎢<br />

x<br />

⎥<br />

⎢ . ⎥<br />

⎣y⎦<br />

=<br />

⎡ 0 ω⎤⎡x⎤<br />

⎢ ⎥⎢<br />

⎥<br />

⎣-ω<br />

0⎦⎣y⎦<br />

• Has Eigen values at S =<br />

• If x(0) = 0 and y(0) =1<br />

± jω<br />

x( t)<br />

= sinωt<br />

y( t)<br />

= cosωt<br />

x&<br />

= ω y<br />

y&<br />

=<br />

−<br />

ω<br />

x<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

128/454


*<br />

x<br />

∫<br />

ω<br />

xt ()<br />

x<br />

y<br />

n<br />

+ 1<br />

−<br />

Δ t<br />

n +1<br />

−<br />

Δ t<br />

y<br />

x<br />

n<br />

n<br />

=<br />

=<br />

−<br />

ω y<br />

xω<br />

*<br />

y<br />

−ω<br />

∫<br />

y()<br />

t<br />

x<br />

n<br />

= x + ωyΔt<br />

+ 1 n<br />

y<br />

n<br />

= y − ωxΔt<br />

+ 1 n<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

129/454


How to generate 3-phase sinusoids?<br />

x sinωt<br />

a<br />

= y = cosωt<br />

v = Cosωt = y<br />

1 3<br />

vb<br />

= Cos( ωt− 120) =− y+<br />

x<br />

2 2<br />

1 3<br />

vc<br />

= Cos( ωt− 240) =− y−<br />

x<br />

2 2<br />

• Let e a , e b and e c are the 3φ instantaneous system<br />

voltages<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

130/454


e<br />

α<br />

=<br />

e<br />

a<br />

−<br />

1<br />

2<br />

e<br />

b<br />

−<br />

1<br />

2<br />

e<br />

c<br />

=<br />

3<br />

2<br />

e<br />

a<br />

e<br />

β<br />

=<br />

3<br />

2<br />

3<br />

e b<br />

− e c<br />

2<br />

e = e + je s α β<br />

• Space vector representation <strong>of</strong> v a , v b and v c<br />

v<br />

s<br />

=<br />

v<br />

a<br />

+<br />

v<br />

b<br />

e<br />

j<br />

2 π<br />

2<br />

− j<br />

π<br />

3<br />

+ v e<br />

3<br />

c<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

131/454


2π<br />

2π<br />

2π<br />

2π<br />

= cosωt<br />

+ cos( ωt<br />

−120)(cos<br />

+ jsin<br />

) + cos( ωt<br />

−240)(cos<br />

− jsin<br />

)<br />

3 3<br />

3 3<br />

1 3 1 3 1 3 1 3<br />

= cosω<br />

t + ( − cosω<br />

t + sinωt<br />

)( − + j ) + ( − cosω<br />

t − sinωt<br />

)( − − j )<br />

2 2 2 2 2 2 2 2<br />

3 3<br />

= cosωt + j sinωt<br />

= vα<br />

+<br />

2 2<br />

jv<br />

• Projection <strong>of</strong> e s on d r and<br />

v s<br />

q r<br />

• ( is aligned along d r )<br />

β<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

132/454


e<br />

d<br />

e d<br />

=<br />

=<br />

=<br />

e<br />

e s<br />

e<br />

s<br />

α<br />

cos( θ −ωt)<br />

{ cos θ cosωt<br />

+ sinθsinωt}<br />

cos ωt<br />

+<br />

e<br />

β<br />

sinωt<br />

e<br />

q<br />

=<br />

=<br />

e<br />

e s<br />

s<br />

sin( θ −ωt)<br />

{ sinθ<br />

cosωt<br />

−cosθ<br />

sinωt<br />

}<br />

e q<br />

=<br />

e<br />

β<br />

cos<br />

ωt<br />

−<br />

e<br />

α<br />

sin<br />

ωt<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

133/454


Objective<br />

• To make the phase and frequency <strong>of</strong> v a , v b ,v c and<br />

e a , e b ,e c same<br />

• v s and e s are in phase<br />

• e q =0<br />

v a<br />

=<br />

y<br />

v 1 3<br />

= − y + x<br />

b<br />

2 2 v 1 3<br />

= − y − x<br />

c<br />

2 2<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

134/454


Review<br />

• In synchronous rotating frame (speed <strong>of</strong> the<br />

frame = ω s ), supply frequency terms will<br />

become DC<br />

• If input ‘v’ are unbalanced<br />

→<br />

+ve sequence terms DC<br />

-ve sequence terms → oscillate at 2<br />

ω s<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

135/454


• Other higher frequency terms in the synchronous<br />

reference frame can be filtered out<br />

• They can also be filtered out in the input side<br />

• Phase shift is introduced – not an issue<br />

• Active filter control<br />

Contd..<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

136/454


To change MI using harmonic elimination PWM<br />

technique<br />

10.9091, 23.2907, 29.8505, 46.3408, 50.6781<br />

}<br />

10.7120, 23.2678, 29.5761, 46.3867, 50.4260 5, 7, 11, 13 are eliminated and<br />

10.5138, 23.2278, 29.2896, 46.4210, 50.1567 Magnitude <strong>of</strong> fundamental is<br />

different<br />

• Frequency information is required.<br />

• C. Schauder and H. Mehta, “Vector analysis and<br />

control advanced static Var compensators” IEE<br />

proc, vol.140, pp. 299-306, 1993<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

137/454


Through Hardware<br />

• Digitize the sine wave and store in EPROM<br />

(1024 part)<br />

• Address the EPROM using 10 bit counter<br />

( 2 10 =1024 )<br />

• Use a PLL as a multiplier<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

138/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

139/454


S<strong>of</strong>tware approach<br />

Harmonic oscillator<br />

.<br />

⎡ ⎤<br />

⎢<br />

x<br />

⎥ ⎡ 0 ω⎤⎡x⎤<br />

=<br />

⎢ . ⎥ ⎢ ⎥⎢<br />

⎥<br />

⎣-ω<br />

0⎦⎣y⎦<br />

⎣y⎦<br />

x( t)<br />

=<br />

x<br />

y<br />

n<br />

sinωt<br />

− x<br />

Δ t<br />

− y<br />

n<br />

Δt<br />

+ 1<br />

n +1<br />

ω → Instantaneous frequency<br />

• Input to harmonic oscillator is ω<br />

n<br />

y( t)<br />

= cosωt<br />

= ω y<br />

= − xω<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

140/454


• 3φ sinusoids which are in phase with supply<br />

fundamental component <strong>of</strong> the supply voltage<br />

are required<br />

• Input voltage may have harmonics<br />

• e a , e b ,e → c input system voltages may have<br />

harmonics + may be unbalanced<br />

e = e + je s α β<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

141/454


• Let v a<br />

, v b<br />

,v c<br />

are the<br />

3φ pure sinusoids<br />

e S<br />

• e s<br />

should be in phase with v s<br />

ω S t<br />

v S<br />

v a<br />

=<br />

y<br />

v 1 3<br />

= − y + x<br />

b<br />

2 2 v 1 3<br />

= − y − x<br />

c<br />

2 2<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

142/454


• This voltage waveform can be used as<br />

reference current waveform in hystersis<br />

current control PWM technique<br />

• Source current follows this reference ‘i’<br />

• Source current is in phase with fundamental<br />

component <strong>of</strong> input voltage<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

143/454


One cycle control <strong>of</strong> 3φ Var compensator<br />

and Active filter<br />

• No zero crossing detection<br />

}<br />

No reference wave<br />

• No PLL<br />

generation<br />

Basic Analysis :<br />

• Switching frequency is much higher than supply<br />

frequency<br />

• Let x(t) be an input to a switch operating at<br />

variable ON and OFF times<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

144/454


1 1<br />

• = = Switching frequency<br />

T T T<br />

ON<br />

+<br />

OFF s<br />

• Produces switched output with average<br />

y<br />

( t<br />

)<br />

=<br />

1<br />

T<br />

s<br />

T ON<br />

∫<br />

0<br />

x<br />

( t<br />

) dt<br />

= x(t) D(t)<br />

D= duty cycle<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

145/454


• Duty ratio has to be generated as control input<br />

based on some reference signal V ref (t)<br />

• If the duty ratio is controlled so that<br />

• Average output<br />

T<br />

ON T S<br />

∫ x(<br />

t)<br />

dt =<br />

0<br />

∫<br />

0<br />

y(<br />

t)<br />

=<br />

V<br />

1<br />

T<br />

s<br />

ref<br />

T s<br />

∫<br />

0<br />

( t)<br />

dt<br />

V<br />

ref<br />

( t)<br />

dt<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

146/454


• Assume that over one cycle V ref (t) is roughly<br />

constant<br />

y(t)=V ref (t)<br />

• Works for constant switching frequency<br />

• V ref could be a variable feedback signal<br />

• Can be implemented using a simple integrator<br />

with reset<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

147/454


• Generate reset pulse at required frequency<br />

• At the start <strong>of</strong> every cycle switch is turned ON<br />

by the reset pulse<br />

• Integrate the input<br />

• When the output <strong>of</strong> the integrator just exceeds<br />

V ref turn OFF the switch<br />

• Start the cycle again after T s when integrator<br />

resets<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

148/454


Rule to be followed<br />

• A term in the control equation which is being<br />

multiplied with duty cycle <strong>of</strong> the switch has to<br />

be passed through a reset integrator and<br />

compared with the appropriate reference<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

149/454


1φ AC-DC Active filter + Var generator<br />

Assumption:<br />

• In one switching cycle input is constant<br />

• V dc<br />

is constant and ripple free<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

150/454


S 4 , S 3 ON for DT S :<br />

di<br />

L = V s<br />

+ V DC<br />

dt<br />

S 1 , S 2 ON for (1-D)T S :<br />

L<br />

di<br />

dt<br />

=<br />

V s<br />

− V DC<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

151/454


• Assume i(t) is continuous and i(0) = i(T s )<br />

• Average ‘V’ across L = 0<br />

( V + V ) DT = ( V −V<br />

)(1 − D)<br />

T<br />

s<br />

DC<br />

S<br />

DC<br />

S<br />

s<br />

V<br />

DC<br />

Vs<br />

=<br />

1−2D<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

152/454


Aim<br />

• i s and V s should be in phase<br />

Vs= i s R e (R e = Emulated resistance) …..(a)<br />

(1-2D)V dc = i s R e<br />

i s = (1-2D)V dc /R e ……(b)<br />

• In each switching cycle if the duty ratio D is<br />

controlled in such a way that equation (b) is<br />

satisfied , equation (a) also gets satisfied<br />

• Control requirement is (1-2D)V m = i s<br />

Where V m = V dc /R e<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

153/454


Review<br />

• One cycle control<br />

}<br />

→<br />

→<br />

No PLL<br />

No ZCD<br />

Rule to be followed:<br />

• A term in the control equation which is being<br />

multiplied with duty cycle <strong>of</strong> the switch has to be<br />

passed through a reset integrator and compared<br />

with the appropriate reference<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

154/454


Contd..<br />

• Generate reset pulse at required frequency<br />

• At the start <strong>of</strong> every cycle switch is turned ON<br />

by the reset pulse<br />

• Integrate the input<br />

• When the output <strong>of</strong> the integrator just exceeds<br />

V ref turn OFF the switch<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

155/454


• Start the cycle again after T s when integrator<br />

resets<br />

• K. M. Smedley & C. Qiao, “Unified constantfrequency<br />

integration control <strong>of</strong> active power<br />

filters –steady –state and dynamics” IEEE<br />

Transaction on power electronics, vol. 16, No.<br />

3, May 2001<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

156/454


1φ AC-DC<br />

Control technique<br />

(1 − 2D ) V = i m s<br />

V<br />

R<br />

c<br />

V<br />

m<br />

= → Emulated resistance<br />

e<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

157/454


DT<br />

s<br />

1<br />

Vm<br />

− ∫Vmdt<br />

=<br />

Ti<br />

0<br />

Vm<br />

V<br />

m<br />

− DTs<br />

= i<br />

T<br />

i<br />

s<br />

i<br />

s<br />

T i<br />

= Integrator time constant<br />

F s = 1/T S<br />

= Switching frequency<br />

• V m remains constant in one cycle<br />

• If<br />

1<br />

T i<br />

T s<br />

2<br />

(1 − 2D ) V m<br />

= i<br />

= s<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

158/454


Alternate Approach DC-DC Converter<br />

( V )<br />

i<br />

avg<br />

=<br />

−V DT<br />

c<br />

+ V<br />

T<br />

c<br />

(1 −<br />

D)<br />

T<br />

= V c<br />

( 1−<br />

2D)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

159/454


• ‘L’ is small<br />

V + iω<br />

L =<br />

V<br />

i<br />

Buck Converter<br />

c<br />

V s<br />

= V<br />

s<br />

= V ( 1−2D)<br />

• ‘V o ’ to be maintained<br />

constant<br />

c<br />

• Compare with reference<br />

and vary D or depending<br />

upon V s change ‘D’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

160/454


• Information regarding V s should be known<br />

• Assume that V s and i s are in phase (required)<br />

• Instead <strong>of</strong> varying ‘D’ as function <strong>of</strong> V s<br />

• Vary ‘D’ as a function <strong>of</strong> i s<br />

• If V s and i s are not in phase chosen values <strong>of</strong><br />

‘D’ may not give the desired V o<br />

• If ‘V o ’ is regulated, our assumption that V s<br />

and i s are in phase is valid<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

161/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

162/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

163/454


• DC link voltage has to be regulated<br />

• Generate fixed frequency clock<br />

• At the rising edge reset the integrator and turn<br />

ON the switches S4 and S3<br />

• i s ↑<br />

• As t ↑ X ↓ When i s = X ; R = 1<br />

• Turn OFF the S 4 , S 3 and Turn ON S 1 , S 2<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

164/454


Inverter topology for high power application<br />

• For high power applications<br />

• Conventional 3φ Inverter with ‘V’ control<br />

• Switching ‘F’ is low<br />

• ‘F’ <strong>of</strong> predominant harmonic is low<br />

•<br />

•<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

165/454


• 2 converters<br />

→ Var Compensator<br />

→<br />

Low power inverter for<br />

active filtering<br />

• There are only two levels<br />

Instead<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

166/454


• Number <strong>of</strong> pulse should be high for superior<br />

harmonic spectrum<br />

• Instead modify the Inverter structure<br />

• More than two levels<br />

• Multi-level inverter<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

167/454


Diode clamp multilevel inverters<br />

3 Level Inverter:<br />

• Consider only<br />

one leg<br />

• Any time two switches are ON = (n-1)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

168/454


Switches ON<br />

V AX<br />

S1, S2 V dc<br />

S2, S3<br />

S3, S4<br />

V dc<br />

0<br />

2<br />

• Number <strong>of</strong> capacitors required = 2 =(n-1)<br />

• Number <strong>of</strong> switches required = 4/phase = 2(n-1)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

169/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

170/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

171/454


• Voltage across each capacitor = V dc /2 = V dc /(n-1)<br />

• Number <strong>of</strong> diodes = 2 ?<br />

4 level Inverter<br />

• Number <strong>of</strong> switches ON = 3 = (n-1)<br />

• Number <strong>of</strong> switches/leg = 6 = 2(n-1)<br />

• Number <strong>of</strong> capacitors = 3 = (n-1)<br />

• Voltage across each capacitor = V dc /3 = V dc /(n-1)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

172/454


Review<br />

• In one cycle control ‘i S ’ is compared with<br />

(1-2D)V m<br />

• V m is passed through<br />

reset integrator &<br />

compared with V m -R S i S<br />

⇒ R S is sensing resistor<br />

• No reference current waveform generation<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

173/454


Contd..<br />

• For high power ⇒ Use multi-level inverter<br />

• For 3-level ⇒ V AX = V dC , ½ V dC , 0<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

174/454


Contd..<br />

• At any time 2-devices (n-1) devices are ON<br />

• No. <strong>of</strong> Switches = 2(n-1)<br />

• ‘V’ across each ‘C’ = V dC / 2 = V dC /(n-1)<br />

• ‘V’ rating <strong>of</strong> switch = V dC /2 = V dC /(n-1)<br />

• ‘V’ rating <strong>of</strong> diode = V dC /2<br />

• No. <strong>of</strong> diodes = 2 = (m-1)*(m-2)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

175/454


References<br />

• Bum-Seok Suh and Dong-Seok Hyun “A New N-<br />

Level High Voltage Inversion System,” IEEE Trans.<br />

Ind. Electron., vol. 44, No. 1,pp 107-115, Feb 1997.<br />

• Nam S. Choi, Jung G. Cho and Gyu H. Cho “A<br />

General Circuit Topology <strong>of</strong> Multilevel Inverter,” in<br />

Proc. IEEE <strong>Power</strong> electron specialist conf. Rec., pp 96-<br />

103, 1991.<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

176/454


4-level inverter<br />

• Number <strong>of</strong> switches ON = 3 = (n-1)<br />

• Number <strong>of</strong> switches/leg = 6 = 2(n-1)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

177/454


• Number <strong>of</strong> capacitors = 3 = (n-1)<br />

• Voltage across each capacitor = V dc /3 =<br />

V dc /(n-1)<br />

S1, S2, S3 ON: ⇒ V AX = V dc<br />

• ‘V’ rating <strong>of</strong> each<br />

device = V dc /3<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

178/454


S2, S3, S4 ON :<br />

⇒ V AX = 2V dc /3<br />

S3, S4, S5 ON :<br />

⇒ V AX = V dc /3<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

179/454


S4, S5, S6 ON:<br />

⇒ V AX = 0<br />

Observations:<br />

• Duty cycle <strong>of</strong> switch is not the same<br />

• Lower switches are ON for longer time<br />

• Switch utilization is poor<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

180/454


• ‘V’ rating <strong>of</strong> D B = 2V dc /3<br />

• ‘V’ rating <strong>of</strong> D A = V dc /3<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

181/454


• ‘V’ rating <strong>of</strong> diodes is not the same<br />

• Number <strong>of</strong> diodes = (n-1) (n-2) = 6<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

182/454


Voltage space vectors for 3 level inverter<br />

Large voltage vectors<br />

CBA<br />

NNP→ NPP → NPN → PPN → PNN → PNP → NNP<br />

• Similar to conventional 2-level inverter<br />

• 6 active vectors and 2 zero vectors<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

183/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

184/454<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

−<br />

−<br />

−<br />

−<br />

−<br />

=<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

co<br />

bo<br />

ao<br />

cn<br />

bn<br />

an<br />

V<br />

V<br />

V<br />

V<br />

V<br />

V<br />

2<br />

1<br />

1<br />

1<br />

2<br />

1<br />

1<br />

1<br />

2<br />

3<br />

1<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

−<br />

−<br />

=<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

cn<br />

bn<br />

an<br />

qs<br />

ds<br />

V<br />

V<br />

V<br />

V<br />

V<br />

2<br />

3<br />

2<br />

3<br />

0<br />

2<br />

1<br />

2<br />

1<br />

1


( NNP ) ⇒ ( 001 ) ⇒<br />

( PPN ) ⇒ ( 110 ) ⇒<br />

( NPN ) ⇒ ( 010 ) ⇒<br />

( PNP ) ⇒ ( 100 ) ⇒<br />

V dC<br />

∠0<br />

V dC<br />

∠π<br />

V dC<br />

∠2π /<br />

V dC<br />

∠ −π /<br />

3<br />

3<br />

( NPP ) ⇒ ( 011 ) ⇒<br />

/ V dC<br />

∠π<br />

3<br />

( PNN ) ⇒ ( 100 ) ⇒<br />

V dC<br />

∠ − 2π /<br />

3<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

185/454


Small voltage vectors<br />

C B A<br />

O P P<br />

P O P<br />

P P O<br />

C B A<br />

O O P<br />

O P O<br />

P O O<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

186/454


C B A<br />

O O N<br />

O N O<br />

N O O<br />

C B A<br />

O N N<br />

N O N<br />

N N O<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

187/454


C B A ⇒ O P P<br />

⇒ V AO = V BO = V dC /2, V CO = 0<br />

⇒ V an = V dC /6, V bn = V dC /6, V cn = - V dC /3<br />

VdC<br />

1 VdC<br />

1 VdC<br />

V<br />

d<br />

= − − =<br />

6 2 6 2 3<br />

V<br />

4<br />

dC<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

188/454


V<br />

q<br />

∴V<br />

S<br />

=<br />

=<br />

3<br />

2<br />

V<br />

2<br />

dC<br />

⎡V<br />

⎢<br />

⎣ 6<br />

dC<br />

∠π /<br />

V<br />

+<br />

3<br />

3<br />

dC<br />

⎤<br />

⎥<br />

⎦<br />

=<br />

3<br />

4<br />

V<br />

dC<br />

OPP<br />

∴POO<br />

⇒<br />

V<br />

S<br />

=<br />

V<br />

2<br />

dC<br />

∠4π<br />

/<br />

3<br />

POO<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

189/454


NOO :<br />

V AO = V BO = 0, V CO = -V dC /2<br />

V an = V dC /6, V bn = V dC /6, V cn = -V dC /3<br />

VdC<br />

V<br />

ds<br />

=<br />

2 6<br />

V<br />

4<br />

3<br />

dC<br />

3 ⎡VdC<br />

VdC<br />

⎤ 3<br />

= , Vqs<br />

= + = VdC<br />

V<br />

V<br />

dC<br />

dC<br />

∴VS<br />

= ∠π / 3 ⇒ ONN ⇒ VS<br />

= ∠4π<br />

/ 3<br />

2<br />

2<br />

2<br />

⎢<br />

⎣<br />

6<br />

3<br />

⎥<br />

⎦<br />

4<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

190/454


OOP :<br />

V AO = V dC /2, V BO = V CO = 0<br />

V an = V dC /3, V bn = V cn = -V dC /6<br />

VdC<br />

V<br />

ds<br />

= , V qs<br />

= 0<br />

2<br />

PPO<br />

OON<br />

OOP<br />

NNO<br />

∴ V<br />

S<br />

=<br />

VdC<br />

2 ∠0<br />

⇒<br />

PPO<br />

⇒<br />

V<br />

S<br />

=<br />

V<br />

2<br />

dC<br />

∠π<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

191/454


NNO :<br />

V AO = 0, V BO = V CO = -VdC / 2<br />

V an = 1/3[0 +V dc /2 + V dc /2] = V dC /3,<br />

V bn = V cn = 1/3[-2V dC / 2 + V dC / 2] = - V dC /6<br />

VdC<br />

V<br />

ds<br />

= , V qs<br />

= 0<br />

2<br />

∴ V<br />

S<br />

=<br />

VdC<br />

2 ∠0<br />

⇒ OON<br />

⇒ V<br />

S<br />

=<br />

V<br />

2<br />

dC<br />

∠π<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

192/454


OPO :<br />

V AO = V CO = 0, V BO = V dC /2<br />

V an = V cn = -V dC /6, V bn = V dC /3<br />

V<br />

ds<br />

V<br />

4<br />

,<br />

3<br />

2<br />

⎡<br />

⎢<br />

⎣<br />

V<br />

3<br />

V<br />

6<br />

3<br />

4<br />

dC<br />

dC dC<br />

= − Vqs<br />

= 6. + = VdC<br />

∴ V VdC<br />

S<br />

= ∠2π<br />

/ 3<br />

VdC<br />

⇒ POP ⇒ V = ∠5π<br />

/<br />

2<br />

2<br />

3<br />

S<br />

⎤<br />

⎥<br />

⎦<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

193/454


NON :<br />

V AO = V CO = -V dC /2, V BO = 0<br />

V an = V cn = -V dC /6, V bn = V dC /3<br />

V<br />

ds<br />

=<br />

V<br />

−<br />

4<br />

dC<br />

,<br />

3<br />

V qs<br />

= V dC<br />

4<br />

OPO<br />

NON<br />

VdC<br />

VdC<br />

∴VS<br />

= ∠2π<br />

/ 3 ⇒ ONO ⇒ VS<br />

= ∠5π<br />

/ 3<br />

2<br />

2<br />

POP<br />

ONO<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

194/454


Medium voltage vectors<br />

ONP :<br />

V AO = V dC /2, V BO = -V dC /2 , V CO = 0<br />

V an = V dC /2, V bn = -V dC /2 , V cn = 0<br />

3<br />

3<br />

V<br />

ds<br />

= V dC<br />

, V qs<br />

= − VdC<br />

4<br />

4<br />

3<br />

∴V S<br />

= V<br />

2<br />

dC<br />

∠ −π /<br />

6<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

195/454


NOP :<br />

V AO = V dC /2, V BO = 0 , V CO = -V dC /2<br />

V an = V dC /2, V bn = 0 , V cn = -1/2 V dC<br />

3<br />

3<br />

V<br />

ds<br />

= V dC<br />

, V qs<br />

= VdC<br />

4<br />

4<br />

3<br />

∴V S<br />

= V<br />

2<br />

dC<br />

∠π /<br />

6<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

196/454


NPO :<br />

V AO = 0, V BO = V dC /2 , V CO = -V dC /2<br />

V an = 0, V bn = V dC /2 , V cn = -V dC /2<br />

Vds<br />

= 0,<br />

3<br />

V qs<br />

= V<br />

2<br />

dC<br />

3<br />

∴V S<br />

= V<br />

2<br />

dC<br />

∠π /<br />

2<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

197/454


PNO :<br />

V AO = 0, V BO = -V dC /2 , V CO = V dC /2<br />

V an = 0, V bn = -V dC /2 , V cn = V dC /2<br />

Vds<br />

= 0,<br />

3<br />

∴V S<br />

= V<br />

2<br />

3<br />

V qs<br />

= − V<br />

2<br />

dC<br />

∠3π<br />

/<br />

2<br />

dC<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

198/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

199/454


Review<br />

3-Level Inverter<br />

• No. <strong>of</strong> large voltage vectors = 6<br />

⇒ V S = V dC<br />

• No. <strong>of</strong> small voltage vectors = 6<br />

⇒ V S = 1/2V dC<br />

⇒ 12 possible combinations<br />

+ ve or –ve bus<br />

&<br />

mid point<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

200/454


Contd..<br />

• No. <strong>of</strong> medium voltage vectors = 6<br />

⇒ + ve, - ve & mid-point bus<br />

⇒<br />

V = 3 2<br />

S<br />

V dC<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

201/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

202/454


Voltage control<br />

• Space vector PWM<br />

⇒ Depending upon the position <strong>of</strong> space<br />

vector, switch the corresponding switch<br />

NPP<br />

OPP<br />

NOO<br />

NOP<br />

PPP<br />

NNN<br />

OOO<br />

OOP<br />

NNO<br />

NNP<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

203/454


Voltage unbalance between DC-Line<br />

capacitance<br />

• Each leg ⇒ 3 possibilities<br />

• There are 27 switching instances are possible<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

204/454


• Unbalances has no effect on load<br />

• Load is connected across the DC bus<br />

• Somewhat effective<br />

in reducing voltage<br />

unbalance<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

205/454


• C 1 supplies the power<br />

• C 2 does not supply the power<br />

• ‘V’ across C 2 ↑<br />

• For remaining 2 configuration, V across C 1 ↑<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

206/454


• Passive elements<br />

Load compensation<br />

• Inverter<br />

⇒ Current control<br />

⇒ Voltage control<br />

⇒ Main compensator<br />

⇒ Aux. compensator<br />

• Instantaneous reactive power theory<br />

• One cycle controlled inverter<br />

• Multi level inverter<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

207/454


Transmission line voltage support<br />

• Provide mid-point compensation<br />

⇒ Shunt<br />

⇒ Series<br />

⇒ Combination <strong>of</strong> shunt & series<br />

⇒ Combination <strong>of</strong> series & series<br />

P < SIL<br />

P = SIL<br />

V S<br />

P > SIL<br />

V R<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

208/454


Shunt Compensation :<br />

• Inject current in to the system<br />

• If injected ‘I’ is in phase quadrature with the ‘V’<br />

• Only reactive power transfer<br />

• Else, it has to handle real ‘P’ as well<br />

Series Compensation :<br />

• Inject voltage in series with the line<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

209/454


• If ‘V’ is in quadrature with line ‘I’, only reactive<br />

power transfer<br />

Combination <strong>of</strong> series & Shunt Compensation :<br />

• Inject ‘I’ with the shunt part &<br />

• Inject ‘V’ with the series part<br />

• When combined there can be real power<br />

exchange between the series & shunt controllers<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

210/454


Mid point voltage regulator<br />

• Two machine model<br />

Ρ<br />

=<br />

V S<br />

V<br />

X<br />

R<br />

Sinδ<br />

⇒ If V s = V r = V<br />

P<br />

max =<br />

V<br />

X<br />

2<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

211/454


• Connect a compensator at the mid point &<br />

V m = V s = V r = V<br />

• Whether active power transfer is require ?<br />

• System is loss-less<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

212/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

213/454


• Let V sm & V mr are fictitious voltages in phase<br />

with I sm & I mr respectively<br />

Vsm = Vmr<br />

=<br />

V. Cos δ<br />

( / 4)<br />

( δ / 4)<br />

2V<br />

. Sin<br />

I<br />

sm<br />

= I<br />

mr<br />

=<br />

=<br />

X 2<br />

4V<br />

X<br />

Sin<br />

( δ / 4)<br />

P<br />

P<br />

= V<br />

. I<br />

r<br />

=<br />

sm sm<br />

=<br />

4V<br />

X<br />

2<br />

Sin<br />

2V<br />

2<br />

= Sin δ<br />

X<br />

( δ / 4) . Cos( δ / 4)<br />

( / 2)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

214/454


• Reactive power supplied by the<br />

compensator<br />

= V I = VI<br />

m<br />

c<br />

c<br />

=<br />

2.<br />

V.<br />

I Sin δ<br />

sm<br />

( / 4)<br />

=<br />

2<br />

8V<br />

2<br />

X<br />

Sin<br />

( δ / 4)<br />

=<br />

4V<br />

2 δ<br />

X<br />

( 1−<br />

Cos( / 2)<br />

)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

215/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

216/454


• Shunt compensator can increase ‘P’<br />

• ‘Q’ demand also ↑<br />

• Can have multiple compensators located at<br />

the equal distances<br />

• Theoretically ‘P’ would double for each<br />

doubling <strong>of</strong> the segments<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

217/454


• ↑ the no. <strong>of</strong> segments results in flat<br />

‘V’ pr<strong>of</strong>ile<br />

• Expensive<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

218/454


Review<br />

Mid-point shunt compensation<br />

⇒ If V s = V r = V<br />

P =<br />

2V<br />

2 Sin δ<br />

X<br />

( / 2)<br />

Q<br />

=<br />

4V<br />

2 δ<br />

X<br />

( 1−<br />

Cos( / 2)<br />

)<br />

⇒ ‘I’ is injected into the line<br />

(in quadrature with ‘v’)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

219/454


Contd..<br />

• For each doubling <strong>of</strong> the segments,<br />

transmittable ‘P’ also doubles<br />

• ‘V’ pr<strong>of</strong>ile is almost flat<br />

• Large no. <strong>of</strong> shunt compensators ⇒ expensive<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

220/454


Summary<br />

• Compensator must remain in synchronism<br />

with the ac system under all operating conditions<br />

including major disturbances<br />

• Must regulate the bus voltage<br />

• For the inter connecting two systems, best<br />

location is in middle<br />

• For radial feed to a load, best location is<br />

at the load end<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

221/454


Methods <strong>of</strong> controlling Var generation<br />

• Mechanically switched capacitor and/or<br />

inductor ⇒ course control<br />

⇒ in-rush current<br />

• Continuously variable Var generation or<br />

absorption ⇒ originally over excited syn. motor<br />

• Modern Var generators → use power<br />

semiconductor devices/equipment + energy<br />

storing elements<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

222/454


Variable impedance type S.V.C<br />

1. Thyristor controlled reactor (TCR):<br />

• T 1 & T 2 is triggered in the + ve<br />

& - ve half cycles respectively<br />

α ⇒ Can be measured w. r. t<br />

zero crossing or peak <strong>of</strong> ‘V’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

223/454


• ‘i’ flows from α to β<br />

di<br />

L = VmSinωt<br />

dt<br />

Vm ∴i ω<br />

ωL<br />

() t = ( Cosα<br />

− Cos t)<br />

i(t) =0 at ωt = β<br />

Cos α = Cosβ<br />

∴β<br />

= 2π<br />

−α<br />

⇒ β = extinction angle<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

224/454


• ‘i’ is continuous when α = π/2<br />

• ‘i’ is sinusoidal<br />

• No control ⇒ ’L’ is fixed & it is minimum<br />

• As α↑, all odd harmonics are introduced<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

225/454


• As α↑, L ↑<br />

∴<br />

I LF<br />

α V ⎛ 2 1 ⎞<br />

( ) = ⎜1−<br />

α − sin α ⎟<br />

ωL<br />

⎝ π π<br />

2<br />

⎠<br />

⇒<br />

B L<br />

α 1 ⎛ 2 1 ⎞<br />

( ) = ⎜1−<br />

α − sin α ⎟<br />

ωL<br />

⎝ π π<br />

2<br />

⎠<br />

• V L(MAX) ⇒ Voltage limit<br />

• I L(MAX) ⇒ current limit<br />

• B L(MAX) ⇒ Max. admittance <strong>of</strong> TCR<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

226/454


2. Thyristor switched capacitor (TSC):<br />

• Small ‘L’ is required to<br />

limit the surge current<br />

• Thyristors are switched<br />

when v c = v<br />

• ‘V’ rating <strong>of</strong> the switch ?<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

227/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

228/454


3. Fixed Capacitor, Thyristor controlled<br />

Reactor (FC-TCR):<br />

In TCR<br />

• ‘i L ’ is varied by varying ‘α’<br />

• i L = i L(max) when α = π/2<br />

• In FC-TCR, for any value <strong>of</strong><br />

i L , net effect <strong>of</strong> C ↓<br />

• ‘C’ also provides a low impedance path for<br />

harmonics generated by TCR<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

229/454


• ‘Q C ’is constant<br />

• Net Q = Q C when Q L = 0 (α = π)<br />

• To ↓ net Q, ↓ α<br />

• Net Q = 0, when Q C = Q L<br />

• If α is ↓ further, net Q is inductive<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

230/454


• At α = π/2, Q L = Q L(max)<br />

• Operating V-I region <strong>of</strong> FC-TCR<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

231/454


STATCOM<br />

• VSI can supply ± Q<br />

• Also known as static<br />

synchronous condenser<br />

• Similar to syn. motor<br />

I<br />

V − E<br />

X<br />

V − E<br />

= Q = . V<br />

X<br />

Q ⇒ reactive power received by the source<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

232/454


Control<br />

• ‘Q’ is controlled by M.I & δ ⇒ accounts for losses<br />

• Assumed that inverter is capable <strong>of</strong> injecting ‘Q’<br />

demand <strong>of</strong> the line<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

233/454


• If ‘Q’ demand >Var rating <strong>of</strong> inverter<br />

• It may fail due to over load<br />

• Have a inner ‘I’ loop<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

234/454


Operating V-I region<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

235/454


Review<br />

T.C.R<br />

• If α = π/2 ⇒ i = i max<br />

• As α↑, L eff ↑<br />

• Harmonics<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

236/454


Contd..<br />

T.S.C<br />

• Thyristors are triggered<br />

when v c = v<br />

F.C.T.C.R<br />

• T.S.C – T.C.R scheme<br />

is also possible<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

237/454


Contd..<br />

• Above schemes are variable impedance types<br />

STATCOM<br />

• Variable source type<br />

I<br />

=<br />

V<br />

−<br />

X<br />

E<br />

V − E<br />

Q = . V<br />

X<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

238/454


Advantages<br />

• Since voltage pr<strong>of</strong>ile is maintained<br />

(in radial system)<br />

⇒ Voltage instability is prevented<br />

⇒ Improves transient stability<br />

⇒ Damping <strong>of</strong> power oscillations<br />

⇒ Able to maintain ‘V’ pr<strong>of</strong>ile<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

239/454


Series compensation<br />

• Reciprocal <strong>of</strong> shunt compensation<br />

• Shunt compensator : Controlled reactive<br />

‘I’ source connected in parallel with the<br />

Tr. Line to control ‘V’<br />

• Series compensator : Controlled reactive<br />

‘V’ source connected in series with the<br />

Tr. Line to control ‘I’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

240/454


Series compensation<br />

• Injects voltage in series with the line<br />

• Could be variable ‘Z’ (such as ‘C’ or ‘L’)<br />

• Voltage source<br />

• Effective in controlling the power flow<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

241/454


Concept <strong>of</strong> series capacitive compensation<br />

⇒ To decrease reactance <strong>of</strong> the line<br />

P<br />

=<br />

V . V<br />

X<br />

S R<br />

.<br />

Sinδ<br />

X<br />

=<br />

( − )<br />

X L<br />

X C<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

242/454


X<br />

eff<br />

=<br />

( X − X )<br />

L C<br />

= ( 1− K ) X<br />

L<br />

K =<br />

X C<br />

X L<br />

⇒ 0 < K < 1<br />

⇒ Degree <strong>of</strong> series<br />

compensation<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

243/454


• If V S = V R =V<br />

I<br />

=<br />

V. Sinδ<br />

2 2V<br />

. Sinδ<br />

2<br />

=<br />

( 1−<br />

K ) X ( )<br />

L<br />

2 1−<br />

K X<br />

L<br />

P<br />

=<br />

V<br />

m<br />

I<br />

=<br />

2V<br />

. Sinδ<br />

2<br />

( VCosδ<br />

2 ).<br />

( 1−<br />

K ) X<br />

L<br />

2<br />

V . Sinδ<br />

= 1<br />

( − K ) X<br />

L<br />

2 2<br />

2 4V<br />

. Sin 2<br />

Q<br />

C<br />

= I X<br />

C<br />

=<br />

. X<br />

2<br />

X<br />

( 1−<br />

K )<br />

2<br />

δ 2V<br />

.( 1−<br />

Cosδ<br />

)<br />

C<br />

=<br />

2<br />

( 1−<br />

K ) . X<br />

L<br />

2<br />

L<br />

. K<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

244/454


Q<br />

Q<br />

se<br />

sh<br />

=<br />

tan<br />

⎛<br />

⎜<br />

⎝<br />

2 δ<br />

max<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

δ max ⇒ maximum angular difference<br />

between the two ends <strong>of</strong> the line<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

245/454


• If δ max ⇒ 30 - 40 o<br />

• Q se = 7- 13% <strong>of</strong> Q SL<br />

• Cost <strong>of</strong> series capacitor ?<br />

• Location <strong>of</strong> series capacitor is not very<br />

critical<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

246/454


Approaches to controllable series compensation<br />

Variable Z type :<br />

1. GTO controlled series capacitor (GCSC)<br />

Objective : Vary V C<br />

• GTO is closed when v c = 0<br />

• Open when ‘i’ charges ‘C’<br />

• Duality between TCR & GCSC<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

247/454


v<br />

• GTO is turned ON when v c = 0<br />

for α < ωt < α+γ<br />

c<br />

ωt<br />

1<br />

∫ ωC<br />

() t = i() t . d( ωt)<br />

∴i( t) = I.<br />

Cos t<br />

α<br />

ω<br />

=<br />

I<br />

ωC<br />

( Sinωt<br />

− Sinα<br />

)<br />

• v c is maximum when<br />

ωt = π/2 & v c = 0<br />

when ωt = π-α<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

248/454


• Amplitude <strong>of</strong> the fundamental<br />

V<br />

π<br />

4 2<br />

c1 = ∫ π<br />

0<br />

=<br />

π<br />

4 2<br />

= ∫<br />

v<br />

c<br />

() t . Sinωt.<br />

d( ωt)<br />

I<br />

C<br />

.( Sinωt<br />

− Sinα<br />

) Sinωt.<br />

d( ωt)<br />

π ω<br />

0<br />

IX c<br />

⎡ 2α Sin2α<br />

⎤<br />

⎢<br />

1−<br />

−<br />

⎣ π π ⎥<br />

⎦<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

249/454


Controlling modes<br />

(a). Voltage compensation mode:<br />

• GCSC ⇒ Should maintain rated compensation<br />

voltage when I min < I < I max<br />

⇒ V comp = V rated = I min X c<br />

⇒ As I↑, ↑ αSo that<br />

V comp is maintained constant<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

250/454


(b). Impedance compensation mode:<br />

V<br />

c(max)<br />

I<br />

max<br />

=<br />

X<br />

c<br />

Protection issues:<br />

• Required to have higher short time rating<br />

• During S.C, ‘I’ could be much higher than I rated<br />

• I fault > I GTO(rating)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

251/454


• If it flows through ‘C’, V c ↑<br />

• ‘V’ across GTO ↑<br />

• Use MOV<br />

Limitations:<br />

• Harmonics are generated<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

252/454


Review<br />

GTO controlled series capacitor (GCSC)<br />

• ‘α’ is measured w.r.t peak<br />

<strong>of</strong> ‘i’<br />

1<br />

⎛<br />

⎞<br />

X ( α ) = ⎜1−<br />

α − Sin α ⎟<br />

ωC<br />

⎝ π π<br />

2<br />

C<br />

⎠<br />

α ⇒ extinction angle<br />

2<br />

1<br />

• ‘V C ’ has harmonics<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

253/454


TCR<br />

Contd..<br />

GCSC<br />

• Switch is series with ‘L’<br />

• Supplied from a ‘V’<br />

source<br />

• ‘α’ (turn-ON delay) is<br />

measured w.r.t peak <strong>of</strong> ‘v’<br />

• Switch is parallel with ‘C’<br />

• Supplied from a ‘i’<br />

source<br />

• ‘α’ (turn-OFF delay) is<br />

measured w.r.t peak <strong>of</strong> ‘i’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

254/454


Contd..<br />

• Control ‘i’ in ‘L’ .<br />

Parallel with the source<br />

representing variable<br />

admittance to the source<br />

• Control ‘v’ across ‘C’<br />

developed by ‘i’ source<br />

representing variable<br />

reactance to the source<br />

V<br />

ωL<br />

⎡<br />

⎤<br />

⎡<br />

⎤<br />

I LF<br />

( α ) = 1−<br />

−<br />

⎥ ( α ) = 1−<br />

−<br />

⎦<br />

⎥ ⎦<br />

⎢<br />

⎣<br />

2α<br />

π<br />

Sin2α<br />

π<br />

V CF<br />

I<br />

ωC<br />

⎢<br />

⎣<br />

2α<br />

π<br />

Sin2α<br />

π<br />

⇒<br />

α 1 ⎛ 2 1 ⎞<br />

( ) = ⎜1−<br />

α − sin α ⎟<br />

ωL<br />

⎝ π π<br />

2<br />

⎠<br />

1 2α<br />

Sin2α<br />

α =<br />

⎢<br />

1−<br />

−<br />

ωC<br />

⎣ π π<br />

B ⎡<br />

⎤<br />

L ( )<br />

⎥ ⎦<br />

⇒<br />

X C<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

255/454


Thyristor switched series capacitor (TSSC)<br />

• Capacitors are disconnected by turning ON<br />

the thyristors<br />

• They turn OFF naturally (at Z.C <strong>of</strong> I )<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

256/454


Voltage compensating mode :<br />

• Reactance <strong>of</strong> ‘C’ bank is chosen so as to<br />

produce average rated V comp = n X C I min<br />

(‘n’ is the no. <strong>of</strong> banks)<br />

• As I ↑ above I min , ↓ n<br />

• By-pass ‘C’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

257/454


Impedance compensating mode :<br />

• TSSC should maintain maximum rated<br />

compensating reactance at any line current<br />

up to Rated current (I max )<br />

• Maximum series compensation<br />

nX<br />

C<br />

=<br />

V<br />

C(max)<br />

I<br />

max<br />

at rated ‘I’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

258/454


• In FCTCR continuously varying capacitive<br />

compensation is achieved by varying ‘α’<br />

<strong>of</strong> TCR<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

259/454


Thyristor controlled series capacitor (TCSC)<br />

• If ‘V’ is the applied voltage across the TCR<br />

• Fundamental component <strong>of</strong> ‘I’ for ‘α’<br />

(measured w.r.t peak <strong>of</strong> voltage) is<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

260/454


V 2 1<br />

I1 ⎜ Sin<br />

X ⎝ π π<br />

⎛<br />

⎞<br />

( α ) = 1−<br />

α − 2α<br />

⎟<br />

⎠<br />

X<br />

L<br />

L<br />

π<br />

⎜<br />

⎝ π − 2α<br />

− Sin2α<br />

⎛<br />

⎞<br />

( α ) = X<br />

⎟<br />

⎠<br />

L<br />

X < X ( α ) < ∞<br />

L L<br />

⇒ Combined ‘Z’ <strong>of</strong> TCR & fixed ‘C’<br />

X<br />

TCSC<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

− X<br />

X<br />

L<br />

( )<br />

( ) ⎟ ⎞<br />

C.<br />

X<br />

L<br />

α<br />

α − X<br />

C ⎠<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

261/454


• When α = π/2, X L (α) = ∞<br />

& X TCSC = -X C<br />

• When X L (α) = X C X TCSC ⇒ undefined<br />

• When X L (α) < X C X TCSC ⇒ Inductive<br />

At X L (α) = X L ⇒<br />

X<br />

TCSC<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

X<br />

X<br />

L<br />

C<br />

. X<br />

− X<br />

L<br />

C<br />

⎟ ⎞<br />

⎠<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

262/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

263/454


• Continuously varying series capacitor by<br />

‘α’ control<br />

ωL<br />

< X α<br />

L<br />

( ) < ∞<br />

• When<br />

X<br />

L<br />

( α ) < ∞,<br />

X<br />

TCSC<br />

=<br />

X<br />

C<br />

=1<br />

ωC<br />

• At X L (α) = X C ⇒ parallel resonance,<br />

X TCSC<br />

⇒<br />

∞<br />

∴ω =1<br />

LC<br />

As L(α) > L<br />

( )<br />

⇒ ω > ω α<br />

o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

264/454


• If X L (α) < X C , There are two operating zones<br />

α<br />

C(lim)<br />

≤<br />

α<br />

≤<br />

π<br />

2<br />

⇒ Capacitive, ‘i’ leads V C<br />

0 ≤α≤ α L(lim) ⇒ X TCSC is inductive<br />

• Not exactly similar to TCR<br />

connected in parallel With<br />

‘V’ source<br />

• Input ‘V’ is sinusoidal<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

265/454


• In TCSC, the ‘V’ is voltage across ‘C’<br />

• Switch is open ⇒ TCR is O.C, ‘i’ flows through ‘C’<br />

• Turn-on TCR at ‘α’<br />

(w.r.t peak <strong>of</strong> ‘v’)<br />

⇒ ‘i’ is +ve & ‘v c ’is -ve<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

266/454


• ‘V C ’ gets distorted<br />

• In phasor form ‘i’ leads V C<br />

in capacitor zone<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

267/454


• In inductive zone, ‘i’ lags V C<br />

• TCR current is high<br />

X<br />

TCSC<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

− jX<br />

j(<br />

X<br />

C<br />

TCR<br />

. jX<br />

− X<br />

TCR<br />

C<br />

)<br />

⎞<br />

⎟<br />

⎠<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

− jX<br />

C<br />

( 1−<br />

X<br />

C<br />

X<br />

TCR<br />

⎞<br />

⎟<br />

) ⎠<br />

i<br />

TCR<br />

=<br />

−<br />

j(<br />

X<br />

TCR<br />

jX<br />

−<br />

C<br />

X<br />

C<br />

)<br />

. I<br />

=<br />

I<br />

( 1−<br />

X X )<br />

TCR<br />

C<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

268/454


• If X TCR = 1.5X C ⇒ Capacitive<br />

X<br />

X<br />

TCSC<br />

C<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

(1 −<br />

X<br />

C<br />

1<br />

X<br />

TCR<br />

)<br />

⎞<br />

⎟<br />

⎠<br />

=<br />

• If X TCR = 0.75X C ⇒ Inductive 3<br />

1<br />

1−1 1.5<br />

=<br />

I TCR<br />

I<br />

=<br />

1<br />

1−1.5<br />

= −2<br />

X = 0. 75X<br />

TCR<br />

C<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

269/454


X<br />

X<br />

TCSC<br />

C<br />

=<br />

1<br />

1−1<br />

0.75<br />

= −3<br />

I TCR<br />

I<br />

=<br />

1−<br />

1<br />

0.75<br />

=<br />

4<br />

• For same magnitude <strong>of</strong> X TCSC , I TCR in ‘C’<br />

zone = (1/2)I TCR in ‘L’ zone<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

270/454


Modes <strong>of</strong> operation<br />

By pass mode :<br />

• ‘i L ’ is continuous & sinusoidal<br />

• Each thyristor conducts for 180 o<br />

• X TCSC ⇒ inductive<br />

• Most <strong>of</strong> the line ‘I’ flow through ‘L’ not ‘C’<br />

• Used to protect ‘C’ against over voltage<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

271/454


Thyristor blocked mode :<br />

• No ‘i’ through ‘L’<br />

• Fixed ‘C’ ⇒ Avoided<br />

Vernier control<br />

• Thyristors are gated and they conducts<br />

for part <strong>of</strong> cycle<br />

• X TCSC ↑ as conduction angle ↑ from zero<br />

to α C(lim)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

272/454


Static Synchronous Series Compensation<br />

• Function <strong>of</strong> series capacitor ⇒ produces an<br />

appropriate voltage <strong>of</strong> fundamental ‘F’ in<br />

quadrature with Tr. Line ‘I’<br />

P<br />

=<br />

V V<br />

( X − X )<br />

L<br />

S<br />

R<br />

C<br />

Sinδ<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

273/454


• Instead: Use VSI to inject a voltage in<br />

quadrature with ‘i’<br />

V = ± j.<br />

q<br />

V q<br />

( γ )<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

274/454


• Voltage across ‘L’ ⇒ V ( )<br />

L<br />

= 2VSin<br />

δ 2 + Vq<br />

I<br />

=<br />

2VSin<br />

δ<br />

( 2)<br />

X<br />

+ V<br />

q<br />

( )<br />

( δ 2) . 2VSin( δ )<br />

P = VCos<br />

2 +<br />

V q<br />

=<br />

V<br />

X<br />

2<br />

Sinδ<br />

+<br />

V.<br />

V<br />

X<br />

q<br />

Cos<br />

( δ 2)<br />

• If V q > I.X, power flow will reverse<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

275/454


T.C.S.C :<br />

Review<br />

• Used for vernier control <strong>of</strong> ‘C’.<br />

GCSC also provides this feature<br />

• Cost <strong>of</strong> GTO > that <strong>of</strong> thyristor<br />

• Effective capacitive<br />

compensation increases<br />

as α↓from π/2 to α C(lim)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

276/454


Contd..<br />

• For both region X L < X C (inductive & capacitive)<br />

• In inductive zone, I TCR > I Line and are in phase<br />

• In capacitive zone, I Line is out <strong>of</strong> phase with I TCR<br />

• ‘V’ across ‘C’ gets distorted<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

277/454


Contd..<br />

Static Synchronous Series Compensation:<br />

• Instead <strong>of</strong> passive elements<br />

use VSI<br />

P<br />

=<br />

V<br />

X<br />

2<br />

Sinδ<br />

+<br />

V.<br />

V<br />

X<br />

q<br />

Cos<br />

( δ 2)<br />

• Reverse power flow is possible<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

278/454


Control range:<br />

• Voltage compensation mode : SSSC can<br />

maintain the rated capacitive or inductive<br />

compensating ‘V’ for ‘I’ till I q(max)<br />

• Ideal condition (‘I’ line<br />

can not be zero)<br />

• ΔP is required for SSSC<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

279/454


impedance compensation mode :<br />

• Maintain rated X C or X L<br />

up to rated I<br />

Exchange <strong>of</strong> Active power by SSSC:<br />

• Can exchange active as well as reactive power<br />

• Some active source should be connected to<br />

DC side<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

280/454


• Compensation for both reactive and resistive<br />

compensation <strong>of</strong> series line impedance to keep<br />

X/R ratio high (3-10 is desirable)<br />

• With series compensation<br />

effective ( X X ) R ratio ↓<br />

L −<br />

C<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

281/454


• X/R ratio in case1 > X/R ratio in case2<br />

• Reactive component <strong>of</strong><br />

I q<br />

(<br />

1<br />

2 )<br />

= I. Sin δ + ϕ<br />

↑<br />

(<br />

1<br />

δ 2 + )<br />

• Real component <strong>of</strong> I = Ia<br />

= I. Cos ϕ<br />

transmitted to the receiving end decreases<br />

corresponding to R=0<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

282/454


• If V S = V R =V<br />

Per phase power received by the receiving end<br />

P<br />

( 90 +δ −ϕ)<br />

= V. I.<br />

Cos 2<br />

( ϕ − 2)<br />

= V. I.<br />

Sin δ<br />

2VSinδ<br />

/ 2<br />

= V. . Sin δ<br />

Z<br />

( ϕ − 2)<br />

=<br />

2 V<br />

2 . Sinδ<br />

/ 2<br />

Z<br />

δ<br />

{ Cosδ<br />

/ 2. Sinϕ<br />

− Cosϕ.<br />

Sin / 2}<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

283/454


=<br />

2 2<br />

V<br />

2<br />

Z<br />

{ Sinϕ.<br />

Sinδ<br />

/ 2. Cosδ<br />

/ 2 − Cosϕ.<br />

Sin δ / 2}<br />

2<br />

V<br />

= 1<br />

Z<br />

{ Sinϕ.<br />

Sinδ<br />

− Cosϕ.<br />

( − Cosδ<br />

)}<br />

2<br />

V ⎧ X R<br />

= ⎨ . Sinδ<br />

− . δ<br />

Z ⎩ Z Z<br />

( 1−<br />

Cos ) ⎬ ⎫<br />

⎭<br />

2<br />

V<br />

= 1<br />

2 2<br />

R + X<br />

{ X.<br />

Sinδ − R.<br />

( − Cosδ )}<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

284/454


⇒ Reactive VA associated with the receiving end<br />

Q<br />

( 90 +δ / −ϕ)<br />

= VI.Sin 2<br />

2V<br />

2 Sinδ<br />

/ 2<br />

= Cos 2 −<br />

Z<br />

( δ / ϕ)<br />

2<br />

= V<br />

R + X<br />

1<br />

2 2<br />

{ R.<br />

Sinδ + X ( − Cosδ )}<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

285/454


• Maximum transmittable active power ↓<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

286/454


Voltage & phase angle regulators<br />

Voltage regulator:<br />

• Injection <strong>of</strong> appropriate in phase<br />

component in series with ac system<br />

• Similar to transformer tap changer<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

287/454


Phase angle controller :<br />

• Inject ‘V’ at an angle ±90 o<br />

relative to the system ‘V’<br />

• Resultant angular change approx. proportional<br />

to injected ‘V’. Magnitude <strong>of</strong> ‘V’ is constant<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

288/454


<strong>Power</strong> flow control :<br />

• Optimal loading <strong>of</strong> transmission line in<br />

practical system can not always be achieved<br />

at the prevailing angle<br />

Occur when ?<br />

• <strong>Power</strong> between two buses is transmitted<br />

over parallel lines <strong>of</strong> different length, use<br />

phase angle regulator (PAR)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

289/454


PAR : A sinusoidal synchronous ac voltage<br />

source with controllable amplitude and<br />

phase angle<br />

V +<br />

Seff<br />

and<br />

V =<br />

V<br />

= VS<br />

Vr<br />

S Seff<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

290/454


• Basic idea is to keep the transmittable<br />

power at the desirable level<br />

independent <strong>of</strong> prevailing ‘δ’<br />

also<br />

V r<br />

V S<br />

> 90 o<br />

⇒ angle to be controlled<br />

is (δ-σ )<br />

2<br />

V<br />

P = Sin<br />

X<br />

( δ −σ )<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

291/454


• Multi functional FACTS controller :<br />

based on back-back VSI with a common<br />

DC-link<br />

• One converter in series (SSSC) and other<br />

is in shunt (SVC) ⇒ unified power flow<br />

controller (UPFC)<br />

• Both converters are connected in series but<br />

in two different lines (Inter line <strong>Power</strong> Flow<br />

Controller-IPFC)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

292/454


UPFC :<br />

• Able to control simultaneously or<br />

selectively all the parameters affecting the<br />

power flow in Tr. line<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

293/454


• Converter-1 supplies active power<br />

required by converter-2<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

294/454


• Independently control the reactive power<br />

flow at the point <strong>of</strong> connection<br />

UPFC can fulfill<br />

• Reactive power control<br />

• Series compensation<br />

• Phase angle regulator<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

295/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

296/454


Case1 :<br />

Control capabilities<br />

ρ = 0,<br />

Voltage regulator<br />

V pq<br />

= ± ΔV<br />

• Similar to tap changing transformer with<br />

large no. <strong>of</strong> steps<br />

Reactance compensator : Series reactive<br />

compensator<br />

V pq = V q at 90 o with I<br />

⇒ Similar to SSSC<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

297/454


Phase angle regulator :<br />

V pq<br />

= V σ<br />

⇒ at any angular relationship w.r.t V S<br />

so that desired phase shift is achieved<br />

Multi functional feature :<br />

V<br />

pq<br />

= ΔV<br />

+ Vq<br />

+ V σ<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

298/454


U.P.F.C :<br />

Review<br />

• Two VSI connected back to back with<br />

common DC-link<br />

• One connected in series with line and other is<br />

connected across the line<br />

• DC-link ‘V’ is maintained<br />

constant by converter-1<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

299/454


Contd..<br />

• Active power required by the<br />

system is drawn by converter-1<br />

Can function as<br />

• Voltage regulator ⇒ V+ΔV<br />

• SSSC ⇒ injects ‘V’ in quadrature with ‘I’<br />

• Phase angle regulator ⇒ injects ‘ΔV’ in<br />

quadrature with ‘V’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

300/454


Using UPFC<br />

• Active power flow and<br />

• Reactive power flow can be set<br />

• In SSSC : Quadrature injected ‘V’<br />

results in increase in power flow<br />

⇒ Magnitude <strong>of</strong> injected ‘V’ determines ‘P’<br />

⇒ Circuit conditions determines ‘Q’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

301/454


• Main function : Control the flow <strong>of</strong> ‘P’ & ‘Q’<br />

by injecting a voltage in series with the<br />

Tr. line<br />

• Both magnitude & phase angle are varied<br />

• Control <strong>of</strong> ‘P’ & ‘Q’ allows power flow in<br />

prescribed routes<br />

⇒ 2 port representation<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

302/454


⇒ A common DC-link voltage is regulated<br />

Re( )<br />

* *<br />

V I 1 V I 2 − P 0<br />

u1 +<br />

u2<br />

loss<br />

=<br />

• In addition to maintain real power balance,<br />

shunt branch can independently exchange<br />

reactive power with the system<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

303/454


• Transmitted active power and reactive power<br />

supplied by receiving end<br />

P<br />

r<br />

−<br />

jQ<br />

r<br />

= V<br />

r<br />

⎛V<br />

. ⎜<br />

⎝<br />

S<br />

+ V<br />

pq<br />

jX<br />

−V<br />

r<br />

⎞<br />

⎟<br />

⎠<br />

*<br />

V = Ve<br />

S<br />

jδ 2<br />

−<br />

V r<br />

= Ve<br />

jδ 2<br />

V<br />

pq<br />

=<br />

V<br />

pq<br />

e<br />

j<br />

( δ 2+ρ<br />

)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

304/454


= Ve<br />

⎧V<br />

⎨<br />

⎩<br />

( Cosδ 2 − jSinδ<br />

2 − Cosδ<br />

2 − jSinδ<br />

) Vpq<br />

− j( δ 2+<br />

ρ )<br />

− jδ<br />

2 2<br />

−<br />

jX<br />

−<br />

jX<br />

e<br />

⎫<br />

⎬<br />

⎭<br />

= Ve<br />

⎧<br />

⎨<br />

⎩<br />

VSin<br />

X<br />

Vpq<br />

−<br />

jX<br />

− jδ 2 2 δ 2<br />

− j 2<br />

e<br />

( δ + ρ )<br />

⎫<br />

⎬<br />

⎭<br />

=<br />

V V V<br />

Sinδ<br />

2<br />

.<br />

X<br />

jX<br />

2 2<br />

− j( δ + ρ )<br />

( Cosδ<br />

2 − jSinδ<br />

2) −<br />

pq e<br />

= 2 2<br />

V<br />

V.<br />

V<br />

2<br />

jSin<br />

X<br />

jX<br />

pq<br />

( Sinδ 2. Cosδ<br />

2 − jSin δ 2) − Cos( δ + ρ ) − ( δ + ρ )<br />

( )<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

305/454


P<br />

r<br />

−<br />

jQ<br />

r<br />

=<br />

V<br />

X<br />

2<br />

V.<br />

Vpq<br />

Sinδ − Sin +<br />

X<br />

( δ ρ )<br />

−<br />

⎧<br />

j⎨<br />

⎩<br />

V<br />

X<br />

2<br />

2 2<br />

Sin<br />

V.<br />

V<br />

δ 2 −<br />

X<br />

pq<br />

Cos<br />

( δ + ρ )<br />

⎫<br />

⎬<br />

⎭<br />

∴P<br />

r<br />

=<br />

V<br />

X<br />

2<br />

V.<br />

Vpq<br />

Sinδ − Sin +<br />

X<br />

( δ ρ )<br />

∴Q<br />

r<br />

=<br />

2<br />

2 2<br />

V<br />

X<br />

Sin<br />

V.<br />

Vpq<br />

δ 2 − Cos +<br />

X<br />

( δ ρ )<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

306/454


• ‘ρ’ can vary from 0 to 2π<br />

• ‘P’ & ‘Q’ are controllable from<br />

P<br />

V.<br />

V<br />

pq<br />

( δ ) − to P( δ )<br />

X<br />

+<br />

V.<br />

V<br />

X<br />

pq<br />

⇒ Transmitted real power<br />

2<br />

V V.<br />

V<br />

= Sinδ<br />

±<br />

X X<br />

( )<br />

pq max<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

307/454


Control strategy:<br />

• There are 3 degrees <strong>of</strong> freedom<br />

• Magnitude and angle <strong>of</strong> series V<br />

• Shunt reactive current<br />

⇒ Both are VSI<br />

⇒ Series injected ‘V’ can be instantaneously<br />

changed<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

308/454


⇒ Shunt current is controlled indirectly by<br />

varying output <strong>of</strong> shunt converter<br />

Series injected ‘V’ control :<br />

• Injected ‘V’ can be split into two components<br />

1. In phase with line ‘I’<br />

2. In quadrature with line ‘I’<br />

• ‘P’ can be controlled by varying series reactance<br />

<strong>of</strong> the line<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

309/454


• Reactive ‘V’ injection ⇒ similar to series<br />

connection <strong>of</strong> reactance except that injected ‘V’<br />

is independent <strong>of</strong> Tr. Line ‘I’<br />

Shunt current control :<br />

• Shunt current can be split into real & reactive<br />

components<br />

• Magnitude <strong>of</strong> real component ⇒ DC link ‘V’<br />

• Magnitude <strong>of</strong> reactive component ⇒ Bus ‘V’<br />

magnitude regulator<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

310/454


FACTS installments in India<br />

• TSC+TCR (400 kV) at Kanpur ⇒ ±240 MVar<br />

• TCR (400 kV) at Itarsi ⇒ ±50 MVar<br />

• TCSC (400 kV ) at ⇒ Raipur - Rourkela<br />

(Double ckt.)<br />

⇒ Gorakhpur - Mazaffarpur<br />

⇒ Kanpur - Ballabhgarh<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

311/454


Kanpur – Ballabhgarh 400 kV line:<br />

Fixed capacitor<br />

TCSC<br />

Rated V L-L 420 kV 420 kV<br />

Nominal Var 151.60 MVar 79.87 MVar<br />

Rated continuous<br />

‘V’ across ‘C’<br />

42.2 kV 16.6 kV<br />

TCR/ph<br />

-<br />

4.4 mH<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

312/454


HVDC<br />

• Long distance transmission ( Competing<br />

technology : AC with FACTS)<br />

• Cable transmission (> 40 Km) ⇒ HVDC<br />

• Asynchronous link ⇒ HVDC<br />

• HVDC lines are cheaper than AC lines<br />

• Terminal equipment costs are higher<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

313/454


In India :<br />

• Long distance HVDC<br />

• Rihand – Dadri : 1500 MW, ±500 kV<br />

• Chandrapur – Padghe : 1500MW, ±500 kV<br />

• Talcher – Kolar : 2000MW, ±500 kV<br />

• Barsur– Lower Sileru : 200MW, 200 kV<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

314/454


Back to Back :<br />

• Chandrapur – Ramagundam : 1000 MW<br />

(Asynchronous link)<br />

• Jeypore – Gajuwaka : 500 MW<br />

(Asynchronous link)<br />

• Vindhyachal<br />

: 500 MW<br />

• Sasaram : 500 MW<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

315/454


• ‘P’ through DC link can be regulated.<br />

• <strong>Power</strong> control through firing angle control<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

316/454


• ‘P’ through link can not be regulated<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

317/454


• P 1 + P 2 can be regulated<br />

• If alternator-1 generates 1000 MW &<br />

load 1100 MW<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

318/454


• If alternator-2 generates 1000 MW &<br />

load 900 MW<br />

• P 1 +P 2 has to be -100 MW<br />

(frequency <strong>of</strong> alternator-1 &2 are same)<br />

• P 1 + P 2 can be set<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

319/454


Types <strong>of</strong> HVDC system<br />

Two terminal : with DC transmission line<br />

One rectifier terminal + one inverter terminal<br />

Back to Back :<br />

• Two terminals with no DC line ⇒ used for<br />

asynchronous link<br />

Multi terminal : with DC line and several rectifier<br />

and/or inverter terminals connected to more than<br />

two nodes <strong>of</strong> AC network<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

320/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

321/454


Types <strong>of</strong> links :<br />

• Mono-polar<br />

• Bi-polar<br />

Mono-polar HVDC link :<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

322/454


• One conductor (generally –ve)<br />

• Return path ⇒ ground ⇒ Resistance should<br />

be low<br />

• Instead metallic return<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

323/454


Bi-polar HVDC link :<br />

• Has two conductors<br />

+ve<br />

-ve<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

324/454


• Each terminal has two converters <strong>of</strong> equal<br />

rating ‘V’ connected in series on the DC side<br />

• Junction is grounded<br />

• ‘I’ in two phases are equal<br />

• No ground ‘I’<br />

• Two poles can operate independently<br />

• If one is faulty, then other can operate with<br />

ground as the return<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

325/454


Review<br />

HVDC<br />

• Asynchronous link<br />

• Back to back<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

326/454


Components <strong>of</strong> HVDC transmission<br />

Bi-polar<br />

HVDC<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

327/454


Converter :<br />

• Perform AC – DC conversion<br />

DC – AC conversion<br />

• 12 pulse converter<br />

Transformer with tap changer<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

328/454


Smoothing Reactor : Large value <strong>of</strong> ‘L’ in<br />

Series with each pole<br />

Purpose :<br />

• ↓ harmonic voltage & current in DC line<br />

• Prevents ‘I’ from being discontinuous on<br />

light load<br />

• Limit the ‘I’ during S. C in the DC line<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

329/454


Harmonic filter :<br />

• Converter generates<br />

harmonic currents<br />

• Because <strong>of</strong> source ‘L’, ‘V’ gets distorted<br />

• Affects the other loads & interference<br />

with communication network<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

330/454


Reactive power support :<br />

• Both converter & inverter absorb<br />

reactive power<br />

• As α↑, ‘Q’ requirement ↑<br />

• ‘Q’ source is a must<br />

• If bus is strong, shunt capacitor can be used<br />

• ‘C’ associated AC filter also supply ‘Q’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

331/454


Basic module <strong>of</strong> converter :<br />

• 3-ph full bridge<br />

V an<br />

= V∠0<br />

= V∠ −120<br />

V cn<br />

= V∠ − 240<br />

V ab<br />

= 3V∠<br />

π 6,<br />

= 3V∠−<br />

π 2,<br />

V bn<br />

V bc = 3V∠<br />

− 210<br />

V ca<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

332/454


• If α 1 is trigger angle for bridge-1<br />

• If α 2 is trigger angle<br />

for bridge-2<br />

⇒ Neglect i dc r dc &<br />

Assuming ideal devices<br />

α = π −α 2 1<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

333/454


⇒α = 30 o (w.r.t natural<br />

commutation)<br />

or<br />

⇒ corresponding to Z.C <strong>of</strong><br />

phase-A α = 60 o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

334/454


⇒T 1 is turned <strong>of</strong>f at ωt= 30+ (30+120) = 180 o<br />

When T 3 is triggered, ‘V’ across T 1 = V ab<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

335/454


V a<br />

= Sin180 = 0,<br />

2<br />

V b<br />

2<br />

= Sin60 =<br />

3<br />

∴V<br />

ab<br />

= −<br />

3<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

336/454


At ωt = 210 o<br />

V a<br />

= Sin210 = −1<br />

= Sin90 = 1<br />

V b<br />

3<br />

2<br />

V ab<br />

= −1.5<br />

At ωt = 240 o<br />

V a<br />

− 3 2, V = 2<br />

=<br />

b<br />

3<br />

∴V<br />

ab<br />

= −<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

337/454


At ωt = 270 o<br />

V a<br />

−1 , V = 1<br />

=<br />

b<br />

2<br />

∴V<br />

ab<br />

= −1.5<br />

At ωt = 300 o -<br />

V − 3 2, V = 0 V = − 3 2<br />

a<br />

=<br />

b<br />

∴ ab<br />

At ωt = 300 o + , T 5 is triggered, ‘V’ across T 1 is V ac<br />

V − 3 2, V = 3 2 V = − 3<br />

a<br />

=<br />

c<br />

∴ ac<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

338/454


At ωt = 330 o<br />

V a<br />

−1 2, V = 1<br />

=<br />

c<br />

∴V<br />

ac<br />

= −1.5<br />

At ωt = 360 o<br />

V 0 , V = 3 2 V = − 3 2<br />

a<br />

=<br />

c<br />

∴ ac<br />

At ωt = 30 o<br />

V 1 2, V = 1 2 V = 0<br />

a<br />

=<br />

c<br />

∴ ac<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

339/454


At ωt = 60 o -<br />

V 3 2, V = 0 V = 3 2<br />

a<br />

=<br />

c<br />

∴ ac<br />

⇒ T 1 is reverse biased for 210 o<br />

What happen when α = 150 o<br />

T 1 is turned <strong>of</strong>f at ωt = 30+150+120 = 300 o<br />

(w.r.t +ve Z.C <strong>of</strong> Ph- A)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

340/454


At ωt = 300 o<br />

V − 3 2, V = 0 V = − 3 2<br />

a<br />

=<br />

b<br />

∴ ab<br />

At ωt = 330 o<br />

V −1 2, V = −1<br />

2 V = 0<br />

a<br />

=<br />

b<br />

∴ ab<br />

V<br />

a<br />

At ωt = 360 o<br />

0,<br />

V = − 2<br />

=<br />

b<br />

3<br />

∴V ab<br />

= 3 2 = + ve<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

341/454


⇒ T 2 must attain forward voltage blocking<br />

capability within 30 o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

342/454


Vdc = 2.34V<br />

ph.<br />

Cosα<br />

=1.35V LL<br />

.Cosα<br />

For α = 30 o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

343/454


Review<br />

HVDC<br />

• Two six pulse converters<br />

connected in series<br />

α<br />

= π −<br />

2<br />

α 1<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

344/454


Contd..<br />

• As α 1 ↑ (AC-DC converter), ‘Q’ requirement<br />

also ↑<br />

• As α 2 ↑, duration for which<br />

the devices is reverse biased↓<br />

• When α = 150 o , duration for which the devices<br />

is reverse biased = 30 o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

345/454


Harmonic component in converter i/p :<br />

• No even harmonics, only odd harmonics<br />

π 3<br />

2<br />

2I Ln<br />

= ∫ I0Cosnθ.<br />

dθ<br />

π<br />

−π<br />

3<br />

6<br />

I L 1<br />

= . I 0<br />

, I<br />

L 3<br />

= 0<br />

2 ⎛ nπ<br />

⎞ π<br />

I Ln<br />

= . I0⎜2Sin<br />

⎟<br />

2nπ<br />

⎝ 3 ⎠<br />

I<br />

I<br />

L1<br />

L1<br />

I<br />

L5<br />

= − , I<br />

L7<br />

= −<br />

7<br />

5<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

346/454


Phase relationship between phase V & I 1<br />

Neglect losses<br />

V<br />

⎛ Vm<br />

⎞<br />

= 3⎜<br />

⎟<br />

⎝ 2 ⎠<br />

dcI0 . I<br />

L1<br />

Cosϕ<br />

⎛ Vm<br />

⎞ 6 3 3<br />

3.<br />

⎜ ⎟.<br />

I0 Cosϕ<br />

= VmCosα.<br />

I<br />

⎝ 2 ⎠ π<br />

π<br />

Cosϕ<br />

= Cosα<br />

∴ϕ<br />

= α<br />

0<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

347/454


α + 60<br />

6<br />

V0 = ∫Vab.<br />

dωt<br />

2π<br />

α<br />

α + 60<br />

6<br />

= ∫<br />

2π<br />

α<br />

3V<br />

m<br />

Sin<br />

(<br />

o<br />

ωt<br />

+ 60 ).<br />

d t<br />

ω<br />

=<br />

3 3<br />

Vm Cosα<br />

= V<br />

π<br />

dco<br />

Cosα<br />

=<br />

3 3<br />

π<br />

2V rms<br />

Cosα<br />

= 2 .34V<br />

Cosα = 1. V Cosα<br />

rms<br />

35<br />

LL<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

348/454


As α↑:<br />

• V dc ↓<br />

• Displacement angle ↑ & P.F ↓<br />

• Q ↑<br />

Effect <strong>of</strong> source L :<br />

• T 1 , T 2 when conducting<br />

T 3 is triggered<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

349/454


i + =<br />

i I<br />

1 3 0<br />

di 1<br />

di<br />

= −<br />

3<br />

dt dt<br />

V<br />

ba<br />

= 2L<br />

c<br />

di<br />

dt<br />

3 V Sinωt<br />

= 2L<br />

m<br />

3<br />

c<br />

di<br />

dt<br />

3<br />

∴i<br />

3<br />

= −<br />

3V<br />

m<br />

Cosωt<br />

+<br />

2ωL<br />

c<br />

K<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

350/454


Boundary conditions :<br />

At ωt = α, i = I i = −I<br />

, i 0<br />

, =<br />

1 0 2 0 3<br />

= α+μ,<br />

i 0 i = I<br />

1<br />

= , i2<br />

= −I0,<br />

3<br />

0<br />

∴i<br />

3<br />

=<br />

3V<br />

2ωL<br />

m<br />

c<br />

( Cosα<br />

− Cosωt)<br />

At ωt = α+μ, i<br />

3<br />

= I0<br />

∴ I<br />

0<br />

=<br />

3V<br />

2ωL<br />

m<br />

c<br />

( Cosα<br />

− Cos( α + μ)<br />

)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

351/454


V<br />

V<br />

pn<br />

pn<br />

= V<br />

= V<br />

an<br />

bn<br />

−<br />

−<br />

L<br />

L<br />

di<br />

dt<br />

di<br />

dt<br />

1<br />

3<br />

2V<br />

pn<br />

= V<br />

an<br />

+ V<br />

bn<br />

−<br />

⎛<br />

L⎜<br />

⎝<br />

di<br />

dt<br />

1<br />

+<br />

di<br />

dt<br />

3<br />

⎞<br />

⎟<br />

⎠<br />

∴V<br />

pn<br />

=<br />

V<br />

an<br />

+ V<br />

2<br />

bn<br />

=<br />

V<br />

−<br />

2<br />

cn<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

352/454


∴V<br />

0<br />

=<br />

V pn<br />

−V mn<br />

V<br />

= −<br />

2<br />

cn<br />

−V<br />

cn<br />

= −1.5V<br />

cn<br />

Reduction in V 0 = (ΔV 0 ) :<br />

ΔV<br />

α + μ<br />

6<br />

0<br />

=<br />

2π<br />

∫<br />

α<br />

( V + 1.5V<br />

).<br />

d t<br />

bc<br />

cn<br />

ω<br />

α + μ<br />

6<br />

=<br />

2π<br />

∫<br />

α<br />

3V<br />

m<br />

Sin<br />

o<br />

( ωt<br />

+ 60 ) + 1.5V<br />

Sin( ωt<br />

−π<br />

2 ).<br />

d t<br />

m<br />

ω<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

353/454


V m<br />

3 3<br />

= Cos<br />

2π<br />

( Cosα<br />

− ( α + μ)<br />

)<br />

=<br />

V<br />

2<br />

dco<br />

I<br />

0<br />

2ωL<br />

3V<br />

c<br />

m<br />

=<br />

3ωL c<br />

π<br />

I<br />

0<br />

∴V<br />

0<br />

= V<br />

dc0<br />

Cosα −<br />

3ωL<br />

π<br />

c<br />

I<br />

0<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

354/454


Representation <strong>of</strong> inverter mode <strong>of</strong><br />

operation in presence <strong>of</strong> μ<br />

−V<br />

d<br />

=<br />

V<br />

dco<br />

cosα<br />

−<br />

R<br />

c<br />

I<br />

d<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

355/454


V = −V<br />

cosα<br />

+<br />

d<br />

dco<br />

R<br />

c<br />

I<br />

d<br />

= V cos( π −α)<br />

+ R<br />

dco<br />

= V cos β + R<br />

dco<br />

c<br />

I<br />

d<br />

c<br />

I<br />

d<br />

α →<br />

delay angle<br />

β<br />

→ Angle <strong>of</strong> advance<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

356/454


Converter<br />

α ⇒ delay angle<br />

μ ⇒ overlap angle<br />

Inverter<br />

β = π-α ⇒ advance angle<br />

μ ⇒ overlap angle<br />

γ = β-μ ⇒ extinction angle<br />

γ = π-(α+μ)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

357/454


ΔV<br />

o<br />

=<br />

V<br />

2<br />

dco<br />

[cosα − cos( α + μ)]<br />

V<br />

d<br />

=<br />

V<br />

dco<br />

−<br />

ΔV<br />

o<br />

V<br />

= dco<br />

2<br />

[cosα + cos( α + μ)]<br />

Also<br />

V<br />

d<br />

V<br />

2<br />

= dco<br />

[cosα + cos( α + μ)]<br />

= [cos( π − β )<br />

+<br />

cos( π −γ<br />

)]<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

358/454


V dco<br />

= [cos + cos γ ] − − − − −<br />

2<br />

− ( A)<br />

I<br />

d<br />

=<br />

3V<br />

2ωL<br />

m<br />

c<br />

β<br />

)]<br />

[cosα<br />

− cos( α + μ<br />

=<br />

3V<br />

2ωL<br />

m<br />

c<br />

[cos( π − β )<br />

− cos( π −γ<br />

)]<br />

3V<br />

m<br />

= [cosγ<br />

− cos β ] − − − − − − − ( B)<br />

2ωL<br />

c<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

359/454


Eq. A+B ⇒<br />

∴2cos<br />

2V<br />

V<br />

d<br />

γ = +<br />

dco<br />

I<br />

d<br />

2ωL<br />

3V<br />

c<br />

m<br />

V<br />

d<br />

= V<br />

dco<br />

cosγ −<br />

3 3<br />

π<br />

V<br />

m<br />

ωL<br />

c<br />

3V<br />

m<br />

= V<br />

dco<br />

dco<br />

cosγ<br />

−<br />

3ωL<br />

π<br />

= V cosγ<br />

− R<br />

c<br />

c<br />

I<br />

I<br />

d<br />

d<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

360/454


12-pulse converter<br />

• Series connection <strong>of</strong> two 6-pulse converters<br />

3-Φ voltages supplied to one<br />

bridge is displaced by 30 o<br />

from those applied to 2 nd bridge<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

361/454


• DC voltage is doubled<br />

• Harmonic spectrum has improved<br />

12n ± 1 on AC side<br />

12n on DC side<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

362/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

363/454


Relation between Ac and DC quantity :<br />

With multi phase bridge<br />

If ‘Β’ no. <strong>of</strong> bridges in series<br />

∴V =1.35. B.<br />

T.<br />

do<br />

V L<br />

⇒ No load<br />

Corresponding voltage drop :<br />

Output<br />

3<br />

V = Vd<br />

= VdoCosα − Id<br />

. B.<br />

X<br />

π<br />

3<br />

I d<br />

X C<br />

π<br />

C<br />

bridge<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

364/454


V<br />

d<br />

⎛ 3<br />

= VdoCosα<br />

− Id<br />

. B.<br />

⎜ X<br />

C<br />

⎝ π<br />

⎞<br />

⎟<br />

⎠<br />

⎛ 3<br />

= VdoCosγ<br />

− I<br />

d<br />

. B.<br />

⎜ X<br />

C<br />

⎝ π<br />

⎞<br />

⎟<br />

⎠<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

365/454


Summary <strong>of</strong> technical data <strong>of</strong> Padghe<br />

• Nominal line voltage ⇒ 400 kV<br />

• Maximum line voltage ⇒<br />

430 kV<br />

• Minimum line voltage ⇒ 380 kV<br />

• Total ‘Q’ at both stations ⇒ 800 MVar<br />

⇒ 4*200 MVar<br />

• 12 th harmonic filter ⇒ 2*120 MVar<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

366/454


• 24/36 harmonic filter ⇒ 2*80 MVar<br />

<strong>Power</strong> :<br />

• Nominal <strong>Power</strong> ⇒ 2*750 MW<br />

• Minimum (single pole) ⇒ 2*75 MW<br />

• 2 hours overload ⇒<br />

2*825 MW<br />

• 5 Sec. overload ⇒ 2*1000 MW<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

367/454


Direct voltage :<br />

• Nominal line voltage ⇒<br />

500 kV<br />

• Maximum line voltage ⇒ 512 kV<br />

• Minimum line voltage ⇒ 488 kV<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

368/454


Direct current :<br />

• Nominal I ⇒ 1500 A<br />

• Maximum I at nominal load ⇒ 1542 A<br />

• Max. I at 2 hour over load ⇒ 1695 A<br />

• Max. I at 5 sec. over load ⇒ 2140 A<br />

‣ Nominal line resistance = 7.5 Ω<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

369/454


Rectifier firing angle :<br />

• Minimum ‘α’ ⇒ 5 o<br />

• Mini. ‘α’ during normal operation ⇒ 12.5 o<br />

• Max. ‘α’ during normal operation ⇒ 17.5 o<br />

Inverter firing angle :<br />

• Minimum ‘γ’ ⇒ 16 o<br />

• Max. ‘γ’ during normal operation ⇒ 18 o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

370/454


Basic control :<br />

• DC voltage or I (or power) can be controlled<br />

by controlling the internal voltage (V dcor Cosα)<br />

and V dcoi Cosγ<br />

⇒ Gate control or using tap changing <strong>of</strong><br />

converter transformer<br />

⇒ Gate control is fast<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

371/454


⇒ Tap changing : Slow ( 5-6 sec/step)<br />

⇒ Gate control is used for initial rapid<br />

control action<br />

⇒ Followed by tap changing to restore the<br />

converter quantities ( ‘α’ <strong>of</strong> rectifier & ‘γ’<br />

for inverter) to their normal ranges<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

372/454


Basis for selection <strong>of</strong> control :<br />

Following considerations influences the selection<br />

<strong>of</strong> control characteristics<br />

• Prevention <strong>of</strong> large fluctuations <strong>of</strong> DC<br />

current due to variation in AC system<br />

• Maintaining DC voltage near rated value<br />

• Maintaining power factor at the sending &<br />

receiving end that are as high as possible<br />

• Prevention <strong>of</strong> commutation failure in inverter<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

373/454


• Rectifier control ⇒ To prevent large<br />

fluctuations in DC current<br />

I<br />

d<br />

=<br />

V<br />

dcor<br />

Cosα<br />

−V<br />

R + R −<br />

cr<br />

L<br />

Cosγ<br />

R<br />

dcoi<br />

ci<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

374/454


• Denominator is very small<br />

• A small change in V dcor or V dcoi cause a large<br />

change in I d<br />

• 25% change either in V dcor or V dcoi changes<br />

‘i d ’ by 100%<br />

• If ‘α’& ‘γ’ are kept constant, I dc can vary<br />

over a wide range for small change in i/p<br />

AC voltage at either end<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

375/454


• Not acceptable<br />

• Rapid converter control prevents fluctuation<br />

<strong>of</strong> I dc<br />

• For a given power transmitted V dc pr<strong>of</strong>ile<br />

along the line should be close to rated values<br />

• It minimizes I d & therefore line loss<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

376/454


• P.F should be as high as possible<br />

• Minimize losses and current rating <strong>of</strong><br />

equipment in the AC system<br />

• Reduce the voltage drop at the AC terminal<br />

as load ↑<br />

• ↓ the cost <strong>of</strong> reactive power supply to line<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

377/454


• So keep the rated power <strong>of</strong> the converter<br />

as high as possible for a given ‘V’ & ‘I’ rating<br />

<strong>of</strong> transformer<br />

• P.F depends on ‘α’& ‘γ’<br />

α min = 5 o (a +ve ‘V’ should appear across<br />

the device)<br />

• Normally operate at 15 – 20 o , so that<br />

V dcor can be ↑ to control DC power flow<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

378/454


• γ ⇒ necessary to maintain a certain minimum<br />

extinction angle to avoid commutation failure<br />

• Device should attain forward<br />

voltage blocking capability<br />

γ =<br />

β − μ<br />

= 15 o at 50 Hz<br />

μ ⇒ depends on I d & i/p ‘V’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

379/454


Control <strong>of</strong> HVDC system<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

380/454


I<br />

d<br />

=<br />

V<br />

dcor<br />

Cosα<br />

−V<br />

R + R +<br />

cr<br />

L<br />

Cosγ<br />

R<br />

dcoi<br />

ci<br />

<strong>Power</strong> at rectifier terminal, P dr = V dc .I d<br />

<strong>Power</strong> at inverter terminal = V di .I d<br />

= P dr -i d2 R L<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

381/454


Control characteristics<br />

Ideal characteristics :<br />

• Voltage regulation &<br />

current regulation<br />

Kept distinct & are<br />

assigned to separate<br />

terminals<br />

• Under normal operation :<br />

⇒ Rectifier maintains current control (CC) &<br />

⇒ Inverter operates constant extinction angle<br />

(CEA)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

382/454


• Maintains adequate commutation margin<br />

• V dc ⇒ measured at the rectifier terminals<br />

• Inverter characteristics includes I d .R L drop<br />

V<br />

d<br />

= V Cosγ<br />

+<br />

dcoi<br />

( R ) L<br />

− R ci<br />

I d<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

383/454


• Rectifier characteristics can be shifted<br />

horizontally by adjusting reference current<br />

or current command or current order<br />

• If measured current < current command,<br />

controller ↓ α<br />

• Inverter characteristics can be raised or<br />

lowered by means <strong>of</strong> transformer taps<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

384/454


• As taps are changed, CEA regulator quickly<br />

restores desired γ<br />

• I d changes<br />

• Current regulator <strong>of</strong> rectifier changes ‘α’<br />

and control ‘i’<br />

• Tap changer <strong>of</strong> rectifier acts to bring ‘α’in<br />

the desired range (10-20 o )<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

385/454


Review<br />

Rectifier firing angle :<br />

• Minimum ‘α’ ⇒ 5 o<br />

• Mini. ‘α’ during normal operation ⇒ 12.5 o<br />

• Max. ‘α’ during normal operation ⇒ 17.5 o<br />

Inverter firing angle :<br />

• Minimum ‘γ’ ⇒ 16 o<br />

• Max. ‘γ’ during normal operation ⇒ 18 o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

386/454


Basic control :<br />

• DC voltage or I (or power) can be controlled<br />

by controlling the internal voltage (V dco Cosα)<br />

and V dco Cosγ<br />

⇒ Gate control or using tap changing <strong>of</strong><br />

converter transformer<br />

⇒ Gate control is fast<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

387/454


⇒ Tap changing : Slow ( 5-6 sec/step)<br />

⇒ Gate control is used for initial rapid<br />

control action<br />

⇒ Followed by tap changing to restore the<br />

converter quantities ( ‘α’ <strong>of</strong> rectifier & ‘γ’<br />

for inverter) to their normal ranges<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

388/454


Basis for selection <strong>of</strong> control :<br />

Following considerations influences the selection<br />

<strong>of</strong> control characteristics<br />

(a). Prevention <strong>of</strong> large fluctuations <strong>of</strong> DC<br />

current due to variation in AC system<br />

R ≈ 10 Ω and L =250 mH ⇒ Back to back<br />

L =1H ⇒ for long line<br />

τ =20 m.sec ⇒ roughly<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

389/454


• Simulation study taking line L, R & C in<br />

addition L filter is required<br />

(b). Maintaining DC voltage near rated value<br />

(c). Maintaining power factor at the sending &<br />

receiving end that are as high as possible<br />

(d). Prevention <strong>of</strong> commutation failure in inverter<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

390/454


• Rectifier control ⇒ To prevent large<br />

fluctuations in DC current<br />

I<br />

d<br />

=<br />

V<br />

dcor<br />

Cosα<br />

−V<br />

R + R −<br />

cr<br />

L<br />

Cosγ<br />

R<br />

dcoi<br />

ci<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

391/454


• γ ⇒ necessary to maintain a certain minimum<br />

extinction angle to avoid commutation failure<br />

• Device should attain forward<br />

voltage blocking capability<br />

γ =<br />

β − μ<br />

= 15 o at 50 Hz<br />

μ ⇒ depends on I d & i/p ‘V’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

392/454


Control <strong>of</strong> HVDC system<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

393/454


Control characteristics<br />

Ideal characteristics :<br />

• Voltage regulation &<br />

current regulation<br />

Kept distinct & are<br />

assigned to separate<br />

terminals<br />

• Under normal operation :<br />

⇒ Rectifier maintains current control (CC) &<br />

⇒ Inverter operates constant extinction angle<br />

(CEA)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

394/454


• Quantities forming the co-ordinates are<br />

measured at some common point in the DC line<br />

• Converter terminal can be one such possibility<br />

V<br />

d<br />

= V Cosγ<br />

+<br />

dcoi<br />

( R ) L<br />

− R ci<br />

I d<br />

• Has a small –ve slope<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

395/454


• Maintains adequate commutation margin<br />

• Inverter characteristics includes I d .R L drop<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

396/454


• Rectifier characteristics can be shifted<br />

horizontally by adjusting reference current<br />

or current command or current order<br />

• If measured current < current command,<br />

controller ↓ α<br />

• Inverter characteristics can be raised or<br />

lowered by means <strong>of</strong> transformer taps<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

397/454


• As taps are changed, CEA regulator quickly<br />

restores desired γ<br />

• I d changes<br />

• Current regulator <strong>of</strong> rectifier changes ‘α’<br />

and control ‘i’<br />

• Tap changer <strong>of</strong> rectifier acts to bring ‘α’in<br />

the desired range (10-20 o )<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

398/454


• Constant current characteristics could be a<br />

line parallel to y-axis<br />

• If proportional controller ⇒ slope could be -ve<br />

• Generally current control is<br />

given to both the converters<br />

• Ref. current for rectifier > Ref. current for<br />

inverter<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

399/454


• I ref(conv) –I ref(inv) = I margin = +ve<br />

• Assume that power flows in the line to be ↑<br />

• α conv ⇒ takes the value <strong>of</strong> α min<br />

• Incase I d approaches I ref(conv) , then<br />

⇒ rectifier is working under constant ignition control<br />

⇒ Inverter is working under constant extinction control<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

400/454


• After some time, tap changer changes the tap<br />

⇒ ‘α’ <strong>of</strong> the converter ↑ to attain its normal<br />

operating value (12- 17 o )<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

401/454


Actual characteristics :<br />

• Rectifier maintains constant ‘I’ by changing ‘α’<br />

• ‘α’ can not be < α min<br />

• Once α min is reached, no further ↑‘V’ is possible<br />

• Rectifier will operate constant ignition angle<br />

(CIA)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

402/454


• Therefore rectifier characteristics has two<br />

segments (AB & FA)<br />

• Constant current<br />

characteristics may not be<br />

truly vertical<br />

⇒ Depends on the current<br />

regulator<br />

• With proportional control<br />

C.C characteristics has – ve slope<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

403/454


∴V<br />

dco<br />

Cosα<br />

=<br />

K<br />

[ I − I ]<br />

order<br />

d<br />

= V + R<br />

d<br />

cr<br />

I<br />

d<br />

I ord ⇒ current order<br />

V = KI − +<br />

d<br />

order<br />

( K R ) cr<br />

I d<br />

ΔV<br />

d<br />

= −<br />

( K + R )<br />

cr<br />

ΔI<br />

d<br />

∴<br />

ΔV<br />

ΔI<br />

d<br />

d<br />

= −<br />

( K + R )<br />

cr<br />

⇒ (with PI it is vertical)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

404/454


• At normal voltage , characteristics is defined<br />

by FAB<br />

• At reduced ‘V’, it<br />

shifts down ⇒ F 1 A 1 B 1<br />

• CEA characteristics <strong>of</strong> the inverter intersect<br />

at ‘E’ for normal ‘V’ condition<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

405/454


• At reduced ‘V’, it does not intersect F 1 A 1 B<br />

• A big reduction in rectifier ‘V’ would cause<br />

I d & ‘P’ ↓<br />

⇒ System could shut down<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

406/454


• In order to avoid the problem, inverter is<br />

provided with current control<br />

• Inverter I ord < rectifier I ord<br />

I ord(R) –I ord(I) ≈ 0.1 I rated<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

407/454


• Under normal condition<br />

• Rectifier ⇒ C. C<br />

• Inverter ⇒ CEA<br />

• When i/p ‘V’ ↓ ⇒ rectifier ‘V’↓<br />

⇒ Operating point E 1<br />

• Changes from one mode to another is known<br />

as mode shift<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

408/454


• When inverter is on current control<br />

V<br />

V<br />

d<br />

doi<br />

=<br />

R<br />

L<br />

I<br />

d<br />

−<br />

Cosγ<br />

= V<br />

R<br />

d<br />

ci<br />

I<br />

−<br />

d<br />

R<br />

+ V<br />

L<br />

I<br />

d<br />

doi<br />

+<br />

Cosγ<br />

With proportional controller<br />

R<br />

ci<br />

I<br />

d<br />

−<br />

( I )<br />

ord<br />

− I<br />

d<br />

= Vd<br />

− RLI<br />

d<br />

RcrId<br />

K +<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

409/454


Δ<br />

( V Cosγ<br />

) = −KΔ( I − I ),<br />

doi<br />

ref<br />

d<br />

K >1<br />

= ΔV<br />

d<br />

− ΔI<br />

d<br />

( R − R )<br />

L<br />

ci<br />

d<br />

( R L<br />

− R ci<br />

K ) I d<br />

ΔV = Δ +<br />

ΔV<br />

ΔI<br />

d<br />

d<br />

=<br />

( R L<br />

− R ci<br />

+ K ) I d<br />

⇒ Slope is +ve<br />

⇒ ↑ V dor to ↑ i d<br />

⇒ ↓ V doi to ↑ i d<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

410/454


When does change over take place ?<br />

• Current order is given to both the converters<br />

I ref(C) > I ref(I)<br />

I ref(C) > I ref(I) -I margin ⇒ +ve (assume)<br />

I margin = 0.1 – 0.15 I rated<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

411/454


• Assume that i/p AC has dipped due to fault,<br />

I dc ↓ ,<br />

‣ α conv ⇒ α min<br />

and with this new value<br />

<strong>of</strong> ‘α’, I dc is ↓<br />

• If I dc < (I ref(C) -I mar ), inverter takes over the<br />

current control & converter is working under<br />

C.I.A, after some time tap changer changes the tap<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

412/454


Review<br />

Rectifier<br />

characteristics<br />

Constant current<br />

by ‘α’ control<br />

Constant ignition<br />

angle control<br />

C.C<br />

Can have a –ve slope<br />

Can be parallel to Y-axis<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

413/454


Contd..<br />

• Current control is given to both converters<br />

But I ref(R) > I ref(I)<br />

I ref(R) -I ref(I) = I margin ≈ 0.1I rated<br />

• Current control loop <strong>of</strong> inverter is inactive<br />

when current ≈ I ref(R)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

414/454


• ‘e’ is –ve, ‘K’ is +ve ⇒ I act should be ↓<br />

I act > (I ref –I mar )<br />

⇒ ‘γ’ should be decreased<br />

⇒ o/p <strong>of</strong> PI is zero<br />

⇒ selector switch selects γ min<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

415/454


• ‘e’ is +ve, I act < (I ref –I mar )<br />

⇒ ‘γ, should be ↑ , so that I act ↑, ‘K’ is +ve,<br />

o/p <strong>of</strong> PI starts increasing<br />

⇒<br />

Selector switch selects maximum <strong>of</strong> two inputs<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

416/454


• Due to line fault or during low i/p AC voltage<br />

condition V dco(R) will drop<br />

⇒ Assume V dco(R) Cosα min<br />

< V dco(I) Cosγ<br />

• If there is no current control by the inverter ,<br />

i d will ↓ and eventually becomes zero<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

417/454


• In order to avoid this situation inverter is also<br />

provided with current control<br />

• Operate at E ' till tap changer changes the tap<br />

What happen If I mar is –ve ?<br />

⇒ Rectifier is trying to control I ref(R)<br />

⇒ Inverter is trying to control I ref(R) + I mar<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

418/454


Inverter side :<br />

• I d can be ↑ by ↑ ‘γ’<br />

• As γ↑ , I d ↑, but rectifier<br />

controller tries to ↓ the current (I ref(R) < I ref(I) )<br />

• Since I d is ↑ due to increase in γ ,<br />

rectifier controller ↑ αto reduce I d<br />

α ⇒ towards 90 o<br />

γ ⇒ towards 90 o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

419/454


⇒ New operating point could be ‘D ' ’<br />

⇒ Correct sign to I mar is<br />

very important<br />

• I mar should not be too small<br />

because there could be<br />

measurement error<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

420/454


Mode stabilization :<br />

• Intersection <strong>of</strong> α min characteristics <strong>of</strong> converter<br />

and inverter CEA may not be well defined<br />

• There could be multiple crossings<br />

• Instead change the slope <strong>of</strong> the<br />

inverter characteristics<br />

near the crossing<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

421/454


Alternative inverter γ control<br />

• Instead <strong>of</strong> regulating ‘γ’ (CEA)<br />

• Maintain a constant DC voltage at a desired<br />

point<br />

• Could be sending end<br />

• Required inverter voltage to maintain the above<br />

voltage is estimated by computing I.R drop<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

422/454


• ‘V’ pr<strong>of</strong>ile is flat<br />

• Constant ‘γ’ characteristics has drooping<br />

characteristics<br />

γ≈18 o in voltage<br />

control mode<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

423/454


Constant ‘β’ control :<br />

β = μ + γ<br />

μ ⇒ function <strong>of</strong> i d & V ac<br />

⇒ Choose ‘β’ for worst case<br />

⇒ At low loads additional security against<br />

commutation failure<br />

⇒ As i d ↑, minimum ‘γ’ may be encountered<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

424/454


• V dcoi Cosβ remains constant<br />

• As i d ↑, V d = V doi Cosβ + (R L +R ci )I d also ↑<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

425/454


• Use either constant V dc or constant β control<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

426/454


Current limit<br />

Maximum current limit :<br />

Max. short term current = (1.2 -1.3) I rated<br />

Minimum current limit : if i d ↓ below a<br />

certain limit due to finite ripple in I,<br />

current will become discontinuous<br />

• 12-pulse converter<br />

• 12 times in one cycle current become zero<br />

(current interruption)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

427/454


• There could be lightly damped oscillations<br />

(smoothing L & line C)<br />

• Over voltage across the device<br />

• Simulation study is required<br />

• Ensure I min in DC link<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

428/454


Voltage depend current-order limit (VDCOL)<br />

• Under L.V condition it may not be desirable<br />

or possible to maintain rated current<br />

• Commutation failure<br />

• At one converter end V ac has ↓<br />

∴V α dco<br />

Cos ↓<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

429/454


• To maintain the current, voltage at the other<br />

end <strong>of</strong> the line is adjusted<br />

• Either ‘α’ or γ↑<br />

• Reactive power demand ↑<br />

• V ac has ↓, ‘Q’ supplied by ‘C’ or filter also ↓<br />

• Above problems can be addressed using<br />

voltage dependent current order limit<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

430/454


• VDCOL characteristics could be a function <strong>of</strong><br />

AC voltage or DC voltage<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

431/454


Review<br />

Rectifier<br />

characteristics<br />

Constant current<br />

by ‘α’ control<br />

Constant ignition<br />

angle control<br />

• Inverter ⇒ Constant extinction angle control<br />

• Current control is given to both converters<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

432/454


Contd..<br />

But I ref(R) > I ref(I)<br />

I ref(R) -I ref(I) = I margin ≈ 0.1I rated<br />

• Current control loop <strong>of</strong> inverter is inactive<br />

when current ≈ I ref(R)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

433/454


I mar should +ve :<br />

Contd..<br />

• If I mar is –ve, reversal <strong>of</strong> power takes place<br />

(only academic interest)<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

434/454


Contd..<br />

Mode stabilization :<br />

• Intersection is not well defined<br />

⇒ Change the slope<br />

Constant V dc<br />

Constant ‘β’<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

435/454


Current limit :<br />

Contd..<br />

⇒ I max = (1.2 -1.3) I rated<br />

⇒ I min<br />

⇒ Should not be allowed to go into<br />

discontinuous<br />

• There could be lightly damped oscillations<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

436/454


Voltage depend current-order limit (VDCOL)<br />

• Under L.V condition it may not be desirable<br />

or possible to maintain rated current<br />

• Commutation failure<br />

• At one converter end V ac has ↓<br />

∴V α dco<br />

Cos ↓<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

437/454


• To maintain the current, voltage at the other<br />

end <strong>of</strong> the line is adjusted<br />

• Either ‘α’ or γ↑<br />

• Reactive power demand ↑<br />

• V ac has ↓, ‘Q’ supplied by ‘C’ or filter also ↓<br />

• Above problems can be addressed using<br />

voltage dependent current order limit<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

438/454


• VDCOL characteristics could be a function <strong>of</strong><br />

AC voltage or DC voltage<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

439/454


Rectifier inverter V-I characteristics<br />

• <strong>Power</strong> transfer over the line can be controlled<br />

by varying I mar<br />

• Signals are transmitted through<br />

telecommunication lines<br />

• Communication may fail or DC line fault<br />

⇒ Reverse power flow may occur<br />

⇒ Inverter is provided with min. α limit<br />

≈ 95- 110 o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

440/454


Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

441/454


Summary <strong>of</strong> basic control principle :<br />

• HVDC system is basically current control<br />

⇒ To limit over current<br />

⇒ To prevent the system from running down<br />

due to fluctuations in AC voltage<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

442/454


Significant aspects <strong>of</strong> basic control :<br />

Rectifier<br />

Current control<br />

‘α’ limit<br />

• In current control mode closed loop regulator<br />

controls the firing angle to regulate I d at I ord<br />

• Tap changer control <strong>of</strong> the converter brings ‘α’<br />

within 10-20 o<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

443/454


• Inverter is functioned with CEA control and a<br />

current control<br />

• In CEA mode, γ is regulated at around 15 o<br />

• Inverter control could have constant ‘β’ control<br />

• Under normal operation rectifier is in current<br />

control & inverter is on CEA control mode<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

444/454


• If there is a ↓ in AC voltage,<br />

‘α’ <strong>of</strong> rectifier ⇒ α min (CIA mode)<br />

• If current falls to a certain limit, inverter<br />

will assume C.C<br />

Valve blocking & by passing :<br />

• If one bridge is to be taken out <strong>of</strong> service<br />

⇒ Only blocking will not extinguish the current<br />

that was flowing through the thyristor pair<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

445/454


⇒ Inject AC voltage in the link<br />

⇒ There could be ‘V’ & ‘I’ oscillations due to<br />

lightly damped circuit<br />

⇒ Transformer feeding the bridge is also subjected<br />

to DC magnetization<br />

⇒ By pass the bridge when the devices (valves)<br />

are blocked<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

446/454


⇒ Achieved using by pass valve and by pass switch<br />

⇒ Assume T 2 & T 3 are conducting & blocking<br />

command is given<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

447/454


⇒ Commutation for T 2 to T 4 is in usual manner<br />

⇒ But incoming device T 5 is prevented by not<br />

triggering T 5 . When T 1 get F.B (V AB +ve )<br />

trigger T 1<br />

⇒ Current by pass pair is shunted by closing S 1<br />

& open S<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

448/454


• For energization <strong>of</strong> blocked bridge<br />

⇒ Current is first diverted from S 1 to bypass pair<br />

⇒ S 1 will generate arc voltage<br />

⇒ Trigger bypass pair<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

449/454


Modern techniques<br />

• HVDC using line commutated converters<br />

• Requires AC voltage for commutation<br />

• Requires reactive power<br />

• DC link is equivalent to a current source<br />

• ‘V’ can reverse but ‘I’ can not reverse<br />

• Devices should be able to block –ve voltage<br />

• Not suitable for weak grid<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

450/454


• Instead use VSI<br />

• ‘I’ could be in phase with ‘V i ’<br />

• Inverter devices are self commutated<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

451/454


• No AC voltage is required for commutation<br />

• Conversion at UPF is possible<br />

• DC link is voltage source<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

452/454


• ‘V’ can not reverse, but ‘I’ can reverse<br />

• Devices should be able to carry ‘I’ in<br />

both directions<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

453/454


Thank you<br />

Application <strong>of</strong> <strong>Power</strong> Electronics in <strong>Power</strong> Systems<br />

B. G. <strong>Fernandes</strong><br />

454/454

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!