23.05.2014 Views

Diploma thesis

Diploma thesis

Diploma thesis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4 Complex harmonic potential<br />

4.1.1 Symmetric states<br />

With (4.22) the continuity condition ψ s 1(−w) = ψ s 2(−w) provides<br />

[ (<br />

A s 1e − 1 2 ω2 1F 1 a 1 ; 1 )<br />

2 ; ω2 − 2ω Γ ( )<br />

a 1 + 1 2<br />

Γ (a 1 )<br />

1F 1<br />

(<br />

a 1 + 1 2 ; 3 2 ; ω2 ) ] = A s 2e − 1 2 θω2 1F 1<br />

(<br />

a 2 ; 1 2 ; θω2 )<br />

. (4.33)<br />

With this we reexpress A s 2 in terms of A s 1, which then exhibits the normalization constant of the<br />

whole symmetric wave function, so that we call it from now on N s := A s 1. Then the continuity<br />

condition reads<br />

A s 2 = N s e 1 2 (θ−1)ω2 1 F 1<br />

(<br />

a1 ; 1 2 ; ω2) − 2ω Γ(a 1+ 1 2)<br />

Γ(a 1 ) 1F 1<br />

(<br />

a1 + 1 2 ; 3 2 ; ω2)<br />

1F 1<br />

(<br />

a2 ; 1 2 ; θω2 ) =: N s R s , (4.34)<br />

where R s = R s (ω, ε, c) represents an abbreviation. We can now write down the wave functions in<br />

all 3 areas obeying (4.14), which yields the symmetric wave function ψ s :<br />

[ (<br />

e<br />

⎧⎪ − 1 2 χ2 1F 1 a1 ; 1; 2 χ2) + 2χ Γ(a 1+ 1 (<br />

2)<br />

Γ(a 1 ) 1F 1 a1 + 1; 3; 2 2 χ2)] , χ < −ω<br />

⎨ (<br />

ψ s (χ) = N s R s e − 1 2 θχ2 1F 1 a2 ; 1; 2 θχ2)<br />

, −ω ≤ χ ≤ ω<br />

⎪ ⎩<br />

. (4.35)<br />

e − 1 2 χ2 [<br />

1F 1<br />

(<br />

a1 ; 1 2 ; χ2) − 2χ Γ(a 1+ 1 2)<br />

Γ(a 1 ) 1F 1<br />

(<br />

a1 + 1 2 ; 3 2 ; χ2)] , χ > ω<br />

4.1.1.1 Quantization condition<br />

Now we have to ensure the continuity of the first derivative of ψ s at χ = −ω<br />

d<br />

dχ ψs 1 (χ)<br />

=<br />

∣ χ=−ω<br />

d<br />

dχ ψs 2 (χ)<br />

, (4.36)<br />

∣ χ=−ω<br />

which yields with (4.35)<br />

(<br />

ω 1 F 1 a 1 ; 1 )<br />

(<br />

2 ; ω2 − 4a 1 ω 1 F 1 a 1 + 1; 3 )<br />

2 ; ω2 +<br />

2 Γ ( )<br />

a 1 + 1 [<br />

2 (1<br />

− ω<br />

2 ) 1F 1<br />

(a 1 + 1 Γ (a 1 )<br />

2 ; 3 )<br />

2 ; ω2 + 4 (<br />

a 1 + 1 )<br />

ω 2 1F 1<br />

(a 1 + 3 3 2<br />

2 ; 5 )]<br />

2 ; ω2<br />

(<br />

= 1 F 1 a1 ; 1 2 ; ω2) − 2ω Γ(a1+ 1 2) (<br />

Γ(a 1) 1F 1 a1 + 1 2 ; 3 2 ; ω2) [ (<br />

(<br />

1F 1 a2 ; 1 2 ; θω2) θω 1 F 1 a 2 ; 1 )<br />

(<br />

2 ; θω2 − 4a 2 θω 1 F 1 a 2 +1; 3 )]<br />

2 ; θω2 . (4.37)<br />

Here we used the derivative of the confluent hypergeometric functions with respect to the last<br />

argument<br />

40

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!