23.05.2014 Views

Diploma thesis

Diploma thesis

Diploma thesis

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4 Complex harmonic potential<br />

which coincides with the energy in (4.47). Next we derive an expression for the normalization<br />

constant in the real limit. For this purpose we also set a 1 = a 2 = −n in (4.45) and conclude that<br />

all terms containing Γ (a 1 ) −1 vanish and thus R s = 1 from (4.34). Furthermore all infinite sums<br />

including (−n) ν now have n as their upper summation index, since we have (−n) ν = 0 for all<br />

ν > n. Finally there only remains<br />

|N s |=<br />

{ n<br />

∑<br />

µ,ν=0<br />

[<br />

1<br />

µ!ν!<br />

which reduces to<br />

(−n) ( ν (−n) µ<br />

1<br />

( 1<br />

2)<br />

2)<br />

ν<br />

µ<br />

[ (<br />

Γ µ+ν+ 1 )<br />

−Γ<br />

(µ+ν+ 1 )]<br />

2<br />

2 , ω2<br />

+ (−n) (<br />

ν(−n) µ<br />

1<br />

( 1<br />

2)<br />

2)<br />

ν<br />

µ<br />

Γ<br />

(µ+ν+ 1 ) ]} −1/2<br />

2 , ω2 , (4.53)<br />

⎧<br />

⎪⎨<br />

|N s | =<br />

⎪⎩<br />

n∑<br />

µ,ν=0<br />

Taking into account (4.41) we obtain<br />

1<br />

µ!ν!<br />

(−n) ( ν (−n) ( µ<br />

1 1<br />

2)<br />

2)<br />

ν<br />

µ<br />

(<br />

Γ µ+ν+ 1 ) ⎫ −1/2<br />

⎪ ⎬<br />

. (4.54)<br />

2 ⎪ ⎭<br />

{ ∫ ∞<br />

∣ ( ∣∣∣<br />

|N s | = e −χ2 1F 1 −n, 1 )∣ ∣∣∣ 2 −1/2<br />

dχ}<br />

−∞<br />

2 ; χ2 , (4.55)<br />

∣ (<br />

where we used the symmetry of e −χ2 ∣1 F 1 −n,<br />

1<br />

; 2 χ2)∣ ∣2 with respect to χ = 0 in the last step to<br />

expand the integral over the whole real axis. With the definition of the Hermite polynomials<br />

(4.48) we can write for this integral<br />

|N s | = (2n)!<br />

n!<br />

{∫ ∞<br />

−∞<br />

} √<br />

−1/2<br />

e −χ2 |H 2n (χ)| 2 (2n)! 1<br />

dχ = √<br />

n! π2<br />

2n<br />

(2n)! , (4.56)<br />

where we used the calculation of the integral from [29, Chap. 35].<br />

Taking the real limit a 1 = a 2 = −n of (4.35) yields directly one and the same form in all 3 areas<br />

ψ s 0 (χ) = N s e − 1 2 χ2 1F 1<br />

(<br />

−n; 1 2 ; χ2 )<br />

. (4.57)<br />

Now we insert the absolute value of the normalization constant (4.56) into the general expression<br />

(4.46), so that we can write for the wave function<br />

which reduces with (4.48) to<br />

ψ0 s (χ) = (2n)!<br />

√<br />

(<br />

1<br />

√<br />

n! π2<br />

2n<br />

(2n)! eiϕ e − 1 2 χ2 1F 1 −n; 1 )<br />

2 ; χ2 , (4.58)<br />

√<br />

ψ0 s (χ) = (−1) n 1<br />

√ π2<br />

2n<br />

(2n)! eiϕ e − 1 2 χ2 H 2n (χ) . (4.59)<br />

44

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!