23.05.2014 Views

B - Institut für Physik

B - Institut für Physik

B - Institut für Physik

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Persistent spin currents in mesoscopic<br />

Heisenberg magnets<br />

Marcus Kollar<br />

<strong>Institut</strong> <strong>für</strong> Theoretische <strong>Physik</strong>, J.W.Goethe-Universität Frankfurt/Main<br />

in collaboration with Florian Schütz and Peter Kopietz<br />

PRL 91, 017205 (2003); PRB (in press); cond-mat/0301351, 0308230<br />

supported in part by DFG-Forschergruppe 412 Spin- und Ladungsträgerkorrelationen<br />

in niedrigdimensionalen metallorganischen Festkörpern<br />

Karlsruhe, 24-Nov-03<br />

Outline<br />

1. Introduction: persistent currents in mesoscopic normal metal rings<br />

2. Spin transport: itinerant vs. localized spins<br />

3. Persistent spin currents in insulators: ferromagnets vs. antiferromagnets<br />

4. Conclusion & outlook<br />

1


1. Introduction: persistent currents<br />

metal rings in Aharonov-Bohm geometry: ground-state currents<br />

B<br />

(Pauling 1937, London 1938, Hund 1939, . . . ; Imry, Introduction to mesoscopic physics, 1997)<br />

∮<br />

• magnetic flux φ = A · dr, A = ê ϕ Br/2<br />

φ=πR 2 |B|<br />

• simplest model: free 1d electrons (φ 0 = hc/e)<br />

R<br />

ϕ<br />

s=Rϕ<br />

2<br />

2m ∗ (−i d ds + 2π L<br />

φ<br />

φ 0<br />

) 2<br />

ψ(s) = Eψ(s)<br />

• periodic boundary conditions ψ(s + L) = ψ(s)<br />

2


1. Introduction: persistent currents<br />

metal rings in Aharonov-Bohm geometry: ground-state currents<br />

B<br />

(Pauling 1937, London 1938, Hund 1939, . . . ; Imry, Introduction to mesoscopic physics, 1997)<br />

∮<br />

• magnetic flux φ = A · dr, A = ê ϕ Br/2<br />

φ=πR 2 |B|<br />

• simplest model: free 1d electrons (φ 0 = hc/e)<br />

R<br />

ϕ<br />

s=Rϕ<br />

2<br />

2m ∗ (−i d ds + 2π L<br />

φ<br />

φ 0<br />

) 2<br />

ψ(s) = Eψ(s)<br />

• periodic boundary conditions ψ(s + L) = ψ(s)<br />

( iφs<br />

)<br />

• gauge trafo: ˜ψ(s) = exp ψ(s) ⇒ twisted boundary conditions<br />

φ 0 R<br />

2<br />

2m ∗ (−i d ds<br />

) 2<br />

˜ψ(s) = E ˜ψ(s) with ˜ψ(s + L) = exp<br />

( 2πiφ<br />

φ 0<br />

)<br />

˜ψ(s)<br />

2


Ballistic regime<br />

• eigenstates ˜ψ n (s) = e ikns / √ L with eigenenergies ɛ n = 2 kn<br />

2<br />

2m ∗<br />

• quantized wavevectors: k n = 2π (n + φ )<br />

, n = 0, ±1 . . . ⇒ k −n ≠ k n<br />

L φ 0<br />

ballistic regime, L ≪ l:<br />

(l = mean free path)<br />

• equilibrium current from thermodyn. potential<br />

I(φ) = −c ∂Ω gc(φ)<br />

∂φ<br />

• velocities: v n = 1 <br />

∂ɛ n<br />

∂k n<br />

=<br />

= −e<br />

L<br />

∑<br />

n<br />

v n<br />

e (ɛ n−µ)/T + 1<br />

<br />

m ∗ 2π<br />

L (n + φ φ 0<br />

) ≠ v −n<br />

(Cheung et al. 1988)<br />

3


Ballistic regime<br />

• eigenstates ˜ψ n (s) = e ikns / √ L with eigenenergies ɛ n = 2 kn<br />

2<br />

2m ∗<br />

• quantized wavevectors: k n = 2π (n + φ )<br />

, n = 0, ±1 . . . ⇒ k −n ≠ k n<br />

L φ 0<br />

ballistic regime, L ≪ l:<br />

(l = mean free path)<br />

• equilibrium current from thermodyn. potential<br />

I(φ) = −c ∂Ω gc(φ)<br />

∂φ<br />

• velocities: v n = 1 <br />

• I max = ev F<br />

L<br />

∂ɛ n<br />

∂k n<br />

=<br />

= −e<br />

L<br />

∑<br />

n<br />

v n<br />

e (ɛ n−µ)/T + 1<br />

<br />

m ∗ 2π<br />

L (n + φ φ 0<br />

) ≠ v −n<br />

≈ 4 nA ⇒ observed in GaAs loop<br />

(Mailly et al. 1993)<br />

(Cheung et al. 1988)<br />

3


Effect of disorder<br />

• mesoscopic persistent current exists also in disordered conductor<br />

(Büttiker, Imry, Landauer 1983)<br />

• I typ ≈ ev F<br />

L<br />

in experiments on single Au rings (Chandrasekhar et al. 1991)<br />

• 〈I〉 ≈ 3 · 10 −3 ev F<br />

in experiments on 10 7 Cu rings (Lévy et al. 1990)<br />

L<br />

• 〈I〉 ≈ ev F 1<br />

for M-channel ring in canonical ensemble ⇒ too small<br />

L M<br />

• 〈I〉 ≈ ev F<br />

L<br />

l<br />

L (2g 4 − g 2 )<br />

(Schmid 1990, v. Oppen & Riedel 1990, Altshuler et al. 1990)<br />

from Coulomb interaction ⇒ too small<br />

(Ambegaokar & Eckern 1990)<br />

unsolved problem:<br />

experimentally observed currents much larger than theoretical predictions<br />

4


Effect of disorder<br />

• mesoscopic persistent current exists also in disordered conductor<br />

(Büttiker, Imry, Landauer 1983)<br />

• I typ ≈ ev F<br />

L<br />

in experiments on single Au rings (Chandrasekhar et al. 1991)<br />

• 〈I〉 ≈ 3 · 10 −3 ev F<br />

in experiments on 10 7 Cu rings (Lévy et al. 1990)<br />

L<br />

• 〈I〉 ≈ ev F 1<br />

for M-channel ring in canonical ensemble ⇒ too small<br />

L M<br />

• 〈I〉 ≈ ev F<br />

L<br />

l<br />

L (2g 4 − g 2 )<br />

(Schmid 1990, v. Oppen & Riedel 1990, Altshuler et al. 1990)<br />

from Coulomb interaction ⇒ too small<br />

(Ambegaokar & Eckern 1990)<br />

unsolved problem:<br />

experimentally observed currents much larger than theoretical predictions<br />

today’s topic:<br />

spin analogue of persistent currents<br />

for single ring in ballistic regime<br />

4


2. Spin transport: itinerant vs. localized spins<br />

spin transport with itinerant electrons:<br />

• conducting rings in inhomogeneous fields<br />

(Loss et al. 1990, Stern 1992, Balatsky & Altshuler 1993, Gao & Qian 1993)<br />

• conducting rings with spin-orbit coupling<br />

(Frustaglia et al. 2001, Mal’shukov et al. 2002, Splettstoesser et al. 2003, Rashba 2003)<br />

• thin film ferromagnets with spiral states, helimagnets<br />

(König et al. 2001, Heurich et al. 2003)<br />

Rashba spin-orbit coupling in semiconductors (Rashba 1960)<br />

Ĥ = p2 x + p 2 y<br />

2m ∗<br />

eigenvalues: E ± = 2 k 2<br />

+ α (<br />

R<br />

(σ ψ1<br />

)<br />

x ˆp y − σ y ˆp x ), Ψ =<br />

ψ 2<br />

√<br />

2m ∗ ± α R k, k = kx 2 + ky<br />

2<br />

E<br />

k<br />

5


Spin-based electronic devices<br />

spintronics: spin-based electronics for information processing<br />

(Awschalom, Loss, Samarth, Semiconductor spintronics and quantum computation, 2003)<br />

• spin transistor (Datta & Das 1990)<br />

V g<br />

FM 2DES FM<br />

spin-dependent transmission<br />

controlled by gate voltage<br />

difficulties: spin injection, propagation, precession, collection<br />

6


Spin-based electronic devices<br />

spintronics: spin-based electronics for information processing<br />

(Awschalom, Loss, Samarth, Semiconductor spintronics and quantum computation, 2003)<br />

• spin transistor (Datta & Das 1990)<br />

V g<br />

FM 2DES FM<br />

spin-dependent transmission<br />

controlled by gate voltage<br />

difficulties: spin injection, propagation, precession, collection<br />

• spin filtering with quantum wires (Governale et al. 2002)<br />

shift E ± with<br />

V g and B<br />

⇒<br />

select<br />

tunneling<br />

events<br />

6


Magnetic insulators<br />

localized electrons: S i = 1 2<br />

[ c<br />

+<br />

i↑<br />

c + i↓<br />

] T<br />

σ<br />

[<br />

ci<br />

↑<br />

c i ↓<br />

]<br />

, S z i = 1 2 (n i↑ −n i↓ ) etc.<br />

• motion of electrons frozen ⇒ Heisenberg exchange interactions<br />

Ĥ = 1 2<br />

∑<br />

∑<br />

J ij S i · S j − gµ B B i · S i ,<br />

i,j<br />

i<br />

[S x i , S y j ] = iδ ijS z i<br />

• S 2 i<br />

= S(S + 1), S = 1 2<br />

, 1, . . . ⇒ Holstein-Primakoff representation<br />

S +<br />

i<br />

= √ 2S − n i b i<br />

◮ bosons: [b<br />

S −<br />

i<br />

= b † √ i<br />

, b † i ] = 1, n i = b † i b i<br />

i 2S − ni ◮ only n i ≤ 2S is allowed<br />

Si z = S − n i ◮ S ≫ 1 2<br />

⇒ expand in 1/S<br />

• elementary excitations: spin waves (“magnons”)<br />

7


Spin transport in magnetic insulators<br />

Heisenberg magnets in spatially varyingtransition<br />

magnetic fields:<br />

• magnetic field difference at ends ofregion<br />

spin system (Meier & Loss 2003)<br />

−L / 2 L / 2 x<br />

B(x)<br />

ε<br />

B+ ∆B/2<br />

B+ ∆B/2<br />

B− ∆B/2<br />

B− ∆B/2<br />

reservoir<br />

R1<br />

B(x)<br />

reservoir<br />

R1<br />

spin chain<br />

B+ ∆B/2<br />

B− ∆B/2<br />

reservoir R1 R2<br />

R2<br />

I m<br />

transition<br />

region −L / 2 L / 2 x<br />

−L / 2 L / 2 x<br />

ε<br />

⇒ magnetization transport<br />

semiclassical picture of spin transport:<br />

n<br />

B( ε)<br />

time−L evolution / 2 of L / 2M(r, x t) ⇒ magnetization transport<br />

R1 R2<br />

g µ<br />

B∆<br />

B<br />

I m<br />

reservoir<br />

R2<br />

g µ B∆<br />

B<br />

n<br />

B( ε)<br />

carried by magnons<br />

• magnetic field B i ⇒ magnetic moments m i (t) = gµ B 〈ψ(t)|S i |ψ(t)〉<br />

• magnetization M(r, t) = ∑ i δ(r − r i)m i (t)<br />

8


Charge current vs. magnetization current<br />

current of electric monopoles q i :<br />

current of magnetic dipoles m i :<br />

q<br />

i<br />

v i<br />

da<br />

da<br />

m i<br />

v i<br />

• current density: vector<br />

j µ (r) = ∑ i q i(v i ) µ δ(r − r i )<br />

• current through<br />

∫<br />

surface A:<br />

I(A) = da · j(r)<br />

A<br />

• magnetization current density:<br />

j α µ (r) = ∑ i (m i) α (v i ) µ δ(r − r i )<br />

2nd rank tensor, α = x, y, z<br />

• current through<br />

∫<br />

surface A:<br />

I α (A) = da µ jµ α (r)<br />

A<br />

9


¡<br />

¢<br />

¡<br />

¡<br />

¡<br />

Electrodynamics of magnetization currents<br />

stationary charge currents<br />

⇒ static magnetic fields<br />

stationary magnetization currents<br />

⇒ static electric fields<br />

(Hirsch 1999; Meier & Loss 2003)<br />

m<br />

B<br />

p<br />

E<br />

v<br />

q<br />

v<br />

m<br />

• Biot-Savart ∫ law:<br />

d 3 r ′<br />

B(r) =<br />

c j(r′ ) × (r − r′ )<br />

|r − r ′ | 3<br />

• far zone: A = ×<br />

| |<br />

∫ 3<br />

d 3 r ′<br />

m =<br />

2c r′ × j(r ′ )<br />

magnetic dipole moment<br />

• Biot-Savart-type law:<br />

∫ d 3 r ′<br />

φ(r) = −<br />

c [M(r′ )×v(r ′ )]· (r − r′ )<br />

|r − r ′ | 3<br />

·<br />

• far zone: φ = , E = −∇φ<br />

| |<br />

∫ 3 d 3 r ′<br />

p = − M(r ′ ) × v(r ′ )<br />

c<br />

electric dipole moment<br />

10


3. Persistent spin currents in insulators<br />

ferromagnetic Heisenberg ring in a crown-shaped magnetic field:<br />

• Hamiltonian:<br />

Ĥ = 1 ∑<br />

∑<br />

J ij S i·S j −gµ B B i·S i<br />

2<br />

ij<br />

• magnetic moments<br />

m i = gµ B 〈S i 〉 = m i ˆm i<br />

• Heisenberg equation of motion:<br />

∂S i<br />

∂t + h i × S i + ∑ j<br />

i<br />

J ij S i × S j = 0 where h i ≡ gµ B B i<br />

^e z<br />

m^<br />

i<br />

B i<br />

• spin current operator: I i→j = J ij (S i × S j ) (Chandra, Coleman, Larkin 1990)<br />

• longitudinal spin current: I s = ˆm i · 〈I i→j 〉<br />

∂m i (t)<br />

∂t<br />

+ ∑ j<br />

ˆm i · 〈I i→j 〉 = 0<br />

continuity equation<br />

11


Classical ground state<br />

• classically S i = S ˆm i ⇒ stability: ˆm i × (h i − ∑ j J ijS ˆm j ) = 0<br />

^e z<br />

ϑ<br />

m^<br />

i<br />

ϑ m<br />

B i<br />

FM ring (J < 0) with B(r) ∝ ˆr<br />

⇒ sin(ϑ−ϑ m ) = |J|S<br />

h<br />

( 2π<br />

⇒ assume h JS<br />

N<br />

[<br />

1 − cos 2π<br />

N<br />

]<br />

sin 2ϑ<br />

) 2<br />

≡ ∆<br />

12


Classical ground state<br />

• classically S i = S ˆm i ⇒ stability: ˆm i × (h i − ∑ j J ijS ˆm j ) = 0<br />

^e z<br />

ϑ<br />

m^<br />

i<br />

ϑ m<br />

B i<br />

FM ring (J < 0) with B(r) ∝ ˆr<br />

⇒ sin(ϑ−ϑ m ) = |J|S<br />

h<br />

( 2π<br />

⇒ assume h JS<br />

N<br />

[<br />

1 − cos 2π<br />

N<br />

) 2<br />

≡ ∆<br />

]<br />

sin 2ϑ<br />

• quantum spins: S i = S ‖ i ˆm i + S ⊥ i ⇒ longitudinal part S ‖ i = S − b† i b i<br />

• decomposition of Hamiltonian: Ĥ = Ĥ‖ + Ĥ⊥ + O(S 1/2 )<br />

◮ longitudinal: Ĥ ‖ = 1 ∑<br />

2 i,j J ij ˆm i · ˆm j S ‖ i S‖ j − ∑ i h i · ˆm i S ‖ i = O(S2 )<br />

◮ transverse: Ĥ ⊥ = 1 ∑<br />

2 i,j J ijSi ⊥ · Sj ⊥ = O(S)<br />

12


Transverse basis: local U(1) gauge freedom<br />

• classical spin orientation ˆm i ⇒ local quantization axis (fixed)<br />

• but local triad {ê 1 i , ê2 i , ˆm i} can be arbitrarily rotated around ˆm i<br />

• transverse Hamiltonian: (e ± i<br />

= ê 1 i ± iê2 i , S± i<br />

= e ± i<br />

· Si ⊥)<br />

Ĥ ⊥ = 1 8<br />

∑<br />

i,j<br />

J ij<br />

∑<br />

p,p ′ =±<br />

(e p i · ep′<br />

j ) S−p i<br />

S −p′<br />

j<br />

• local U(1) gauge transformation:<br />

e ± i<br />

→ ẽ ± i e±iα i<br />

and S ± i<br />

→ S ± i e±iα i<br />

, α i arbitrary<br />

• spin-wave expansion: S + i<br />

= √ 2S b i<br />

[1 + O( 1 S )] 13


Transverse basis: local U(1) gauge freedom<br />

• classical spin orientation ˆm i ⇒ local quantization axis (fixed)<br />

• but local triad {ê 1 i , ê2 i , ˆm i} can be arbitrarily rotated around ˆm i<br />

• transverse Hamiltonian: (e ± i<br />

= ê 1 i ± iê2 i , S± i<br />

= e ± i<br />

· Si ⊥)<br />

Ĥ ⊥ = 1 8<br />

∑<br />

i,j<br />

J ij<br />

∑<br />

p,p ′ =±<br />

(e p i · ep′<br />

j ) S−p i<br />

S −p′<br />

j<br />

• local U(1) gauge transformation:<br />

e ± i<br />

→ ẽ ± i e±iα i<br />

and S ± i<br />

→ S ± i e±iα i<br />

, α i arbitrary<br />

• spin-wave expansion: S + i<br />

= √ 2S b i<br />

[1 + O( 1 S )]<br />

useful reference: parallel-transported basis<br />

• for neighbors i and j let {ẽ 1 i , ẽ2 i , ˆm i} with ẽ 2 i = ˆm i × ˆm j<br />

• express e ± i<br />

= ẽ ± i<br />

e ±iω i→j<br />

via angles ω i→j<br />

13


Parallel transport on surface of unit sphere<br />

given:<br />

• closed curve C on unit sphere,<br />

parametrized by ˆm(s)<br />

• transverse vector defined<br />

by angular velocity ω(s):<br />

de(s)<br />

ds<br />

parallel transport:<br />

= ω(s) × e(s)<br />

(M.V.Berry, in: Shapere & Wilczek,<br />

Geometric Phases in Physics, 1989)<br />

• ω(s) = ˆm(s) × d ˆm(s)<br />

ds<br />

• ˆm(s) · ω(s) = 0 ⇒ transverse basis does not twist around ˆm(s)<br />

• e initial ≠ e final (“anholonomy”)<br />

⇒ defect angle α(C) = ∠(e initial , e final ) = solid angle subtended by C<br />

14


Gauge invariance and current conservation<br />

transverse Hamiltonian:<br />

Ĥ ⊥ = 1 8<br />

∑<br />

i,j<br />

J ij<br />

[(1 + ˆm i · ˆm j ) e i(ω i→j−ω j→i ) S − i S+ j<br />

− (1 − ˆm i · ˆm j ) e i(ω i→j+ω j→i ) S − i S− j + h.c. ]<br />

• ferromagnet: ˆm i · ˆm j = 1 + O( 1 N<br />

• antiferromagnet: ˆm i · ˆm j = −1 + O( 1 N<br />

) ⇒ FM magnons<br />

) ⇒ AF magnons<br />

gauge invariance: ω i→j → ω i→j + α i ,<br />

S p i → Sp i eipα i<br />

• conserved spin current: (Noether’s theorem)<br />

0 = 〈 ∂Ĥ⊥<br />

∂α i<br />

〉 = 〈 ∑ j<br />

∂Ĥ ⊥<br />

∂ω i→j<br />

〉 = − ∑ j<br />

〈 ˆm i · J ij (S ⊥ i × S ⊥ j )〉<br />

} {{ }<br />

= ˆm i · 〈I i→j 〉<br />

• agrees with Heisenberg equation of motion<br />

15


Gauge invariant persistent current<br />

• ferromagnetic next-neighbor coupling J < 0 ⇒ ˆm i · ˆm i+1 ≈ 1<br />

• gauge phases away ⇒ twisted boundary conditions S ± i+N = exp(±iΩ) S± i<br />

where<br />

N∑<br />

Ω = (ω i→i+1 − ω i→i−1 ) = gauge invariant geometric flux<br />

i=1<br />

= total defect angle of ˆm i on the unit sphere<br />

= 2π(1 − cos ϑ m ) for crown-shaped configuration<br />

16


Gauge invariant persistent current<br />

• ferromagnetic next-neighbor coupling J < 0 ⇒ ˆm i · ˆm i+1 ≈ 1<br />

• gauge phases away ⇒ twisted boundary conditions S ± i+N = exp(±iΩ) S± i<br />

where<br />

N∑<br />

Ω = (ω i→i+1 − ω i→i−1 ) = gauge invariant geometric flux<br />

i=1<br />

= total defect angle of ˆm i on the unit sphere<br />

= 2π(1 − cos ϑ m ) for crown-shaped configuration<br />

gauge invariant persistent spin current:<br />

I s (Ω) = −<br />

compare with persistent charge current:<br />

I(φ) = −c ∂Ω gc(φ)<br />

∂φ<br />

∂F (Ω)<br />

∂Ω = J〈 ˆm i · (S ⊥ i × S ⊥ i+1) 〉<br />

, φ = magnetic flux<br />

16


Persistent spin current carried by magnons<br />

• FM spin waves:<br />

Ĥ sw = ∑ k<br />

(ɛ k + h) b † k b k with ɛ k = 2JS(1 − cos(ka)) ∝ k 2<br />

• quantized wavevectors: k = 2π L<br />

(<br />

n + Ω )<br />

, n = 0, ±1, . . . , ± N<br />

2π<br />

2<br />

17


Persistent spin current carried by magnons<br />

• FM spin waves:<br />

Ĥ sw = ∑ (ɛ k + h) b † k b k with ɛ k = 2JS(1 − cos(ka)) ∝ k 2<br />

k<br />

• quantized wavevectors: k = 2π L<br />

(<br />

n + Ω )<br />

, n = 0, ±1, . . . , ± N<br />

2π<br />

2<br />

magnetization current: I m = gµ B<br />

I s = − gµ B<br />

<br />

I m (Ω) = − gµ ∑<br />

B v k<br />

L e (ɛk+h)/T − 1<br />

≈ gµ BT<br />

<br />

k<br />

sin Ω<br />

cos Ω − cosh(2π √ h/∆)<br />

∂F sw<br />

∂Ω<br />

where v k = 1 <br />

∂ɛ k<br />

∂k ∝ k<br />

for ∆ ≡ JS( 2π N )2 ≪ T ≪ J<br />

17


Persistent spin current carried by magnons<br />

• FM spin waves:<br />

Ĥ sw = ∑ (ɛ k + h) b † k b k with ɛ k = 2JS(1 − cos(ka)) ∝ k 2<br />

k<br />

• quantized wavevectors: k = 2π L<br />

(<br />

n + Ω )<br />

, n = 0, ±1, . . . , ± N<br />

2π<br />

2<br />

magnetization current: I m = gµ B<br />

I s = − gµ B<br />

<br />

I m (Ω) = − gµ ∑<br />

B v k<br />

L e (ɛk+h)/T − 1<br />

≈ gµ BT<br />

<br />

k<br />

sin Ω<br />

cos Ω − cosh(2π √ h/∆)<br />

∂F sw<br />

∂Ω<br />

where v k = 1 <br />

∂ɛ k<br />

∂k ∝ k<br />

for ∆ ≡ JS( 2π N )2 ≪ T ≪ J<br />

• bosonic analogue of charge current: I(φ) = −e ∑<br />

L<br />

k<br />

• thermal fluctuations: I m ∝ T<br />

v k<br />

e (ɛ k−µ)/T + 1<br />

• mesoscopic quantum effect: I m vanishes in bulk limit or classical limit<br />

17


Electric field generated by spin current<br />

lines of constant electric potential for ϑ m = 30 o<br />

4<br />

15<br />

10<br />

2<br />

m^<br />

m^<br />

5<br />

z / R<br />

0<br />

z / R<br />

0<br />

-2<br />

-5<br />

-4<br />

-10<br />

-4 -2 0 2 4<br />

x / R<br />

-15 -10 -5 0 5 10 15<br />

generalized Biot-Savart law:<br />

far zone: φ(r) = p · r/|r| 3<br />

φ(r) = I ∮<br />

m<br />

[dr ′ × ˆm(r ′ )] · (r − r′ ) with electric dipole moment<br />

c<br />

|r − r ′ | 3 I m<br />

p = −ê z<br />

c sin ϑ m<br />

x / R<br />

18


Experimental parameters<br />

• desired:<br />

measurement of voltage difference ∆U<br />

at distance ≈ L above and below Heisenberg ring<br />

• optimal parameters:<br />

◮ solid angle Ω = 2π(1 − cos ϑ m ) = π/2 ⇒ ϑ m ≈ 41 o<br />

◮ magnetic field: gµ B B ≈ ∆ = JS(2π/N) 2<br />

◮ temperature: ∆ ≪ T ≪ J<br />

• T = 50 K, L = 100 nm, N = 100, J = 100 K ⇒ ∆U ≈ 0.2nV, B ≈ 0.1T<br />

• requirements:<br />

◮ well-characterized rings with large Heisenberg coupling J<br />

◮ submicron B inhomogeneity<br />

◮ nanovolt sensitivity<br />

• detection may be difficult due to screening<br />

• spin rings in inhomogeneous electric fields: Ahoronov-Casher effect<br />

19


Antiferromagnetic spin ring<br />

• antiferromagnetic next-neighbor coupling J > 0<br />

crown-shaped field B(r) ∝ ˆr<br />

⇒ spins flip for h > JS ≡ h c<br />

^z e<br />

^m i<br />

B i<br />

stability of Néel-like state:<br />

⇒ sin 2( ¯ϑ − ϑ) = ( JS h )2 sin 2 ( 2π N<br />

) sin(2 ¯ϑ)<br />

ϑ<br />

⇒ assume h JS/N (≪ h c )<br />

• two sublattices with ˆm i ≈ (−1) i ˆn i and ˆn i · h i ≈ 0<br />

20


Antiferromagnetic spin ring<br />

• antiferromagnetic next-neighbor coupling J > 0<br />

crown-shaped field B(r) ∝ ˆr<br />

⇒ spins flip for h > JS ≡ h c<br />

^z e<br />

^m i<br />

B i<br />

stability of Néel-like state:<br />

⇒ sin 2( ¯ϑ − ϑ) = ( JS h )2 sin 2 ( 2π N<br />

) sin(2 ¯ϑ)<br />

ϑ<br />

⇒ assume h JS/N (≪ h c )<br />

• two sublattices with ˆm i ≈ (−1) i ˆn i and ˆn i · h i ≈ 0<br />

• twisted boundary conditions b i+N<br />

= e ±iΩ b i<br />

with Ω = ∑ N<br />

i=1 (−1)i (ω i→i+1 + ω i→i−1 ) = total defect angle of ˆn i<br />

AF spin waves: quantum fluctations ⇒ new magnon vacuum<br />

Ĥ sw = ∑ k≥0<br />

ɛ k (α † k α k + β † k β k − 1), ɛ k = 2JS sin(ka) ∝ k<br />

20


Persistent spin current carried by AF magnons<br />

• spin current: I s (Ω) = J〈ˆn i · (S ⊥ i<br />

• magnetization current:<br />

I m (Ω) = − 2gµ ∑<br />

B<br />

L<br />

T = 0<br />

−→<br />

k<br />

I m = I 0 m<br />

(<br />

c k n k + 1 )<br />

2<br />

(<br />

1 − Ω π<br />

× S ⊥ i+1)〉 = −∂F sw /∂Ω<br />

)<br />

n k =<br />

1<br />

e ɛ k/T − 1 ,<br />

I 0 m = gµ Bc 0<br />

L<br />

= gµ B<br />

<br />

c k = 1 <br />

JS<br />

N<br />

∂ɛ k<br />

∂k<br />

21


Persistent spin current carried by AF magnons<br />

• spin current: I s (Ω) = J〈ˆn i · (S ⊥ i<br />

• magnetization current:<br />

I m (Ω) = − 2gµ ∑<br />

B<br />

L<br />

T = 0<br />

−→<br />

k<br />

I m = I 0 m<br />

(<br />

c k n k + 1 )<br />

2<br />

(<br />

1 − Ω π<br />

× S ⊥ i+1)〉 = −∂F sw /∂Ω<br />

)<br />

n k =<br />

1<br />

e ɛ k/T − 1 ,<br />

I 0 m = gµ Bc 0<br />

L<br />

= gµ B<br />

<br />

c k = 1 <br />

JS<br />

N<br />

∂ɛ k<br />

∂k<br />

integer spin: Haldane gap = 2JS∆ H ∝ e −πS ∝ a/ξ , ∆ H (S =1) ≈ 0.2<br />

I m / I 0 m<br />

1<br />

0<br />

-1<br />

N=100<br />

∆ H =0<br />

∆ H =0.1/N<br />

∆ H =1/N<br />

∆ H =2/N<br />

0 1 2<br />

Ω / π<br />

“modified” spin-wave theory: suppress<br />

Neél order on average ∑ i 〈S i · m i 〉 = 0<br />

via staggered field<br />

∆ H ≫ 1 N ⇒ I m<br />

I 0 m<br />

(Takahashi 1989, Hirsch & Tang 1989)<br />

∝<br />

√<br />

L<br />

ξ e−L/ξ sin Ω<br />

21


4. Conclusion & outlook<br />

persistent spin currents in Heisenberg magnets:<br />

• mesoscopic quantum interference effect<br />

• bosonic analogue of charge currents in metal rings:<br />

• magnetization transported by magnons due to<br />

◮ thermal fluctuations (ferromagnets)<br />

◮ quantum fluctuations (antiferromagnets)<br />

Ω<br />

2π ↔ φ φ 0<br />

• spin current induces dipole-like electric field<br />

• experimental requirements:<br />

◮ well-defined Heisenberg rings<br />

◮ submicron field inhomogeneities<br />

◮ detection of nanovoltages<br />

open questions:<br />

• diffusive regime of disordered magnets<br />

22


Metallasiloxanolates<br />

current activities in DFG-Forschergruppe FOR 412: (Molodtsova et al. 2003)<br />

C 68 H 172 Cu 10 N 16 O 56 Si 20<br />

23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!