23.05.2014 Views

The diffusion in the quantum Smoluchowski equation

The diffusion in the quantum Smoluchowski equation

The diffusion in the quantum Smoluchowski equation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ARTICLE IN PRESS<br />

Physica A 351 (2005) 60–68<br />

www.elsevier.com/locate/physa<br />

<strong>The</strong> <strong>diffusion</strong> <strong>in</strong> <strong>the</strong> <strong>quantum</strong><br />

<strong>Smoluchowski</strong> <strong>equation</strong><br />

Jerzy Łuczka a, , Ryszard Rudnicki b,c , Peter Ha¨ nggi d<br />

a Institute of Physics, University of Silesia, 40-007 Katowice, Poland<br />

b Institute of Ma<strong>the</strong>matics, Polish Academy of Sciences, 40-007 Katowice, Poland<br />

c Institute of Ma<strong>the</strong>matics, University of Silesia, 40-007 Katowice, Poland<br />

d Institute of Physics, University of Augsburg, Universitätsstrasse 1, D-86135 Augsburg, Germany<br />

Received 23 September 2004<br />

Available onl<strong>in</strong>e 1 January 2005<br />

Abstract<br />

A novel <strong>quantum</strong> <strong>Smoluchowski</strong> dynamics <strong>in</strong> an external, nonl<strong>in</strong>ear potential has been derived<br />

recently. In its orig<strong>in</strong>al form, this overdamped <strong>quantum</strong> dynamics is not compatible with <strong>the</strong> second<br />

law of <strong>the</strong>rmodynamics if applied to periodic, but asymmetric ratchet potentials. An improved<br />

version of <strong>the</strong> <strong>quantum</strong> <strong>Smoluchowski</strong> <strong>equation</strong> with a modified <strong>diffusion</strong> function has been put<br />

forward <strong>in</strong> L. Machura et al. (Phys. Rev. E 70 (2004) 031107) and applied to study <strong>quantum</strong><br />

Brownian motors <strong>in</strong> overdamped, arbitrarily shaped ratchet potentials. With this workwe prove<br />

that <strong>the</strong> proposed <strong>diffusion</strong> function, which is assumed to depend (<strong>in</strong> <strong>the</strong> limit of strong friction) on<br />

<strong>the</strong> second-order derivative of <strong>the</strong> potential, is uniquely determ<strong>in</strong>ed from <strong>the</strong> validity of <strong>the</strong> second<br />

law of <strong>the</strong>rmodynamics <strong>in</strong> <strong>the</strong>rmal, undriven equilibrium. Put differently, no approximation-<strong>in</strong>duced<br />

<strong>quantum</strong> Maxwell demon is operat<strong>in</strong>g <strong>in</strong> <strong>the</strong>rmal equilibrium. Fur<strong>the</strong>rmore, <strong>the</strong> lead<strong>in</strong>g <strong>quantum</strong><br />

corrections correctly render <strong>the</strong> dissipative <strong>quantum</strong> equilibrium state, which dist<strong>in</strong>ctly differs from<br />

<strong>the</strong> correspond<strong>in</strong>g Gibbs state that characterizes <strong>the</strong> weak(vanish<strong>in</strong>g) coupl<strong>in</strong>g limit.<br />

r 2005 Elsevier B.V. All rights reserved.<br />

PACS: 05.40.<br />

a; 02.50.Ey; 05.10.Gg; 05.60.Gg<br />

Keywords: <strong>Smoluchowski</strong> <strong>equation</strong>; Large friction; Quantum corrections; Brownian motors; Dissipative<br />

<strong>quantum</strong> dynamics<br />

Correspond<strong>in</strong>g author. Tel.: +48 32 359 1173.<br />

E-mail address: luczka@us.edu.pl (J. Łuczka).<br />

0378-4371/$ - see front matter r 2005 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.physa.2004.12.007


ARTICLE IN PRESS<br />

J. Łuczka et al. / Physica A 351 (2005) 60–68 61<br />

1. Introduction<br />

In classical statistical physics, <strong>the</strong> description of a system coupled to <strong>the</strong>rmal bath<br />

of temperature T is formulated <strong>in</strong> terms of Langev<strong>in</strong>-type <strong>equation</strong>s and<br />

correspond<strong>in</strong>g Fokker–Planck or master <strong>equation</strong>s [1,2]. This scheme models <strong>the</strong><br />

phenomenon of Brownian motion, a phenomenon that has been described<br />

<strong>the</strong>oretically by <strong>the</strong> two ‘‘grandfa<strong>the</strong>rs’’ of Brownian motion: Albert E<strong>in</strong>ste<strong>in</strong> and<br />

Marian von <strong>Smoluchowski</strong> [3,4]. For a classical Brownian particle mov<strong>in</strong>g <strong>in</strong> an<br />

external field, <strong>the</strong> statistical properties are described by <strong>the</strong> Kle<strong>in</strong>–Kramers <strong>equation</strong><br />

<strong>in</strong> <strong>the</strong> phase space of position and momentum degree of freedom [1,2,5]. In <strong>the</strong><br />

strong friction limit it reduces to <strong>the</strong> so-called <strong>Smoluchowski</strong> <strong>equation</strong> <strong>in</strong> position<br />

space alone [6]. <strong>The</strong> issue of <strong>quantum</strong> Brownian motion is more subtle [7]. In this<br />

context, it is important to note that for a correct description of <strong>the</strong> <strong>quantum</strong><br />

dynamics of <strong>the</strong> subsystem, <strong>the</strong> Brownian particle must at all times be consistent with<br />

<strong>the</strong> Heisenberg pr<strong>in</strong>ciple and <strong>the</strong> commutator structure of <strong>quantum</strong> dynamics; as a<br />

consequence, <strong>the</strong> reduced dynamics modeled <strong>in</strong> <strong>the</strong> form of a correspond<strong>in</strong>g<br />

<strong>quantum</strong> Langev<strong>in</strong> <strong>equation</strong> must necessarily operate <strong>in</strong> <strong>the</strong> total Hilbert space of<br />

<strong>the</strong> system dynamics (i.e., <strong>the</strong> particle) and <strong>the</strong> <strong>the</strong>rmal bath degrees of freedom.<br />

Given an <strong>in</strong>itial preparation scheme [8], a consistent statistical description is also<br />

possible as well <strong>in</strong> terms of (generalized) <strong>quantum</strong> master <strong>equation</strong>s for <strong>the</strong> reduced<br />

density operator of <strong>the</strong> system dynamics alone, i.e., <strong>the</strong> <strong>quantum</strong> Brownian<br />

dynamics. An example constitutes <strong>the</strong> weakcoupl<strong>in</strong>g limit, for which <strong>quantum</strong><br />

master <strong>equation</strong>s (e.g. of L<strong>in</strong>dblad form) have been derived [9]. <strong>The</strong> strong friction<br />

limit has only recently attracted <strong>in</strong>terest. Different approaches have been proposed<br />

<strong>in</strong> <strong>the</strong> recent years that are seem<strong>in</strong>gly not wholly consistent with each o<strong>the</strong>r [10].<br />

Here, we follow <strong>the</strong> scheme that is rigorously based on a path <strong>in</strong>tegral formulation of<br />

<strong>the</strong> (reduced) <strong>quantum</strong> Brownian motion [5,7].<br />

Follow<strong>in</strong>g Ankerhold–Pechukas–Grabert [11], <strong>the</strong> limit of strong friction can be<br />

described by a correspond<strong>in</strong>g <strong>quantum</strong> <strong>Smoluchowski</strong> dynamics conta<strong>in</strong><strong>in</strong>g lead<strong>in</strong>g<br />

<strong>quantum</strong> corrections. For a particle of mass M mov<strong>in</strong>g <strong>in</strong> <strong>the</strong> potential VðxÞ; such a<br />

<strong>quantum</strong> <strong>Smoluchowski</strong> <strong>equation</strong> has been derived for <strong>the</strong> diagonal part of <strong>the</strong><br />

density operator rðtÞ; i.e., for <strong>the</strong> probability density Pðx; tÞ ¼hxjrðtÞjxi <strong>in</strong> <strong>the</strong><br />

position space x. It explicitly reads [11]<br />

gM q qt<br />

q<br />

Pðx; tÞ ¼<br />

qx V 0 q2<br />

eff ðxÞPðx; tÞþ<br />

qx 2 D eff ðxÞPðx; tÞ ; (1)<br />

where g is a friction coefficient. <strong>The</strong> effective potential reads<br />

V eff ðxÞ ¼VðxÞþð1=2ÞlV 00 ðxÞ ; (2)<br />

where<strong>in</strong> <strong>the</strong> prime denotes <strong>the</strong> derivative with respect to <strong>the</strong> coord<strong>in</strong>ate x. <strong>The</strong><br />

effective <strong>diffusion</strong> coefficient<br />

D eff ðxÞ ¼D 1 ðxÞ ¼ 1 b ½1 þ lbV 00 ðxÞŠ (3)


ARTICLE IN PRESS<br />

62<br />

J. Łuczka et al. / Physica A 351 (2005) 60–68<br />

both <strong>in</strong>cludes lead<strong>in</strong>g <strong>quantum</strong> corrections described by <strong>the</strong> (<strong>quantum</strong>)-parameter<br />

l ¼ð_=pMgÞ lnð_bg=2pÞ; b ¼ 1=k B T (4)<br />

and k B is <strong>the</strong> Boltzmann constant. <strong>The</strong> parameter l is nonl<strong>in</strong>ear with respect to <strong>the</strong><br />

Planckconstant _ and measures typical <strong>quantum</strong> fluctuations <strong>in</strong> <strong>the</strong> position space<br />

[11,12]. Note that at strong friction, <strong>the</strong> lead<strong>in</strong>g <strong>quantum</strong> corrections vanish for<br />

(biased) free <strong>quantum</strong>-Brownian motion, i.e., for potentials with VðxÞ ¼const; or<br />

with l<strong>in</strong>ear VðxÞ ¼ax; <strong>in</strong> <strong>the</strong> two latter cases no normalizable stationary state occurs.<br />

<strong>The</strong> validity regime for Eq. (1) is <strong>in</strong> <strong>the</strong> <strong>quantum</strong> <strong>Smoluchowski</strong> regime when<br />

lb1=Mbg 2 and k B T5_g [11]. Note that formally l diverges at zero temperature;<br />

it is thus important to note that <strong>the</strong> limit b !1 should be taken only after <strong>the</strong><br />

limit g !1:<br />

This <strong>equation</strong> assumes <strong>the</strong> form—with<strong>in</strong> <strong>the</strong> regime of validity with D eff 40—of a<br />

classical <strong>Smoluchowski</strong> <strong>equation</strong> with state-dependent <strong>diffusion</strong>. Thus, it <strong>in</strong>tr<strong>in</strong>sically<br />

obeys detailed balance for all conf<strong>in</strong><strong>in</strong>g potentials V eff ðxÞ obey<strong>in</strong>g V eff ðx !<br />

Þ ¼ 1: Put differently, for unbounded, conf<strong>in</strong><strong>in</strong>g potentials this one-dimensional<br />

<strong>Smoluchowski</strong> <strong>equation</strong> obeys formally detailed balance. This situation changes,<br />

however, for <strong>the</strong> class of bounded potentials. For example, <strong>in</strong> a periodic potential<br />

V eff ðxÞ; <strong>the</strong> second law of <strong>the</strong>rmodynamics implies that no stationary current is<br />

supported. This is <strong>the</strong> case if detailed balance also holds for <strong>the</strong> class of such periodic<br />

potentials, or more generally, for bounded potentials.<br />

It is thus a nontrivial observation that—upon <strong>in</strong>spection—<strong>the</strong> above <strong>Smoluchowski</strong><br />

<strong>equation</strong> <strong>in</strong>deed does not obey <strong>the</strong> second law of <strong>the</strong>rmodynamics for<br />

periodic potentials. Indeed, let us consider a periodic potential VðxÞ ¼Vðx þ LÞ of<br />

period L. From Eq. (1), follow<strong>in</strong>g <strong>the</strong> reason<strong>in</strong>g of Stratonovich [13], but generalized<br />

here to state-dependent <strong>diffusion</strong>, see [14], <strong>the</strong> stationary drift velocity hvi of <strong>the</strong><br />

particle emerges as<br />

hvi ¼ L<br />

gM<br />

1 exp½CðLÞŠ<br />

R L<br />

0 D 1 1ðxÞ<br />

exp½ CðxÞŠ R xþL<br />

x<br />

exp½CðyÞŠ dy dx<br />

with <strong>the</strong> generalized <strong>the</strong>rmodynamic potential given by<br />

Z x V 0 eff<br />

CðxÞ ¼<br />

ðyÞ<br />

dy : (6)<br />

0 D eff ðyÞ<br />

If <strong>the</strong> periodic potential is asymmetric, e.g., VðxÞ ¼cosð2pxÞþð1=4Þ s<strong>in</strong>ð4pxÞ; and<br />

L ¼ 1; <strong>the</strong> generalized <strong>the</strong>rmodynamic potential CðLÞa0: Consequently, a nonzero<br />

stationary drift velocity occurs <strong>in</strong> <strong>the</strong> <strong>the</strong>rmal equilibrium state, i.e., an approximation-<strong>in</strong>duced<br />

<strong>quantum</strong> Maxwell demon [15] is seem<strong>in</strong>gly at work.<br />

(5)<br />

2. Diffusion function<br />

In <strong>the</strong> recent work [16], we have proposed an improved <strong>quantum</strong> <strong>Smoluchowski</strong><br />

<strong>equation</strong>, <strong>in</strong> which <strong>the</strong> effective potential V eff ðxÞ is <strong>the</strong> same as <strong>in</strong> (2) but <strong>the</strong><br />

<strong>diffusion</strong> function D eff ðxÞ is modified <strong>in</strong> such a way that <strong>the</strong> modified <strong>Smoluchowski</strong>


<strong>equation</strong> no longer causes such a perpetual motion phenomenon. This new <strong>quantum</strong><br />

<strong>Smoluchowski</strong> dynamics is subject to <strong>the</strong> follow<strong>in</strong>g construction criteria:<br />

(i) Remedy <strong>the</strong> <strong>diffusion</strong> function to obey CðLÞ 0 for any periodic potential<br />

VðxÞ:<br />

(ii) Assume that <strong>the</strong> <strong>diffusion</strong> function is a function F of <strong>the</strong> second-order derivative<br />

of VðxÞ; i.e., D eff ðxÞ ¼F½V 00 ðxÞŠ; as <strong>in</strong> (3).<br />

(iii) For <strong>the</strong> harmonic oscillator, <strong>the</strong> position equilibrium probability emerg<strong>in</strong>g from<br />

(1) should co<strong>in</strong>cide at strong friction with <strong>the</strong> exact distribution [17].<br />

Condition (ii) may seem to be restrictive: <strong>the</strong> unknown <strong>diffusion</strong> function could depend<br />

functionally not only on V 00 ðxÞ; but also on higher order derivatives of <strong>the</strong> potential.<br />

However, if we take <strong>in</strong>to account <strong>the</strong> lead<strong>in</strong>g <strong>quantum</strong> corrections <strong>in</strong> <strong>the</strong> asymptotic<br />

strong friction limit, such higher order derivatives of VðxÞ can safely be neglected.<br />

Next, from <strong>the</strong> first two conditions we obta<strong>in</strong><br />

Z L<br />

V 0 ðxÞþð1=2ÞlV 000 ðxÞ<br />

0 F½V 00 dx ¼ 0 : (7)<br />

ðxÞŠ<br />

<strong>The</strong> second part of <strong>the</strong> <strong>in</strong>tegral, which conta<strong>in</strong>s <strong>the</strong> contribution V 000 ðxÞ; is zero for<br />

arbitrary periodic functions VðxÞ and functions F½V 00 ðxÞŠ; for which <strong>the</strong> <strong>in</strong>tegral<br />

exists. Indeed, upon a change <strong>in</strong> <strong>the</strong> <strong>in</strong>tegration variable x to <strong>the</strong> new variable<br />

y ¼ V 00 ðxÞ; and a partition of <strong>the</strong> <strong>in</strong>terval ½0; LŠ <strong>in</strong>to a sum of sub<strong>in</strong>tervals, on which<br />

<strong>the</strong> function V 00 ðxÞ is monotonic, we f<strong>in</strong>d that this second contribution is<br />

proportional to<br />

X n 1 Z yiþ1<br />

i¼0<br />

y i<br />

ð1=FðyÞÞdy ¼ Xn 1<br />

ARTICLE IN PRESS<br />

J. Łuczka et al. / Physica A 351 (2005) 60–68 63<br />

i¼0<br />

AðyÞj y iþ1<br />

y i<br />

¼ Aðy n Þ Aðy 0 Þ¼AðV 00 ðLÞÞ AðV 00 ð0ÞÞ ¼ 0 ; ð8Þ<br />

because V 00 ðxÞ is periodic and V 00 ð0Þ ¼V 00 ðLÞ: <strong>The</strong> first position is y 0 ¼ V 00 ð0Þ; <strong>the</strong><br />

last one is y n ¼ V 00 ðLÞ; and <strong>the</strong> rema<strong>in</strong><strong>in</strong>g positions are y i ¼ V 00 ðx i Þ; where <strong>the</strong> set of<br />

positions x i are positions of extremal values of <strong>the</strong> function V 00 ðxÞ: <strong>The</strong> function AðyÞ<br />

denotes <strong>the</strong> anti-derivative (i.e., <strong>the</strong> <strong>in</strong>tegral) of 1=FðyÞ: <strong>The</strong>refore, condition (7)<br />

becomes equivalent to<br />

Z L<br />

V 0 ðxÞ<br />

0 FðV 00 dx ¼ 0 : (9)<br />

ðxÞÞ<br />

With this workwe show that <strong>the</strong>re is <strong>in</strong>deed only one function FðyÞ; for which<br />

condition (9) is obeyed for an arbitrary periodic potential VðxÞ ¼Vðx þ LÞ: In our<br />

proof, we use <strong>the</strong> well-known functional method familiar from <strong>the</strong>oretical mechanics:<br />

among all possible trajectories, f<strong>in</strong>d <strong>the</strong> one for which <strong>the</strong> functional (called <strong>the</strong> action)<br />

is extremal. Our taskcan be formulated as follows: among all possible functions<br />

FðV 00 ðxÞÞ; f<strong>in</strong>d <strong>the</strong> one for which (9) is fulfilled. To this goal, let us denote<br />

f ðxÞ ¼V 0 ðxÞ; GðyÞ ¼1=FðyÞ : (10)


ARTICLE IN PRESS<br />

64<br />

J. Łuczka et al. / Physica A 351 (2005) 60–68<br />

Condition (9) <strong>the</strong>n takes on <strong>the</strong> form<br />

Z L<br />

0<br />

Gðf 0 ðxÞÞf ðxÞ dx ¼ 0 : (11)<br />

Let X be a set of L-periodic functions f : R ! R such that R L<br />

0<br />

f ðxÞ dx ¼ 0: Moreover,<br />

ma<strong>in</strong>ly for technical reasons, we assume from here on that f 2 C 3 : Next, we derive <strong>the</strong><br />

follow<strong>in</strong>g <strong>the</strong>orem:<br />

<strong>The</strong>orem 1. Let G : R ! R be a three times differentiable function with cont<strong>in</strong>uous<br />

derivative G 000 : If (11) holds for every f 2 X; <strong>the</strong>n G is a l<strong>in</strong>ear function, i.e., GðyÞ ¼<br />

a þ by:<br />

Proof. Consider a functional S on X given by <strong>the</strong> expression<br />

Sðf Þ¼<br />

Z L<br />

0<br />

Gðf 0 ðxÞÞf ðxÞ dx : (12)<br />

<strong>The</strong>n, from (11) it follows that <strong>the</strong> functional Sðf Þ is constant and its <strong>in</strong>crement<br />

Sðf þ hÞ Sðf Þ¼0 for every f 2 X and h 2 X; this implies that <strong>the</strong> functional<br />

derivative ðdS=df ÞðhÞ ¼0; i.e., by use of <strong>the</strong> notation Gðf 0 ðxÞÞ ¼ ðG f 0 ÞðxÞ we obta<strong>in</strong><br />

Z<br />

dS<br />

L<br />

df ðhÞ ¼ ½ðG 0 f 0 ÞðxÞf ðxÞh 0 ðxÞþðG f 0 ÞðxÞhðxÞŠ dx (13)<br />

0<br />

¼ðG 0 f 0 ÞðLÞf ðLÞhðLÞ ðG 0 f 0 Þð0Þf ð0Þhð0Þ (14)<br />

þ<br />

Z L<br />

0<br />

fðG f 0 ÞðxÞ ½ðG 0 f 0 ÞðxÞf ðxÞŠ 0 ghðxÞ dx : (15)<br />

S<strong>in</strong>ce f ð0Þ ¼f ðLÞ; hð0Þ ¼hðLÞ and f 0 ðLÞ ¼f 0 ð0Þ; one f<strong>in</strong>ds<br />

Z L<br />

dS<br />

df ðhÞ ¼<br />

0<br />

cðxÞhðxÞ dx ¼ 0 ; (16)<br />

where<br />

cðxÞ ¼½ðG 0 f 0 ÞðxÞf ðxÞŠ 0 ðG f 0 ÞðxÞ : (17)<br />

Given <strong>the</strong> proposition proved <strong>in</strong> <strong>the</strong> appendix it follows that c const: Next, let f a;m<br />

be a family of functions from <strong>the</strong> set X such that f a;m ðyÞ ¼ m 2 y2 þ a; a 2 R; m 2 R; for<br />

y 2ð L 3 ; 2L 3 Þ: After substitut<strong>in</strong>g f a;m <strong>in</strong>to (17) we obta<strong>in</strong><br />

h <br />

G 0 ðmyÞ m i 0<br />

2 y2 þ a GðmyÞ const ; (18)<br />

and consequently<br />

amG 00 ðmyÞþ m2<br />

2 y2 G 00 ðmyÞþmyG 0 ðmyÞ GðmyÞ const : (19)<br />

S<strong>in</strong>ce <strong>the</strong> left-hand side of this <strong>equation</strong> is constant for arbitrary a; we conclude that<br />

G 00 ðmyÞ const for my 2ð mL 3 ; 2mL<br />

3 Þ: S<strong>in</strong>ce m is an arbitrary constant we have G00 const


on <strong>the</strong> whole R: Consequently,<br />

ARTICLE IN PRESS<br />

J. Łuczka et al. / Physica A 351 (2005) 60–68 65<br />

1<br />

2 ðmyÞ2 G 00 ðmyÞþmyG 0 ðmyÞ GðmyÞ const (20)<br />

for y 2ð L 3 ; 2L 3<br />

Þ: S<strong>in</strong>ce m is an arbitrary constant we also obta<strong>in</strong> that<br />

1<br />

2 y2 G 00 ðyÞþyG 0 ðyÞ GðyÞ const (21)<br />

for y 2 R: With <strong>the</strong> result G 00 ¼ const; it thus follows uniquely that GðyÞ ¼a þ by þ<br />

cy 2 ; where a; b; c 2 R: Insertion of GðyÞ <strong>in</strong>to (21) yields c ¼ 0: As a ma<strong>in</strong> result we<br />

obta<strong>in</strong> GðyÞ ¼a þ by; <strong>the</strong>reby complet<strong>in</strong>g <strong>the</strong> proof.<br />

3. Discussion and conclusion<br />

Given <strong>The</strong>orem 1, it follows that <strong>the</strong> sought-after <strong>diffusion</strong> function F <strong>in</strong> (9)<br />

assumes <strong>the</strong> form<br />

F½V 00 1<br />

ðxÞŠ ¼<br />

a þ bV 00 ðxÞ ; (22)<br />

with arbitrary constants a and b. <strong>The</strong>se two constants can be determ<strong>in</strong>ed as follows:<br />

expand (22) <strong>in</strong>to a series. <strong>The</strong>n for a ¼ b and b ¼ lb 2 ; <strong>the</strong> <strong>diffusion</strong> functions (3)<br />

and (22) co<strong>in</strong>cide to <strong>the</strong> first order with respect to <strong>the</strong> quantity ðxÞ ¼jlbV 00 ðxÞjo1:<br />

For smooth periodic functions VðxÞ; this <strong>in</strong>equality can be fulfilled for arbitrary x<br />

and sufficiently small lb: Note that, V 00 ðxÞ is bounded for arbitrary x and <strong>the</strong><br />

convergence of (22) to Eq. (3) is uniform. Given <strong>the</strong> above f<strong>in</strong>d<strong>in</strong>gs, we propose a<br />

new <strong>quantum</strong> <strong>Smoluchowski</strong> <strong>equation</strong> (1) with <strong>the</strong> modified <strong>diffusion</strong> function<br />

read<strong>in</strong>g<br />

1<br />

D eff ðxÞ ¼D 2 ðxÞ ¼<br />

b½1 lbV 00 ðxÞŠ ; (23)<br />

which must be <strong>in</strong>terpreted as <strong>the</strong> lead<strong>in</strong>g, nonperturbative, asymptotic large friction<br />

result.<br />

In conclusion, <strong>the</strong> above <strong>quantum</strong> stochastic dynamics becomes, <strong>in</strong> this strong<br />

friction limit equivalent to a classical, overdamped Brownian dynamics <strong>in</strong> <strong>the</strong><br />

effective potential (2) and with a state-dependent <strong>diffusion</strong> coefficient (23). <strong>The</strong><br />

correspond<strong>in</strong>g classical Langev<strong>in</strong> <strong>equation</strong> reads <strong>in</strong> <strong>the</strong> Ito-representation [1]<br />

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

gM _x ¼ V 0 eff ðxÞþ 2gMD 2 ðxÞxðtÞ ; (24)<br />

where <strong>the</strong> dot denotes <strong>the</strong> time derivative and xðtÞ is classical Gaussian white noise of<br />

vanish<strong>in</strong>g mean and correlation hxðtÞxðsÞi ¼ dðt sÞ:<br />

Our result for <strong>the</strong> <strong>quantum</strong> <strong>Smoluchowski</strong> <strong>equation</strong> resembles <strong>in</strong> spirit <strong>the</strong><br />

problem of model<strong>in</strong>g colored (or correlated) noise <strong>in</strong> classical, nonl<strong>in</strong>ear stochastic<br />

physics <strong>in</strong> terms of an effective Fokker–Planck <strong>equation</strong> [18]. <strong>The</strong> Langev<strong>in</strong> <strong>equation</strong><br />

with Gaussian nonwhite noise constitutes a nonMarkovian process whose s<strong>in</strong>gle<br />

time stochastic dynamics <strong>in</strong> limit<strong>in</strong>g cases can be approximated well by a<br />

correspond<strong>in</strong>g (s<strong>in</strong>gle time) Markovian <strong>diffusion</strong> process. This latter Markovian


ARTICLE IN PRESS<br />

66<br />

J. Łuczka et al. / Physica A 351 (2005) 60–68<br />

<strong>diffusion</strong> process is equivalently described by <strong>the</strong> Langev<strong>in</strong> <strong>equation</strong> with Gaussian<br />

white noise and a state-dependent <strong>diffusion</strong> coefficient [18]. For example, for a<br />

Langev<strong>in</strong> <strong>equation</strong> with additive Ornste<strong>in</strong>–Uhlenbecknoise, Fox [19] derived <strong>in</strong> <strong>the</strong><br />

limit of small Ornste<strong>in</strong>–Uhlenbecknoise correlation time t <strong>the</strong> follow<strong>in</strong>g asymptotic<br />

form of <strong>the</strong> <strong>diffusion</strong> function<br />

D 0<br />

DðxÞ ¼<br />

1 þ tV 00 ðxÞ ; (25)<br />

where D 0 is <strong>the</strong> noise <strong>in</strong>tensity. <strong>The</strong> same characteristic contribution 1=½1 þ tV 00 ðxÞŠ<br />

occurs <strong>in</strong> <strong>the</strong> <strong>the</strong>ory of unified colored-noise approximation, which <strong>in</strong> fact bridges<br />

small correlation times with large correlation times [20]. We observe that <strong>in</strong> both<br />

<strong>diffusion</strong> functions (23) and (25) <strong>the</strong> function V 00 ðxÞ occurs. If <strong>the</strong> correlation time<br />

t ! 0 <strong>the</strong>n clearly DðxÞ !D 0 :<br />

In <strong>the</strong> <strong>quantum</strong> <strong>Smoluchowski</strong> case, <strong>the</strong> correspond<strong>in</strong>g <strong>the</strong>rmal <strong>quantum</strong> noise is<br />

also not white and <strong>the</strong> correspond<strong>in</strong>g <strong>quantum</strong> Brownian motion corresponds to a<br />

nonMarkovian <strong>quantum</strong> dynamics, which here (limit of large friction) is<br />

approximated by <strong>the</strong> Markovian <strong>diffusion</strong> process described by Eq. (1). If <strong>the</strong><br />

analogous parameter to t; i.e., l approaches zero at high temperatures, i.e., b ! 0<br />

<strong>the</strong>n <strong>the</strong> new <strong>diffusion</strong> function D 2 ðxÞ !1=b <strong>in</strong> (23), i.e., <strong>the</strong> classical limit is<br />

approached.<br />

<strong>The</strong> periodic stationary solution PðxÞ of (1) with <strong>the</strong> <strong>diffusion</strong> function (23) reads<br />

PðxÞ ¼Ne bFðxÞ ; (26)<br />

where <strong>the</strong> equilibrium <strong>the</strong>rmodynamic potential assumes <strong>the</strong> form<br />

FðxÞ ¼VðxÞþ 1 2 lV 00 1<br />

ðxÞ<br />

2 lb½V 0 ðxÞŠ 2 1 4 l2 b½V 00 ðxÞŠ 2 1 b ln½1 lbV 00 ðxÞŠ :<br />

(27)<br />

To <strong>the</strong> first order <strong>in</strong> l; it co<strong>in</strong>cides with that presented <strong>in</strong> Eq. (11) of Ref. [11] and it<br />

reduces for <strong>the</strong> harmonic oscillator to <strong>the</strong> exact probability density <strong>in</strong> <strong>the</strong> strong<br />

friction limit [17]. Remarkably, this <strong>quantum</strong> equilibrium potential depends <strong>in</strong> <strong>the</strong><br />

strong coupl<strong>in</strong>g limit between system and bath explicitly on <strong>the</strong> friction strength g:<br />

Put differently, <strong>in</strong> clear contrast to <strong>the</strong> case of weakcoupl<strong>in</strong>g, <strong>the</strong> <strong>quantum</strong> <strong>the</strong>rmal<br />

equilibrium state is not of <strong>the</strong> Gibbs form, mean<strong>in</strong>g that FðxÞaVðxÞ:<br />

In summary, we have shown that <strong>the</strong> <strong>diffusion</strong> function <strong>in</strong> <strong>the</strong> <strong>quantum</strong><br />

<strong>Smoluchowski</strong> limit is uniquely determ<strong>in</strong>ed to be of <strong>the</strong> form <strong>in</strong> (23). It depends<br />

on <strong>the</strong> potential via V 00 ðxÞ; and is consistent with dissipative <strong>quantum</strong> equilibrium<br />

<strong>the</strong>rmodynamics. Moreover, <strong>the</strong> <strong>diffusion</strong> function should not become negative; <strong>the</strong><br />

<strong>diffusion</strong> function <strong>in</strong> (23) is positive for <strong>the</strong> sufficiently small <strong>quantum</strong> correction<br />

parameter l and for bounded V 00 ðxÞ: This holds true for <strong>the</strong> case of smooth, spatially<br />

periodic asymmetric potentials, i.e., so-called Brownian motor systems [21], for<br />

which our approximate <strong>quantum</strong> <strong>Smoluchowski</strong> <strong>equation</strong> is valid <strong>in</strong> <strong>the</strong> whole state<br />

space of <strong>the</strong> system [16].IfV 00 ðxÞ is not bounded, as it occurs for bistable systems, <strong>the</strong><br />

<strong>Smoluchowski</strong> <strong>equation</strong> (1) with <strong>the</strong> new <strong>diffusion</strong> function (23) is valid only <strong>in</strong> a<br />

restricted doma<strong>in</strong> of <strong>the</strong> state space. This same restriction holds also for <strong>the</strong> related<br />

problem of colored noise-driven classical dynamical systems [18].


ARTICLE IN PRESS<br />

J. Łuczka et al. / Physica A 351 (2005) 60–68 67<br />

Acknowledgements<br />

Support by <strong>the</strong> European Science Foundation (Stochastic Dynamics: Fundamentals<br />

and Applications) (J.Ł.,P.H.), <strong>the</strong> Deutsche Forschungsgeme<strong>in</strong>schaft with <strong>the</strong><br />

collaborative research centre SFB-486 (P.H.), DFG Grant Ha 1517/13-4 (P.H.), <strong>the</strong><br />

DAAD-KBN (Stochastic Complexity) (J.Ł.,P.H.), <strong>the</strong> Foundation for Polish Science<br />

(P.H.) and <strong>the</strong> KBN Grant 2 P03A 03125 (R.R.) is gratefully acknowledged.<br />

Appendix A<br />

In this appendix we prove <strong>the</strong> follow<strong>in</strong>g proposition:<br />

Proposition 1. Let<br />

Z L<br />

0<br />

cðxÞhðxÞ dx ¼ 0 (28)<br />

for h 2 X: <strong>The</strong>n c ¼ const:<br />

Proof (<strong>in</strong>directly). Assume that c is not a constant function. S<strong>in</strong>ce we have assumed<br />

<strong>in</strong> <strong>the</strong> <strong>The</strong>orem that <strong>the</strong> functions are <strong>in</strong> C 000 ; cf. (17), <strong>the</strong>re exists a position x 0 2<br />

ð0; LÞ such that c 0 ðx 0 Þa0: Without loss of generality we can assume that c 0 ðx 0 Þ40;<br />

because we can replace c by c: S<strong>in</strong>ce c 0 is a cont<strong>in</strong>uous function, we can f<strong>in</strong>d e40<br />

such that 0ox 0 eox 0 þ eoL and c 0 ðxÞ40 for x 2ðx 0 e; x 0 þ eÞ: S<strong>in</strong>ce cðxÞ ¼<br />

cðx 0 Þþc 0 ðyÞðx x 0 Þ; where y 2ðx 0 e; x 0 þ eÞ; we have cðxÞ4cðx 0 Þ for x 2<br />

ðx 0 ; x 0 þ eÞ and cðxÞocðx 0 Þ for x 2ðx 0 e; x 0 Þ: Next, let<br />

hðxÞ ¼ðx x 0 Þ 5 ðx x 0 eÞ 4 ðx x 0 þ eÞ 4 (29)<br />

for x 2ðx 0 e; x 0 þ eÞ and hðxÞ ¼0 for x 2½0; x 0 eŠ[½x 0 þ e; LŠ: <strong>The</strong>n h is a C 3 -<br />

function and s<strong>in</strong>ce hðxÞ ¼0 for x <strong>in</strong> <strong>the</strong> neighborhoods of 0 and L, <strong>the</strong> function h can<br />

be extended to a L-periodic function. Moreover, hðx 0 þ xÞ ¼ hðx 0 xÞ which<br />

implies that R L<br />

hðxÞ dx ¼ 0: This also means that h 2 X: Next, observe that<br />

Z L<br />

0<br />

0<br />

cðxÞhðxÞ dx ¼<br />

Z x0<br />

x 0<br />

e<br />

cðxÞhðxÞ dx þ<br />

Z x0 þe<br />

x 0<br />

cðxÞhðxÞ dx (30)<br />

Z x0<br />

Z x0 þe<br />

4 cðx 0 ÞhðxÞ dx þ cðx 0 ÞhðxÞ dx (31)<br />

x 0 e<br />

x 0<br />

Z L<br />

¼ c 0 ðxÞ hðxÞ dx ¼ 0 (32)<br />

0<br />

because cðxÞ4cðx 0 Þ; hðxÞ40 for x 2ðx 0 ; x 0 þ eÞ; and cðxÞocðx 0 Þ; hðxÞo0 for x 2<br />

ðx 0 e; x 0 Þ: Consequently, R L<br />

0<br />

cðxÞhðxÞ dx40; this f<strong>in</strong>d<strong>in</strong>g <strong>in</strong> turn contradicts <strong>the</strong><br />

assumption that <strong>the</strong> <strong>in</strong>tegral is zero. Thus, for every function f 2 X we have c ¼<br />

const; and this completes <strong>the</strong> proof of <strong>the</strong> proposition. &


ARTICLE IN PRESS<br />

68<br />

J. Łuczka et al. / Physica A 351 (2005) 60–68<br />

References<br />

[1] P. Hänggi, H. Thomas, Phys. Rep. 88 (1982) 207.<br />

[2] H. Risken, <strong>The</strong> Fokker–Planck Equation, Spr<strong>in</strong>ger, Berl<strong>in</strong>, 1996.<br />

[3] A. E<strong>in</strong>ste<strong>in</strong>, Ann. Physik(Leipzig) 17 (1905) 549;<br />

A. E<strong>in</strong>ste<strong>in</strong>, Ann. Physik(Leipzig) 19 (1906) 371;<br />

M. <strong>Smoluchowski</strong>, Ann. Physik (Leipzig) 21 (1906) 756.<br />

[4] A. E<strong>in</strong>ste<strong>in</strong>, Naturwissenschaften 50 (1917) 107;<br />

Marian von <strong>Smoluchowski</strong>, an obituary by A. E<strong>in</strong>ste<strong>in</strong>.<br />

[5] P. Hänggi, J. Stat. Phys. 42 (1986) 105;<br />

P. Hänggi, J. Stat. Phys. 44 (1986) 1003 (Addendum);<br />

P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62 (1990) 251.<br />

[6] M. <strong>Smoluchowski</strong>, Bull. Int. l’Acad. Sci. Cracovie, Math-Naturw. Klasse A (1913) 418–434;<br />

Repr<strong>in</strong>ted <strong>in</strong>: Ostwalds Klas. Exakten Nat. vol. 207 (2001) 25–39;<br />

M. <strong>Smoluchowski</strong>, Ann. Physik (Leipzig) 48 (1915) 1103.<br />

[7] H. Grabert, P. Schramm, G.-L. Ingold, Phys. Rep. 168 (1988) 1988.<br />

[8] K.M. Fonseca-Romero, P. Talkner, P. Hänggi, Phys. Rev. A 69 (2004) 052109.<br />

[9] G. L<strong>in</strong>dblad, Commun. Math. Phys. 48 (1976) 119;<br />

R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications, Spr<strong>in</strong>ger, Berl<strong>in</strong>, 1982;<br />

H. Spohn, Rev. Mod. Phys. 52 (1980) 569.<br />

[10] P. Pechukas, J. Ankerhold, H. Grabert, Ann. Physik (Leipzig) 9 (2000) 794;<br />

B. Vacch<strong>in</strong>i, Phys. Rev. E 66 (2002) 027107;<br />

D. Banerjee, B.C. Bag, S.K. Banik, D.S. Ray, Physica A 318 (2003) 6.<br />

[11] J. Ankerhold, P. Pechukas, H. Grabert, Phys. Rev. Lett. 87 (2001) 086802.<br />

[12] J. Ankerhold, Acta Phys. Polon. B 34 (2003) 3569.<br />

[13] R.L. Stratonovich, Radiotekh. Electron. 3 (1958) 497;<br />

English translation <strong>in</strong>: P.I. Kuznetsov, R.L. Stratonovich, V.I. Tikhonov (Eds.), Nonl<strong>in</strong>ear<br />

Transformations of Stochastic Processes, Pergamon Press, Oxford, 1965.<br />

[14] J. Łuczka, R. Bartussek, P. Hänggi, Europhys. Lett. 31 (1995) 431.<br />

[15] H.S. Leff, A.F. Rex, Maxwells Demon, Entropy, Information, Comput<strong>in</strong>g, Adam Hilger, Bristol,<br />

1990.<br />

[16] L. Machura, M. Kostur, P. Ha¨ nggi, P. Talkner, J. Łuczka, Phys. Rev. E 70 (2004) 031107.<br />

[17] H. Grabert, U. Weiss, P. Talkner, Z. Phys. B 55 (1984) 87;<br />

P. Riseborough, P. Ha¨ nggi, U. Weiss, Phys. Rev. A 31 (1985) 471.<br />

[18] P. Jung, P. Ha¨ nggi, Adv. Chem. Phys. 89 (1995) 239.<br />

[19] R.F. Fox, Phys. Rev. A 34 (1986) 4525.<br />

[20] P. Jung, P. Ha¨ nggi, Phys. Rev. A 35 (1987) 4464.<br />

[21] P. Hänggi, R. Bartussek, Lect. Notes Phys. 476 (1996) 294;<br />

R.D. Astumian, P. Hänggi, Phys. Today 55 (11) (2002) 33;<br />

P. Reimann, P. Hänggi, Appl. Phys. A 75 (2002) 169;<br />

P. Reimann, Phys. Rep. 361 (2002) 57;<br />

H. L<strong>in</strong>ke, Appl. Phys. A 75 (2002) 167, special issue on Brownian motors.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!