01.06.2014 Views

practical applications of in-process monitoring for laser ... - Prometec

practical applications of in-process monitoring for laser ... - Prometec

practical applications of in-process monitoring for laser ... - Prometec

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Proceed<strong>in</strong>gs <strong>of</strong> the 23 rd International Congress on Applications <strong>of</strong> Lasers and Electro-Optics 2004<br />

PRACTICAL APPLICATIONS OF IN-PROCESS MONITORING FOR LASER PROCESSES -<br />

NOT ONLY FOR SINGLE WELDS AND COMMON MATERIALS.<br />

Joerg Beersiek 1 , Thomas Devermann 1 , Klaus Behler 2<br />

1<br />

PROMETEC GmbH, Jülicher Str. 338, 52070 Aachen, Germany<br />

2 University <strong>of</strong> Applied Sciences, Wiesenstr. 14, 35390 Gießen-Friedberg, Germany<br />

Abstract/Manuscript<br />

Laser weld<strong>in</strong>g is by now a conventional <strong>in</strong>dustrial<br />

technology. Besides the prevalent <strong>process</strong>es to<br />

manufacture s<strong>in</strong>gle welds and endless seams more<br />

complex weld operations <strong>in</strong>volv<strong>in</strong>g multiple welds<br />

with differ<strong>in</strong>g jo<strong>in</strong>t designs <strong>in</strong> one work piece are<br />

becom<strong>in</strong>g common. Monitor<strong>in</strong>g <strong>of</strong> such parts require<br />

the weld monitor<strong>in</strong>g systems to <strong>of</strong>fer easily<br />

manageable solutions. For welded parts whose<br />

function is imperative <strong>for</strong> the secure operation <strong>of</strong><br />

systems, the secure <strong>in</strong>-<strong>process</strong> judgment <strong>of</strong> weld<br />

<strong>process</strong> quality is <strong>in</strong>dispensable.<br />

This paper discusses the functionality <strong>of</strong> a CMOS<br />

camera based monitor<strong>in</strong>g system <strong>for</strong> such purposes<br />

with help <strong>of</strong> case studies from e.g. the automotive<br />

<strong>in</strong>dustry. The basic work<strong>in</strong>g pr<strong>in</strong>ciple <strong>of</strong> this system<br />

<strong>for</strong> the monitor<strong>in</strong>g <strong>of</strong> <strong>laser</strong> <strong>process</strong>es has been<br />

published <strong>in</strong> <strong>for</strong>mer presentations.<br />

The way <strong>of</strong> solv<strong>in</strong>g unique monitor<strong>in</strong>g tasks with the<br />

system is presented us<strong>in</strong>g <strong>practical</strong> examples. These<br />

examples show the capabilities <strong>of</strong> a camera based<br />

<strong>process</strong> monitor<strong>in</strong>g system like geometrical resolution,<br />

adaptable algorithms and <strong>in</strong>dependence <strong>of</strong> the weld<strong>in</strong>g<br />

direction.<br />

Pos.<br />

Sketch<br />

Description <strong>of</strong> the<br />

Application<br />

Material<br />

Jo<strong>in</strong>t<br />

configuration<br />

Type <strong>of</strong><br />

Mach<strong>in</strong>e<br />

Type <strong>of</strong><br />

Laser<br />

Power<br />

Range<br />

Monitor<strong>in</strong>g<br />

Task(s)<br />

Interface<br />

User<br />

1<br />

Weld<strong>in</strong>g <strong>of</strong> thick<br />

section steel beams<br />

synchronal with two<br />

<strong>process</strong><strong>in</strong>g heads <strong>in</strong> a<br />

T-jo<strong>in</strong>t configuration<br />

Mild steel<br />

Double Fillet jo<strong>in</strong>t<br />

Special weld<strong>in</strong>g<br />

mach<strong>in</strong>e with two<br />

<strong>process</strong><strong>in</strong>g heads<br />

CO2-<strong>laser</strong><br />

12 kW<br />

Laser beam<br />

position with<br />

regard to the<br />

jo<strong>in</strong>t; Penetration<br />

depth<br />

Pr<strong>of</strong>ibus<br />

Power plants<br />

2<br />

Endless weld<strong>in</strong>g <strong>of</strong><br />

pr<strong>of</strong>iles<br />

Mild steel,<br />

galvanized<br />

Lap jo<strong>in</strong>t<br />

Tube weld<strong>in</strong>g<br />

mach<strong>in</strong>e with dual<br />

focus<br />

CO2-<strong>laser</strong><br />

2 - 5 kW<br />

Penetration<br />

depth; Lack <strong>of</strong><br />

fusion; Focal<br />

position; Laser<br />

power<br />

Pr<strong>of</strong>ibus<br />

Automotive<br />

3<br />

Circumferential weld<br />

on gear parts<br />

High strength<br />

steel<br />

Butt jo<strong>in</strong>t<br />

Special weld<strong>in</strong>g<br />

mach<strong>in</strong>e with<br />

stationary<br />

<strong>process</strong><strong>in</strong>g head<br />

and rotary chuck<br />

Nd:YAG <strong>laser</strong> 1.5 - 2.5 kW<br />

Penetration<br />

depth; Part<br />

position; Weld<br />

<strong>of</strong>fset; Gas<br />

variations<br />

Pr<strong>of</strong>ibus<br />

Automotive<br />

4<br />

Various jo<strong>in</strong>ts on seat<br />

rails<br />

Mild Steel<br />

Fillet jo<strong>in</strong>ts, Butt<br />

jo<strong>in</strong>ts, Flare Bevel<br />

jo<strong>in</strong>t<br />

Robot <strong>laser</strong> weld<strong>in</strong>g<br />

Nd:YAG <strong>laser</strong><br />

cell<br />

3 kW<br />

Weld length,<br />

Laser power,<br />

Focal position,<br />

Gaps, Blow outs<br />

Pr<strong>of</strong>ibus<br />

Automotive<br />

5<br />

Heat Exchanger<br />

(Var. Types)<br />

Titanium,<br />

Hastaloy,<br />

Nickel etc.<br />

Overlap-Jo<strong>in</strong>ts<br />

Robot <strong>laser</strong><br />

weld<strong>in</strong>g cell<br />

Nd:YAG<br />

<strong>laser</strong><br />

3-4 kW<br />

Weld<strong>in</strong>g<br />

Speed, Laser<br />

Power, Focal<br />

Position, Gas<br />

Supply, Gaps<br />

Pr<strong>of</strong>ibus<br />

Var.<br />

table 1<br />

Applications overview <strong>of</strong> the WELDING MONITOR PD2000


Introduction<br />

Today, the use <strong>of</strong> <strong>in</strong> <strong>process</strong> monitor<strong>in</strong>g systems is a<br />

common method to ensure quality <strong>in</strong> an <strong>in</strong>dustrial<br />

<strong>laser</strong> weld<strong>in</strong>g production <strong>process</strong>. There are lots <strong>of</strong><br />

different systems based on analysis <strong>of</strong> the radiation <strong>of</strong><br />

the plasma plume or analysis <strong>of</strong> the back reflection <strong>of</strong><br />

the <strong>laser</strong> light, or camera based systems, like the<br />

camera system <strong>of</strong> <strong>Prometec</strong>, which analyzes plasma<br />

and meltpool coaxial to the <strong>laser</strong> beam with a high<br />

spatial resolution.<br />

Today, the camera system is used <strong>for</strong> different<br />

<strong>applications</strong> and <strong>in</strong>tegrated <strong>in</strong> a number <strong>of</strong> production<br />

l<strong>in</strong>es. Some examples <strong>of</strong> different solved <strong>applications</strong><br />

are given <strong>in</strong> table 1.<br />

Additionally, the camera system can be used <strong>for</strong><br />

experiments and <strong>applications</strong> to get <strong>in</strong>terest<strong>in</strong>g view<br />

on weld<strong>in</strong>g <strong>process</strong>es. There<strong>for</strong>e trials were executed<br />

<strong>in</strong> cooperation with Pr<strong>of</strong>. Dr. Behler at the company<br />

Trumpf <strong>in</strong> Schramberg, Germany.<br />

The aim was to enlarge the work<strong>in</strong>g field <strong>of</strong> <strong>laser</strong><br />

<strong>process</strong>es at the hump<strong>in</strong>g border, to f<strong>in</strong>d possibilities<br />

<strong>for</strong> monitor<strong>in</strong>g the aris<strong>in</strong>g <strong>of</strong> hump<strong>in</strong>g failures and to<br />

validate theoretical ideas [3-8] with the help <strong>of</strong> our<br />

camera system[1,2].<br />

In this paper, the result<strong>in</strong>g images <strong>in</strong> comparison to<br />

the weld<strong>in</strong>g result will be discussed and <strong>in</strong>terpreted.<br />

Experimental setup<br />

In any case our camera system is positioned coaxially<br />

to the <strong>laser</strong> beam [1,2]. This is an exceptional<br />

position <strong>for</strong> the camera because it is possible to<br />

obta<strong>in</strong> <strong>in</strong><strong>for</strong>mation from the <strong>in</strong>ner parts <strong>of</strong> the<br />

keyhole. The setup <strong>of</strong> a system us<strong>in</strong>g a Nd-YAG <strong>laser</strong><br />

is presented <strong>in</strong> figure 1.<br />

Dur<strong>in</strong>g an <strong>in</strong>dustrial <strong>process</strong> the s<strong>of</strong>tware <strong>of</strong> the<br />

camera evaluates different failures and <strong>process</strong><br />

parameters onl<strong>in</strong>e with the help <strong>of</strong> characteristic<br />

regions with<strong>in</strong> the image <strong>of</strong> the camera.<br />

However it is possible to use the recorded films to<br />

analyze the <strong>process</strong> and to improve <strong>process</strong><br />

parameters. These possibilities are described us<strong>in</strong>g<br />

the example <strong>of</strong> the hump<strong>in</strong>g effect.<br />

figure 1<br />

Laser<br />

Monitor<strong>in</strong>g setup <strong>for</strong> a Nd-YAG<br />

With this setup a Nd:YAG <strong>laser</strong> with an output power<br />

<strong>of</strong> P L = 3,5 kW, was used . Dur<strong>in</strong>g the entire<br />

experiments, the output power and the focal position<br />

was constant.<br />

The used material <strong>for</strong> all experiments was a standard<br />

mild steel, uncoated partial penetrated. The weld<strong>in</strong>g<br />

speed and power distribution (Tw<strong>in</strong> spot optic) will<br />

be changed over the experiments.<br />

The result<strong>in</strong>g images <strong>of</strong> the camera are presented <strong>in</strong><br />

figure 2.<br />

The camera delivers greyscaled images. In order to<br />

<strong>in</strong>crease the contrast <strong>of</strong> the picture, the images are<br />

presented <strong>in</strong> false color. The color table is given <strong>in</strong><br />

The two presented images are averaged over a full<br />

weld seam and the zone, which is illum<strong>in</strong>ated by the<br />

<strong>laser</strong> beam is highlighted by a circle <strong>in</strong> the image.<br />

They show the <strong>in</strong>teraction zone between the <strong>laser</strong><br />

beam and the workpiece. The images show the<br />

temperature radiation <strong>of</strong> the melt pool and the<br />

keyhole. Differences <strong>in</strong> the <strong>in</strong>tensity will be<br />

<strong>in</strong>terpreted as differences <strong>in</strong> temperature.


f=200mm<br />

Laser beam<br />

Laser beam<br />

f=100mm<br />

1 mm<br />

1 mm<br />

Diameter <strong>of</strong> <strong>laser</strong> beam: 0,4 mm<br />

Parameters: Nd:YAG-Laser; P L : 3,5 kW; v S : 20 m/m<strong>in</strong>;<br />

Diameter <strong>of</strong> <strong>laser</strong> beam: 0,2 mm<br />

Color table:<br />

≅ 100<br />

≅ 150<br />

≅ 200<br />

≅ 255<br />

figure 2<br />

Dimensions <strong>of</strong> the images <strong>of</strong> the camera system at different focal length, f<br />

The resolution <strong>of</strong> the image is controlled by the lens <strong>of</strong><br />

the focus<strong>in</strong>g head <strong>of</strong> the <strong>laser</strong> beam and by the imag<strong>in</strong>g<br />

optic <strong>of</strong> the camera. The change <strong>of</strong> the focal length <strong>of</strong><br />

the focus<strong>in</strong>g head from f=200 mm to f=100 mm causes<br />

an <strong>in</strong>crease <strong>of</strong> the image resolution by a factor <strong>of</strong> two.<br />

There<strong>for</strong>e the number <strong>of</strong> pixels, which are illum<strong>in</strong>ated<br />

by the <strong>in</strong>teraction zone, are nearly the same. In both<br />

cases the width <strong>of</strong> the weld was imaged on 40 pixels <strong>of</strong><br />

the CCD- chip <strong>of</strong> the camera. Each pixel had an image<br />

area <strong>of</strong> 6.7 x 6.7 µm.<br />

The image with a focal length f=200 mm shows a spot<br />

with higher <strong>in</strong>tensity beh<strong>in</strong>d the keyhole region. This<br />

spot is <strong>in</strong>terpreted as the result <strong>of</strong> the melt flow from<br />

figure 3 with the weld<strong>in</strong>g speed <strong>of</strong> 8 m/m<strong>in</strong>. The<br />

image shows a circular <strong>in</strong>tensity distribution and<br />

complies to the region around the keyhole. The<br />

temperature <strong>of</strong> the melt beh<strong>in</strong>d the keyhole seemed to<br />

be too low <strong>for</strong> the camera. At 15 m/m<strong>in</strong>, the velocity <strong>of</strong><br />

the melt flow <strong>in</strong>creases and hot material appears from<br />

the deeper regions <strong>of</strong> the keyhole to the surface. The<br />

<strong>in</strong>tensity distribution <strong>in</strong>creases and acquires a<br />

cyl<strong>in</strong>drical shape. A comparison <strong>of</strong> the images between<br />

8 m/m<strong>in</strong> and 15 m/m<strong>in</strong> shows, that the temperature at<br />

the deeper regions <strong>of</strong> the keyhole. In analogy to a stern<br />

wave <strong>of</strong> a motorboat the <strong>process</strong> generated a stationary<br />

wave <strong>in</strong> the melt pool beh<strong>in</strong>d the keyhole. This effect<br />

is <strong>of</strong>ten shown <strong>in</strong> the follow<strong>in</strong>g chapters.<br />

focal length f=200mm<br />

In the experiments, the weld<strong>in</strong>g speed was <strong>in</strong>creased<br />

up to the threshold <strong>of</strong> hump<strong>in</strong>g. The temperature<br />

distribution <strong>in</strong> the keyhole and <strong>in</strong> the melt pool was<br />

recorded by the camera. The result<strong>in</strong>g images are<br />

presented<br />

<strong>in</strong><br />

the front <strong>of</strong> the keyhole was shifted to the back and the<br />

<strong>in</strong>tensity gradient at the front <strong>in</strong>creases <strong>for</strong> 15 m/m<strong>in</strong>.


8m/m<strong>in</strong> 15 m/m<strong>in</strong> 20 m/m<strong>in</strong> 22 m/m<strong>in</strong> 22,3 m/m<strong>in</strong> 22,5 m/m<strong>in</strong> 23 m/m<strong>in</strong><br />

Parameters: Nd:YAG-Laser; P L : 3,5 kW; f= 200 mm<br />

Hump<strong>in</strong>g<br />

figure 3<br />

creation <strong>of</strong> Hump<strong>in</strong>g with a focal length f= 200mm<br />

Additionally, the temperature or the <strong>in</strong>tensity at the<br />

center <strong>of</strong> the keyhole <strong>in</strong>creases. These effects were<br />

observed <strong>in</strong> <strong>for</strong>mer presentations and are theoretically<br />

apprehended [6, 7]. Due to the higher speed <strong>of</strong> the<br />

weld<strong>in</strong>g the <strong>laser</strong> beam has to <strong>in</strong>crease preheat<strong>in</strong>g <strong>of</strong><br />

the weld, if the shape <strong>of</strong> the capillary is to be kept<br />

constant. The <strong>in</strong>crease <strong>of</strong> the temperature <strong>in</strong> the center<br />

shows the <strong>in</strong>crease <strong>of</strong> the evaporation rate <strong>in</strong> the<br />

keyhole, which is necessary to uphold the shape <strong>of</strong> the<br />

keyhole.<br />

If the weld<strong>in</strong>g speed is <strong>in</strong>creased, up to 20 m/m<strong>in</strong>, the<br />

temperature at the center decreases and the hot spot<br />

beh<strong>in</strong>d the keyhole occurs. The whole <strong>in</strong>tensity<br />

distribution acquires a figure eight shape. The hot spot<br />

is <strong>in</strong>terpreted as the result <strong>of</strong> a hot melt flow com<strong>in</strong>g<br />

from hotter and deeper parts <strong>of</strong> the keyhole. The<br />

decrease <strong>of</strong> <strong>in</strong>tensity <strong>in</strong> the center <strong>of</strong> the keyhole<br />

<strong>in</strong>dicates a flatter absorption front and a change <strong>in</strong> the<br />

shape <strong>of</strong> the keyhole.<br />

When the speed is <strong>in</strong>creased further, a very sharp<br />

threshold <strong>for</strong> the hump<strong>in</strong>g effect occurs at a speed<br />

between 22,3 m/m<strong>in</strong> and 22,5 m/m<strong>in</strong>. This effect <strong>in</strong> the<br />

melt pool corresponds to a drastic change <strong>in</strong> the images<br />

<strong>of</strong> the camera. The whole <strong>in</strong>tensity distribution <strong>in</strong> the<br />

image decreases. The whole melt pool seemed to<br />

absorb less energy. This is <strong>in</strong>terpreted as an abrupt<br />

change <strong>of</strong> speed <strong>in</strong> the melt flow. Due to the higher<br />

speed <strong>of</strong> the melt flow and the short time <strong>of</strong> direct<br />

contact with the <strong>laser</strong> beam, the melt goes not have the<br />

time to absorb more power from the <strong>laser</strong> and the melt<br />

becomes colder.<br />

The hot spot beh<strong>in</strong>d the keyhole is comparable to the<br />

hot spot at lower weld<strong>in</strong>g speed. The difference is that<br />

the spot is colder and there<strong>for</strong>e the melt freezes quicker<br />

and the melt flow has no time <strong>for</strong> relaxation. This is<br />

the reason <strong>for</strong> the occurrence <strong>of</strong> hump<strong>in</strong>g.<br />

focal length f=100mm<br />

The shape <strong>of</strong> the keyhole and the speed <strong>of</strong> the melt<br />

flow imp<strong>in</strong>ge on the occurrence <strong>of</strong> hump<strong>in</strong>g. The shape<br />

<strong>of</strong> the keyhole and the melt pool are changed us<strong>in</strong>g<br />

different focal length. There<strong>for</strong>e the results <strong>for</strong> a focal<br />

length <strong>of</strong> f=200mm should be compared with another<br />

focal length. Accord<strong>in</strong>g to literature [3-8] it is known,<br />

that the hump<strong>in</strong>g effect can be shifted to higher<br />

weld<strong>in</strong>g speed by the use <strong>of</strong> a smaller focal length.<br />

There<strong>for</strong>e, a focal length <strong>of</strong> f=100mm was used <strong>for</strong> the<br />

comparison.<br />

The result<strong>in</strong>g images are presented <strong>in</strong> figure 4.


10 m/m<strong>in</strong> 15 m/m<strong>in</strong> 20 m/m<strong>in</strong> 25 m/m<strong>in</strong> 30 m/m<strong>in</strong> 35 m/m<strong>in</strong> 40 m/m<strong>in</strong> 45 m/m<strong>in</strong><br />

Parameters: Nd:YAG-Laser; P L : 3,5 kW; f= 100 mm<br />

figure 4<br />

Dependence <strong>of</strong> the averaged camera image on weld<strong>in</strong>g speed us<strong>in</strong>g a focal length <strong>of</strong> f=100mm<br />

Similar to the results with f=200mm the length <strong>of</strong> the<br />

melt pool <strong>in</strong>creases at higher weld<strong>in</strong>g speed. In<br />

contrast to these results the <strong>in</strong>tensity and there<strong>for</strong>e the<br />

temperature <strong>in</strong> the center <strong>of</strong> the keyhole <strong>in</strong>creases with<br />

higher speed. This result <strong>in</strong>dicates that the shape <strong>of</strong> the<br />

keyhole is comparable over all welds. Nevertheless the<br />

temperature <strong>of</strong> the melt decreases aga<strong>in</strong> at higher<br />

speed. At a speed <strong>of</strong> 25 m/m<strong>in</strong> aga<strong>in</strong> a hot spot occurs.<br />

Even at 30 m/m<strong>in</strong> a second spot occurs. The<br />

occurrence <strong>of</strong> hump<strong>in</strong>g will be discussed <strong>in</strong> detail <strong>in</strong><br />

figure 5 and figure 6.<br />

V s = 25 m/m<strong>in</strong><br />

V s = 30 m/m<strong>in</strong><br />

Camera<br />

image<br />

Detail <strong>of</strong><br />

weld seam<br />

Camera<br />

image<br />

Detail <strong>of</strong><br />

weld seam<br />

1 mm<br />

1 mm<br />

crossection<br />

crossection<br />

0,5 mm<br />

0,5 mm<br />

Parameters: Nd:YAG-Laser; P L : 3,5 kW; f= 100 mm<br />

figure 5<br />

occurrence <strong>of</strong> hump<strong>in</strong>g I


Us<strong>in</strong>g a focal length <strong>of</strong> 100 mm the hump<strong>in</strong>g effect<br />

occurs at a speed <strong>of</strong> 30 m/m<strong>in</strong> <strong>for</strong> the first time. In the<br />

images this effect corresponds with the occurrence <strong>of</strong><br />

a second hot spot at the end <strong>of</strong> the melt pool. This<br />

k<strong>in</strong>d <strong>of</strong> hump<strong>in</strong>g is well known from <strong>for</strong>mer<br />

publications [3-7] and corresponds to a bellied shape<br />

<strong>in</strong> the cross section <strong>of</strong> the weld seam. From now on<br />

this k<strong>in</strong>d <strong>of</strong> hump<strong>in</strong>g is called hump<strong>in</strong>g I.<br />

At 25 m/m<strong>in</strong> the basic approach <strong>of</strong> the bellied shape<br />

is identifiable but the weld seam is flatter and the<br />

re<strong>in</strong><strong>for</strong>cement is not as dist<strong>in</strong>ctive as <strong>in</strong> the case <strong>of</strong><br />

30 m/m<strong>in</strong>.<br />

If the weld<strong>in</strong>g speed <strong>in</strong>creases up to 35 m/m<strong>in</strong><br />

(figure 6) the hump<strong>in</strong>g effect vanishes and the<br />

result<strong>in</strong>g weld seam is smooth aga<strong>in</strong>. The difference<br />

<strong>in</strong> the image <strong>of</strong> the melt pool is obvious. The melt is<br />

cooler and the image shows only one hot spot.<br />

At 40 m/m<strong>in</strong> the hump<strong>in</strong>g effect occurs aga<strong>in</strong> and the<br />

effect shows the now expected behavior <strong>of</strong> a cooler<br />

melt pool. This k<strong>in</strong>d <strong>of</strong> hump<strong>in</strong>g is called from now<br />

on hump<strong>in</strong>g II.<br />

V s = 35 m/m<strong>in</strong><br />

V s = 40 m/m<strong>in</strong><br />

Camera<br />

image<br />

Detail <strong>of</strong><br />

weld seam<br />

Camera<br />

image<br />

Detail <strong>of</strong><br />

weld seam<br />

1 mm<br />

1 mm<br />

crossection<br />

crossection<br />

0,5 mm<br />

0,5 mm<br />

Parameters: Nd:YAG-Laser; P L : 3,5 kW; f= 100 mm<br />

figure 6<br />

occurrence <strong>of</strong> hump<strong>in</strong>g II<br />

Tw<strong>in</strong> spot optic<br />

Another way to change the shape <strong>of</strong> the keyhole and<br />

there<strong>for</strong>e the conditions <strong>of</strong> hump<strong>in</strong>g generation is the<br />

use <strong>of</strong> a tw<strong>in</strong> spot optic.<br />

Under this aim the best results were achieved us<strong>in</strong>g a<br />

tw<strong>in</strong> spot optic with a distance <strong>of</strong> 400µm. The<br />

correspond<strong>in</strong>g images are given <strong>in</strong> figure 8.<br />

Tw<strong>in</strong> spot optics with different distances between the<br />

two <strong>laser</strong> spots were tested with regard to their<br />

<strong>in</strong>fluence on the occurrence <strong>of</strong> hump<strong>in</strong>g and the aim to<br />

suppress the <strong>for</strong>mation <strong>of</strong> hump<strong>in</strong>g.


S<strong>in</strong>gle<br />

Spot<br />

Tw<strong>in</strong>spot<br />

200 µm<br />

Tw<strong>in</strong>spot<br />

300 µm<br />

Tw<strong>in</strong>spot<br />

400 µm<br />

Tw<strong>in</strong>spot<br />

500 µm<br />

10 m/m<strong>in</strong><br />

10 m/m<strong>in</strong><br />

10 m/m<strong>in</strong><br />

10 m/m<strong>in</strong><br />

10 m/m<strong>in</strong><br />

Laser beam<br />

Laser beam<br />

Laser beam<br />

1 mm<br />

Parameters: Nd:YAG-Laser; P L : 3,5 kW; f= 100 mm<br />

figure 7<br />

Influence on keyhole <strong>for</strong>mation us<strong>in</strong>g different distances between the two focal spots <strong>of</strong> tw<strong>in</strong><br />

spot optic (0 to 500 µm)<br />

The weld<strong>in</strong>g results show the hump<strong>in</strong>g effect only at<br />

a weld<strong>in</strong>g speed <strong>of</strong> 42 m/m<strong>in</strong>. The so called hump<strong>in</strong>g<br />

I effect was suppressed by the tw<strong>in</strong> spot optic and the<br />

correspond<strong>in</strong>g images shows aga<strong>in</strong> the effect <strong>of</strong><br />

cool<strong>in</strong>g <strong>for</strong> hump<strong>in</strong>g II at 42 m/m<strong>in</strong>.<br />

The image <strong>for</strong> 20m/m<strong>in</strong> shows a hot bridge between<br />

the two <strong>laser</strong> spots. With <strong>in</strong>creas<strong>in</strong>g speed this<br />

develops to a hot spot beh<strong>in</strong>d the first keyhole. But<br />

this spot is <strong>in</strong>fluenced by the keyhole <strong>of</strong> the second<br />

<strong>laser</strong> spot. This may be the reason <strong>for</strong> suppress<strong>in</strong>g the<br />

hump<strong>in</strong>g I effect.


20 m/m<strong>in</strong> 25 m/m<strong>in</strong> 30 m/m<strong>in</strong> 35 m/m<strong>in</strong> 40 m/m<strong>in</strong> 42 m/m<strong>in</strong><br />

Parameters: Nd:YAG-Laser; P L : 3,5 kW; f= 100 mm<br />

Hump<strong>in</strong>g II<br />

figure 8 occurrence <strong>of</strong> hump<strong>in</strong>g us<strong>in</strong>g a tw<strong>in</strong> spot optic with a spot distance <strong>of</strong> 400 µm<br />

Conclusion<br />

The hump<strong>in</strong>g effect can be suppressed with the use <strong>of</strong><br />

a tw<strong>in</strong> spot optic. A detailed description <strong>of</strong> these<br />

results will be given <strong>in</strong> the near future [7]. The<br />

occurrence <strong>of</strong> hump<strong>in</strong>g can be observed <strong>in</strong>-<strong>process</strong><br />

us<strong>in</strong>g a camera positioned coaxial to the <strong>laser</strong> beam.<br />

Due to the hot spots beh<strong>in</strong>d the keyhole, the presence<br />

and the absence <strong>of</strong> hump<strong>in</strong>g can be monitored<br />

def<strong>in</strong>itely.<br />

With these results it is planned to build up a closed<br />

loop <strong>for</strong> the weld<strong>in</strong>g speed to prevent the weld<strong>in</strong>g<br />

<strong>process</strong> <strong>for</strong> hump<strong>in</strong>g effects.<br />

In addition to that the images can be used <strong>in</strong> scientific<br />

work to understand the melt flow dur<strong>in</strong>g weld<strong>in</strong>g.<br />

The <strong>in</strong>terpretation <strong>of</strong> the <strong>in</strong>tensity spots beh<strong>in</strong>d the<br />

keyhole as the result <strong>of</strong> a hot wave must be<br />

<strong>in</strong>vestigated further and verified.<br />

References<br />

[1] Beersiek, J. (2002) New Aspects <strong>of</strong><br />

Monitor<strong>in</strong>g with a CMOS camera <strong>for</strong> Laser<br />

Materials Process<strong>in</strong>g<br />

ICALEO 2002<br />

[2] Beersiek J. (2001) A CMOS camera as a<br />

tool <strong>for</strong> <strong>process</strong> analysis not only <strong>for</strong> <strong>laser</strong><br />

beam weld<strong>in</strong>g<br />

ICALEO 2001, Section F206<br />

[3] Bradstreet, B. (July 1968) Effect <strong>of</strong><br />

Surface Tension and Metal Flow on Weld<br />

Bead Formation<br />

Weld<strong>in</strong>g Research Supplement


[4] Mendez, P. F; Eagar, T. W (October 2003)<br />

Penetration and Defect Formation <strong>in</strong> High-<br />

Current Arc Weld<strong>in</strong>g<br />

Weld<strong>in</strong>g Journal<br />

[5] Beck, M; et al. (1990) Aspects <strong>of</strong><br />

Keyhole/Melt Interaction <strong>in</strong> High Speed<br />

Laser Weld<strong>in</strong>g<br />

Proc. 8 th Int. Symp. On Gas Flow and<br />

Chemical Lasers (GCL), Madrid<br />

[6] Schmidt, H. (1994) Hochgeschw<strong>in</strong>digkeits-<br />

Schweißen von Fe<strong>in</strong>stblechen mit CO 2 -<br />

Laserstrahlung unter besonderer Berücksichtigung<br />

des Hump<strong>in</strong>g-Effektes<br />

Diss. RWTH Aachen,<br />

Wissenschaftsverlag Ma<strong>in</strong>z, Aachen<br />

[7] Pirch, N; et al. (1992) Die Hump<strong>in</strong>g<br />

Instabilität beim Schweißen mit Laserstrahlung<br />

Proc. Konf. Laser ´91, München<br />

[8] Behler, K. to be published

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!