31.10.2012 Views

Radiographic Film Dosimetry

Radiographic Film Dosimetry

Radiographic Film Dosimetry

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Radiographic</strong><br />

Indra J. J Das, , Ph hD, , FACR<br />

<strong>Film</strong> <strong>Dosimetry</strong><br />

Department of Radi iation Oncology<br />

Indiana University of School of<br />

Medicine & Midwe est Proton<br />

Radiation Therapy Institute (MPRI)<br />

Indianapolis, IN<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Learning OObjectives<br />

As describedd<br />

in TG-66<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Historical Pe<br />

erspective<br />

1826 Joseph Niepce First Photogrraph<br />

1836 J. M. Daguerre Concept of ddeveloper<br />

1889 Eastman Kodak Cellulose nittrate<br />

base for emulsion<br />

1890 Hurter & Driffield Defined the tterm<br />

optical density<br />

1895 Roentgen First Radiograph<br />

1896 Carl lSchlussner hl First i glass l plllate<br />

l for f radiography di h<br />

1913 Kodak <strong>Film</strong> on Celllulose<br />

nitrate base<br />

1918 Kodak Double emullsion<br />

film<br />

1933 Dupont X-ray X ray film w with blue base<br />

1942 Pako Automatic fiilm<br />

processor<br />

1960 Dupont Polyester base<br />

introduced<br />

1965 Kodak Rapid film pprocessing<br />

1972 Kodak XTL and XVV<br />

film for therapy<br />

1983 Fuji Computed raadiography<br />

system<br />

1992 CEA Vacuum paccked<br />

TLF AND TVS film<br />

1994 3M DDry<br />

process llaser imaging i i<br />

2000 Kodak Extended doose<br />

range (EDR) film<br />

ID/ARS/09


Radiograpphic<br />

<strong>Film</strong><br />

� Base (Cellulose nitrate oor<br />

Polyester)<br />

(t (typically i ll 200 �m) )<br />

� Emulsion (10-20 �m; 2--5<br />

mg/cm3 )<br />

�� Gelatin (derivative fr<br />

rom bone)<br />

� grain (size: 0.1�3 �mm<br />

diameter)<br />

o AgBr (cubic crystal with llattice<br />

distance of 28 nm<br />

o AgI<br />

o KI<br />

� There are 109-1012 grrains/cm2<br />

in a x-ray films<br />

� Coating<br />

� Very sensitive whichh<br />

may determine X &<br />

Y direction uniformit ty<br />

ID/ARS/09<br />

Emulsion<br />

Base


Photographhic<br />

Process<br />

�� Sil Silver halides h lid (A AAgBr, AAgCl, Cl A AgI) ) are<br />

sensitive to radiaation.<br />

� Radiation event ( (latent image) can be<br />

magnified by a billion<br />

fold (10<br />

developer.<br />

9 ) with<br />

ID/ARS/09


Emulsion of Fiilm/Radiograph<br />

The heart of a film is emulsion whichh<br />

contains grains (crystals of silver<br />

hhalides) lid ) in<br />

gelatin l i<br />

Gelatin is suitable due to<br />

� it keeps grains well dispersed<br />

� it prevents clumping and sedimentatioon<br />

of grains<br />

�� it protects the unexposed grains from<br />

reduction by a developer<br />

� it allows easy processing of exposed<br />

grains<br />

� it is neutral to the grains in terms of<br />

fogging, loss of sensitivity<br />

Electron micrograph of grain in gelatin<br />

ID/ARS/09


Unusual Grain Morpho ologies of <strong>Film</strong>s<br />

Eastman Kodak Company, 2001<br />

Cheng & Das, Med. Phys. 23, 1225, 1996<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Latennt<br />

image<br />

�� The change which c<br />

auses the grains to be<br />

rendered developablle<br />

on exposure is<br />

considered to be the<br />

formation of latent<br />

image.<br />

�� IIt iis composed d of fann<br />

aggregate of fa few f<br />

silver atoms (4-10).<br />

� On average 1000 Agg<br />

atoms are formed per<br />

x-ray quantum absorrbed<br />

in a grain.<br />

� Gurney & Mott provvided<br />

a clear picture of<br />

ID/ARS/09<br />

latent image


Gurney & Mott Theory<br />

of Latent Image<br />

Speck<br />

Grai in<br />

Silv ver<br />

X-ray ray<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


<strong>Film</strong> Proocessing<br />

�� Developing [(Metol; methyl<br />

1phenol 3pyrazolidone)]<br />

� Converts all Ag + at<br />

Ag + toms to Ag. The latent image<br />

Ag are developed<br />

d much more rapidly. rapidly<br />

� Stop Bath<br />

�� dilute acetic acid st<br />

tops all reaction and further<br />

development<br />

� Fixer, , Hypo yp (Sodium ( Thios<br />

� it dissolves all undeeveloped<br />

grains.<br />

� Washing<br />

� Drying<br />

l-p-aminophenol l p aminophenol sulphate or Phenidone;<br />

sulphate) p )<br />

ID/ARS/09


Opti cal Dens sity<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8 08 0.8<br />

0.6<br />

0.4<br />

Temperature Dependenc ce of Various <strong>Film</strong>s<br />

Dupont<br />

Kodak MRM<br />

Fuji j<br />

Kodak MR5<br />

84 86 88 90 92<br />

94 96 98 100 102<br />

Developer Tempera ature (degree F)<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Ch Ch hange in OD O OOD<br />

per De egree Proc Proc essor Tem mperature<br />

((�� ��OD/ OD/��T) T)<br />

.10 Ko<br />

.08 OD=K OD=K0T T +K +K1T2 .06<br />

.04<br />

.02 02<br />

0.0<br />

91 92 93 94<br />

Bogucki et al, Med.Phys., 24, 581, 1997<br />

odak <strong>Film</strong>s<br />

Processor Temperatu ure (degree F)<br />

Min R M<br />

Ektascan HN<br />

T-Mat Mat G/RA<br />

Ektascan IR<br />

95 96 97 98 99<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Optical Density D (OOD)<br />

3.0<br />

2.5<br />

20 2.0<br />

1.5<br />

1.0<br />

05 0.5<br />

0.0<br />

XV, 100 cGy<br />

EDR, 400 cGy<br />

XV XV, 40 cG cGy<br />

EDR EDR, 80 cGy<br />

Srivastava & Das Med Phys 34:2445-46, 2007<br />

Temperaturee<br />

Dependence of Kodak films<br />

y = 0.0244x + 0.13<br />

R²=0.8782 R 0.8782<br />

y = 0.0176x + 0.532<br />

R² = 0.8951 0 8951<br />

y = 0.0204x 0 0204x - 00.606 606<br />

R² = 0.8856<br />

y = 0.0046x - 0.035<br />

R² = 0.9653<br />

80 82 84 86 88 90 92 94 96 98 100 102 104 106<br />

Temperature<br />

(deg F)<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Speed S SSpeed d<br />

% change<br />

Contrast<br />

Average<br />

Gradient<br />

Base<br />

+<br />

Fog<br />

40<br />

20<br />

0<br />

-20 20<br />

3.6<br />

3.4<br />

32 3.2<br />

3.0<br />

2.8<br />

0.22<br />

0.20<br />

0.18<br />

0.16<br />

Standard Process sing Cycle<br />

91 F<br />

33 C<br />

95 F<br />

35 C<br />

Tempe erature<br />

99 F<br />

37 C<br />

103 F<br />

39 C<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Hurter & Drriffield<br />

(1890)<br />

OD= log 10(Io/I)<br />

Optical D Density D (OD)<br />

OD=log10 (T) where T is transmittance<br />

T=e an<br />

a= average area/grain; n is<br />

N is number of grains/cm2 s number of exposed grains/cm2 ;<br />

2<br />

OD = log (T) = an log 110e<br />

e = 0.4343 0 4343 an<br />

n/N = a����where �� electron<br />

fluence<br />

OD 0 4343 2 OD = 0.4343 a N� 2N� OD is proportional to ��annd<br />

hence dose and square<br />

of grain area<br />

ID/ARS/09


Characteriistic<br />

curve<br />

H&D CCurve<br />

Gradient, gamma, sloppe<br />

= (D2-D1)/Log(E2/E1) Speed (sensiti (sensitivity)= it ) 1/RRoentgens<br />

for OD equal to unity<br />

Latitude (Contrast): raange<br />

of log exposure to<br />

give a an a acceptable density range<br />

base<br />

slop slope<br />

Log (exp posure)<br />

shoulder<br />

ID/ARS/09


Sensit tometric<br />

c<br />

(a)<br />

(c) () (c)<br />

Various types of plo ots for film response<br />

Log (exposure)<br />

Exposure, Dose<br />

(b)<br />

Log (exposure, dose) DX<br />

(d)<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09<br />

Tx


Optical Optical Density = OD( (DDr (D,Dr D,Dr, DDr, ETdFS ETdFS��)<br />

E, T, d, FS, ��)<br />

D D=Dose D = Dose<br />

Dr = Dose rate<br />

E E = Energy<br />

T = type of radiation (x (x-r rays, electrons etc)<br />

d = depth of measuremen nt<br />

FS= Field Size<br />

�� = Orientation: parallel or perpendicular<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Contras st<br />

7.0<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0<br />

Optimum Optic cal Density<br />

Range<br />

0 1.0 2.0<br />

Optica al Density<br />

21 film types yp<br />

3.0 4.0 5.0<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Fil <strong>Film</strong><br />

Double diffuse<br />

Inciddent<br />

light<br />

Specular<br />

Transmi itted light<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09<br />

Diffuse


Densitometerrs/<br />

Digitizers<br />

� Visual type yp densitomeeter<br />

(Dobson, ( , Griffith &<br />

Harrison, 1926)<br />

� Photoelectric type<br />

� light densitometer (widde<br />

spectrum)<br />

� Standard: McBeth, Xriite,<br />

Nuclear Associate etc<br />

�� Light source coupled w with CCD digitizer<br />

� Fluorescent light sourcce<br />

– Vidar VXR-16 Digitizer<br />

� LED light source - Howtek<br />

MultiRAD 460 Digitizer<br />

� Laser densitometer (sinngle<br />

wavelength)<br />

� Lumysis scanning systtem<br />

ID/ARS/09


Digiti g izers<br />

� Scanning film Digitizeer<br />

Artifacts:<br />

� Drift in OD; warm-up eeffect<br />

of fluorescent lamp<br />

� Use first 20-30 minutes<br />

� Scanner spatial distortioon<br />

� Validated in both dimennsions<br />

using known test patterns<br />

� Interference artifacts - at tthe<br />

interface of film and the glass<br />

plate/film support. (Multiple<br />

reflection due to changes in<br />

the index of refraction)<br />

Reinstein et. al., Dempsey et.al.<br />

as warm-up time<br />

� Use of diffused glass or anttireflective<br />

coated glass<br />

ID/ARS/09


Optimum <strong>Film</strong><br />

Properties<br />

� Linear with dose (dosee<br />

dependence)<br />

� Linear with dose rate (dose rate independence)<br />

� Radiation type (indepeendent<br />

of photon and<br />

electron)<br />

� Energy independent<br />

� Uniformity in x & y (ccoating<br />

artifact)<br />

� Processing condition<br />

� Fdi Fading<br />

� Delayed processing<br />

� Atmospheric conditiion,<br />

temperature, humidity<br />

ID/ARS/09


6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

10 10-2 10 10-1 10 100 0<br />

10<br />

Ehrlich, J.Opt.Soc.Am. 46,801, 1956<br />

Dose Rat te Dependence<br />

10 1<br />

0 0.033R/sec<br />

Exp Expp<br />

posure, p ,<br />

R<br />

62R/sec<br />

1.31R/sec<br />

1100R/sec<br />

10 102 10 103 10 104 10 105 ID/AAPM-<br />

SS-<strong>Film</strong>/09


Dose rattio<br />

110 1.10<br />

1.08<br />

1.06<br />

1.04<br />

1.02<br />

1.00<br />

0.98<br />

0.96<br />

0.94<br />

0.92<br />

6 MV, EDR <strong>Film</strong><br />

18 MV, EDR <strong>Film</strong><br />

Dose<br />

1 10 100<br />

Dose raate<br />

(cGy/min)<br />

1000 10000<br />

Srivastava and Das Med Phys 33:2089 , 2006<br />

rate (film)<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Net Optical O OOptical<br />

De ensity<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

Energy Dependence o of <strong>Radiographic</strong> <strong>Film</strong><br />

0<br />

28 keV<br />

44 keV<br />

0 10 20 30<br />

Muench et al, Med. Phys. 18, 769, 1991<br />

79 ke eV<br />

97 7 keV<br />

142 keV<br />

Kodak XV <strong>Film</strong><br />

40 50 60<br />

Dos Dosse<br />

se (cGy)<br />

1.71 MeV<br />

70 80<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Op ptical De ensity<br />

50 5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

Energy Dependenc e of CEA TVS film<br />

OD OD�� = 0.054 Dose<br />

OD ODx = 0.047 Dose<br />

x<br />

0 20 40<br />

Cheng & Das, Med. Phys. 23, 1225, 1996<br />

Gamma G rays y X-rays X rays<br />

Dose Dosee<br />

e(cGy) e (cGy)<br />

Cs Cs-137 137<br />

Co Co-60 60<br />

4 MV<br />

6 MV<br />

10 MV<br />

18 MV<br />

60 80 100<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


100<br />

50<br />

0<br />

Effect of film air ga ap on depth dose<br />

0.50<br />

0.25<br />

Dutreix et al, Ann NY Acad Sci, 161, 33, 1969<br />

0<br />

075 0.75 mm<br />

5<br />

Depth<br />

(cm)<br />

Air gap<br />

<strong>Film</strong><br />

10<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Effect of film misalign nment on depth dose<br />

100<br />

50<br />

0<br />

0<br />

2<br />

5 mm<br />

Dutreix et al, Ann NY Acad Sci, 161, 33, 1969<br />

5<br />

Depth h (cm)<br />

Air gap<br />

10<br />

<strong>Film</strong><br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Effect of film under align nment on depth dose<br />

100<br />

50<br />

0<br />

4<br />

0 0mm 0 mm<br />

7 mm<br />

Dutreix et al, Ann NY Acad Sci, 161, 33, 1969 Depth<br />

5<br />

(cm)<br />

Air gap<br />

10<br />

<strong>Film</strong><br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Methods to eliminaate<br />

problems with <strong>Film</strong><br />

�� To eliminate air trapped<br />

d inside jacket jacket, vacuum<br />

packing could be used (CCEA<br />

film)<br />

�� To keep identical positio<br />

on and press pressure, re RMI<br />

sells film cassettes for ddosimetry<br />

�� UUse fil film in i water t as sugggested<br />

tdb by van Battum Btt et t<br />

al, Radiother.Oncol. 34, 152, 1995<br />

�� Special phantom; Bova,<br />

Med. Dos. 15, 83, 1990<br />

� Modern films come withh<br />

vacuum packed<br />

ID/ARS/09


Optica al Density Densityy<br />

4<br />

3<br />

2<br />

1<br />

0<br />

CEA <strong>Film</strong><br />

ms (TLF, (TLF TVS)<br />

Kodak TL<br />

CEA TLF<br />

0 20 40<br />

Cheng & Das, Med. Phys. 23, 1225, 1996<br />

Do Doose<br />

ose (cGy)<br />

CEA TVS<br />

60 80 100<br />

Kodak XV<br />

120<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


OD vs<br />

Dose = a+b(OD) +c<br />

PDD = [a+b(OD) +c(OD) ) 2 ] d / [a+b(OD) +c(OD) 2 ] max<br />

OAR=[a+b(OD) +c(OD) 2 ] x / [a+b(OD) +c(OD) 2 ] cax<br />

For limited range and l inear film<br />

D = m(OD) (OD) th then thenn<br />

D2/D /D1 = OD OD2/O /OOD<br />

Dose<br />

c(OD) 2<br />

OD 1<br />

ID/ARS/09


Sensitivity of<br />

�Depth and field size dependdence<br />

of OD<br />

�V �Van BBattum et al, l fil film in i wwater<br />

�Burch et al, lead filter<br />

�Yeo et al , Lead filter<br />

�Skyes et al, against filter mmethod<br />

film to scatter<br />

�“although scatter filtering method<br />

appears to have the desired<br />

effect it seems intuitively wrrong<br />

to introduce a high Z filter in<br />

order to make an inadequate<br />

dosimeter, film, behave as if it is<br />

water equivalent”<br />

�Suchowerska et al MC simuulation<br />

to prove scatter as a<br />

problem<br />

ID/ARS/09


30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 0.2 0.4<br />

Sykes et al, Med.Phys., 26, 329, 1999<br />

6x6, 5 cm depth<br />

25x25, 5 cm depth<br />

6x6, 6 66x6, 6 15 15 cm d depth th<br />

25x25, 15 cm depth<br />

0.6 0.8 1.0 1.2<br />

Net Opptical<br />

Density<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Optica al al Densit Densitty<br />

ty (Norm malized)<br />

108<br />

106<br />

104<br />

102<br />

100<br />

98<br />

96<br />

94<br />

Effect of depth<br />

0 5<br />

Van Battum et al , Radiother Oncol, 34, 152, 1995<br />

and field size on OD<br />

10 15 20<br />

Depth (cm)<br />

(cm)<br />

30 30x30 30<br />

20x20<br />

10x10<br />

4x4<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09<br />

25


Rel lative Do ose (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 2 4 6 8<br />

Van Battum et al , Radiother Oncol, 34, 152, 1995<br />

10<br />

12<br />

Dep Depp<br />

pth p (cm) ( )<br />

Ion Chamber<br />

<strong>Film</strong><br />

4x4<br />

10x10<br />

14<br />

16<br />

20x20<br />

18<br />

20<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Movable position<br />

t= 0.15, 0.30,<br />

.0.46, 0.76 mm<br />

Yeo et al Med. Phys. 24, 1943, 1997<br />

Burch et al, Med. Phys. 24, 775, 1997<br />

Pho oton<br />

<strong>Film</strong><br />

Parallel film Orientation<br />

X X, 6, 12, 19 mm<br />

Lead filter<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Relat tive dose (ratio) (<br />

<strong>Film</strong> <strong>Film</strong> no filter<br />

<strong>Film</strong> with filter<br />

Ion Chamber<br />

-10 10 -5<br />

Ju et al, Med. Phys., 29, 351 351-355, 355, 2002<br />

1.2 1.22<br />

1.0 1.00<br />

0.8 0.88<br />

0.6 0.66<br />

0.4 0.44<br />

0.2 0.22<br />

0 5 10<br />

Distance from c central axis (cm)<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Relativ ve Fluen nce (%)<br />

MC MC simulation of of photon photon spe<br />

spe ectrum at at various various depths<br />

depths<br />

10.0<br />

8.0<br />

6.0<br />

4.0<br />

2.0<br />

0.0<br />

0 2<br />

15 1.5 cm cmm<br />

Suchowerska et al, Phys. Med. Biol. 44, 1755, 1999<br />

10 cm<br />

Energ gy (MeV)<br />

30 cm<br />

4 6 8<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

X=0 mm<br />

Burch et et al, al Med. Med Phys., Phys 24, 24 775, 775 1997<br />

1997<br />

X=6 mm<br />

0 5 10 15<br />

Depth ( (cm)<br />

4 MV, 25x25 cm cm2 0.76 mm Pb<br />

X=12 mm<br />

Ion chamber<br />

20 25 30 35 40<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Ion Chamber<br />

0 5 10 15<br />

Effect of Pb filte er er on depth dose<br />

dose<br />

4 MV, 6x6 cm cm2 No Pb<br />

<strong>Film</strong>+.46 mm Pb<br />

Depth (cm)<br />

(cm)<br />

Burch et al, Med. Phys., 24, 775, 1997<br />

20 25 30 35<br />

40<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Ion Chamber<br />

0 5 10 15<br />

4 MV, 25x25 cm cm2 No Pb<br />

<strong>Film</strong>+.46 mm Pb<br />

Depth (cm)<br />

(cm)<br />

20 25 30 35 40<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Net Optical Density D<br />

3.0<br />

2.5<br />

2.0 20 2.0<br />

1.5<br />

1.0<br />

0.0<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.0<br />

0<br />

0<br />

Kodak<br />

Kodak<br />

Sensitometric curves fo for 15x15 cm<br />

with perpendicular<br />

perpendicular<br />

2 field<br />

r film exposure<br />

exposure<br />

C0 C0-60 60<br />

0.5g/cm<br />

4 g/cm g/cm3 9 g/cm g/cm3 Depth<br />

0.5 1.0<br />

Dose (Gy)<br />

1.5<br />

0.5g/cm 3<br />

18 MV<br />

0.5 1.0 1.5<br />

Dose (Gy)<br />

(Gy)<br />

Danciu et al, Med. Phys. 28, 972, 2001<br />

Depth<br />

0.5g/cm<br />

4 g/cm g/cm3 9 g/cm g/cm3 p<br />

0.5g/cm 3<br />

2.0<br />

2.0<br />

Net Optical Density D<br />

3.0<br />

2.5<br />

2.0 20 2.0<br />

1.5<br />

1.0<br />

0.0<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.0<br />

0<br />

0<br />

Kodak<br />

Kodak<br />

6 MV<br />

0.5g/cm<br />

4 g/cm g/cm3 9 g/cm g/cm3 Depth<br />

g<br />

0.5 1.0<br />

Dose (Gy)<br />

1.5<br />

0.5g/cm 3<br />

45 MV<br />

Depth<br />

0.5g/cm<br />

4 g/cm g/cm3 9 g/cm g/cm3 p<br />

0.5 1.0<br />

D Dose (G (Gy)<br />

)<br />

1.5<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09<br />

0.5g/cm 3<br />

2.0<br />

2.0


Net Op ptical Density<br />

Net Optical De ensity<br />

3.5<br />

3.0<br />

2.5<br />

2.0 20 2.0<br />

1.5<br />

1.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

Agfa<br />

Co Co-60 60<br />

Kodak<br />

0 2 4 6 8 10 12<br />

Depth (cm)<br />

Agfa<br />

Parallel<br />

Perpendicular<br />

15 MV<br />

Parallel<br />

Perpendicular<br />

Kodak<br />

0 2 4 6 8 10 12<br />

Depth (cm)<br />

Danciu et al, Med. Phys. 28, 972, 2001<br />

14 16<br />

14 16<br />

Net Op ptical Density<br />

Net Optical Den Den nsity<br />

3.5<br />

3.0<br />

2.5<br />

2.0 20 2.0<br />

1.5<br />

1.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

Agfa<br />

6 6MV 6 MV<br />

0 2 4 6 8 10 12<br />

Depth (cm)<br />

Parallel<br />

Perpendicular<br />

Kodak<br />

45 MV<br />

Kodak<br />

0 2 4 6 8 10 12<br />

Depth (cm)<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09<br />

14 16<br />

Parallel<br />

Perpendicular<br />

14 16


e w<br />

e w<br />

(e (ew) n<br />

P<br />

Perpendicular<br />

e w<br />

Pho otons<br />

elec ctrons<br />

fil lm<br />

#e # e ew< <


100<br />

95<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

Williamson et al , Med. Phys. 8, 9 94, 1981<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09<br />

Ion Chamber<br />

<strong>Film</strong>


IMRT Verification<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Advantage of ffilm<br />

dosimetry<br />

� Unrivaled spatial distribuution<br />

of dose or energy<br />

imparted.<br />

� Repeated reading of samme<br />

film: permanent record<br />

� 2-D distribution with sinngle<br />

exposure<br />

� Small detector size<br />

� Wide availability: Kodakk,<br />

Agfa, Fuji, Dupont, CEA<br />

� Large area dosimetry: Esspecially<br />

for electron beam<br />

� Linearity of dose (over a short dose range, OD can be<br />

treated linear with dose ffor<br />

most films)<br />

� Dose rate independence<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


<strong>Film</strong> Dosimeetry<br />

- Caution<br />

�� Strong energy depen<br />

ndence (high sensitivity to<br />

low energy photons due to photoelectric<br />

interactions in grains<br />

s)<br />

� <strong>Film</strong> plane orientatioon<br />

with respect to the beam<br />

direction<br />

� Emulsion differences<br />

amongst films of<br />

diff different t bbatches, t h fil film ms of fth the same batch b t hor<br />

even in the same filmm<br />

� Densitometer/Digitizzer<br />

artifacts<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


-Cautioon<br />

� OD depends on:<br />

� Chemical processinng<br />

� developer chemistrry<br />

and temperature<br />

� Processing g time<br />

� drying conditions<br />

� Sensitivity to environnment<br />

�� High temperature & humidity creating fading<br />

� Storage stability<br />

� 0.05-0.1 OD in (6- ( -60mR) ) among gvarious<br />

films (ref<br />

Soleiman et al Med. Phyy.<br />

22, 1691, 1995)<br />

� Microbiological growwth<br />

in gelatin<br />

�� Solarization: At extre<br />

emely higher doses, doses OD<br />

decreases<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


Summmary<br />

�� <strong>Film</strong> is ideal detecto<br />

or for relative dose<br />

measurement<br />

�� Best suited for plana<br />

ar dose distribution<br />

� Dependent on type, batch, exposure<br />

condition, diti beam b eneergy,<br />

ddose, ddose rate, t<br />

processor condition,<br />

digitizer etc.<br />

� <strong>Film</strong> is a dying techhnology<br />

with a uncertain<br />

future. It is being repplaced<br />

with electronic<br />

devices<br />

ID/AAPM-<br />

SS-<strong>Film</strong>/09


ID/AAPM-<br />

SS-<strong>Film</strong>/09

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!