11.06.2014 Views

Unfiltered FQPSK: Another Interpretation and Further Enhancements

Unfiltered FQPSK: Another Interpretation and Further Enhancements

Unfiltered FQPSK: Another Interpretation and Further Enhancements

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

then typical waveforms for the I <strong>and</strong> Q IJF encoder outputs<br />

are illustrated in Figure 2.<br />

An identical modulation to x I (t) (<strong>and</strong> likewise for<br />

x Q (t)) generated from the combination of (1) <strong>and</strong> (2) can<br />

be obtained directly from the binary data sequence {d In }<br />

itself, without the need for defining a 4-ary mapping<br />

based on the transition properties of the sequence. In<br />

particular, if we define the two-symbol wide raised<br />

cosine pulse shape<br />

pt ( ) = sin<br />

then the I modulation<br />

x () t = ∑ d p( t−<br />

nT)<br />

I<br />

will be identical to that generated by the above IJF<br />

scheme. Similarly,<br />

⎛ ⎞<br />

x () t = d p( t n T)<br />

Q ∑ − +<br />

Qn<br />

s<br />

n=−∞<br />

⎝ 2⎠<br />

∞ 1<br />

(a)<br />

(c)<br />

∞<br />

n=−∞<br />

( )<br />

⎛ π t+<br />

T /<br />

⎜<br />

⎝ 2T<br />

2 s 2<br />

In<br />

s<br />

⎞<br />

⎟, −Ts<br />

/ 2≤ t ≤3Ts<br />

/ 2<br />

⎠<br />

s<br />

(b)<br />

(d)<br />

(3)<br />

(4)<br />

(5)<br />

would also be identical to that generated by the above<br />

IJF scheme. A quadrature modulation scheme formed<br />

from x I (t) of (4) <strong>and</strong> x Q (t) of (5) is precisely what Austin<br />

<strong>and</strong> Chang [7] referred to as SQORC modulation, namely,<br />

independent I <strong>and</strong> Q modulations with overlapping<br />

raised cosine pulses on each channel. The resulting carrier<br />

modulated waveform is described by<br />

xt () = x1()cos t ωct+<br />

xQ()sin<br />

t ωct<br />

Symbol-by-symbol cross correlator mapping for <strong>FQPSK</strong><br />

Before revealing the modification of <strong>FQPSK</strong>, which<br />

results in a transmitted signal having a continuous first<br />

derivative, we first recast the original characterization<br />

of <strong>FQPSK</strong> in terms of a cross correlation operation performed<br />

on the pair of IJF encoder outputs every half<br />

symbol interval into a mapping performed directly on<br />

the input I <strong>and</strong> Q data sequences every full symbol interval.<br />

To do this, we define sixteen waveforms<br />

s i (t);i=0,1,2,...,15 over the interval –T s /2 ≤ t ≤ Τ s /2,<br />

which collectively form a transmitted signaling set for<br />

the I <strong>and</strong> Q channels. The particular I <strong>and</strong> Q waveforms<br />

chosen for any particular T s -sec signaling interval on<br />

each channel depends on the most recent data transition<br />

on that channel as well as the two most recent successive<br />

transitions on the other channel (Figure 3).<br />

s () t = A, −T /<br />

s<br />

2≤ t ≤ T /<br />

s<br />

2, s () t = −s () t<br />

0 8 0<br />

⎧A, −T / 2≤ s<br />

t ≤0<br />

⎪<br />

s()<br />

1<br />

t = ⎨<br />

2 πt<br />

,<br />

⎪<br />

1−( 1−<br />

A) cos , 0≤ t ≤T<br />

/ 2<br />

s<br />

⎩<br />

Ts<br />

s ()<br />

9<br />

t =−s()<br />

1<br />

t<br />

⎧<br />

2 π t<br />

⎪1−( 1−<br />

A)cos<br />

, −Ts<br />

/ 2≤ t ≤0<br />

s () t =<br />

T<br />

2 ⎨<br />

s<br />

,<br />

⎪<br />

⎩A. 0≤<br />

t ≤Ts<br />

/ 2<br />

s10() t =−s2()<br />

t<br />

2 πt<br />

s ( t) = −( − A)cos , −Ts<br />

/ ≤ t ≤Ts<br />

/<br />

3<br />

1 1 2 2 ,<br />

Ts<br />

s () t =−s () t<br />

11<br />

3<br />

(6)<br />

(7a)<br />

(e)<br />

(g)<br />

(f)<br />

(h)<br />

▲ Figure 3. <strong>FQPSK</strong> full-symbol waveforms: (a) s 0 (t) = –s 8 (t)<br />

vs. t; (b) s 1 (t) = –s 9 (t) vs t; (c) s 2 (t) = –s 10 (t) vs. t; (d) s 3 (t)<br />

= –s 11 (t) vs. t; (e) s 4 (t) = –s 12 (t) vs. t; (f) s 5 (t) = –s 13 (t)<br />

vs. t; (g) s 6 (t) = –s 14 (t); <strong>and</strong> (h) s 7 (t) = –s 15 (t) vs. t.<br />

πt<br />

s4( t) = Asin , −Ts<br />

/ 2≤ t ≤Ts<br />

/ 2<br />

T<br />

s<br />

12<br />

s<br />

() t =−s () t<br />

⎧ πt<br />

Asin , −Ts<br />

/ 2≤ t ≤0<br />

⎪ Ts<br />

s5()<br />

t = ⎨<br />

⎪ πt<br />

sin , 0≤<br />

t ≤Ts<br />

/ 2<br />

⎩⎪<br />

Ts<br />

s () t =−s () t<br />

13<br />

⎧ πt<br />

sin , − Ts<br />

/ 2 ≤ t ≤0<br />

⎪ Ts<br />

s6()<br />

t = ⎨<br />

⎪ πt<br />

Asin , 0 ≤ t ≤Ts<br />

/ 2<br />

⎩⎪<br />

Ts<br />

s () t =−s () t<br />

πt<br />

s7<br />

( t) = sin , −Ts<br />

/ 2≤ t ≤Ts<br />

/ 2<br />

T<br />

s<br />

14<br />

15<br />

s<br />

5<br />

6<br />

4<br />

() t =−s () t<br />

7<br />

,<br />

,<br />

,<br />

,<br />

(7b)<br />

80 · APPLIED MICROWAVE & WIRELESS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!