11.06.2014 Views

Unfiltered FQPSK: Another Interpretation and Further Enhancements

Unfiltered FQPSK: Another Interpretation and Further Enhancements

Unfiltered FQPSK: Another Interpretation and Further Enhancements

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

▲ Figure 5. Original <strong>and</strong> new <strong>FQPSK</strong> shapes.<br />

▲ Figure 6. Power spectra of conventional <strong>and</strong> enhanced <strong>FQPSK</strong>: (a)<br />

without SSPA; <strong>and</strong> (b) with SSPA.<br />

s<br />

4<br />

⎧ πt<br />

2 πt<br />

sin + ( 1− A)sin , −Ts<br />

/ 2≤ t ≤0<br />

⎪ Ts<br />

Ts<br />

() t = ⎨<br />

,<br />

⎪ πt<br />

2 πt<br />

sin −( 1− A)sin , 0 ≤ t ≤Ts<br />

/ 2<br />

⎩⎪<br />

Ts<br />

Ts<br />

() t =−s () t<br />

s 12<br />

4<br />

(10)<br />

This minor change, which produces a complete symmetry<br />

in the waveform set, has an advantage from the<br />

st<strong>and</strong>point of hardware implementation <strong>and</strong> produces a<br />

negligible change in spectral properties of the transmitted<br />

waveform. Nevertheless, for the remainder of the<br />

discussion, we shall ignore this minor change <strong>and</strong><br />

assume the version of enhanced <strong>FQPSK</strong> first introduced<br />

in this section.<br />

<strong>Interpretation</strong> of <strong>FQPSK</strong> as a trellis-coded modulation<br />

The I <strong>and</strong> Q mappings given in Tables 1 <strong>and</strong> 2 are<br />

alternately described in terms of the (0,1) representation<br />

of the I <strong>and</strong> Q data symbols <strong>and</strong> their transitions.<br />

Specifically, define<br />

D In = ∆ (1–d In )/2, D Qn = ∆ (1−d Qn )/2 (11)<br />

which both range on the set (0,1). Then, defining the<br />

BCD representation of the indices i <strong>and</strong> j by<br />

with<br />

3<br />

i= I3<br />

× 2 + I2<br />

× 2 + I1<br />

× 2 + I0<br />

× 2<br />

3<br />

2<br />

1<br />

j= Q × 2 + Q × 2 + Q × 2 + Q × 2<br />

3<br />

I = DQn ⊕ D Q D D<br />

0 Q n− , =<br />

I n<br />

⊕<br />

, 1 0 , + 1 In<br />

I = DQn , −<br />

⊕ DQn , −<br />

, Q = DIn⊕ DIn<br />

, −<br />

= I<br />

I =<br />

2<br />

D ⊕<br />

In<br />

D ,<br />

I n 1<br />

Q =<br />

2<br />

D ⊕<br />

Qn<br />

D =<br />

, −<br />

Q,<br />

n−1 I0<br />

I = D , Q = D<br />

1 1 2 1 1 2<br />

3 In 3<br />

2<br />

2<br />

Qn<br />

1<br />

(12)<br />

(13)<br />

we have y I (t)=s i (t–nT s ) <strong>and</strong> y Q (t)=s j (t–(n+½)T s ). That<br />

is, in each symbol interval ((n–½)T s ≤ t ≤ (n+½)T s for<br />

y I (t) <strong>and</strong> nT s ≤ t ≤ (n+1)T s for y Q (t)), the I <strong>and</strong> Q channel<br />

baseb<strong>and</strong> signals are each chosen from a set of 16<br />

1<br />

0<br />

0<br />

0<br />

▲ Figure 7. Alternate implementation of <strong>FQPSK</strong> baseb<strong>and</strong> signals.<br />

▲ Figure 8. 16-state trellis diagram for <strong>FQPSK</strong>.<br />

86 · APPLIED MICROWAVE & WIRELESS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!