11.07.2014 Views

computational investigation of hydro-mechanical effects on ...

computational investigation of hydro-mechanical effects on ...

computational investigation of hydro-mechanical effects on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

5 - DISCUSSION AND CONCLUSION<br />

In an attempt to <str<strong>on</strong>g>of</str<strong>on</strong>g>fer a plausible explanati<strong>on</strong> for the<br />

locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> deep MEQs and to define plausible<br />

mechanisms governing the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transmissivity during the EGS experiment, the<br />

present study analyzes: 1) 3D site-specific geometry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the key structures involved in the experiment, 2)<br />

3D equivalent permeability tensors in a<br />

representative DFN c<strong>on</strong>sistent with observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the fracture network and, specifically, hydraulically<br />

c<strong>on</strong>ductive fractures within well 27-15, 3) a hydraulic<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid pressure distributi<strong>on</strong>s within the STF,<br />

and 4) a <str<strong>on</strong>g>hydro</str<strong>on</strong>g>-<str<strong>on</strong>g>mechanical</str<strong>on</strong>g> simulati<strong>on</strong> c<strong>on</strong>sistent with<br />

the activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulically-induced shear failure<br />

al<strong>on</strong>g the STF.<br />

As introduced above, the MEQ cluster observed<br />

throughout the entire EGS experiment is mainly used<br />

for structural identificati<strong>on</strong> purposes here. The<br />

numerical simulati<strong>on</strong> refers to the Sept 2010 injecti<strong>on</strong><br />

phase <strong>on</strong>ly, when injecti<strong>on</strong> operati<strong>on</strong>s in 22-22 were<br />

reduced and <strong>on</strong>ly 1 MEQ was observed. The<br />

complexity resulting from combined injecti<strong>on</strong><br />

operati<strong>on</strong>s at higher-flow-rates is not addressed here<br />

and may be discussed in a future study.<br />

The c<strong>on</strong>ceptual and numerical modeling results<br />

reveal that c<strong>on</strong>diti<strong>on</strong>s necessary for fluid<br />

“channeling” to depths below the stimulati<strong>on</strong> interval<br />

during the Sept 2010 EGS injecti<strong>on</strong> phase in well 27-<br />

15 can lead to pressurizati<strong>on</strong> and poro<str<strong>on</strong>g>mechanical</str<strong>on</strong>g><br />

stressing <str<strong>on</strong>g>of</str<strong>on</strong>g> the STF. The computed DFN<br />

permeability tensors indicate that, within the<br />

background natural fracture network, fluid injected at<br />

the open secti<strong>on</strong> in well 27-15 flows preferentially<br />

toward the NNE and the vertical directi<strong>on</strong>s (in<br />

accordance with the regi<strong>on</strong>al structures observed <strong>on</strong><br />

site).<br />

Two FLAC 3D simulati<strong>on</strong>s are carried out separately:<br />

1) the hydraulic-<strong>on</strong>ly model is run to simulate fluid<br />

diffusi<strong>on</strong> and STF pressurizati<strong>on</strong> under the Sept 2010<br />

injecti<strong>on</strong> phase hydraulically-induced c<strong>on</strong>diti<strong>on</strong>s, and<br />

the resulting pressure incremental is used as input to<br />

the Mohr-Coulomb analytical analysis; 2) the<br />

subsequent coupled <str<strong>on</strong>g>hydro</str<strong>on</strong>g>-<str<strong>on</strong>g>mechanical</str<strong>on</strong>g> model is run<br />

to test the <str<strong>on</strong>g>mechanical</str<strong>on</strong>g> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the model and<br />

verify c<strong>on</strong>diti<strong>on</strong>s for deformati<strong>on</strong> and initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

shear failure al<strong>on</strong>g the STF. The FLAC 3D hydraulic<strong>on</strong>ly<br />

model is initialized <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the computed<br />

DFN permeability tensors and by assigning a higher<br />

permeability to the STF. With these c<strong>on</strong>diti<strong>on</strong>s, the<br />

simulated injected fluid (Sept 2010 phase) migrates<br />

from the open secti<strong>on</strong> in well 27-15 toward greater<br />

depths and it diffuses within the STF. The FLAC 3D<br />

hydraulic-<strong>on</strong>ly model shows localized pressurizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the STF and pore pressure incremental up to 1.8<br />

MPa. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the resulting effective pressure<br />

through analytical Mohr-coulomb circles and<br />

FLAC 3D <str<strong>on</strong>g>hydro</str<strong>on</strong>g>-<str<strong>on</strong>g>mechanical</str<strong>on</strong>g> modeling suggest that<br />

these pressures can establish c<strong>on</strong>diti<strong>on</strong>s for shear<br />

failure within the STF. The injected fluid being<br />

colder and denser tends to flows toward the bottom <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the STF, generating higher pressure at greater rather<br />

than shallower depth within the STF. The subsequent<br />

FLAC 3D coupled <str<strong>on</strong>g>hydro</str<strong>on</strong>g>-<str<strong>on</strong>g>mechanical</str<strong>on</strong>g> numerical model<br />

dem<strong>on</strong>strates that effective stress changes induced by<br />

these fluid pressure increases and spatially variable<br />

permeability al<strong>on</strong>g the STF are sufficient to produce<br />

slip and microseismicity within the STF itself. The<br />

activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shearing after about 4 days <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong><br />

is also in good agreement with the time at which the<br />

single MEQ event is observed during the low-flowrate<br />

injecti<strong>on</strong> phase, suggesting a correlati<strong>on</strong> between<br />

slip <strong>on</strong> the deep STF and the Sept 2010 change in<br />

injectivity.<br />

The modeling results (i.e. migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> injected fluid<br />

at depth, pressurizati<strong>on</strong> and shearing <str<strong>on</strong>g>of</str<strong>on</strong>g> the STF)<br />

appear to validate the hypothesis that the proposed<br />

framework (based <strong>on</strong> the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the STF) is<br />

a plausible explanati<strong>on</strong> for the presumed correlati<strong>on</strong><br />

between the observed injecti<strong>on</strong> rate increase and the<br />

occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> microseismicity at depths greater than<br />

the open secti<strong>on</strong>. The parameters under which the<br />

models simulate this process for the Sept 2010 phase<br />

are listed in Table 2 and 3. Shear failure appears to be<br />

more sensitive to variati<strong>on</strong>s in the STF fricti<strong>on</strong> angle.<br />

The identified STF satisfies some <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>diti<strong>on</strong>s<br />

that are necessary for shear failure initiati<strong>on</strong>: 1)<br />

adequate initial transmissivity, (2) optimum<br />

orientati<strong>on</strong> with respect to the local stress state, and<br />

(3) enhanced transmissivity with slip [21]. Related<br />

physical processes have been inferred in several<br />

injecti<strong>on</strong>-disposal operati<strong>on</strong>s, especially al<strong>on</strong>g faults<br />

that transit between basement rocks and overlying<br />

aquifers. Such a process may have been resp<strong>on</strong>sible<br />

for recent observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong>-induced<br />

seismicity at Guy, Arkansas [16].<br />

Both numerical (coupled <str<strong>on</strong>g>hydro</str<strong>on</strong>g>-<str<strong>on</strong>g>mechanical</str<strong>on</strong>g>) and<br />

analytical (<str<strong>on</strong>g>mechanical</str<strong>on</strong>g> Mohr-Coulomb analysis)<br />

results support the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>s in the STF<br />

which can undergo shear failure under the simulated<br />

injecti<strong>on</strong>-induced hydraulic pressure c<strong>on</strong>diti<strong>on</strong>s.<br />

Given the n<strong>on</strong>-uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> the problem, the<br />

presented c<strong>on</strong>ceptual framework is <strong>on</strong>e possible<br />

model for the Desert Peak EGS experiment. Future<br />

coupling <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-<str<strong>on</strong>g>hydro</str<strong>on</strong>g>-<str<strong>on</strong>g>mechanical</str<strong>on</strong>g>-chemical<br />

processes will be carried out to better understand the<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> permeability throughout the Desert Peak<br />

EGS stimulati<strong>on</strong>.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!