11.07.2014 Views

computational investigation of hydro-mechanical effects on ...

computational investigation of hydro-mechanical effects on ...

computational investigation of hydro-mechanical effects on ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

multiple scan lines), followed by projecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

fractures <strong>on</strong>to three 200m × 200m orthog<strong>on</strong>al planes<br />

aligned with the Cartesian coordinate system: x-y, y-<br />

z, x-z. Discrete fracture networks are analyzed for<br />

intersecti<strong>on</strong> with three fracture types: all fractures,<br />

hydraulic backb<strong>on</strong>e fractures, and dominant fractures.<br />

"All fractures" refer to all fractures present in a rock<br />

mass, whereas "hydraulic backb<strong>on</strong>e" fractures refer<br />

<strong>on</strong>ly to the interc<strong>on</strong>nected fractures <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydraulic<br />

backb<strong>on</strong>e. The fracture backb<strong>on</strong>e is thus computed<br />

for each Cartesian plane by eliminating dead-end<br />

segments and isolated clusters, as these cannot<br />

c<strong>on</strong>tribute to transmissivity. Two c<strong>on</strong>figurati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

linearly decreasing head c<strong>on</strong>diti<strong>on</strong>s are applied to<br />

compute each permeability tensor comp<strong>on</strong>ent, and<br />

flow is then solved iteratively via a bic<strong>on</strong>jugate<br />

gradient method under specific boundary c<strong>on</strong>diti<strong>on</strong>s<br />

at all internal nodes according to Darcy’s law<br />

[5][17][25][28][24].<br />

3.2 – FLAC 3D Fluid-Mechanical Resp<strong>on</strong>se Model<br />

The c<strong>on</strong>ceptual model is tested against the September<br />

13 to 23, 2010, low-flow-rate injecti<strong>on</strong> phase (Figure<br />

1) by numerical simulati<strong>on</strong> with the <str<strong>on</strong>g>mechanical</str<strong>on</strong>g>-flow<br />

code FLAC 3D .<br />

FLAC 3D is a three-dimensi<strong>on</strong>al explicit finitedifference<br />

program for c<strong>on</strong>tinuum mechanics<br />

computati<strong>on</strong> which also models fluid flow and its<br />

corresp<strong>on</strong>ding poro<str<strong>on</strong>g>mechanical</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>. [11]<br />

This simulati<strong>on</strong> c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> two successive stages: (1)<br />

hydraulic-<strong>on</strong>ly computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure gradients<br />

generated between the STF and the stimulati<strong>on</strong><br />

interval during fluid injecti<strong>on</strong>, and (2) a <str<strong>on</strong>g>hydro</str<strong>on</strong>g><str<strong>on</strong>g>mechanical</str<strong>on</strong>g>ly<br />

coupled calculati<strong>on</strong> to estimate the<br />

<str<strong>on</strong>g>mechanical</str<strong>on</strong>g> deformati<strong>on</strong> in resp<strong>on</strong>se to increased<br />

hydraulic pressure within the STF, where changes in<br />

pore pressure generate deformati<strong>on</strong>, and volumetric<br />

strain causes pore pressures to evolve.<br />

As menti<strong>on</strong>ed above, the simpler characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the September 2010 phase make it a perfect candidate<br />

for model verificati<strong>on</strong> and calibrati<strong>on</strong> for subsequent<br />

simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more complex injecti<strong>on</strong> phases, given<br />

that: a) injecti<strong>on</strong> during the Sept 2010 phase occurs at<br />

pressures below S hmin ; and b) the injecti<strong>on</strong> rate climbs<br />

immediately after detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a single, yet<br />

potentially significant, MEQ event. This suggests the<br />

process triggering the MEQ event plays a primary<br />

role in transmissivity development during this phase.<br />

The timing at which this single MEQ occurred<br />

represents a perfect reference for model calibrati<strong>on</strong> as<br />

it defines the diffusi<strong>on</strong> time required by the hydraulic<br />

pressure to build-up to a value critical for triggering<br />

<str<strong>on</strong>g>mechanical</str<strong>on</strong>g> deformati<strong>on</strong> (i.e. shear failure) in the<br />

rockmass. Therefore, we tune the model <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure<br />

diffusi<strong>on</strong> through the fracture network between the<br />

open-hole interval in 27-15 and the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

MEQ, presumed to be <strong>on</strong> the STF, to determine the<br />

model parameters/c<strong>on</strong>diti<strong>on</strong>s necessary to cause an<br />

MEQ 4 days after initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong> into 27-15 at<br />

WHP fluid pressures <str<strong>on</strong>g>of</str<strong>on</strong>g> ~3.2MPa. In this case,<br />

pressure sufficient to reduce effective normal stress<br />

must be communicated to the STF in order to satisfy<br />

the c<strong>on</strong>diti<strong>on</strong>s for Mohr-Coulomb failure. The 27-15<br />

Sept 2010 low-flow-rate injecti<strong>on</strong> is used to verify<br />

these c<strong>on</strong>diti<strong>on</strong>s.<br />

As introduced above, injecti<strong>on</strong> into 27-15 is not the<br />

<strong>on</strong>ly source <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure perturbati<strong>on</strong> in the studied<br />

area. Injecti<strong>on</strong> into 22-22 has also a potential<br />

c<strong>on</strong>necti<strong>on</strong> to this volume, and flow was varied into<br />

this well during the EGS experiment. However,<br />

during the Sept 2010 low-flow-rate phase, fluid from<br />

22-22 was transferred to 27-15, and thus injecti<strong>on</strong> in<br />

22-22 c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> about half the rate injected in 27-<br />

15, at approximately four times less than the 27-15<br />

injecti<strong>on</strong> pressure.<br />

In additi<strong>on</strong>, this MEQ occurring approximately 4<br />

days after initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong> is a good reference<br />

when calibrating the model, as it represents the time<br />

over which the hydraulic pressure diffusi<strong>on</strong> process<br />

builds up and triggers the shear mechanism. The 27-<br />

15 low-flow-rate phase allows for a sensitive and<br />

accurate calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pressure gradient<br />

throughout the STF z<strong>on</strong>e. Finally, influence from<br />

injecti<strong>on</strong> operati<strong>on</strong>s in well 22-22 is limited during<br />

this phase, c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> about half the rate injected in<br />

27-15, at approximately four times less than the<br />

injecti<strong>on</strong> pressure.<br />

For both simulati<strong>on</strong>s, and as a general rule, the<br />

simplest possible geometry opti<strong>on</strong> is used to define<br />

the FLAC 3D model, c<strong>on</strong>sistent with the reproducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> key physical processes. In the simplified<br />

representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the wellsite, the model comprises a<br />

low permeability background formati<strong>on</strong>, two<br />

injecti<strong>on</strong> points (wells 27-15 and 22-22) and a NNEstriking<br />

fault z<strong>on</strong>e (STF) about 100m thick, dipping<br />

70° WNW and located about 500m below the actual<br />

27-15 injecti<strong>on</strong> point. The model domain extends for<br />

3000m in the x-directi<strong>on</strong>, 700m in the y-directi<strong>on</strong> and<br />

2600m in the z-directi<strong>on</strong>. The grid is discretized into<br />

regular cubic z<strong>on</strong>es 100m <strong>on</strong> a side. The STF - like<br />

the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the model - is currently assumed to be a<br />

fluid-saturated single-porosity media. Later modeling<br />

exercises involving coupling with TOUGHREACT<br />

may adopt a dual-porosity c<strong>on</strong>ceptualizati<strong>on</strong>.<br />

A phreatic surface is initialized at 118m depth, below<br />

which pore pressures have a c<strong>on</strong>stant gradient <strong>on</strong>ce<br />

the initial force-equilibrium state is reached. (in<br />

FLAC 3D , force-equilibrium is assumed when the<br />

maximum unbalanced force and velocity vectors at<br />

each gridpoint are small compared to the<br />

representative z<strong>on</strong>e forces in the problem). Realistic

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!