29.07.2014 Views

TUTORIAL 2 SOLUTIONS #7.7.11 Consider a population of size four ...

TUTORIAL 2 SOLUTIONS #7.7.11 Consider a population of size four ...

TUTORIAL 2 SOLUTIONS #7.7.11 Consider a population of size four ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>TUTORIAL</strong> 2 <strong>SOLUTIONS</strong><br />

<strong>#7.7.11</strong> <strong>Consider</strong> a <strong>population</strong> <strong>of</strong> <strong>size</strong> <strong>four</strong>,<br />

the members <strong>of</strong> which have values x 1 ,x 2 ,x 3 ,x 4 .<br />

a. If simple random sampling were used, how<br />

many samples <strong>of</strong> <strong>size</strong> two are there?<br />

b. Suppose that rather than simple random<br />

sampling, the following sampling scheme<br />

is used. The possible samples <strong>of</strong> <strong>size</strong> two<br />

are<br />

{x 1 ,x 2 }, {x 2 ,x 3 }, {x 3 ,x 4 }, {x 1 ,x 4 }<br />

and the sampling is done in such a way<br />

that each <strong>of</strong> these <strong>four</strong> possible samples<br />

is equally likely. Is the sample mean unbiased?<br />

Solution<br />

a. The number <strong>of</strong> simple random samples<br />

<strong>of</strong> <strong>size</strong> 2 = ( 4<br />

2<br />

)<br />

=6.<br />

1


. Let µ denote the <strong>population</strong> mean. I.e.<br />

µ = x 1 + x 2 + x 3 + x 4<br />

.<br />

4<br />

We observe that<br />

E( ¯X) = 1 4 [x 1 + x 2<br />

+ x 2 + x 3<br />

2 2<br />

+ x 3 + x 4<br />

+ x 1 + x 4<br />

]<br />

2 2<br />

= x 1 + x 2 + x 3 + x 4<br />

4<br />

= µ.<br />

This implies that the sample mean is an<br />

unbiased estimate <strong>of</strong> the <strong>population</strong> mean<br />

(even though the sample is not a s.r.s.).<br />

2


#7.7.12 <strong>Consider</strong> simple random sampling<br />

with replacement.<br />

a. Show that<br />

s 2 = 1<br />

n − 1<br />

n∑<br />

(X i − ¯X) 2<br />

i=1<br />

is an unbiased estimate <strong>of</strong> σ 2 .<br />

b. Is s an unbiased estimate <strong>of</strong> σ?<br />

c. Show that n −1 s 2 is an unbiased estimate<br />

<strong>of</strong> σ 2¯X.<br />

d. Show that n −1 N 2 s 2 is an unbiased estimate<br />

<strong>of</strong> σ 2 T .<br />

e. Show that ˆp(1− ˆp)/(n−1) is an unbiased<br />

estimate <strong>of</strong> σ 2ˆp .<br />

Solution First we observe that the sample<br />

X 1 ,...,X n is an i.i.d. sequence <strong>of</strong> random<br />

variables.<br />

3


a. Let µ = E(X 1 ) and Y i = X i −µ. Then<br />

E(Y i )=0,<br />

Var(Y i )=Var(X i )=σ 2 ,<br />

E(s 2 )= 1 n∑<br />

E[X<br />

n − 1 i − µ − ( ¯X − µ)] 2<br />

i=1<br />

= 1 n∑<br />

E(Y<br />

n − 1 i − Ȳ )2<br />

i=1<br />

= 1 n∑<br />

E(Y 2<br />

n − 1<br />

i − 2Y iȲ + Ȳ 2 )<br />

i=1<br />

= nσ2<br />

n − 1 −<br />

+ n<br />

n − 1 E(Ȳ 2 )<br />

= nσ2<br />

n − 1 −<br />

2n<br />

n − 1 E(Ȳ 2 )<br />

n<br />

n − 1 E(Ȳ 2 ).<br />

4


Since E(Ȳ 2 ) = Var(Ȳ )=σ2 /n,<br />

E(s 2 )=<br />

nσ2<br />

n − 1 −<br />

= σ 2 .<br />

σ2<br />

n − 1<br />

This implies that s 2 is an unbiased estimate<br />

<strong>of</strong> σ 2 .<br />

b. No, s is not an unbiased estimate <strong>of</strong> σ<br />

since in general<br />

√<br />

E(s) =E(<br />

√<br />

s 2 )<br />

< E(s 2 )<br />

√<br />

= σ 2 = σ.<br />

This follows from Jensen’s inequality and<br />

E(s) = √ E(s 2 ) only if s is a constant.<br />

5


c. From a. we have<br />

E(n −1 s 2 )= 1 n E(s2 )<br />

= σ2<br />

n<br />

= σ 2¯X .<br />

That is n −1 s 2 is an unbiased estimate <strong>of</strong> the<br />

variance <strong>of</strong> ¯X.<br />

d. Recall that T = N ¯X and Var(T )is<br />

given by<br />

Consequently,<br />

σ 2 T<br />

=Var(N ¯X)<br />

= N 2 Var( ¯X)<br />

= N 2σ2<br />

n .<br />

E(n −1 N 2 s 2 )=n −1 N 2 E(s 2 )<br />

= n −1 N 2 σ 2<br />

= σ 2 T .<br />

6


This shows that n −1 N 2 s 2 is an unbiased estimate<br />

<strong>of</strong> σ 2 T .<br />

e. Recall that ˆp = ¯X when the X i ’s only<br />

take values 0 or 1. Observe that<br />

σ<br />

2ˆp = σ2¯X<br />

= σ2<br />

n .<br />

Consequently,<br />

E<br />

ˆp(1 − ˆp)<br />

n − 1<br />

= 1<br />

n − 1 E[1 n<br />

=<br />

1<br />

n(n − 1)<br />

n∑<br />

Xi 2 − ¯X 2 ]<br />

i=1<br />

n∑<br />

E(X i − ¯X) 2<br />

i=1<br />

= 1 n E(s2 )= σ2<br />

n .<br />

This shows that ˆp(1 − ˆp)/(n − 1) is an unbiased<br />

estimate <strong>of</strong> σ 2ˆp . 7


#7.7.23<br />

a. Show that the standard error <strong>of</strong> an estimated<br />

proportion is largest when p =<br />

1/2.<br />

b. Use this result and Corollary B <strong>of</strong> Section<br />

7.3.2 to conclude that the quantity<br />

√<br />

1 N − n<br />

2 N(n − 1)<br />

is a conservative estimate <strong>of</strong> the standard<br />

error <strong>of</strong> ˆp no matter what the value <strong>of</strong> p<br />

may be.<br />

c. Use the central limit theorem to conclude<br />

that the interval<br />

√<br />

N − n<br />

ˆp ±<br />

N(n − 1)<br />

contains p with probability at least 0.95.<br />

8


Solution<br />

a. Recall that the sample is s.r.s. From<br />

page 214 <strong>of</strong> the text, the standard error <strong>of</strong> ˆp<br />

is given by<br />

√<br />

σˆp = ( N − n − p)<br />

)p(1 .<br />

N − 1 n<br />

Treating σˆp as a function <strong>of</strong> p, we note that<br />

f(p) =p(1 − p), 0 ≤ p ≤ 1, is maximized<br />

when p =1/2.<br />

b. Using a. and Corollary B <strong>of</strong> Chapter<br />

7.3.2, we have<br />

ˆp(1 − ˆp)<br />

s<br />

2ˆp =<br />

n − 1 (1 − n N )<br />

≤ 1 2 (1 − 1 2 )( 1<br />

n − 1 )(1 − n N )<br />

= N − n<br />

4N(n − 1) .<br />

9


Taking square root, we have<br />

√<br />

sˆp ≤ 1 N − n<br />

2 N(n − 1) .<br />

The r.h.s. is a conservative estimate <strong>of</strong> the<br />

standard error <strong>of</strong> ˆp.<br />

c. Using the CLT from s.r.s., a 95% CI for<br />

p is<br />

ˆp ± z 0.025 sˆp .<br />

Since z 0.025 =1.96 ≈ 2, it follows from b.<br />

that the interval<br />

ˆp ±<br />

√<br />

N − n<br />

N(n − 1) .<br />

contains p with probability at least 0.95.<br />

10


#7.7.24 For a random sample <strong>of</strong> <strong>size</strong> n<br />

from a <strong>population</strong> <strong>of</strong> <strong>size</strong> N, consider the<br />

following as an estimate <strong>of</strong> µ:<br />

n∑<br />

¯X c = c i X i<br />

i=1<br />

where the c i are fixed numbers and X 1 ,...,X n<br />

is the sample.<br />

a. Find a condition <strong>of</strong> the c i such that the<br />

estimate is unbiased.<br />

b. Show that the choice <strong>of</strong> c i that minimizes<br />

the variance <strong>of</strong> the estimate subject to<br />

this condition is c i = 1/n, where i =<br />

1,...,n.<br />

11


Solution Note that in this problem, a<br />

random sample is meant an i.i.d. sample.<br />

a. ¯Xc is an unbiased estimate <strong>of</strong> the <strong>population</strong><br />

mean µ iff<br />

µ = E( ¯X<br />

n∑<br />

c )= c i E(X i )<br />

=(<br />

i=1<br />

n∑<br />

c i )µ.<br />

i=1<br />

This implies that the condition for unbiasness<br />

is<br />

n∑<br />

c i =1.<br />

i=1<br />

12


. Let Var(X 1 )=σ 2 . Then by the independence<br />

<strong>of</strong> X 1 ,...,X n , we have<br />

Var( ¯X<br />

n∑<br />

c )=Var( c i X i )<br />

=<br />

i=1<br />

n∑<br />

c 2 i Var(X i)<br />

i=1<br />

n<br />

= σ 2 ∑<br />

c 2 i .<br />

i=1<br />

We want to minimize ∑ n<br />

∑ i=1 c 2 i<br />

subject to<br />

ni=1<br />

c i =1.<br />

To do that we minimize the following Lagrangian<br />

function:<br />

n∑<br />

f(c 1 ,...,c n ,λ)= c 2 n i + λ(1 − ∑<br />

c i ).<br />

i=1<br />

i=1<br />

Here λ is the Lagrangian multiplier.<br />

13


We partial differentiate f wrt c 1 ,...,c n ,λ,<br />

∂f<br />

=2c<br />

∂c i − λ, i =1,...,n,<br />

i<br />

∂f<br />

n<br />

∂λ =1− ∑<br />

c i .<br />

i=1<br />

Equating these partial derivatives to 0, we<br />

have<br />

c i = λ 2 , i =1,...,n,<br />

n∑<br />

1=<br />

i=1<br />

= λn 2 .<br />

c i<br />

Solving for c i and λ, we have<br />

λ = 2 n ,<br />

c i = 1 n , i =1,...,n.<br />

14


By taking 2nd partial derivatives <strong>of</strong> f, it<br />

can be shown that this gives the minimum<br />

(and not maximum) <strong>of</strong> f.<br />

15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!