26.08.2014 Views

Damage Mechanisms Affecting Fixed Equipment in the Refining Industry

API ICP Self Study Notes

API ICP Self Study Notes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Damage</strong> <strong>Mechanisms</strong> <strong>Affect<strong>in</strong>g</strong><br />

<strong>Fixed</strong> <strong>Equipment</strong> <strong>in</strong> <strong>the</strong><br />

Ref<strong>in</strong><strong>in</strong>g <strong>Industry</strong><br />

影 响 炼 油 行 业 固 定 设 备 的<br />

损 伤 机 理<br />

2013 年 内 部 培 训


Charlie Chong/ Fion Zhang<br />

中 国 固 有 领 土 : 钓 鱼 岛


印 度 支 那 不 就 是 “Indo-Ch<strong>in</strong>a” 吗 ?, 中 华 人 民 共 和 国 不 就 是 “People Republic of Ch<strong>in</strong>a”. 这 “Ch<strong>in</strong>a” 或<br />

“ 支 那 ” 不 是 歧 视 字 眼 .“ 支 那 ” 是 个 威 震 四 方 的 大 国 , 以 前 郑 和 下 西 洋 的 “ 支 那 “ 这 是 闻 之 丧 胆 字 眼 , 现 在<br />

我 们 也 不 渐 渐 变 成 ” 强 大 支 那 ” 了 吗 ?. 小 的 时 候 (40 年 前 ), 友 族 , 善 意 的 叫 我 “ 中 华 人 ”, 我 很 善 意 的 告 诉<br />

他 , 我 叫 “ 支 那 人 ”, 虽 然 我 只 是 东 南 亚 华 裔 , 但 我 永 远 以 “ 支 那 -Ch<strong>in</strong>a" 引 以 为 荣 . 我 爱 中 国 , 我 爱 "Ch<strong>in</strong>a"<br />

我 爱 " 支 那 ".<br />

http://news.ifeng.com/world/detail_2014_03/20/34944726_0.shtml<br />

中 国 固 有 领 土 : 钓 鱼 岛<br />

Charlie Chong/ Fion Zhang


影 响 炼 油 行 业 固 定 设 备 的<br />

损 伤 机 理 -2013 年 内 部 培 训<br />

http://www.smt.sandvik.com/en/search/?q=stress+corrosion+crack<strong>in</strong>g


Speaker: Fion Zhang<br />

2013/7/4


Adobe Acrobat Reader Hotkeys<br />

http://allhotkeys.com/adobe_acrobat_reader_hotkeys.html<br />

Ctrl + G = f<strong>in</strong>d aga<strong>in</strong><br />

Ctrl + L = full screen<br />

Ctrl + M = zoom to<br />

Ctrl + N = go to page (<strong>in</strong>sert number <strong>in</strong> box)<br />

Ctrl + Q = quit program<br />

Ctrl + + = zoom <strong>in</strong><br />

Ctrl + - = zoom out<br />

Ctrl + 0 = fit <strong>in</strong> w<strong>in</strong>dow<br />

Ctrl + 1 = actual size<br />

Ctrl + 2 = fit width<br />

Ctrl + 3 = fit visible<br />

Ctrl + 4 = reflow<br />

Ctrl + Shift + A = deselect all<br />

Ctrl + Shift + F = search query<br />

Ctrl + Shift + G = search results<br />

Ctrl + Shift + J = cascade w<strong>in</strong>dows<br />

Ctrl + Shift + K = tile w<strong>in</strong>dows horizontally<br />

Ctrl + Shift + L = tile w<strong>in</strong>dows vertically


Ctrl + Shift + S = save a copy<br />

Ctrl + Shift + P = page setup<br />

Ctrl + Shift + W = search word assistant<br />

Ctrl + Shift + X = search select <strong>in</strong>dexes<br />

Ctrl + Shift + Page Up = first page<br />

Ctrl + Shift + Page Down = last page<br />

Ctrl + Shift + + = rotate clockwise<br />

Ctrl + Shift + - = rotate counterclockwise<br />

Ctrl + Alt + W = close all<br />

Alt + Left Arrow = go to previous view<br />

Alt + Right Arrow = go to next view<br />

Alt + Shift + Left Arrow = go to previous document<br />

Alt + Shift + Right Arrow = go to next document<br />

F4 = thumbnails<br />

F5 = bookmarks<br />

F8 = hide toolbars<br />

F9 = hide menu bar<br />

http://en.wikipedia.org/wiki/Table_of_keyboard_shortcuts<br />

http://help.adobe.com/en_US/acrobat/us<strong>in</strong>g/WS58a04a822e3e50102bd615109794195ff-7aed.w.html


For API 510 ICP - API RP 571, <strong>Damage</strong> mechanisms <strong>Affect<strong>in</strong>g</strong> <strong>Fixed</strong><br />

equipment <strong>in</strong> <strong>the</strong> Ref<strong>in</strong><strong>in</strong>g <strong>Industry</strong> ATTN: Exam<strong>in</strong>ation questions will be based on<br />

<strong>the</strong> follow<strong>in</strong>g sections only:<br />

Par. 3. – Def<strong>in</strong>itions (<strong>in</strong>cluded as a frame of reference only)<br />

4.2.3 – Temper Embrittlement<br />

4.2.7 – Brittle Fracture<br />

4.2.9 – Thermal Fatigue<br />

4.2.14 – Erosion/Erosion-Corrosion<br />

4.2.16 – Mechanical Failure<br />

4.3.2 – Atmospheric Corrosion<br />

4.3.3 – Corrosion Under Insulation (CUI)<br />

4.3.4 – Cool<strong>in</strong>g Water Corrosion<br />

4.3.5 – Boiler Water Condensate Corrosion<br />

4.3.10 – Caustic Corrosion<br />

4.4.2 – Sulfidation<br />

4.5.1 – Chloride Stress Corrosion Crack<strong>in</strong>g (Cl-SCC)<br />

4.5.2 – Corrosion Fatigue<br />

4.5.3 – Caustic Stress Corrosion Crack<strong>in</strong>g (Caustic Embrittlement)<br />

5.1.2.3 – Wet H2S <strong>Damage</strong> (Blister<strong>in</strong>g / HIC/ SOHIC/ SSC)<br />

5.1.3.1 – High Temperature Hydrogen Attack (HTHA)


For API 570 ICP - API RP 571, <strong>Damage</strong> mechanisms <strong>Affect<strong>in</strong>g</strong> <strong>Fixed</strong><br />

equipment <strong>in</strong> <strong>the</strong> Ref<strong>in</strong><strong>in</strong>g <strong>Industry</strong> ATTN: Exam<strong>in</strong>ation questions will be based on<br />

<strong>the</strong> follow<strong>in</strong>g sections only:<br />

Par. 3 – Def<strong>in</strong>itions (<strong>in</strong>cluded as a frame of reference only)<br />

4.2.7 – Brittle Fracture<br />

4.2.9 – Thermal Fatigue<br />

4.2.14 – Erosion/Erosion Corrosion<br />

4.2.16 – Mechanical Fatigue<br />

4.2.17 – Vibration-Induced Fatigue<br />

4.3.1 – Galvanic Corrosion<br />

4.3.2 – Atmospheric Corrosion<br />

4.3.3 – Corrosion Under Insulation (CUI)<br />

4.3.5 – Boiler Water Condensate Corrosion<br />

4.3.7 – Flue Gas Dew Po<strong>in</strong>t Corrosion<br />

4.3.8 – Microbiological Induced Corrosion (MIC)<br />

4.3.9 – Soil Corrosion<br />

4.4.2 – Sulfidation<br />

4.5.1 – Chloride Stress Corrosion Crack<strong>in</strong>g (Cl-SCC)<br />

4.5.3 – Caustic Stress corrosion Crack<strong>in</strong>g (Caustic Embrittlement)<br />

5.1.3.1 – High Temperature Hydrogen Attack (HTTA)


BODY OF KNOWLEDGE<br />

API-510 PRESSURE VESSEL INSPECTOR<br />

CERTIFICATION EXAMINATION<br />

August 2010 (Replaces January 2009)


API RP 571, <strong>Damage</strong> <strong>Mechanisms</strong> <strong>Affect<strong>in</strong>g</strong> <strong>Fixed</strong> equipment <strong>in</strong> <strong>the</strong> Ref<strong>in</strong><strong>in</strong>g <strong>Industry</strong><br />

ATTN: API 510 Test questions will be based on <strong>the</strong> follow<strong>in</strong>g mechanisms only:<br />

Par. 3. - Def<strong>in</strong>itions (<strong>in</strong>cluded as a frame of reference only)<br />

1. 4.2.3 – Temper Embrittlement<br />

2. 4.2.7 – Brittle Fracture<br />

3. 4.2.9 – Thermal Fatigue<br />

4. 4.2.14 – Erosion/Erosion-Corrosion<br />

5. 4.2.16 – Mechanical Failure<br />

6. 4.3.2 – Atmospheric Corrosion<br />

7. 4.3.3 – Corrosion Under Insulation (CUI)<br />

8. 4.3.4 – Cool<strong>in</strong>g Water Corrosion<br />

9. 4.3.5 – Boiler Water Condensate Corrosion<br />

10. 4.3.10 – Caustic Corrosion<br />

11. 4.4.2 – Sulfidation<br />

12. 4.5.1 – Chloride Stress Corrosion Crack<strong>in</strong>g (Cl-SCC)<br />

13. 4.5.2 – Corrosion Fatigue<br />

14. 4.5.3 – Caustic Stress Corrosion Crack<strong>in</strong>g (Caustic Embrittlement)<br />

15. 5.1.2.3 – Wet H2S <strong>Damage</strong> (Blister<strong>in</strong>g/HIC/SOHIC/SCC)<br />

16. 5.1.3.1 – High Temperature Hydrogen Attack (HTHA)


BODY OF KNOWLEDGE<br />

API-570 AUTHORIZED PIPING INSPECTOR<br />

CERTIFICATION EXAMINATION<br />

August 2010 (Replaces June 2007)


API RP 571, <strong>Damage</strong> mechanisms <strong>Affect<strong>in</strong>g</strong> <strong>Fixed</strong> equipment <strong>in</strong> <strong>the</strong> Ref<strong>in</strong><strong>in</strong>g <strong>Industry</strong><br />

ATTN: API 570 Exam<strong>in</strong>ation questions will be based on <strong>the</strong> follow<strong>in</strong>g sections only:<br />

Par. 3 – Def<strong>in</strong>itions (<strong>in</strong>cluded as a frame of reference only)<br />

1. 4.2.7 – Brittle Fracture<br />

2. 4.2.9 – Thermal Fatigue<br />

3. 4.2.14 – Erosion/Erosion Corrosion<br />

4. 4.2.16 – Mechanical Fatigue<br />

5. 4.2.17 – Vibration-Induced Fatigue<br />

6. 4.3.1 – Galvanic Corrosion<br />

7. 4.3.2 – Atmospheric Corrosion<br />

8. 4.3.3 – Corrosion Under Insulation (CUI)<br />

9. 4.3.5 – Boiler Water Condensate Corrosion<br />

10. 4.3.7 – Flue Gas Dew Po<strong>in</strong>t Corrosion<br />

11. 4.3.8 – Microbiological Induced Corrosion (MIC)<br />

12. 4.3.9 – Soil Corrosion<br />

13. 4.4.2 – Sulfidation<br />

14. 4.5.1 – Chloride Stress Corrosion Crack<strong>in</strong>g (Cl-SCC)<br />

15. 4.5.3 – Caustic Stress corrosion Crack<strong>in</strong>g (Caustic Embrittlement)


2013- API570 Exam<strong>in</strong>ation<br />

Par. 3 – Def<strong>in</strong>itions<br />

4.2.7 – Brittle Fracture<br />

4.2.9 – Thermal Fatigue<br />

4.2.14 – Erosion/Erosion Corrosion<br />

4.2.16 – Mechanical Fatigue<br />

4.2.17 – Vibration-Induced Fatigue<br />

4.3.1 – Galvanic Corrosion<br />

4.3.2 – Atmospheric Corrosion<br />

4.3.3 – Corrosion Under Insulation (CUI)<br />

4.3.5 – Boiler Water Condensate Corrosion<br />

4.3.7 – Flue Gas Dew Po<strong>in</strong>t Corrosion<br />

4.3.8 – Microbiological Induced Corrosion (MIC)<br />

4.3.9 – Soil Corrosion<br />

4.4.2 – Sulfidation<br />

4.5.1 – Chloride Stress Corrosion Crack<strong>in</strong>g (Cl-SCC)<br />

4.5.3 – Caustic Stress corrosion Crack<strong>in</strong>g<br />

5.1.3.1 – High Temperature Hydrogen Attack (HTTA)<br />

2013-API510 Exam<strong>in</strong>ation<br />

Par. 3. - Def<strong>in</strong>itions<br />

4.2.3 – Temper Embrittlement<br />

4.2.7 – Brittle Fracture<br />

4.2.9 – Thermal Fatigue<br />

4.2.14 – Erosion/Erosion-Corrosion<br />

4.2.16 – Mechanical Failure<br />

4.3.2 – Atmospheric Corrosion<br />

4.3.3 – Corrosion Under Insulation (CUI)<br />

4.3.4 – Cool<strong>in</strong>g Water Corrosion<br />

4.3.5 – Boiler Water Condensate Corrosion<br />

4.3.10 – Caustic Corrosion<br />

4.4.2 – Sulfidation<br />

4.5.1 – Chloride Stress Corrosion Crack<strong>in</strong>g (Cl-SCC)<br />

4.5.2 – Corrosion Fatigue<br />

4.5.3 – Caustic Stress Corrosion Crack<strong>in</strong>g<br />

5.1.2.3 – Wet H2S <strong>Damage</strong> (Blister/HIC/SOHIC/SCC)<br />

5.1.3.1 – High Temperature Hydrogen Attack (HTHA)


Mechanical and Metallurgical Failure <strong>Mechanisms</strong><br />

机 械 和 冶 金 失 效 机 理<br />

Graphitisation 石 墨 化<br />

800 o F for C Steel<br />

Pla<strong>in</strong> carbon steel<br />

875 o F for C ½ Mo Steel<br />

C- ½ Mo<br />

Spheroidisation 碳 化 物 球 状<br />

850 o F ~ 1400 o F<br />

Low alloy steel up to 9% Cr<br />

API510<br />

Tempered Embrittlement<br />

650 o F~ 1070 o F<br />

2 ¼ Cr-1Mo low alloy steel, 3Cr-<br />

回 火 脆 性<br />

1Mo (lesser extent), & HSLA Cr-<br />

Mo-V rotor steels<br />

Stra<strong>in</strong> Ag<strong>in</strong>g 延 伸 时 效<br />

Intermediate temperature<br />

Pre-1980’s C-steels with a large<br />

gra<strong>in</strong> size and C- ½ Mo<br />

885 o F embrittlement 脆 性<br />

600 o F~ 1000 o F<br />

300, 400 & Duplex SS conta<strong>in</strong><strong>in</strong>g<br />

ferrite phases<br />

Sigma-Phase<br />

1000 o F~ 1700 o F<br />

300, 400 & Duplex SS conta<strong>in</strong><strong>in</strong>g<br />

Embrittlement<br />

ferrite phases<br />

σ 相 脆 化<br />

API510<br />

Brittle Fracture<br />

Below DTBTT<br />

C, C- ½ Mo, 400 SS


Creep & stress rupture<br />

700 o F ~ 1000 o F<br />

All metals and alloys<br />

蠕 变 和 应 力 断 裂<br />

API510<br />

Thermal fatigues<br />

Operat<strong>in</strong>g temperature<br />

All materials of construction<br />

Short Term Overheat<strong>in</strong>g –<br />

>1000 o F<br />

All fired heater tube materials and<br />

Stress Rupture<br />

common materials of construction<br />

短 期 过 热 – 应 力 破 裂<br />

Steam Blanket<strong>in</strong>g 蒸 汽 遮 盖<br />

>1000 o F<br />

Carbon steel and low alloy steels<br />

Dissimilar Metal Weld (DMW)<br />

Operat<strong>in</strong>g temperature<br />

Carbon steel / 300 SS junction<br />

Crack<strong>in</strong>g<br />

Thermal Shock 温 度 突 然 变<br />

Cold liquid imp<strong>in</strong>ge on hot<br />

All metals and alloys.<br />

surface<br />

Flue-gas dew-po<strong>in</strong>t<br />

H 2<br />

SO 4<br />

-280 o F (138 o C),<br />

CS, low alloy and 300 SS<br />

corrosion<br />

HCL-130 o F (54 o C).<br />

CUI<br />

10 o F (–12 0 C) and 350 o F<br />

C-Steel and low alloy steel<br />

(175 o C)<br />

140 o F (60 o C) and 400 o F<br />

austenitic sta<strong>in</strong>less steels and<br />

(205 o C)<br />

duplex sta<strong>in</strong>less steels


High Temperature Corrosion [>400 o F (204 o C)]<br />

Oxidation<br />

CS - >1000 o F (538 o C)<br />

All metals and alloys<br />

氧 化<br />

300SS- >1500 o F (816 o C).<br />

API510<br />

Sulfidation<br />

Iron based alloy 500 o F (260 o C).<br />

All metals and alloys<br />

硫 腐 蚀<br />

O<strong>the</strong>rs ?<br />

Carburization<br />

>1100 o F (593 o C)<br />

All metals and alloys<br />

渗 碳<br />

Decarburization<br />

?<br />

CS and low alloy steel<br />

脱 碳<br />

Metal dust<strong>in</strong>g<br />

900 o F ~1500 o F(482 o C~ 816 o C)<br />

All metals and alloys<br />

金 属 尘 化<br />

Fuel ash corrosion<br />

> 700 o F(371 o C), varies with melt<strong>in</strong>g<br />

All metals and alloys<br />

燃 料 灰 腐 蚀<br />

po<strong>in</strong>t of salts formed.<br />

Nitrid<strong>in</strong>g<br />

>600 o F (316 o C)<br />

Carbon steels, low alloy steels, 300<br />

渗 氮<br />

Series SS and 400 Series SS


今 日 课 程 :<br />

0900~1130hrs<br />

第 一 篇 : 第 一 章 至 第 三 章 - 大 纲 与 定 义<br />

第 二 篇 : 第 四 章 - 一 般 损 伤 机 制 - 所 有 行 业<br />

1300~1700hrs<br />

第 三 篇 : 第 五 章 - 炼 油 行 业 损 坏 机 理<br />

第 四 篇 : Q&A 问 与 答


FOREWORD 前 言<br />

The overall purpose of this document is to present <strong>in</strong>formation<br />

on equipment damage mechanisms <strong>in</strong> a set format to assist <strong>the</strong><br />

reader <strong>in</strong> apply<strong>in</strong>g <strong>the</strong> <strong>in</strong>formation <strong>in</strong> <strong>the</strong> <strong>in</strong>spection and<br />

assessment of equipment from a safety and reliability standpo<strong>in</strong>t.<br />

本 文 件 的 总 体 目 标<br />

从 安 全 性 和 可 靠 性 的 角 度 , 用 预 设 的 文 件 格 式 , 提 供 设 备 损 坏 机 理<br />

信 息 , 以 协 助 读 者 应 用 此 信 息 协 助 设 备 的 (1) 检 查 和 (2) 评 估 .


这 份 文 件 反 映 了 行 业 信 息 , 但 它 不 是 一 个 强 制 性 的 标 准 或 规 范 . 这 作 业 指 导<br />

“Recommended practice 571” 是 作 为 API 检 验 规 范 如 API 510, API 570,<br />

API 653 和 执 行 基 于 风 险 的 检 验 API 580/API 581 提 供 有 用 的 信 息<br />

本 出 版 物 中 包 含 的 综 合 指 导 , 考 虑 的 事 项 有 :<br />

• 可 能 会 影 响 工 艺 设 备 的 损 伤 机 理 实 用 信 息 ,<br />

• 设 备 上 , 有 关 可 以 预 测 到 的 损 伤 类 型 和 损 害 程 度 ,<br />

• 如 何 从 这 些 知 识 帮 助 选 择 正 确 的 选 择 检 验 方 法 来<br />

发 现 / 鉴 定 与 检 测 尺 寸 .


This publication conta<strong>in</strong>s guidance for <strong>the</strong> comb<strong>in</strong>ed considerations of:<br />

• Practical <strong>in</strong>formation on damage mechanisms that can affect<br />

process equipment, 影 响 设 备 损 坏 机 理 的 实 用 信 息 ,<br />

• Assistance regard<strong>in</strong>g <strong>the</strong> type and extent of damage that can be<br />

expected, and 协 助 确 定 设 备 潜 在 的 损 伤 类 别 与 损 伤 程 度 ,<br />

• How this knowledge can be applied to <strong>the</strong> selection of effective<br />

<strong>in</strong>spection methods to detect size and characterize damage.<br />

通 过 上 述 的 知 识 确 定 如 何 选 用 真 确 的 探 测 方 法 来 对 损 伤 定 型 与 定 量 .


值 得 留 意 的 是 此 文 件 API571 没 提 到 : 材 料 选 择 作 为 损 坏 机 理 的 防 范 . 同 样<br />

的 是 , 在 ASME B31.3 300(6) Compatibility of materials with <strong>the</strong> service<br />

and hazards from <strong>in</strong>stability of conta<strong>in</strong>ed fluids are not with<strong>in</strong> <strong>the</strong> scope<br />

of this Code. See para. F323. 材 料 的 兼 容 性 对 因 所 含 流 体 ( 媒 介 ) 不 稳 定 造<br />

成 的 危 害 , 不 在 本 规 范 范 围 内 .


Table of contents 目 录<br />

1.0 Introduction and scope 简 介 及 范 围<br />

2.0 References 参 考<br />

3.0 Def<strong>in</strong>ition of terms and abbreviations<br />

定 义 , 术 语 和 缩 略 语<br />

4.0 General damage mechanisms – all <strong>in</strong>dustries<br />

一 般 损 伤 机 制 - 所 有 行 业<br />

5.0 Ref<strong>in</strong><strong>in</strong>g <strong>in</strong>dustry damage mechanisms<br />

炼 油 行 业 损 坏 机 理<br />

Appendix a – technical <strong>in</strong>quiries<br />

附 录 A - 技 术 咨 询


SECTION 1.0<br />

Introduction and scope<br />

简 介 及 范 围


1.1 Introduction 序 言<br />

ASME 和 API 加 压 设 备 的 设 计 规 范 和 标 准 - 提 供 设 计 , 制 造 , 检 验 和 测 试 “ 新 的 ” 压 力<br />

容 器 , 管 道 系 统 和 储 罐 的 规 则 . 这 些 规 范 不 解 决 设 备 在 服 务 期 间 设 备 的 老 化 , 腐 蚀 ,<br />

损 坏 等 的 考 虑 . 这 RP 主 要 针 对 在 役 设 备 上 述 信 息 .<br />

在 执 行 适 用 性 评 价 (FFS), 基 于 风 险 的 检 验 (RBI), 也 提 供 需 要 的 信 息 . 因 为 :<br />

• 进 行 FFS/ API RP 579- FFS 评 估 第 一 步 是 确 定 (1) 缺 陷 类 型 和 (2) 损 坏 的 原 因 .<br />

• 基 于 风 险 的 检 验 (RBI) 第 一 个 步 骤 也 是 正 确 的 识 别 系 统 设 备 损 伤 机 理 或 其 他 形<br />

式 的 恶 化 原 因 .


当 进 行 FFS/RBI 评 估 时 也 作 为 重 点 :<br />

• 观 察 到 的 或 预 测 的 损 坏 的 原 因<br />

• 未 来 进 一 步 损 坏 的 可 能 性 和 损 坏 程 度<br />

化 工 设 施 的 材 料 / 环 境 条 件 相 互 作 用 非 常 多 样 化 . 许 多 不 同 的 处 理 单 元 各 有 其<br />

自 身 的 进 取 过 程 , 媒 介 组 合 , 不 同 的 温 度 / 压 力 条 件 这 些 不 确 定 因 素 带 给 FFS/RBI<br />

评 估 带 来 一 些 难 度 .


当 设 备 观 察 到 的 缺 陷 时 , 这 缺 陷 可 能 是 :<br />

• 使 用 前 新 建 造 , 本 来 缺 陷 ,<br />

• 在 职 服 务 导 致 的 后 来 缺 陷 .<br />

在 役 服 务 导 致 的 后 来 缺 陷 原 因 有 :<br />

• 设 计 不 足 的 因 素 -( 包 括 材 料 的 选 择 和 缺 乏 设 计 详 细 考 虑 )<br />

• 设 备 运 行 中 的 腐 蚀 性 的 环 境 / 条 件 引 起 -( 正 常 的 服 务 或 瞬 态 期 间 )


In general, <strong>the</strong> follow<strong>in</strong>g types of damage are encountered <strong>in</strong><br />

petrochemical equipment: 化 工 设 备 一 般 损 伤 类 型<br />

1. General and local metal loss due to corrosion and/or erosion,<br />

由 于 腐 蚀 和 / 或 侵 蚀 均 匀 与 局 部 金 属 减 薄<br />

2. Surface connected crack<strong>in</strong>g, 表 面 连 接 开 裂<br />

3. Subsurface crack<strong>in</strong>g, 内 表 面 开 裂<br />

4. Microfissur<strong>in</strong>g/microvoid formation, 微 裂 纹 / 微 孔 形 成<br />

5. Metallurgical changes. 金 相 变 化


基 于 外 观 或 形 态 , 损 伤 分 类


SECTION 4.0<br />

GENERAL DAMAGE MECHANISMS – ALL INDUSTRIES<br />

一 般 损 伤 机 制 - 所 有 行 业<br />

4.2 Mechanical and Metallurgical Failure <strong>Mechanisms</strong>. 机 械 和 冶 金 失 效 机 制<br />

4.3 Uniform or Localized Loss of Thickness. 均 衡 或 局 部 厚 度 亏 损<br />

4.4 High Temperature Corrosion [400°F (204°C)]. 高 温 腐 蚀<br />

4.5 Environment Assisted Crack<strong>in</strong>g. 环 境 辅 助 开 裂<br />

SECTION 5.0<br />

REFINING INDUSTRY DAMAGE MECHANISMS<br />

炼 油 工 业 的 损 伤 机 制<br />

5.1.1 Uniform or Localized Loss <strong>in</strong> Thickness Phenomena<br />

均 匀 或 局 部 现 象 损 失 厚 度<br />

5.1.2 Environment-Assisted Crack<strong>in</strong>g 环 境 辅 助 开 裂<br />

基 于 引 发 因 素 , 损 伤 分 类


General and local metal loss/ 均 匀 与 局 部 减 薄


General and local metal loss/<br />

均 匀 与 局 部 减 薄


General and local metal loss/ 均 匀 与 局 部 减 薄


General and local metal loss/ 均 匀 与 局 部 减 薄


General and local metal loss/ 均 匀 与 局 部 减 薄


Surface connected crack<strong>in</strong>g


Surface connected crack<strong>in</strong>g


Surface connected crack<strong>in</strong>g


Surface connected crack<strong>in</strong>g


Surface connected crack<strong>in</strong>g


Surface connected crack<strong>in</strong>g


Surface connected crack<strong>in</strong>g


Surface connected crack<strong>in</strong>g


Surface connected crack<strong>in</strong>g


Surface connected crack<strong>in</strong>g


Surface connected crack<strong>in</strong>g


Surface connected crack<strong>in</strong>g


Surface connected crack<strong>in</strong>g


SCC or fatigue cracks<br />

nucleate at stress<br />

concentration po<strong>in</strong>ts<br />

SCC cracks have<br />

highly branch<br />

Corrosion fatigue cracks<br />

have little branch<strong>in</strong>g<br />

Surface connected crack<strong>in</strong>g


subsurface crack<strong>in</strong>g


subsurface crack<strong>in</strong>g


subsurface crack<strong>in</strong>g


subsurface crack<strong>in</strong>g


subsurface crack<strong>in</strong>g


Microfissur<strong>in</strong>g/microvoid formation


Microfissur<strong>in</strong>g/microvoid formation<br />

http://www.aws.org/wj/supplement/WJ_1985_04_s91.pdf


Microfissur<strong>in</strong>g/microvoid formation<br />

http://www.aws.org/wj/supplement/WJ_1985_04_s91.pdf


Metallurgical changes


Metallurgical changes


Metallurgical changes


Metallurgical changes


Metallurgical changes


Each of <strong>the</strong>se general types of damage may be caused by a s<strong>in</strong>gle or<br />

multiple damage mechanisms. In addition, each of <strong>the</strong> damage<br />

mechanisms occurs under very specific comb<strong>in</strong>ations of materials,<br />

process environments, and operat<strong>in</strong>g conditions.<br />

每 个 损 伤 , 可 能 是 由 一 个 或 多 个 损 坏 机 理 造 成 . 每 一 个 损 伤 机 制 有 非 常 具<br />

体 的 (1) 材 料 (2) 过 程 环 境 和 (3) 操 作 条 件 , 的 组 合 下 发 生 .


1.2 Scope 范 围<br />

This recommended practice provides general guidance as to <strong>the</strong> most likely<br />

damage mechanisms affect<strong>in</strong>g common alloys used <strong>in</strong> <strong>the</strong> ref<strong>in</strong><strong>in</strong>g and<br />

petrochemical <strong>in</strong>dustry and is <strong>in</strong>tended to <strong>in</strong>troduce <strong>the</strong> concepts of service<strong>in</strong>duced<br />

deterioration and failure modes. These guidel<strong>in</strong>es provide<br />

<strong>in</strong>formation that can be utilized by plant <strong>in</strong>spection personnel to assist <strong>in</strong><br />

identify<strong>in</strong>g likely causes of damage; to assist with <strong>the</strong> development of<br />

<strong>in</strong>spection strategies; to help identify monitor<strong>in</strong>g programs to ensure<br />

equipment <strong>in</strong>tegrity. 此 规 范 对 石 油 化 工 行 业 常 用 材 料 在 役 损 蚀 与 失 效 最 可 能 的<br />

损 坏 机 理 一 般 指 导 . 协 助 检 验 人 员 识 别 可 能 导 致 伤 害 的 原 因 , 从 而 确 定 检 测 策 略 ,<br />

以 确 保 设 备 的 完 整 性 .<br />

The summary provided for each damage mechanism provides <strong>the</strong><br />

fundamental <strong>in</strong>formation required for an FFS assessment performed <strong>in</strong><br />

accordance with API 579-1/ASME FFS-1 or an RBI study performed <strong>in</strong><br />

accordance with API RP 580. 每 个 损 伤 机 理 的 总 结 作 为 提 供 RBI/FFS 评 估 所 需<br />

的 基 本 信 息 .


API571, 此 规 范 对 石 油 化 工 行 业 常 用 材 料 在 役 损 蚀 与 失 效 最 可<br />

能 的 损 坏 机 理 一 般 指 导 . 协 助 检 验 人 员 识 别 可 能 导 致 伤 害 的 原<br />

因 , 从 而 确 定 检 测 策 略 , 以 确 保 设 备 的 完 整 性 .


1.3 Organization and Use 格 式 和 使 用<br />

The <strong>in</strong>formation for each damage mechanism is provided <strong>in</strong> a set<br />

format as shown below. This recommended practice format facilitates<br />

use of <strong>the</strong> <strong>in</strong>formation <strong>in</strong> <strong>the</strong> development of <strong>in</strong>spection programs, FFS<br />

assessment and RBI applications.<br />

为 了 协 助 (1) 检 验 计 划 的 开 发 / (2) FFS 使 用 性 评 估 (3) RBI 基 于 风 险 分 析<br />

检 验 的 运 用 , 个 别 的 损 坏 机 理 的 信 息 提 供 的 格 式 如 下 :


a) Description of <strong>Damage</strong> – a basic description of <strong>the</strong> damage mechanism.<br />

损 伤 机 理 的 基 本 描 述<br />

b) Affected Materials – a list of <strong>the</strong> materials prone to <strong>the</strong> damage<br />

mechanism. 受 影 响 的 材 料<br />

c) Critical Factors – a list of factors that affect <strong>the</strong> damage mechanism (i.e.<br />

rate of damage). 破 坏 机 理 的 影 响 因 素 列 表<br />

d) Affected Units or <strong>Equipment</strong> – a list of <strong>the</strong> affected equipment and/or<br />

units where <strong>the</strong> damage mechanism commonly occurs is provided.<br />

受 影 响 的 单 元 或 设 备<br />

e) Appearance or Morphology of <strong>Damage</strong> – a description of <strong>the</strong> damage<br />

mechanism, with pictures <strong>in</strong> some cases, to assist with recognition of <strong>the</strong><br />

damage. 外 观 或 损 伤 形 态 学 .


f) Prevention / Mitigation – methods to prevent and/or mitigate<br />

damage. 预 防 / 缓 解<br />

g) Inspection and Monitor<strong>in</strong>g – recommendations for NDE for detect<strong>in</strong>g<br />

and siz<strong>in</strong>g <strong>the</strong> flaw types associated with <strong>the</strong> damage mechanism.<br />

检 查 和 监 测<br />

h) Related <strong>Mechanisms</strong> – a discussion of related damage mechanisms.<br />

相 关 的 损 伤 机 理 讨 论<br />

i) References – a list of references that provide background and o<strong>the</strong>r<br />

pert<strong>in</strong>ent <strong>in</strong>formation. 参 考 .


<strong>Damage</strong> mechanisms that are common to a variety of <strong>in</strong>dustries <strong>in</strong>clud<strong>in</strong>g<br />

ref<strong>in</strong><strong>in</strong>g and petrochemical, pulp and paper, and fossil utility are covered <strong>in</strong><br />

Section 4.0. 通 用 炼 油 化 工 , 纸 浆 和 纸 张 , 以 及 石 化 设 施 - 损 坏 机 理 信 息<br />

<strong>Damage</strong> mechanisms that are specific to <strong>the</strong> ref<strong>in</strong><strong>in</strong>g and petrochemical<br />

<strong>in</strong>dustries are covered <strong>in</strong> Section 5. 专 门 针 对 炼 油 和 石 化 工 业 - 损 坏 机 理 信 息<br />

In addition, process flow diagrams are provided <strong>in</strong> 5.2 to assist <strong>the</strong> user <strong>in</strong><br />

determ<strong>in</strong><strong>in</strong>g primary locations where some of <strong>the</strong> significant damage<br />

mechanisms are commonly found. 5.2 提 供 了 一 些 工 艺 流 程 图 主 要 的 单 元 常 见<br />

的 一 些 重 大 损 害 机 理 .


• 提 供 损 伤 机 理 作 为 定 性 定 量 的 信 息<br />

• 提 供 损 伤 机 理 作 为 FFS/RBI 评 估 有 用 的 信 息<br />

• 提 供 损 伤 机 理 作 为 API510/ 570/ 653 在 职 设 备 检 验 有 用 的 信 息<br />

• 损 伤 机 理 可 以 分 为 5 大 类 型<br />

• 设 备 损 伤 发 现 可 能 是 源 于 新 建 或 在 职 服 务 导 致 .


SECTION 2.0<br />

REFERENCES<br />

2.1 Standards<br />

2.2 O<strong>the</strong>r References


2.1 Standards<br />

API<br />

• API 530 Pressure Vessel Inspection Code<br />

• Std. 530 Calculation of Heater Tube Thickness <strong>in</strong> Petroleum Ref<strong>in</strong>eries<br />

• RP 579 Fitness-For-Service<br />

• Publ. 581 Risk-Based Inspection - Base Resource Document<br />

• Std. 660 Shell and Tube Heat Exchangers for General Ref<strong>in</strong>ery Service<br />

• RP 751 Safe Operation of Hydrofluoric Acid Alkylation Units<br />

• RP 932-B Design, Materials, Fabrication, Operation and Inspection<br />

Guidel<strong>in</strong>es for Corrosion Control <strong>in</strong> Hydroprocess<strong>in</strong>g Reactor Effluent Air<br />

Cooler (REAC) Systems<br />

• RP 934 Materials and Fabrication Requirements for 2-1/4 Cr-1Mo & 3Cr-<br />

1Mo Steel Heavy Wall Pressure Vessels for High Temperature, High<br />

Pressure Service<br />

• RP 941 Steels for Hydrogen Service at Elevated Temperatures and<br />

Pressures <strong>in</strong> Petroleum Ref<strong>in</strong>eries and Petrochemical Plants<br />

• RP 945 Avoid<strong>in</strong>g Environmental Crack<strong>in</strong>g <strong>in</strong> Am<strong>in</strong>e Units


ASM<br />

• Metals Handbook Volume 1, Properties and Selection: Iron, Steels, and<br />

High-Performance Alloys;<br />

• Volume 13, Corrosion <strong>in</strong> Petroleum Ref<strong>in</strong><strong>in</strong>g and Petrochemical Operations;<br />

• Volume 11, Failure Analysis and Prevention<br />

ASME<br />

• Boiler and Pressure Vessel Code Section III, Division I, Rules for<br />

Construction of Nuclear Power Plant Components; Section VIII, Division I,<br />

Pressure Vessels.<br />

ASTM<br />

• MNL41 Corrosion <strong>in</strong> <strong>the</strong> Petrochemical <strong>Industry</strong><br />

• STP1428 Thermo-mechanical Fatigue Behavior of Materials<br />

BSI<br />

• BSI 7910 Guidance on Methods for Assess<strong>in</strong>g <strong>the</strong> Acceptability of Flaws <strong>in</strong><br />

Fusion Welded Structures<br />

MPC<br />

• Report FS-26 Fitness-For Service Evaluation Procedures for Operat<strong>in</strong>g<br />

Pressure Vessels, Tanks and Pip<strong>in</strong>g <strong>in</strong> Ref<strong>in</strong>ery and Chemical Service


NACE<br />

• Std. MR 0103 Materials Resistant to Sulfide Stress Crack<strong>in</strong>g <strong>in</strong> Corrosive<br />

Petroleum Ref<strong>in</strong><strong>in</strong>g Environments”<br />

• RP 0169 Standard Recommended Practice: Control of External Corrosion on<br />

Underground or Submerged Metallic Pip<strong>in</strong>g Systems<br />

• RP 0170 Protection of Austenitic Sta<strong>in</strong>less Steels and O<strong>the</strong>r Austenitic Alloys from<br />

Polythionic Acid Stress Corrosion Crack<strong>in</strong>g dur<strong>in</strong>g Shutdown of Ref<strong>in</strong>ery<br />

<strong>Equipment</strong><br />

• RP 0198 The Control of Corrosion Under Thermal Insulation, and Fireproof<strong>in</strong>g – A<br />

Systems Approach<br />

• RP 0294 Design, Fabrication, and Inspection of Tanks for <strong>the</strong> Storage of<br />

Concentrated Sulfuric Acid and Oleum at Ambient Temperatures<br />

• RP 0296 Guidel<strong>in</strong>es for Detection, Repair and Mitigation of Crack<strong>in</strong>g of Exist<strong>in</strong>g<br />

Petroleum Ref<strong>in</strong>ery Pressure Vessels <strong>in</strong> Wet H 2<br />

S Environments<br />

• RP 0472 Methods and Controls to Prevent <strong>in</strong>-Service Environmental Crack<strong>in</strong>g of<br />

Carbon Steel Weldments <strong>in</strong> Corrosive Petroleum Ref<strong>in</strong><strong>in</strong>g Environments<br />

• Publ. 5A151 Materials of Construction for Handl<strong>in</strong>g Sulfuric Acid<br />

• Publ. 5A171 Materials for Receiv<strong>in</strong>g, Handl<strong>in</strong>g, and Stor<strong>in</strong>g Hydrofluoric Acid<br />

• Publ. 8X194 Materials and Fabrication


WRC<br />

• Bullet<strong>in</strong> 32 Graphitization of Steel <strong>in</strong> Petroleum Ref<strong>in</strong><strong>in</strong>g <strong>Equipment</strong> and<br />

<strong>the</strong> Effect of Graphitization of Steel on Stress-Rupture Properties<br />

• Bullet<strong>in</strong> 275 The Use of Quenched and Tempered 2-1/4Cr-1Mo Steel for<br />

Thick Wall Reactor Vessels <strong>in</strong> Petroleum Ref<strong>in</strong>ery Processes: An<br />

Interpretive Review of 25 Years of Research and Application<br />

• Bullet<strong>in</strong> 350 Design Criteria for Dissimilar Metal Welds<br />

• Bullet<strong>in</strong> 409 Fundamental Studies Of The Metallurgical Causes And<br />

Mitigation Of Reheat Crack<strong>in</strong>g In 1¼Cr-½Mo And 2¼Cr-1Mo Steels<br />

• Bullet<strong>in</strong> 418 The Effect of Crack Depth (a) and Crack-Depth to Width Ratio<br />

(a/W) on <strong>the</strong> Fracture Toughness of A533-B Steel<br />

• Bullet<strong>in</strong> 452 Recommended Practices for Local Heat<strong>in</strong>g of Welds <strong>in</strong><br />

Pressure Vessels


2.2 O<strong>the</strong>r References<br />

A list of publications that offer background and o<strong>the</strong>r <strong>in</strong>formation pert<strong>in</strong>ent<br />

to <strong>the</strong> damage mechanism is provided <strong>in</strong> <strong>the</strong> section cover<strong>in</strong>g each<br />

damage mechanism.


SECTION 3.0<br />

DEFINITION OF TERMS AND<br />

ABBREVIATIONS<br />

3.1 Terms<br />

3.2 Symbols and Abbreviations


3.1 Terms<br />

3.1.1 Austenitic 奥 氏 体 – a term that refers to a type of metallurgical structure<br />

(austenite) normally found <strong>in</strong> 300 Series sta<strong>in</strong>less steels and nickel base alloys.<br />

3.1.2 Austenitic sta<strong>in</strong>less steels 奥 氏 体 系 不 锈 钢 – <strong>the</strong> 300 Series sta<strong>in</strong>less steels<br />

<strong>in</strong>clud<strong>in</strong>g Types 304, 304L, 304H, 309, 310, 316, 316L, 316H, 321, 321H, 347,<br />

and 347H. The “L” and “H” suffixes refer to controlled ranges of low and high<br />

carbon content, respectively. These alloys are characterized by an austenitic<br />

structure.<br />

3.1.3 Carbon steel 碳 素 钢 – steels that do not have alloy<strong>in</strong>g elements <strong>in</strong>tentionally<br />

added. However, <strong>the</strong>re may be small amounts of elements permitted by<br />

specifications such as SA516 and SA106, for example that can affect corrosion<br />

resistance, hardness after weld<strong>in</strong>g, and toughness. Elements which may be found<br />

<strong>in</strong> small quantities <strong>in</strong>clude Cr, Ni, Mo, Cu, S, Si, P, Al, V and B.


3.1.4 Di-ethanolam<strong>in</strong>e 二 乙 醇 胺 (DEA) – used <strong>in</strong> am<strong>in</strong>e treat<strong>in</strong>g to remove<br />

H2S and CO2 from hydrocarbon streams.<br />

3.1.5 Duplex sta<strong>in</strong>less steel 双 相 不 锈 钢 – a family of sta<strong>in</strong>less steels that conta<strong>in</strong><br />

a mixed austenitic-ferritic structure <strong>in</strong>clud<strong>in</strong>g Alloy 2205, 2304, and 2507. The<br />

welds of 300 series sta<strong>in</strong>less steels may also exhibit a duplex structure.<br />

3.1.6 Ferritic 铁 素 体 – a term that refers to a type of metallurgical structure<br />

(ferrite) normally found <strong>in</strong> carbon and low alloy steels and many 400 series<br />

sta<strong>in</strong>less steels.<br />

3.1.7 Ferritic sta<strong>in</strong>less steels 铁 素 体 不 锈 钢 – <strong>in</strong>clude Types 405, 409, 430, 442,<br />

and 446.<br />

3.1.8 Heat Affected Zone (HAZ) – <strong>the</strong> portion of <strong>the</strong> base metal adjacent to a<br />

weld which has not been melted, but whose metallurgical microstructure and<br />

mechanical properties have been changed by <strong>the</strong> heat of weld<strong>in</strong>g, sometimes<br />

with undesirable effects.


Add Nickel<br />

Add Nickel<br />

0% Nickel-Ferrite<br />

铁 素 体<br />

5% Nickel-Duplex<br />

双 相 ( 铁 素 / 奥 氏 体 )<br />

>8% Nickel-Austenite<br />

奥 氏 体


The 1949 Schaeffler diagram


The 1949 Schaeffler diagram


The 1949 Schaeffler diagram


http://www.<strong>in</strong>techopen.com/books/environmental-and-<strong>in</strong>dustrial-corrosion-practical-and-<strong>the</strong>oreticalaspects/corrosion-behaviour-of-cold-deformed-austenitic-alloys


3.1.9 Hydrogen Induced Crack<strong>in</strong>g (HIC) 氢 致 开 裂 – describes stepwise <strong>in</strong>ternal<br />

cracks that connect adjacent hydrogen blisters on different planes <strong>in</strong> <strong>the</strong> metal, or<br />

to <strong>the</strong> metal surface. No externally applied stress is needed for <strong>the</strong> formation of<br />

HIC. The development of <strong>in</strong>ternal cracks (sometimes referred to as blister cracks)<br />

tends to l<strong>in</strong>k with o<strong>the</strong>r cracks by a transgranular plastic shear mechanism<br />

because of <strong>in</strong>ternal pressure result<strong>in</strong>g from <strong>the</strong> accumulation of hydrogen. The<br />

l<strong>in</strong>k-up of <strong>the</strong>se cracks on different planes <strong>in</strong> steels has been referred to as<br />

stepwise crack<strong>in</strong>g to characterize <strong>the</strong> nature of <strong>the</strong> crack appearance.<br />

3.1.10 Low alloy steel 低 合 金 结 构 钢 – a family of steels conta<strong>in</strong><strong>in</strong>g up to 9%<br />

chromium and o<strong>the</strong>r alloy<strong>in</strong>g additions for high temperature strength and creep<br />

resistance. The materials <strong>in</strong>clude C-0.5Mo, Mn-0.5Mo, 1Cr-0.5Mo, 1.25 Cr-0.5Mo,<br />

2.25Cr-1.0Mo, 5Cr-0.5Mo, and 9Cr-1Mo. These are considered ferritic steels.


3.1.11 Martensitic 马 氏 体 – a term that refers to a type of metallurgical<br />

structure (martensite) normally found <strong>in</strong> some 400 series sta<strong>in</strong>less steel.<br />

Heat treatment and or weld<strong>in</strong>g followed by rapid cool<strong>in</strong>g<br />

can produce this structure <strong>in</strong> carbon and low alloy steels.


3.1.12 Martensitic sta<strong>in</strong>less steel – <strong>in</strong>clude Types 410, 410S, 416, 420, 440A,<br />

440B, and 440C.<br />

3.1.13 Methyldiethanolam<strong>in</strong>e (MDEA) – used <strong>in</strong> am<strong>in</strong>e treat<strong>in</strong>g to remove H 2 S<br />

and CO 2 from hydrocarbon streams.<br />

3.1.14 Monoethanolam<strong>in</strong>e (MEA) – used <strong>in</strong> am<strong>in</strong>e treat<strong>in</strong>g to remove H 2 S and<br />

CO 2 from hydrocarbon streams.<br />

3.1.15 Nickel base alloy– a family of alloys conta<strong>in</strong><strong>in</strong>g nickel as a major<br />

alloy<strong>in</strong>g element ( Ni>30% ) <strong>in</strong>clud<strong>in</strong>g Alloys 200, 400, K-500, 800, 800H, 825,<br />

600, 600H, 617, 625, 718, X-750, and C276.


3.1.16 Stress oriented hydrogen <strong>in</strong>duced crack<strong>in</strong>g (SOHIC) 应 力 导 向 氢 致 开 裂 –<br />

describes an array of cracks, aligned nearly perpendicular to <strong>the</strong> stress, that are<br />

formed by <strong>the</strong> l<strong>in</strong>k-up of small HIC cracks <strong>in</strong> steel. Tensile strength (residual or<br />

applied) is required to produce SOHIC. SOHIC is commonly observed <strong>in</strong> <strong>the</strong> base<br />

metal adjacent to <strong>the</strong> Heat Affected Zone (HAZ) of a weld, oriented <strong>in</strong> <strong>the</strong> throughthickness<br />

direction. SOHIC may also be produced <strong>in</strong> susceptible steels at o<strong>the</strong>r<br />

high stress po<strong>in</strong>ts, such as from <strong>the</strong> tip of <strong>the</strong> mechanical cracks and defects, or<br />

from <strong>the</strong> <strong>in</strong>teraction among HIC on different planes <strong>in</strong> <strong>the</strong> steel.<br />

3.1.17 Sta<strong>in</strong>less steel 不 锈 钢 – <strong>the</strong>re are four categories of sta<strong>in</strong>less steels that are<br />

characterized by <strong>the</strong>ir metallurgical structure at room temperature: austenitic,<br />

ferritic, martensitic and duplex. These alloys have vary<strong>in</strong>g amounts of chromium<br />

and o<strong>the</strong>r alloy<strong>in</strong>g elements that give <strong>the</strong>m resistance to oxidation, sulfidation and<br />

o<strong>the</strong>r forms of corrosion depend<strong>in</strong>g on <strong>the</strong> alloy content.


3.2 Symbols and Abbreviations<br />

3.2.1 ACFM – alternat<strong>in</strong>g current magnetic flux leakage test<strong>in</strong>g.<br />

3.2.2 AE – acoustic emission.<br />

3.2.3 AET – acoustic emission test<strong>in</strong>g.<br />

3.2.4 AGO – atmospheric gas oil.<br />

3.2.5 AUBT – automated ultrasonic backscatter test<strong>in</strong>g.<br />

3.2.6 BFW – boiler feed water.<br />

3.2.7 C 2<br />

– chemical symbol referr<strong>in</strong>g to ethane or ethylene.<br />

3.2.8 C 3<br />

– chemical symbol referr<strong>in</strong>g to propane or propylene.<br />

3.2.9 C 4<br />

– chemical symbol referr<strong>in</strong>g to butane or butylenes.<br />

3.2.10 Cat – catalyst or catalytic.<br />

3.2.11 CDU – crude distillation unit.<br />

3.2.12 CH 4<br />

– methane.<br />

3.2.13 CO – carbon monoxide.<br />

3.2.14 CO 2<br />

– carbon dioxide.<br />

3.2.15 CVN – charpy v-notch.


3.2.16 CW – cool<strong>in</strong>g water.<br />

3.2.17 DIB – deisobutanizer.<br />

3.2.18 DNB – Departure from Nucleate Boil<strong>in</strong>g.<br />

3.2.19 DEA – diethanolam<strong>in</strong>e, used <strong>in</strong> am<strong>in</strong>e treat<strong>in</strong>g to<br />

remove H 2<br />

S and CO 2<br />

from hydrocarbon streams.<br />

3.2.20 EC – eddy current, test method applies primarily to nonferromagnetic<br />

materials.<br />

3.2.21 FCC – fluid catalytic cracker.<br />

3.2.22 FMR – field metallographic replication.<br />

3.2.23 H 2<br />

– hydrogen.<br />

3.2.24 H 2<br />

O – also known as water.<br />

3.2.25 H 2<br />

S – hydrogen sulfide, a poisonous gas.<br />

3.2.26 HAZ – Heat Affected Zone<br />

3.2.27 HB – Br<strong>in</strong>nell hardness numbe<br />

3.2.28 HCO – heavy cycle oil.<br />

3.2.29 HCGO – heavy coker gas oil.<br />

3.2.30 HIC – Hydrogen Induced Crack<strong>in</strong>g<br />

571-3<br />

Charlie Chong/ Fion Zhang


3.2.31 HP – high pressure.<br />

3.2.32 HPS – high pressure separator.<br />

3.2.33 HVGO – heavy vacuum gas oil.<br />

3.2.34 HSLA – high strength low alloy.<br />

3.2.35 HSAS – heat stable am<strong>in</strong>e salts.<br />

3.2.36 IC4 – chemical symbol referr<strong>in</strong>g isobutane.<br />

3.2.37 IP – <strong>in</strong>termediate pressure.<br />

3.2.38 IRIS – <strong>in</strong>ternal rotat<strong>in</strong>g <strong>in</strong>spection system.<br />

3.2.39 K.O. – knock out, as <strong>in</strong> K.O. Drum.<br />

3.2.40 LCGO – light coker gas oil.<br />

3.2.41 LCO – light cycle oil.<br />

3.2.42 LP – low pressure.<br />

3.2.43 LPS – low pressure separator.<br />

3.2.44 LVGO – light vacuum gas oil.<br />

3.2.45 MDEA – methyldiethanolam<strong>in</strong>e.<br />

3.2.46 MEA – monoethanolam<strong>in</strong>e.<br />

3.2.47 mpy – mils per year.<br />

3.2.48 MT – magnetic particle test<strong>in</strong>g


3.2.49 NAC – naph<strong>the</strong>nic acid corrosion.<br />

3.2.50 NH 4<br />

HS – ammonium bisulfide.<br />

3.2.51 PMI – positive materials identification.<br />

3.2.52 PFD – process flow diagram.<br />

3.2.53 PT – liquid penetrant test<strong>in</strong>g.<br />

3.2.54 RFEC – remote field eddy current test<strong>in</strong>g.<br />

3.2.55 RT – radiographic test<strong>in</strong>g.<br />

3.2.56 SCC – stress corrosion crack<strong>in</strong>g.<br />

3.2.57 SOHIC – Stress Oriented Hydrogen Induced Crack<strong>in</strong>g<br />

3.2.58 SS: – Sta<strong>in</strong>less Steel.<br />

3.2.59 SW – sour water.<br />

3.2.60 SWS – sour water stripper.<br />

3.2.61 SWUT – shear wave ultrasonic test<strong>in</strong>g.<br />

3.2.62 Ti – titanium.<br />

3.2.63 UT – ultrasonic test<strong>in</strong>g.<br />

3.2.64 VDU – vacuum distillation unit.<br />

3.2.65 VT – visual <strong>in</strong>spection.<br />

3.2.66 WFMT – wet fluorescent magnetic particle test<strong>in</strong>g.


SECTION 4.0<br />

GENERAL DAMAGE<br />

MECHANISMS – ALL<br />

INDUSTRIES<br />

一 般 损 伤 机 制 - 所 有 行 业


4.1 General 大 纲<br />

4.2 Mechanical and Metallurgical Failure <strong>Mechanisms</strong>. 机 械 和 冶 金 失 效 机 制<br />

4.3 Uniform or Localized Loss of Thickness. 均 衡 或 局 部 厚 度 亏 损<br />

4.4 High Temperature Corrosion [400°F (204°C)]. 高 温 腐 蚀<br />

4.5 Environment Assisted Crack<strong>in</strong>g. 环 境 辅 助 开 裂


GENERAL DAMAGE MECHANISMS – ALL INDUSTRIES<br />

一 般 损 伤 机 制 - 所 有 行 业


GENERAL DAMAGE MECHANISMS<br />

– ALL INDUSTRIES<br />

一 般 损 伤 机 制 - 所 有 行 业


GENERAL DAMAGE MECHANISMS – ALL<br />

INDUSTRIES<br />

一 般 损 伤 机 制 - 所 有 行 业


GENERAL DAMAGE MECHANISMS – ALL INDUSTRIES<br />

一 般 损 伤 机 制 - 所 有 行 业<br />

美 国 德 克 萨 斯 化 肥 厂 爆 炸 , 死 亡 人 数 攀 升 至 35 人


GENERAL DAMAGE MECHANISMS – ALL INDUSTRIES<br />

一 般 损 伤 机 制 - 所 有 行 业


GENERAL DAMAGE MECHANISMS – ALL<br />

INDUSTRIES<br />

一 般 损 伤 机 制 - 所 有 行 业


GENERAL DAMAGE<br />

MECHANISMS – ALL<br />

INDUSTRIES<br />

一 般 损 伤 机 制 - 所 有 行 业


GENERAL DAMAGE<br />

MECHANISMS – ALL<br />

INDUSTRIES<br />

一 般 损 伤 机 制 - 所 有 行 业


GENERAL DAMAGE<br />

MECHANISMS – ALL<br />

INDUSTRIES<br />

http://edition.cnn.com/2013/04/18/us/texas-explosion/<br />

一 般 损 伤 机 制 - 所 有 行 业


GENERAL DAMAGE<br />

MECHANISMS – ALL<br />

INDUSTRIES<br />

一 般 损 伤 机 制 - 所 有 行 业


GENERAL DAMAGE MECHANISMS – ALL<br />

INDUSTRIES 一 般 损 伤 机 制 - 所 有 行 业


GENERAL DAMAGE MECHANISMS – ALL<br />

INDUSTRIES 一 般 损 伤 机 制 - 所 有 行 业 .<br />

API 571 人 为 的 把 损 伤 机 理 分 类 为 4 种 作 为 学 习 ;<br />

1. 机 械 和 冶 金 失 效 机 理 ,<br />

2. 均 衡 或 局 部 厚 度 亏 损 .<br />

3. 高 温 腐 蚀 ,<br />

4. 环 境 辅 助 开 裂


4.2 Mechanical &<br />

Metallurgical Failure<br />

<strong>Mechanisms</strong><br />

机 械 和 冶 金 失 效 机 理


4.3 Uniform or Localized Loss of Thickness<br />

均 衡 或 局 部 厚 度 亏 损


4.4 High<br />

Temperature<br />

Corrosion 高 温 腐 蚀


4.5 Environment Assisted<br />

Crack<strong>in</strong>g 环 境 辅 助 开 裂


4.2 Mechanical &<br />

Metallurgical Failure<br />

<strong>Mechanisms</strong><br />

机 械 和 冶 金 失 效 机 制


4.2 Mechanical and Metallurgical Failure <strong>Mechanisms</strong><br />

4.2.1 Graphitization.<br />

4.2.2 Soften<strong>in</strong>g (Spheroidization).<br />

4.2.3 Temper Embrittlement.<br />

4.2.4 Stra<strong>in</strong> Ag<strong>in</strong>g.<br />

4.2.5 885°F (475°C) Embrittlement.<br />

4.2.6 Sigma Phase Embrittlement .<br />

4.2.7 Brittle Fracture.<br />

4.2.8 Creep and Stress Rupture.<br />

4.2.9 Thermal Fatigue .<br />

4.2.10 Short Term Overheat<strong>in</strong>g – Stress Rupture.<br />

4.2.11 Steam Blanket<strong>in</strong>g.<br />

4.2.12 Dissimilar Metal Weld (DMW) Crack<strong>in</strong>g.<br />

4.2.13 Thermal Shock.<br />

4.2.14 Erosion/Erosion – Corrosion.<br />

4.2.15 Cavitation.<br />

4.2.16 Mechanical Fatigue.<br />

4.2.17 Vibration-Induced Fatigue.<br />

4.2.18 Refractory Degradation.<br />

4.2.19 Reheat Crack<strong>in</strong>g.<br />

4.2.20 GOX-Enhanced Ignition & Combustion


2013- API570 Exam<strong>in</strong>ation<br />

Par. 3 – Def<strong>in</strong>itions<br />

4.2.7 – Brittle Fracture<br />

4.2.9 – Thermal Fatigue<br />

4.2.14 – Erosion/Erosion Corrosion<br />

4.2.16 – Mechanical Fatigue<br />

4.2.17 – Vibration-Induced Fatigue<br />

4.3.1 – Galvanic Corrosion<br />

4.3.2 – Atmospheric Corrosion<br />

4.3.3 – Corrosion Under Insulation (CUI)<br />

4.3.5 – Boiler Water Condensate Corrosion<br />

4.3.7 – Flue Gas Dew Po<strong>in</strong>t Corrosion<br />

4.3.8 – Microbiological Induced Corrosion (MIC)<br />

4.3.9 – Soil Corrosion<br />

4.4.2 – Sulfidation<br />

4.5.1 – Chloride Stress Corrosion Crack<strong>in</strong>g (Cl-SCC)<br />

4.5.3 – Caustic Stress corrosion Crack<strong>in</strong>g<br />

5.1.3.1 – High Temperature Hydrogen Attack (HTTA)<br />

2013-API510 Exam<strong>in</strong>ation<br />

Par. 3. - Def<strong>in</strong>itions<br />

4.2.3 – Temper Embrittlement<br />

4.2.7 – Brittle Fracture<br />

4.2.9 – Thermal Fatigue<br />

4.2.14 – Erosion/Erosion-Corrosion<br />

4.2.16 – Mechanical Failure<br />

4.3.2 – Atmospheric Corrosion<br />

4.3.3 – Corrosion Under Insulation (CUI)<br />

4.3.4 – Cool<strong>in</strong>g Water Corrosion<br />

4.3.5 – Boiler Water Condensate Corrosion<br />

4.3.10 – Caustic Corrosion<br />

4.4.2 – Sulfidation<br />

4.5.1 – Chloride Stress Corrosion Crack<strong>in</strong>g (Cl-SCC)<br />

4.5.2 – Corrosion Fatigue<br />

4.5.3 – Caustic Stress Corrosion Crack<strong>in</strong>g<br />

5.1.2.3 – Wet H2S <strong>Damage</strong> (Blister/HIC/SOHIC/SCC)<br />

5.1.3.1 – High Temperature Hydrogen Attack (HTHA)


Exam<br />

<strong>Damage</strong> Mechanism<br />

Temperatures<br />

Affected materials<br />

Graphitisation<br />

800°F~1100°F for C Steel<br />

Pla<strong>in</strong> carbon steel<br />

875°F for C ½ Mo Steel<br />

C, C ½ Mo<br />

Spheroidisation<br />

850 °F ~ 1400 °F<br />

Low alloy steel up to 9% Cr<br />

510<br />

Tempered<br />

650 °F~ 1070 °F<br />

2 ¼ Cr-1Mo low alloy steel, 3Cr-<br />

Embrittlement<br />

1Mo (lesser extent), & HSLA Cr-<br />

Mo-V rotor steels<br />

Stra<strong>in</strong> Ag<strong>in</strong>g<br />

Intermediate temperature<br />

Pre-1980’s C-steels with a large<br />

gra<strong>in</strong> size and C- ½ Mo<br />

885°F embrittlement<br />

600 °F~ 1000 °F<br />

300, 400 & Duplex SS conta<strong>in</strong><strong>in</strong>g<br />

ferrite phases<br />

Sigma-Phase<br />

1000 °F~ 1700 °F<br />

Ferritic, austenitic & duplex SS.<br />

Embrittlement<br />

Sigma forms most rapidly from <strong>the</strong><br />

ferrite phase that exists <strong>in</strong> 300 Series<br />

SS and duplex SS weld deposits. It can<br />

also form <strong>in</strong> <strong>the</strong> 300 Series SS base<br />

metal (austenite phase) but usually<br />

more slowly.


Exam<br />

<strong>Damage</strong> Mechanism<br />

Temperatures<br />

Affected materials<br />

510/570<br />

Brittle Fracture<br />

Below DTBTT<br />

C, C- ½ Mo, 400 SS<br />

Creep & stress rupture<br />

700 °F ~ 1000 °F<br />

All metals and alloys<br />

510/570<br />

Thermal fatigues<br />

Operat<strong>in</strong>g temperature<br />

All materials of construction<br />

Short Term<br />

>1000 °F<br />

All fired heater tube materials<br />

Overheat<strong>in</strong>g – Stress<br />

and common materials of<br />

Rupture<br />

construction<br />

Steam Blanket<strong>in</strong>g<br />

>1000 °F<br />

Carbon steel and low alloy<br />

steels<br />

Dissimilar Metal Weld<br />

Operat<strong>in</strong>g temperature<br />

Carbon steel / 300 SS<br />

(DMW) Crack<strong>in</strong>g<br />

junction<br />

Thermal Shock<br />

Cold liquid imp<strong>in</strong>ge on hot<br />

All metals and alloys.<br />

surface


Exam<br />

<strong>Damage</strong> Mechanism<br />

Temperatures<br />

Affected materials<br />

570/510<br />

Erosion/Erosion<br />

Service temperature<br />

All<br />

Corrosion<br />

Cavitation<br />

Service temperature<br />

All<br />

570/510<br />

Mechanical fatigue<br />

Service temperature<br />

All<br />

570<br />

Vibration-Induced<br />

Service temperature<br />

All<br />

Fatigue<br />

Refractory<br />

Service temperature<br />

All<br />

Degradation<br />

Reheat Crack<strong>in</strong>g<br />

Service temperature<br />

CS, 300SS, Ni Based<br />

GOX enhances<br />

Service temperature<br />

All<br />

combustion


4.2.1 Graphitization<br />

石 墨 化<br />

( 不 是 API510/570 考 试 项 )


Prolong Exposure<br />

800°F ~ 1100°F for C Steel<br />

>875°F for C ½ Mo Steel


4.2.1 Graphitization 石 墨 化<br />

4.2.1.1 Description of <strong>Damage</strong><br />

a) Graphitization is a change <strong>in</strong> <strong>the</strong> microstructure of certa<strong>in</strong> carbon steels<br />

and 0.5Mo steels after long-term operation <strong>in</strong> <strong>the</strong> 800°F to 1100°F (427°C<br />

to 593°C) range that may cause a loss <strong>in</strong> strength, ductility, and/or creep<br />

resistance. 在 800°F 1100°F 长 期 运 行 后<br />

b) At elevated temperatures, <strong>the</strong> carbide phases <strong>in</strong> <strong>the</strong>se steels are unstable<br />

and may decompose <strong>in</strong>to graphite nodules. This decomposition is known<br />

as graphitization. 碳 钢 /C - ½ Mo 钢 , 在 长 期 受 到 高 温 度 影 响 , 钢 中 碳 化 物 相<br />

变 得 不 稳 定 , 从 而 分 解 成 石 墨 结 节<br />

4.2.1.2 Affected Materials<br />

Some grades of carbon steel and 0.5Mo steels. ( 普 通 碳 钢 /0.5 钼 钢 )


碳 钢 /C - ½ Mo 钢 , 在 长 期 受 到 高 温 度 影 响 , 钢<br />

中 碳 化 物 相 变 得 不 稳 定 , 从 而 分 解 成 石 墨 结 节


Graphitization Location:<br />

Areas with tubes conta<strong>in</strong><strong>in</strong>g carbon steel and C-Mo. Most likely <strong>in</strong> <strong>the</strong><br />

weld heat-affected zones and high residual stress areas.<br />

易 受 影 响 区 : 碳 钢 或 C- ½ Mo 普 通 碳 钢 , 焊 接 热 影 响 区 和 高 残 余 应 力 区


Probable cause:<br />

Prolonged exposure to above 800°F (425°C) for carbon steels and greater than<br />

875°F (470°C) for <strong>the</strong> carbon- ½ molybdenum alloys. In graphitized boiler<br />

components, <strong>the</strong> nucleation of graphite likely starts by <strong>the</strong> precipitation of<br />

“carbon” from super-saturated ferrite, an ag<strong>in</strong>g phenomenon. This nucleation is<br />

enhanced by stra<strong>in</strong>, <strong>in</strong> effect a stra<strong>in</strong> ag<strong>in</strong>g. The preferential formation of<br />

graphite with<strong>in</strong> <strong>the</strong> heat-affected zone is dependent on <strong>the</strong> balance of <strong>the</strong><br />

structure be<strong>in</strong>g nearly stra<strong>in</strong> free. Thus <strong>the</strong> “more unstable” heat-affected zone<br />

microstructure will decompose <strong>in</strong>to ferrite and graphite before <strong>the</strong> annealed<br />

ferrite and pearlite of <strong>the</strong> normalized structure will. If <strong>the</strong> base metal is coldworked,<br />

<strong>the</strong> anneal<strong>in</strong>g of <strong>the</strong> weld will slow <strong>the</strong> nucleation of graphite, and <strong>the</strong><br />

stra<strong>in</strong>ed tube will graphitize before <strong>the</strong> heat-affected zone.<br />

在 长 时 间 的 高 温 影 响 下 , 蝶 状 珠 光 体 ( 碳 化 铁 ) 首 先 转 化 为 粒 状 珠 光 体 , 然 后 碳 从 超 饱<br />

和 的 碳 化 铁 析 出 , 晶 核 形 成 石 墨 与 周 边 缺 碳 纯 铁 素 体 .


4.2.1.3 Critical Factors<br />

a) The most important factors that affect graphitization are <strong>the</strong> chemistry,<br />

stress, temperature, and time of exposure.<br />

b) In general, graphitization is not commonly observed. Some steels are much<br />

more susceptible to graphitization than o<strong>the</strong>rs, but exactly what causes<br />

some steels to graphitize while o<strong>the</strong>rs are resistant is not well understood. It<br />

was orig<strong>in</strong>ally thought that silicon and alum<strong>in</strong>um content played a major<br />

role but it has been shown that <strong>the</strong>y have negligible <strong>in</strong>fluence on<br />

graphitization.<br />

c) Graphitization has been found <strong>in</strong> low alloy C-Mo steels with up to 1% Mo.<br />

The addition of about 0.7% chromium has been found to elim<strong>in</strong>ate<br />

graphitization.<br />

d) Temperature has an important effect on <strong>the</strong> rate of graphitization. Below<br />

800°F (427°C), <strong>the</strong> rate is extremely slow. The rate <strong>in</strong>creases with<br />

<strong>in</strong>creas<strong>in</strong>g temperature.


e) There are two general types of graphitization.<br />

First is random graphitization <strong>in</strong> which <strong>the</strong> graphite nodules are<br />

distributed randomly throughout <strong>the</strong> steel. While this type of<br />

graphitization may lower <strong>the</strong> room-temperature tensile strength, it<br />

does not usually lower <strong>the</strong> creep resistance.


f) The second and more damag<strong>in</strong>g type of graphitization results <strong>in</strong> cha<strong>in</strong>s<br />

or local planes of concentrated graphite nodules.<br />

• Weld heat-affected zone graphitization is most frequently found <strong>in</strong> <strong>the</strong><br />

heat-affected zone adjacent to welds <strong>in</strong> a narrow band, is called<br />

“eyebrow,” graphitization.<br />

• Non-weld graphitization is a form of localized graphitization that<br />

sometimes occurs along planes of localized yield<strong>in</strong>g <strong>in</strong> steel. It also<br />

occurs <strong>in</strong> a cha<strong>in</strong>-like manner <strong>in</strong> regions that have experienced significant<br />

plastic deformation as a result of cold work<strong>in</strong>g operations or bend<strong>in</strong>g.


Weld heat affected zone graphitization<br />

is most frequently found <strong>in</strong> <strong>the</strong> heat-affected zone adjacent to welds <strong>in</strong> a<br />

narrow band, correspond<strong>in</strong>g to <strong>the</strong> low temperature edge of <strong>the</strong> heat affected<br />

zone. In multi-pass welded butt jo<strong>in</strong>ts, <strong>the</strong>se zones overlap each o<strong>the</strong>r,<br />

cover<strong>in</strong>g <strong>the</strong> entire cross-section. Graphite nodules can form at <strong>the</strong> low<br />

temperature edge of <strong>the</strong>se heat affected zones, result<strong>in</strong>g <strong>in</strong> a band of weak<br />

graphite extend<strong>in</strong>g across <strong>the</strong> section. Because of its appearance, this graphite<br />

formation with<strong>in</strong> heat affected zones is called “eyebrow” graphitization.<br />

Type 2: HAZ graphite nodules


eyebrow!<br />

Type2 Graphitization<br />

焊 缝 热 影 响 区 石 墨 化 现 象


eyebrow! Graphitization


eyebrow! Type 2 Graphitization<br />

焊 缝 热 影 响 区 现 象<br />

太 厉 害 了 , 别 人 的 肖 像 变 成 他 家 的 版 权 了 ..NMD


Non-weld graphitization is a form of localized graphitization that sometimes<br />

occurs along planes of localized yield<strong>in</strong>g <strong>in</strong> steel. It also occurs <strong>in</strong> a cha<strong>in</strong>-like<br />

manner <strong>in</strong> regions that have experienced significant plastic deformation as a<br />

result of cold work<strong>in</strong>g operations or bend<strong>in</strong>g.<br />

显 著 地 塑 性 变 形 区 域 , 石 墨 化 可 能 以 链 状 方 式 形 成 .<br />

Type 2: Non<br />

Weld Cha<strong>in</strong>s or<br />

local planes of<br />

concentrated<br />

graphite nodules


4.2.1.4 Affected Units or <strong>Equipment</strong><br />

a) Primarily hot-wall pip<strong>in</strong>g and equipment <strong>in</strong> <strong>the</strong> FCC, catalytic reform<strong>in</strong>g and<br />

coker units.<br />

b) Ba<strong>in</strong>itic grades are less susceptible than coarse pearlitic grades.<br />

c) Few failures directly attributable to graphitization have been reported <strong>in</strong> <strong>the</strong><br />

ref<strong>in</strong><strong>in</strong>g <strong>in</strong>dustry. However, graphitization has been found where failure<br />

resulted primarily from o<strong>the</strong>r causes.<br />

d) Several serious cases of graphitization have occurred <strong>in</strong> <strong>the</strong> reactors and<br />

pip<strong>in</strong>g of fluid catalytic crack<strong>in</strong>g units, as well as with carbon steel furnace<br />

tubes <strong>in</strong> a <strong>the</strong>rmal crack<strong>in</strong>g unit and <strong>the</strong> failure of seal welds at <strong>the</strong> bottom<br />

tube sheet of a vertical waste heat boiler <strong>in</strong> a fluid catalytic cracker. A<br />

graphitization failure was reported <strong>in</strong> <strong>the</strong> long seam weld of a C 0.5Mo<br />

catalytic reformer reactor/<strong>in</strong>ter-heater l<strong>in</strong>e.


e) Where concentrated eyebrow graphitization occurs along heat-affected<br />

zones, <strong>the</strong> creep rupture strength may be drastically lowered. Slight to<br />

moderate amounts of graphite along <strong>the</strong> heat-affected zones do not appear<br />

to significantly lower room or high-temperature properties.<br />

f) Graphitization seldom occurs on boil<strong>in</strong>g surface tub<strong>in</strong>g but did occur <strong>in</strong> low<br />

alloy C-0.5Mo tubes and headers dur<strong>in</strong>g <strong>the</strong> 1940’s. Economizer tub<strong>in</strong>g,<br />

steam pip<strong>in</strong>g and o<strong>the</strong>r equipment that operates <strong>in</strong> <strong>the</strong> range of<br />

temperatures of 850°F to 1025°F (441°C to 552°C) is more likely to suffer<br />

graphitization.


4.2.1.5 Appearance or Morphology of <strong>Damage</strong><br />

1. <strong>Damage</strong> due to graphitization is not visible or readily apparent and can only<br />

be observed by metallographic exam<strong>in</strong>ation (Figure 4-1 and Figure 4-2).<br />

2. Advanced stages of damage related to loss <strong>in</strong> creep strength may <strong>in</strong>clude<br />

micro-fissur<strong>in</strong>g / microvoid formation, subsurface crack<strong>in</strong>g or surface<br />

connected crack<strong>in</strong>g.<br />

0.5μm


Figure 4-1 – High magnification photomicrograph of metallographic sample show<strong>in</strong>g<br />

graphite nodules. Compare to normal microstructure shown <strong>in</strong> Figure 4-2.


Figure 4-2 – High magnification photomicrograph of metallographic<br />

sample show<strong>in</strong>g typical ferrite-pearlite structure of carbon steel.


4.2.1.6 Prevention / Mitigation 预 防 / 缓 解<br />

Graphitization can be prevented by us<strong>in</strong>g chromium conta<strong>in</strong><strong>in</strong>g low alloy steels<br />

for long-term operation above 800°F (427°C).<br />

The addition of about 0.7% chromium has been found to elim<strong>in</strong>ate<br />

graphitization.<br />

0.7% chromium 以 消 除 石 墨 化 .


4.2.1.7 Inspection and Monitor<strong>in</strong>g<br />

a) Evidence of graphitization is most effectively evaluated through removal<br />

of full thickness samples for exam<strong>in</strong>ation us<strong>in</strong>g metallographic<br />

techniques. <strong>Damage</strong> may occur mid-wall so that field replicas may be<br />

<strong>in</strong>adequate.<br />

b) Advanced stages of damage related to loss <strong>in</strong> strength <strong>in</strong>clude surface<br />

break<strong>in</strong>g cracks or creep deformation that may be difficult to detect.<br />

4.2.1.8 Related <strong>Mechanisms</strong><br />

Spheroidization (see 4.2.2) and graphitization are compet<strong>in</strong>g mechanisms<br />

that occur at overlapp<strong>in</strong>g temperature ranges. Spheroidization tends to<br />

occur preferentially above 1025°F (551°C), while graphitization<br />

predom<strong>in</strong>ates below this temperature.


Spheroidization (see 4.2.2) and graphitization are compet<strong>in</strong>g mechanisms that<br />

occur at overlapp<strong>in</strong>g temperature ranges. Spheroidization tends to occur<br />

preferentially above 1025°F (551°C), while graphitization predom<strong>in</strong>ates below<br />

this temperature.<br />

Graphitization can be prevented by us<strong>in</strong>g chromium conta<strong>in</strong><strong>in</strong>g low alloy steels<br />

for long-term operation above 800°F (427°C).<br />

Affected Materials: Some grades of carbon steel and 0.5Mo steels.<br />

Graphitization has been found <strong>in</strong> low alloy C-Mo steels with up to 1% Mo. The<br />

addition of about 0.7% chromium has been found to elim<strong>in</strong>ate graphitization.


Creep Type: Microvoid formation & jo<strong>in</strong>t<strong>in</strong>g of ligament between voids


Typical ferrite-pearlite structure of carbon steel.


Typical ferrite-pearlite structure of carbon steel.


Typical martensitic structure of carbon steel.


Figure 13: Lower ba<strong>in</strong>ite generated by<br />

iso<strong>the</strong>rmal transformation of 52100 steel at<br />

230C for 10h<br />

http://www.msm.cam.ac.uk/phase-trans/2011/Bear<strong>in</strong>gs/<strong>in</strong>dex.htm l


Random graphitization


Random graphitization


Cha<strong>in</strong> graphitization<br />

http://davidnfrench.com/Graphitization.html


Graphitization of A Cast Iron Ma<strong>in</strong>


800°F


石 墨 化 , 学 习 重 点 :<br />

1. 高 温 现 象 : 800°F to 1100°F<br />

2. 受 影 响 材 料 : 碳 钢 ( 不 包 括 低 合 金 钢 ), ½ Mo 钢<br />

3. 损 伤 模 式 : (1) 无 规 则 石 墨 化 ( 仅 仅 影 响 室 温 抗 拉 ) 与 (2) HAZ/ 平 面 石 墨 化<br />

( 较 为 严 厉 , 影 响 室 温 抗 拉 高 温 蠕 变 性 能 )<br />

4. 注 意 项 : ½ Mo 钢 , 抗 拒 性 较 强 , 敏 感 温 度 为 875°F 高 于 碳 钢 800°F<br />

5. 添 加 0.7%Cr 有 效 阻 止 石 墨 化 .<br />

6. 不 是 API 510/570 考 试 学 习 项 .<br />

http://www.chasealloys.co.uk/steel/alloy<strong>in</strong>g-elements-<strong>in</strong>-steel/#chromium


4.2.2 Carbide Spheroidization<br />

碳 化 物 球 化<br />

( 不 是 API510/570 考 试 项 )


Spheroidization<br />

Prolong Exposure<br />

850°F ~ 1400°F


4.2.2 Soften<strong>in</strong>g (Spheroidization) 碳 化 物 球 化<br />

4.2.2.1 Description of <strong>Damage</strong><br />

Spheroidization is a change <strong>in</strong> <strong>the</strong> microstructure of steels after exposure <strong>in</strong> <strong>the</strong><br />

850°F to 1400°F (440°C to 760°C) range, where <strong>the</strong> carbide phases 碳 化 物 <strong>in</strong><br />

carbon steels are unstable and may agglomerate from <strong>the</strong>ir normal plate-like<br />

form to a spheroidal form, or from small, f<strong>in</strong>ely dispersed carbides <strong>in</strong> low alloy<br />

steels like 1Cr-0.5Mo to large agglomerated carbides. Spheroidization may<br />

cause a loss <strong>in</strong> strength and/or creep resistance.<br />

4.2.2.2 Affected Materials<br />

All commonly used grades of carbon steel and low alloy steels <strong>in</strong>clud<strong>in</strong>g C-<br />

0.5Mo, 1Cr-0.5Mo,1.25Cr-0.5Mo, 2.25Cr-1Mo, 3Cr -1Mo, 5Cr-0.5Mo, and 9Cr-<br />

1Mo steels.<br />

高 温 现 象 : 在 长 期 高 温 下 , 细 分 散 或 板 状 碳 化 物 形 成 球 状 形 式 .<br />

涵 盖 了 普 通 碳 钢 , 0.5Mo 钢 , 低 合 金 钢 ,


Figure 9: The microstructures near <strong>the</strong> OD<br />

surface were mostly decarburized. The<br />

rema<strong>in</strong><strong>in</strong>g carbides were highly spheroidized<br />

and agglomerated along <strong>the</strong> ferrite gra<strong>in</strong><br />

boundaries. The microstructure 90° from<br />

<strong>the</strong> rupture and at <strong>the</strong> tube end is<br />

shown.(Nital etch, Mag. 500X)<br />

Figure 10: The microstructures near <strong>the</strong> ID<br />

surface consisted of partially and highly<br />

spheroidized and agglomerated carbides<br />

along <strong>the</strong> ferrite gra<strong>in</strong> boundaries. The<br />

microstructure 90° from <strong>the</strong> rupture and at<br />

<strong>the</strong> tube end is shown. (Nital etch, Mag. 500X)<br />

http://www.met-tech.com/short-term-overheat-rupture-of-t11-superheater-tube.html


Differences<br />

• Soften<strong>in</strong>g (Spheroidization), at prolong exposure to high temperature<br />

carbide phases <strong>in</strong> carbon steels are unstable and may agglomerate<br />

from <strong>the</strong>ir normal plate-like form to a spheroidal form, or from small,<br />

f<strong>in</strong>ely dispersed carbides <strong>in</strong> low alloy steels like 1Cr-0.5Mo to large<br />

agglomerated carbides. 在 长 期 高 温 工 作 下 , 低 合 金 碳 钢 , 碳 化 物 相 变 得<br />

不 稳 定 , 导 致 正 常 板 状 形 式 凝 聚 成 一 个 球 状 形 式 .<br />

• Graphitisation, <strong>the</strong> carbide phases <strong>in</strong> carbon/Molydenum steels are<br />

unstable and may decompose <strong>in</strong>to graphite nodules. 在 高 温 长 期 工 作<br />

下 , 普 通 碳 钢 /0.5 钼 钢 中 的 化 物 相 变 得 不 稳 定 , 这 碳 化 物 分 解 成 石 墨 结 节 .<br />

影 响 的 材 料 差 别 为 ;<br />

(1) 普 通 碳 钢 / 受 石 墨 化 影 响<br />

(2) 低 合 金 含 铬 钼 高 强 度 , 高 温 钢 受 碳 化 物 球 化


Spheroidization 球 化<br />

<strong>in</strong> physical metallurgy, a process<br />

consist<strong>in</strong>g <strong>in</strong> <strong>the</strong> transition of<br />

excess-phase crystals <strong>in</strong>to a<br />

globular (spheroidal) form. The<br />

transition occurs at relatively high<br />

temperatures and is associated with<br />

a decrease <strong>in</strong> <strong>the</strong> <strong>in</strong>terfacial energy<br />

高 温 下 界 面 的 能 量 减 少 . Of particular<br />

importance is <strong>the</strong> spheroidization of<br />

<strong>the</strong> cementite plates conta<strong>in</strong>ed <strong>in</strong><br />

pearlite. In this process, <strong>the</strong> lamellar<br />

pearlite is converted <strong>in</strong>to granular<br />

pearlite 片 状 珠 光 体 转 变 为 粒 状 珠 光<br />

体 . As a result, <strong>the</strong> hardness and <strong>the</strong><br />

strength of <strong>the</strong> metal are<br />

significantly decreased, but <strong>the</strong><br />

ductility is <strong>in</strong>creased.


Carbide Spheroidization 碳 化 物 球 化<br />

Figure 1. Corroded sheath<br />

exterior (0.85X Orig<strong>in</strong>al<br />

Magnification)<br />

Figure 2. Etched sample of<br />

a section of non-corroded<br />

material (200X Orig<strong>in</strong>al<br />

Magnification with Nital<br />

Etch)


http://www.matter.org.uk/steelmatter/form<strong>in</strong>g/4_5.html


• Graphitisation and spheroidization both were<br />

high temperature phenomenon. 石 墨 化 与 球 化 都<br />

是 材 料 高 温 效 应<br />

• Graphitisation affect normal carbon steel. It is a<br />

break down of carbides <strong>in</strong>to ferrite and free<br />

graphite (carbon) nodules. 石 墨 化 是 高 温 下 , 碳 化<br />

物 分 解 为 铁 素 体 和 游 离 石 墨 / 碳 .<br />

• Spheroidization affect Cr-Mo low carbon steel up<br />

to 9%Cr. It is a agglomeration of carbides<br />

form<strong>in</strong>g spheroidal carbides. 球 化 是 高 温 下 , 界 面<br />

的 能 量 减 少 导 致 片 状 珠 光 体 转 变 为 粒 状 珠 光 体


Spheroidization affect Cr-Mo low carbon steel up to 9% Cr. It is a<br />

agglomeration of carbides form<strong>in</strong>g spheroidal carbides 影 响 达 9%Cr 低 合 金<br />

碳 钢 , 高 温 下 界 面 的 能 量 减 少 , 片 状 珠 光 体 转 变 为 粒 状 珠 光 体 ( 片 状 碳 化 物 集 聚<br />

形 成 球 状 碳 化 物 ).<br />

含 9% Chromium 碳 化 物 球 化 影 响 范 围 .


• Residual stress & cold works accelerated graphitization. 残 余 应<br />

力 和 冷 工 程 加 速 石 墨 化 .<br />

• For spheroidisation coarse-gra<strong>in</strong>ed steels are more resistant<br />

than f<strong>in</strong>e-gra<strong>in</strong>ed. F<strong>in</strong>e gra<strong>in</strong>ed silicon-killed steels are more<br />

resistant than alum<strong>in</strong>um killed.<br />

• 粗 粒 度 的 钢 比 细 粒 度 更 抗 拒 碳 化 物 球 化 .<br />

• 细 晶 硅 镇 静 钢 比 铝 镇 静 更 抗 拒 碳 化 物 球 化 .


Susceptibility to Spheroidization 球 化 易 感 性<br />

• Annealed steels 退 火 钢 材 are more resistant to spheroidization than<br />

normalized steels.<br />

• Coarse-gra<strong>in</strong>ed steels 粗 粒 度 钢 材 are more resistant than f<strong>in</strong>e-gra<strong>in</strong>ed.<br />

• F<strong>in</strong>e gra<strong>in</strong>ed silicon-killed steels are more resistant than alum<strong>in</strong>um-killed.<br />

• The loss <strong>in</strong> strength 强 度 损 失 may be as high as about 30% but failure is not<br />

likely to occur except under very high applied stresses.


Exam<br />

DM<br />

Temperatures<br />

Affected materials<br />

NO<br />

Graphitisation<br />

800°F~1100°F for C Steel<br />

Pla<strong>in</strong> carbon steel<br />

875°F for C ½ Mo Steel<br />

C, C ½ Mo<br />

• Some grades of carbon steel and 0.5Mo steels.<br />

NO<br />

Spheroidisation<br />

850°F ~ 1400°F<br />

Low alloy steel up to 9% Cr.<br />

•All commonly used grades of carbon steel and low alloy steels <strong>in</strong>clud<strong>in</strong>g C-0.5Mo,<br />

1Cr-0.5Mo,1.25Cr-0.5Mo, 2.25Cr-1Mo, 3Cr-1Mo, 5Cr-0.5Mo, and 9Cr-1Mo steels.<br />

Spheroidization (see 4.2.2) and graphitization are compet<strong>in</strong>g mechanisms that occur at<br />

overlapp<strong>in</strong>g temperature ranges. Spheroidization tends to occur preferentially above 1025°F<br />

(551°C), while graphitization predom<strong>in</strong>ates below this temperature.<br />

Discussion: Graphitization occurs on some carbon steel and 0.5Mo steels only.


Spheroidization is a change <strong>in</strong> <strong>the</strong> microstructure of steels after<br />

exposure <strong>in</strong> <strong>the</strong> 850°F to 1400°F (440°C to 760°C) range,<br />

where <strong>the</strong> carbide phases <strong>in</strong> carbon steels are unstable and may<br />

agglomerate from <strong>the</strong>ir normal plate-like form to a spheroidal form.<br />

碳 化 物 球 化 学 习 重 点 :<br />

1. 高 温 现 象 –850°F to 1400°F,<br />

2. 原 理 : 低 合 金 碳 钢 , 高 温 下 界 面 的 能 量 减 少 , 片 状 珠 光 体 转 变 为 粒 状 珠 光<br />

体 ( 片 状 碳 化 物 集 聚 形 成 球 状 碳 化 物 ),<br />

3. 受 影 响 材 质 : 涵 盖 了 普 通 碳 钢 , 0.5Mo 钢 , 低 合 金 钢 至 9Cr1Mo 钢 ,<br />

4. 粗 粒 度 的 钢 比 细 粒 度 更 抗 拒 碳 化 物 球 化 ,<br />

5. 细 晶 硅 镇 静 钢 比 铝 镇 静 更 抗 拒 碳 化 物 球 化 ,<br />

6. 不 同 于 石 墨 化 , 碳 化 物 还 是 碳 化 物 只 不 过 高 温 下 聚 集 成 为 球 状 ,<br />

7. 非 API 510/570 考 试 题 非 API 510/570 考 试 题


4.2.3 Temper Embrittlement<br />

回 火 脆 化<br />

API510-Exam


650 o F~ 1070 o F<br />

API510-Exam


API510-Exam<br />

Graphitization<br />

石 墨 化<br />

Spheroidization 碳<br />

化 物 球 化<br />

Tempered<br />

Embrittlement<br />

回 火 脆 化<br />

800°F~1100°F for C Steel<br />

875°F for C ½ Mo Steel<br />

850°F ~ 1400°F<br />

650°F~ 1070°F<br />

Pla<strong>in</strong> carbon steel / 0.5Mo<br />

Steel<br />

0.5Mo Steel, Low alloy steel<br />

up to 9 % Cr<br />

2 ¼ Cr-1Mo low alloy steel,<br />

3Cr-1Mo (lesser extent), &<br />

HSLA Cr-Mo-V rotor steels


API510-Exam<br />

4.2.3 Temper Embrittlement 回 火 脆 化<br />

4.2.3.1 Description of <strong>Damage</strong><br />

Temper embrittlement is <strong>the</strong> reduction <strong>in</strong> toughness due to a metallurgical<br />

change that can occur <strong>in</strong> some low alloy steels as a result of long term<br />

exposure <strong>in</strong> <strong>the</strong> temperature range of about 650°F to 1100°F (343°C to<br />

593°C) . This change causes an upward shift <strong>in</strong> <strong>the</strong> ductile-to-brittle transition<br />

temperature as measured by Charpy impact test<strong>in</strong>g. Although <strong>the</strong> loss of<br />

toughness is not evident at operat<strong>in</strong>g temperature, equipment that is temper<br />

embrittled may be susceptible to brittle fracture dur<strong>in</strong>g start-up and shutdown.<br />

2¼ Cr-1Mo ~ 3Cr-1Mo 量 低 合 金 钢 在 650°F to 1100°F 工 作 下 , 导 致 受 影 响 材 质 ,<br />

韧 脆 转 变 温 度 向 上 移 位 . 工 作 状 态 下 , 设 备 不 会 受 到 此 损 伤 机 理 任 何 影 响 , 但 在<br />

关 机 , 重 启 时 的 低 温 下 , 材 料 会 因 回 火 脆 性 的 损 伤 机 理 导 致 产 生 设 备 受 压 母 材 脆<br />

裂 .


API510-Exam<br />

Temper embrittlement is <strong>the</strong> reduction <strong>in</strong> toughness due to a metallurgical<br />

change that can occur <strong>in</strong> some low alloy steels as a result of long term<br />

exposure <strong>in</strong> <strong>the</strong> temperature range of about 650°F to 1100°F (343°C to<br />

593°C) . 2¼ Cr-1Mo~ 3Cr-1Mo 钢 材 在 650°F to 1100°F 工 作 下 , 导 致 受 影 响 材 质 ,<br />

韧 脆 转 变 温 度 向 上 移 位 .


API510-Exam<br />

4.2.3.2 Affected Materials<br />

a) Primarily 2 ¼ Cr-1Mo (P5A) low alloy steel, 3Cr-1Mo (P5A) (to a lesser<br />

extent), and <strong>the</strong> high-strength low alloy Cr-Mo-V (P5C) rotor steels.<br />

b) Older generation 2 ¼ Cr-1Mo materials manufactured prior to 1972 may be<br />

particularly susceptible. Some high strength low alloy steels are also<br />

susceptible.<br />

c) The C- ½ Mo (P3) and 1 ¼ Cr- ½ Mo (P4) alloy steels are not significantly<br />

affected by temper embrittlement. However, o<strong>the</strong>r high temperature<br />

damage mechanisms promote metallurgical changes that can alter <strong>the</strong><br />

toughness or high temperature ductility of <strong>the</strong>se materials.<br />

主 要 是 对 2¼ Cr-1Mo~ 3Cr-1Mo 低 合 金 钢 , Cr-Mo-V 轴 钢 受 影 响 .


API510-Exam<br />

Temper<br />

Embrittlement<br />

回 火 脆 性 易 感 性<br />

Primarily 2.25Cr-1Mo low<br />

alloy steel. and <strong>the</strong> highstrength<br />

low alloy Cr-Mo-V<br />

rotor steels.<br />

3Cr-1Mo<br />

(to a lesser extent)<br />

The C-0.5Mo, 1Cr-<br />

0.5Mo and 1.25Cr-<br />

0.5Mo alloy steels are<br />

not significantly<br />

affected.


[Embrittlement temperature 650°F~1070°F]<br />

API510-Exam


[Embrittlement temperature 650°F~1070°F]<br />

API510-Exam


[Embrittlement temperature 650°F~1070°F]<br />

API510-Exam


韧 脆 转 变 温 度<br />

API510-Exam


韧 脆 转 变 温 度 向 上 移 位<br />

API510-Exam


API510-Exam<br />

脆 性 转 变 温 度 向 上 移 位 . 另<br />

个 特 征 是 回 火 脆 化 , 不 会 对<br />

脆 性 转 变 点 上 搁 架 冲 击 功 有<br />

任 何 影 响 .


API510-Exam<br />

SEM fractographs of<br />

tempered embrittled<br />

material show<br />

primarily <strong>in</strong>tergranular<br />

crack<strong>in</strong>g due to<br />

impurity segregation at<br />

gra<strong>in</strong> boundaries<br />

材 料 的 回 火 脆 化 , 主 要<br />

是 由 于 晶 界 杂 质 偏 聚<br />

导 致 是 沿 晶 开 裂


http://www.twi.co.uk/news-events/bullet<strong>in</strong>/archive/1999/januaryfebruary/weld<strong>in</strong>g-and-fabrication-of-high-temperature-components-foradvanced-power-plant-part-1/<br />

API510-Exam


API510-Exam<br />

4.2.3.3 Critical Factors 关 键 因 素<br />

a) Alloy steel composition, <strong>the</strong>rmal history, metal temperature and exposure<br />

time are critical factors. 受 热 历 史 , 金 属 温 度 和 受 感 时 间 是 关 键 因 素<br />

b) Susceptibility to temper embrittlement is largely determ<strong>in</strong>ed by <strong>the</strong><br />

presence of <strong>the</strong> alloy<strong>in</strong>g elements manganese and silicon, and <strong>the</strong> tramp<br />

elements phosphorus, t<strong>in</strong>, antimony, and arsenic. The strength level and<br />

heat treatment/fabrication history should also be considered. 回 火 脆 化 敏 感<br />

性 很 大 程 度 上 决 定 于 锰 / 硅 与 杂 元 素 ( 磷 / 锡 / 锑 和 砷 ) 含 量 .<br />

c) Temper embrittlement of 2.25Cr-1Mo steels develops more quickly at<br />

900°F (482°C) than <strong>in</strong> <strong>the</strong> 800°F to 850°F (427°C to 440°C) range, but <strong>the</strong><br />

damage is more severe after long-term exposure at 850°F (440°C). 高 温 下<br />

易 感 性 较 大 , 但 在 低 温 下 伤 害 较 为 严 重 .


API510-Exam<br />

d) Some embrittlement can occur dur<strong>in</strong>g fabrication heat treatments, but most<br />

of <strong>the</strong> damage occurs over many years of service <strong>in</strong> <strong>the</strong> embrittl<strong>in</strong>g<br />

temperature range. 有 的 损 伤 是 因 建 造 热 处 理 引 发 , 但 一 般 上 大 多 数 受 感 于 长<br />

期 在 敏 感 温 度 下 操 作 引 发 的 .<br />

e) This form of damage will significantly reduce <strong>the</strong> structural <strong>in</strong>tegrity of a<br />

component conta<strong>in</strong><strong>in</strong>g a crack-like flaw. An evaluation of <strong>the</strong> materials<br />

toughness may be required depend<strong>in</strong>g on <strong>the</strong> flaw type, <strong>the</strong> severity of <strong>the</strong><br />

environment, and <strong>the</strong> operat<strong>in</strong>g conditions, particularly <strong>in</strong> hydrogen service.<br />

含 裂 纹 状 缺 陷 的 部 件 会 减 弱 结 构 完 整 性 . 特 别 是 氢 服 务 设 备 , 应 在 考 虑 缺 陷 的<br />

类 型 , 处 理 工 艺 的 严 峻 性 与 操 作 条 件 , 进 行 材 料 的 韧 性 评 估 .


API510-Exam<br />

4.2.3.4 Affected Units or <strong>Equipment</strong><br />

a) Temper embrittlement occurs <strong>in</strong> a variety of process units after long term<br />

exposure to temperatures above 650°F (343°C). It should be noted that<br />

<strong>the</strong>re have been very few <strong>in</strong>dustry failures related directly to temper<br />

embrittlement.<br />

b) <strong>Equipment</strong> susceptible to temper embrittlement is most often found <strong>in</strong><br />

hydroprocess<strong>in</strong>g units, particularly reactors, hot feed/effluent exchanger<br />

components, and hot HP separators. O<strong>the</strong>r units with <strong>the</strong> potential for<br />

temper embrittlement <strong>in</strong>clude catalytic reform<strong>in</strong>g units (reactors and<br />

exchangers), FCC reactors, coker and visbreak<strong>in</strong>g units.<br />

c) Welds <strong>in</strong> <strong>the</strong>se alloys are often more susceptible than <strong>the</strong> base metal and<br />

should be evaluated.<br />

受 影 响 的 设 备 主 要 是 用 于 高 温 处 理 单 元 , 例 如 加 氢 装 置 , 催 化 重 整 装 置 , 催 化 裂<br />

化 反 应 器 , 炼 焦 器 , 减 粘 裂 化 单 元 , 等 . 焊 接 部 位 受 感 性 比 母 材 强 , 这 位 应 当 作 为<br />

评 估 考 虑 部 位 .


API510-Exam<br />

http://www.twi-global.com/technical-knowledge/job-knowledge/defectsimperfections-<strong>in</strong>-welds-reheat-crack<strong>in</strong>g-048/<br />

http://en.wikipedia.org/wiki/Weld<strong>in</strong>g_defect


API510-Exam


API510-Exam<br />

4.2.3.5 Appearance or Morphology of <strong>Damage</strong><br />

a) Temper embrittlement is a metallurgical change that is not readily apparent<br />

and can be confirmed through impact test<strong>in</strong>g. <strong>Damage</strong> due to temper<br />

embrittlement may result <strong>in</strong> catastrophic brittle fracture.<br />

外 观 变 化 不 明 显 , 需 要 通 过 冲 击 试 验 证 实 .<br />

b) Temper embrittlement can be identified by an upward shift <strong>in</strong> <strong>the</strong> ductile-tobrittle<br />

transition temperature measured <strong>in</strong> a Charpy V-notch impact test, as<br />

compared to <strong>the</strong> non-embrittled or de-embrittled material (Figure 4-5).<br />

Ano<strong>the</strong>r important characteristic of temper embrittlement is that <strong>the</strong>re is no<br />

effect on <strong>the</strong> upper shelf energy. 夏 比 V 型 缺 口 冲 击 试 验 证 实 韧 性 - 脆 性 转 变<br />

温 度 向 上 移 位 . 另 个 特 征 是 回 火 脆 化 , 不 会 对 脆 性 转 变 点 上 搁 架 冲 击 功 有 任 何<br />

影 响 .<br />

c) SEM fractographs of severely temper embrittled material show primarily<br />

<strong>in</strong>tergranular crack<strong>in</strong>g due to impurity segregation at gra<strong>in</strong> boundaries.<br />

主 要 为 晶 间 开 裂


API510-Exam


Intergranular Crack<strong>in</strong>g<br />

API510-Exam


Intergranular<br />

Crack<strong>in</strong>g<br />

API510-Exam<br />

Metal surface<br />

Cr 5<br />

C 2<br />

/ Cr 3<br />

C 2<br />

precipitated<br />

Low Cr gra<strong>in</strong><br />

boundary<br />

Crack <strong>in</strong>itiation &<br />

growth<br />

Progressive crack


API510-Exam<br />

Embrittlement Mechanism<br />

Tensile stress<br />

Cr depleted gra<strong>in</strong><br />

boundary<br />

PPT as<br />

Cr 5 C 2 /Cr 3 C 2<br />

Gra<strong>in</strong><br />

Boundary<br />

Gra<strong>in</strong> boundary<br />

decohesion-<br />

Crack <strong>in</strong>itiation pt.


API510-Exam<br />

4.2.3.6 Prevention / Mitigation<br />

a) Exist<strong>in</strong>g Materials<br />

1. Temper embrittlement cannot be prevented if <strong>the</strong> material conta<strong>in</strong>s critical<br />

levels of <strong>the</strong> embrittl<strong>in</strong>g impurity elements and is exposed <strong>in</strong> <strong>the</strong> embrittl<strong>in</strong>g<br />

temperature range.<br />

2. To m<strong>in</strong>imize <strong>the</strong> possibility of brittle fracture dur<strong>in</strong>g startup and shutdown,<br />

many ref<strong>in</strong>ers use a pressurization sequence to limit system pressure to<br />

about 25 percent of <strong>the</strong> maximum design pressure for temperatures below a<br />

M<strong>in</strong>imum Pressurization Temperature (MPT). Note that MPT is not a s<strong>in</strong>gle<br />

po<strong>in</strong>t but ra<strong>the</strong>r a pressure temperature envelope which def<strong>in</strong>es safe<br />

operat<strong>in</strong>g conditions to m<strong>in</strong>imize <strong>the</strong> likelihood of brittle fracture.


API510-Exam<br />

3. MPT’s generally range from 350°F (171°C) for <strong>the</strong> earliest, most highly<br />

temper embrittled steels, down to 125°F (52°C) or lower for newer, temper<br />

embrittlement resistant steels (as required to also m<strong>in</strong>imize effects of<br />

hydrogen embrittlement).<br />

4. If weld repairs are required, <strong>the</strong> effects of temper embrittlement can be<br />

temporarily reversed (de-embrittled) by heat<strong>in</strong>g at 1150°F (620°C)<br />

[compared: embrittlement temperature 650°F~1070°F] for two hours per <strong>in</strong>ch<br />

of thickness, and rapidly cool<strong>in</strong>g to room temperature. It is important to note<br />

that re-embrittlement will occur over time if <strong>the</strong> material is re-exposed to <strong>the</strong><br />

embrittl<strong>in</strong>g temperature range.


API510-Exam<br />

Exist<strong>in</strong>g Material: De-embrittlement treatment.<br />

Heat<strong>in</strong>g at 1150°F (620°C)<br />

[compared: embrittlement<br />

temperature 650°F~1070°F<br />

(343°C to 593°C) ] for two<br />

hours per <strong>in</strong>ch of thickness,<br />

and rapidly cool<strong>in</strong>g to room<br />

temperature.


) New Materials<br />

API510-Exam<br />

The best way to m<strong>in</strong>imize <strong>the</strong> likelihood and extent of temper embrittlement is to<br />

limit <strong>the</strong> acceptance levels of manganese, silicon, phosphorus, t<strong>in</strong>, antimony,<br />

and arsenic <strong>in</strong> <strong>the</strong> base metal and weld<strong>in</strong>g consumables. In addition,<br />

strength levels and PWHT procedures should be specified and carefully<br />

controlled. 最 好 的 缓 解 方 法 是 控 制 母 材 / 焊 材 的 锰 , 硅 , 磷 , 锡 , 锑 , 砷 的 成 分 .<br />

Acceptance Level of Mn, Si, P, Sn, Sb, As.


API510-Exam<br />

Susceptibility to temper embrittlement<br />

A common way to m<strong>in</strong>imize temper embrittlement is to limit <strong>the</strong> "J*" Factor for<br />

base metal and <strong>the</strong> "X" Factor for weld metal, based on material composition as<br />

follows:<br />

J* = (Si + Mn) x (P + Sn) x 104 {elements <strong>in</strong> wt%}<br />

X = (10P + 5Sb + 4Sn + As)/100 {elements <strong>in</strong> ppm}


API510-Exam<br />

Typical J* and X factors used for 2.25 Cr steel are a maximum of 100 and 15,<br />

respectively. Studies have also shown that limit<strong>in</strong>g <strong>the</strong> (P + Sn) to less than 0.01% is<br />

sufficient to m<strong>in</strong>imize temper embrittlement because (Si + Mn) control <strong>the</strong> rate of<br />

embrittlement.<br />

J* : 100 Max. (Base metal)<br />

X<br />

: 15 Max. (Weld metal)


API510-Exam<br />

4.2.3.7 Inspection and Monitor<strong>in</strong>g<br />

a) a) A common method of monitor<strong>in</strong>g is to <strong>in</strong>stall blocks of orig<strong>in</strong>al heats of<br />

<strong>the</strong> alloy steel material <strong>in</strong>side <strong>the</strong> reactor. Samples are periodically removed<br />

from <strong>the</strong>se blocks for impact test<strong>in</strong>g to monitor/establish <strong>the</strong> ductile-brittle<br />

transition temperature. The test blocks should be strategically located near<br />

<strong>the</strong> top and bottom of <strong>the</strong> reactor to make sure that <strong>the</strong> test material is<br />

exposed to both <strong>in</strong>let and outlet conditions.<br />

b) Process conditions should be monitored to ensure that a proper<br />

pressurization sequence is followed to help prevent brittle fracture due to<br />

temper embrittlement.<br />

4.2.3.8 Related <strong>Mechanisms</strong><br />

Not applicable.


Figure 4-5 – Plot of<br />

CVN toughness as a<br />

function of<br />

temperature show<strong>in</strong>g a<br />

shift <strong>in</strong> <strong>the</strong> 40-ft-lb<br />

transition temperature.<br />

API510-Exam


API510-Exam


API510-Exam<br />

Temper embrittlement is <strong>in</strong>herent <strong>in</strong> many steels and can be characterized<br />

by reduced impact toughness. The state of temper embrittlement has practically no<br />

effect on o<strong>the</strong>r mechanical properties at room temperature. Figure 1 shows<br />

schematically <strong>the</strong> effect of temperature on impact toughness of alloy steel which is<br />

strongly liable to temper embrittlement. Many alloy steels have two temperature<br />

<strong>in</strong>tervals of temper embrittlement. For <strong>in</strong>stance, irreversible temper brittleness may<br />

appear with<strong>in</strong> <strong>the</strong> <strong>in</strong>terval of 250-400°C and reversible temper brittleness, with<strong>in</strong><br />

450°C-650°C.<br />

http://www.keytometals.com/Articles/Art102.htm


API510-Exam<br />

irreversible temper<br />

brittleness may appear<br />

with<strong>in</strong> <strong>the</strong> <strong>in</strong>terval of<br />

250-400°C<br />

reversible temper brittleness,<br />

with<strong>in</strong> 450°C-650°C.


API510-Exam<br />

Metallurgy of Mo <strong>in</strong> alloy steel & iron<br />

Temper embrittlement may occur when steels are slowly cooled after temper<strong>in</strong>g<br />

through <strong>the</strong> temperature range between 450 and 550°C. This is due to <strong>the</strong><br />

segregation of impurities such as phosphorus, arsenic, antimony and t<strong>in</strong> on <strong>the</strong><br />

gra<strong>in</strong> boundaries. The molybdenum atom is very large relative to o<strong>the</strong>r alloy<strong>in</strong>g<br />

elements and impurities. It effectively impedes <strong>the</strong> migration of those elements<br />

and <strong>the</strong>reby provides resistance to temper embrittlement.<br />

http://www.imoa.<strong>in</strong>fo/molybdenum_uses/moly_grade_alloy_steels_irons/temper<strong>in</strong>g.php<br />

O<strong>the</strong>r/ 其 他 阅 读<br />

O<strong>the</strong>r reference: http://www.twi.co.uk/technical-knowledge/faqs/material-faqs/faq-what-is-temperembrittlement-and-how-can-it-be-controlled/


回 火 脆 化 学 习 重 点 :<br />

1. 高 温 现 象 : 650°F to 1100°F,<br />

2. 原 理 : 材 料 的 回 火 脆 化 , 主 要 是 由 于 晶 界 杂 质 偏 聚 导 致 是 沿 晶 开 裂<br />

3. 受 影 响 材 质 :, 2.25Cr1Mo ~ 3Cr1Mo 低 合 金 钢 与 轴 钢 , 不 涵 盖 普 通 碳 钢 ,<br />

4. 最 好 的 缓 解 方 法 是 控 制 母 材 / 焊 材 的 锰 , 硅 , 磷 , 锡 , 锑 , 砷 的 成 分 ,<br />

5. 其 他 缓 解 方 法 : 控 制 材 料 强 度 (?) 与 热 处 理 受 感 温 度 ,<br />

6. 这 种 脆 化 现 象 不 能 在 高 于 受 感 温 度 热 处 理 逆 转 恢 复 .<br />

7. 除 了 低 温 冲 击 功 , 不 影 响 其 他 高 低 温 机 械 性 能 .


4.2.4 Stra<strong>in</strong> Ag<strong>in</strong>g<br />

时 效 伸 张<br />

( 不 是 API510/570 考 试 项 )


Intermediate<br />

temperature


Graphitisation<br />

Spheroidization<br />

Tempered Embrittlement<br />

Stra<strong>in</strong> Ag<strong>in</strong>g<br />

800°F for C Steel<br />

875°F for C ½ Mo Steel<br />

850 o F ~ 1400 o F<br />

650°F~ 1070°F<br />

Intermediate temperature<br />

Pla<strong>in</strong> carbon steel<br />

Pla<strong>in</strong> carbon + Low alloy steel<br />

up to 9% Cr<br />

2 ¼ Cr-1Mo low alloy steel, 3Cr-<br />

1Mo (lesser extent), & HSLA<br />

Cr-Mo-V rotor steels<br />

pre-1980’s carbon steels with a<br />

large gra<strong>in</strong> size and C-0.5 Mo<br />

885 o F embrittlement<br />

600°F~ 1000°F<br />

受 影 响 的 材 质 是 那 些 老 工 艺 的 炼 钢 方 法 的 普 通 碳 钢 与<br />

0.5Mo 钢 – 含 有 高 成 分 的 关 键 杂 质 元 素 与 粗 晶 粒 .<br />

300, 400 & Duplex SS<br />

conta<strong>in</strong><strong>in</strong>g ferrite phases


4.2.4 Stra<strong>in</strong> Ag<strong>in</strong>g 伸 张 时 效<br />

4.2.4.1 Description of <strong>Damage</strong><br />

Stra<strong>in</strong> ag<strong>in</strong>g is a form of damage found mostly <strong>in</strong> older v<strong>in</strong>tage carbon<br />

steels and C-0.5 Mo low alloy steels under <strong>the</strong> comb<strong>in</strong>ed effects of<br />

deformation and ag<strong>in</strong>g at an <strong>in</strong>termediate temperature. This results <strong>in</strong> an<br />

<strong>in</strong>crease <strong>in</strong> hardness and strength with a reduction <strong>in</strong> ductility and<br />

toughness.<br />

4.2.4.2 Affected Materials<br />

Mostly older (pre-1980’s) carbon steels with a large gra<strong>in</strong> size and C-0.5<br />

Mo low alloy steel.<br />

When susceptible materials are plastically deformed and exposed to<br />

<strong>in</strong>termediate temperatures, <strong>the</strong> zone of deformed material may become<br />

hardened and less ductile.<br />

一 般 上 受 影 响 的 是 1980 年 或 更 早 前 的 碳 钢 ( 特 别 是 大 粒 径 / C- ½ Mo), 当 这 些<br />

敏 感 的 材 料 , 经 过 塑 性 变 形 和 接 触 中 间 温 度 作 业 时 , 这 变 形 材 料 区 可 能 变 硬<br />

和 延 展 性 与 韧 性 降 低 。


http://l<strong>in</strong>k.spr<strong>in</strong>ger.com/article/10.1007%2Fs11668-006-5014-3#page-1<br />

http://l<strong>in</strong>k.spr<strong>in</strong>ger.com/article/10.1007%2FBF02715166#page-1<br />

http://matperso.m<strong>in</strong>es-paristech.fr/Donnees/data03/386-belotteau09.pdf<br />

Most of <strong>the</strong> effects of cold work on<br />

<strong>the</strong> strength and ductility of<br />

structural steels can be elim<strong>in</strong>ated<br />

by <strong>the</strong>rmal treatment, such as<br />

stress reliev<strong>in</strong>g, normaliz<strong>in</strong>g, or<br />

anneal<strong>in</strong>g. However, such<br />

treatment is not often necessary.<br />

伸 张 时 效 对 强 度 和 韧 性 的 影 响 能 以<br />

热 处 理 逆 转 恢 复 .


韧 性 减 低 / 抗 拉 曾 强


拉<br />

力<br />

AISC- Guide to Design Criteria for Bolted and Riveted Jo<strong>in</strong>ts


拉<br />

力<br />

AISC- Guide to Design Criteria for Bolted and Riveted Jo<strong>in</strong>ts


4.2.4.3 Critical Factors 关 键 因 素<br />

a) Steel composition and manufactur<strong>in</strong>g process determ<strong>in</strong>e steel susceptibility.<br />

b) Steels manufactured by <strong>the</strong> Bessemer or open hearth process conta<strong>in</strong><br />

higher levels of critical impurity elements than newer steels manufactured<br />

by <strong>the</strong> Basic Oxygen Furnace (BOF) process.<br />

c) In general, steels made by BOF and fully killed with alum<strong>in</strong>um will not be<br />

susceptible. The effect is found <strong>in</strong> rimmed and capped steels with higher<br />

levels of nitrogen and carbon, but not <strong>in</strong> <strong>the</strong> modern fully killed carbon<br />

steels manufactured to a f<strong>in</strong>e gra<strong>in</strong> practice.<br />

受 感 性 强 材 质 :<br />

• 含 有 高 成 分 的 关 键 杂 质 元 素 的 转 炉 或 平 炉 炼 钢 法 ( 老 炼 钢 法 ),<br />

• 含 大 量 的 氢 与 碳 元 素 的 压 盖 钢 / 半 镇 静 钢 / 沸 腾 钢<br />

不 受 影 响 材 质 :<br />

• 碱 性 氧 气 转 炉 炼 钢 法 , 铝 镇 静 钢 , 细 晶 粒 实 践 钢 .


d) Stra<strong>in</strong> ag<strong>in</strong>g effects are observed <strong>in</strong> materials that have been cold worked<br />

and placed <strong>in</strong>to service at <strong>in</strong>termediate temperatures without stress<br />

reliev<strong>in</strong>g. 冷 加 工 件 ( 无 热 处 理 ) 用 于 中 等 温 度 服 务 .<br />

e) Stra<strong>in</strong> ag<strong>in</strong>g is a major concern for equipment that conta<strong>in</strong>s cracks. If<br />

susceptible materials are plastically deformed and exposed to <strong>in</strong>termediate<br />

temperatures, <strong>the</strong> zone of deformed material may become hardened and<br />

less ductile. This phenomenon has been associated with several vessels<br />

that have failed by brittle fracture. 塑 性 变 材 料 当 接 触 到 中 等 温 度 时 , 变 形 的<br />

区 域 会 变 硬 与 减 少 韧 性 , 如 这 材 料 带 裂 缝 时 会 导 致 设 备 脆 性 断 裂 .<br />

f) The pressurization sequence versus temperature is a critical issue to<br />

prevent brittle fracture of susceptible materials. 加 压 顺 序 与 温 度 是 预 防 时 效<br />

伸 张 开 裂 的 关 键 方 法 .<br />

g) Stra<strong>in</strong> ag<strong>in</strong>g can also occur when weld<strong>in</strong>g <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of cracks and<br />

notches <strong>in</strong> a susceptible material. 焊 接 加 热 也 会 加 剧 带 裂 纹 的 受 感 材 料 .


Bessemer Process


Bessemer Process


Bessemer Process


Bessemer Process


Open hearth Process


Open hearth Process


Open hearth Process


Open hearth Process 平 炉 炼 钢 法


Basic Oxygen Process<br />

碱 性 氧 气 转 炉 炼 钢 法


Basic Oxygen Process


Basic Oxygen Process


Metallurgy for Dummies<br />

http://metallurgyfordummies.com/steelmak<strong>in</strong>g-technology/


Capped Steel 半 镇 静 钢 , 加 盖 钢 :<br />

• It has characteristics similar to those of rimmed steels but to a degree<br />

<strong>in</strong>termediate between those of rimmed and semi-killed steels.<br />

• A deoxidizer may be added to effect a controlled runn<strong>in</strong>g action when<br />

<strong>the</strong> steel is cast. <strong>the</strong> gas entrapped dur<strong>in</strong>g solidification is <strong>in</strong> excess of<br />

that needed to counteract normal shr<strong>in</strong>kage, result<strong>in</strong>g <strong>in</strong> a tendency for<br />

<strong>the</strong> steel to rise <strong>in</strong> <strong>the</strong> mould.<br />

• The capp<strong>in</strong>g operation caused <strong>the</strong> steel to solidify faster, <strong>the</strong>reby<br />

limit<strong>in</strong>g <strong>the</strong> time of gas evolution, and prevents <strong>the</strong> formation of an<br />

excessive number of gas voids with<strong>in</strong> <strong>the</strong> <strong>in</strong>got.<br />

• Capped steel is generally cast <strong>in</strong> bottle-top moulds us<strong>in</strong>g a heavy metal<br />

cap.<br />

• Capped steel may also be cast <strong>in</strong> open-top moulds, by add<strong>in</strong>g alum<strong>in</strong>um<br />

or ferro-silicon on <strong>the</strong> top of molten steel, to cause <strong>the</strong> steel on <strong>the</strong><br />

surface to lie quietly and solidify rapidly.


4) Rimmed Steel 沸 腾 钢 , 不 脱 氧 钢 :<br />

• In rimmed steel, <strong>the</strong> aim is to produce a clean surface low <strong>in</strong> carbon<br />

content. Rimmed steel is also known as draw<strong>in</strong>g quality steel.<br />

• The typical structure results for a marked gas evolution dur<strong>in</strong>g solidification<br />

of outer rim.<br />

• They exhibit greatest difference <strong>in</strong> chemical composition across sections<br />

and from top to bottom of <strong>the</strong> <strong>in</strong>got.<br />

• They have an outer rim that is lower <strong>in</strong> carbon, phosphorus, and sulphur<br />

than <strong>the</strong> average composition of <strong>the</strong> whole <strong>in</strong>got and an <strong>in</strong>ner portion or<br />

core that is higher <strong>the</strong> average <strong>in</strong> those elements.<br />

• In rimm<strong>in</strong>g, <strong>the</strong> steel is partially deoxidized. Carbon content is less than<br />

0.25% and manganese content is less than 0.6%.<br />

• They do not reta<strong>in</strong> any significant percentage of highly oxidizable elements<br />

such as Alum<strong>in</strong>um, silicon or titanium.<br />

• A wide variety of steels for deep draw<strong>in</strong>g is made by <strong>the</strong> rimm<strong>in</strong>g process,<br />

especially where ease of form<strong>in</strong>g and surface f<strong>in</strong>ish are major<br />

considerations.<br />

• These steel are, <strong>the</strong>refore ideal for roll<strong>in</strong>g, large number of applications,<br />

and is adapted to cold-bend<strong>in</strong>g, cold-form<strong>in</strong>g and cold header applications.


应 变 时 效 学 习 重 点 :<br />

1. 中 等 温 度 现 象 –?°F to ?°F,<br />

2. 受 感 材 质 : 含 有 高 成 分 的 关 键 杂 质 元 素 的 转 炉 或 平 炉 炼 钢 法 , 未 经 过 热 处<br />

理 冷 加 工 件 . 粗 晶 粒 钢 .<br />

3. 受 感 设 备 : 高 厚 度 非 热 处 理 受 感 材 质 设 备 .<br />

4. 碱 性 氧 气 转 炉 炼 钢 法 , 铝 镇 静 钢 , 细 晶 粒 实 践 钢 不 受 影 响 .<br />

5. 蓝 脆 性 为 别 名 .<br />

6. 非 API 510/570 考 试 题 非 API 510/570 考 试 题


4.2.5 885°F (475°C) embrittlement<br />

885°F 脆 化 - 铁 素 体 不 锈 钢 / 双 相 钢<br />

( 不 是 API510/570 考 试 项 )


885°F (475°C) embrittlement<br />

600°F~ 1000°F


Graphitisation<br />

Spheroidization<br />

Tempered Embrittlement<br />

Stra<strong>in</strong> Ag<strong>in</strong>g<br />

885°F embrittlement<br />

800°F for C Steel<br />

875°F for C ½ Mo Steel<br />

850 o F ~ 1400 o F<br />

650°F~ 1070°F<br />

Intermediate temperature<br />

600°F~ 1000°F<br />

Pla<strong>in</strong> carbon steel<br />

Pla<strong>in</strong> carbon + Low alloy steel<br />

up to 9% Cr<br />

2 ¼ Cr-1Mo low alloy steel, 3Cr-<br />

1Mo (lesser extent), & HSLA<br />

Cr-Mo-V rotor steels<br />

pre-1980’s carbon steels with a<br />

large gra<strong>in</strong> size and C-0.5 Mo<br />

300*, 400 & Duplex SS<br />

conta<strong>in</strong><strong>in</strong>g ferrite phases<br />

受 影 响 的 材 质 : 含 铁 素 土 的 不 锈 钢 .<br />

* 锻 与 铸 件 奥 氏 体 不 锈 钢 .


4.2.5 885°F (475°C) Embrittlement<br />

4.2.5.1 Description of <strong>Damage</strong><br />

• 885°F (475°C) embrittlement is a loss <strong>in</strong> toughness due to a metallurgical<br />

change that can occur <strong>in</strong> sta<strong>in</strong>less steel conta<strong>in</strong><strong>in</strong>g a ferrite phase, as a<br />

result of exposure <strong>in</strong> <strong>the</strong> temperature range 600°F~1000°F (316°C to<br />

540°C).<br />

4.2.5.2 Affected Materials<br />

a) 400 Series SS- ferritic & martensitic<br />

(e.g., 405, 409, 410, 410S, 430, and 446).<br />

b) Duplex sta<strong>in</strong>less steels such as Alloys 2205, 2304, and 2507.<br />

c) Wrought and cast 300 Series SS conta<strong>in</strong><strong>in</strong>g ferrite, particularly welds and<br />

weld overlay.<br />

高 温 现 象 : 600°F to 1000°F<br />

含 有 铁 素 体 相 不 锈 钢 ( 铁 素 体 / 马 氏 体 / 双 相 / 奥 氏 体 - 全 包 含 ) 由 于 冶 金 的 变 化 韧<br />

性 的 损 失 现 象 .


885°F (475°C) embrittlement<br />

Embrittlement of sta<strong>in</strong>less steels conta<strong>in</strong><strong>in</strong>g ferrite phase upon extended<br />

exposure to temperatures between 730°F and 930°F (400°C and 510°C ).<br />

This type of embrittlement is caused by f<strong>in</strong>e, chromium-rich precipitates that<br />

segregate at gra<strong>in</strong> boundaries: time at temperature directly <strong>in</strong>fluences <strong>the</strong><br />

amount of segregation. Gra<strong>in</strong>-boundary segregation of <strong>the</strong> chromium-rich<br />

precipitates <strong>in</strong>creases strength and hardness, decreases ductility and<br />

toughness, and changes corrosion resistance. This type of embrittlement<br />

can be reversed by heat<strong>in</strong>g above <strong>the</strong> precipitation range.<br />

885°F 脆 化 , 这 种 类 型 的 脆 化 是 由 于 富 含 铬 的 析 出 物 在 晶 界 处 偏 析 出 . 晶 界 偏 析<br />

的 富 含 铬 的 析 出 增 加 强 度 和 硬 度 , 降 低 塑 性 和 韧 性 和 耐 腐 蚀 变 化 ( 减 弱 ). 这 种 脆<br />

化 现 象 能 在 高 于 析 出 温 度 热 处 理 逆 转 恢 复 .<br />

http://www.keytometals.com/page.aspx?ID=CheckArticle&site=kts&LN=CN&NM=102


• Most ref<strong>in</strong><strong>in</strong>g companies limit <strong>the</strong> use of ferritic sta<strong>in</strong>less steels to nonpressure<br />

boundary applications because of this damage mechanism.<br />

• 885°F embrittlement is a metallurgical change that is not readily apparent<br />

with metallography but can be confirmed through bend or impact test<strong>in</strong>g<br />

(Figure 4-6).


• The existence of 885°F embrittlement can be identified by an <strong>in</strong>crease <strong>in</strong><br />

hardness <strong>in</strong> affected areas. Failure dur<strong>in</strong>g bend test<strong>in</strong>g or impact test<strong>in</strong>g of<br />

samples removed from service is <strong>the</strong> most positive <strong>in</strong>dicator of 885°F<br />

embrittlement.<br />

• 885°F embrittlement is reversible by heat treatment to dissolve precipitates,<br />

followed by rapid cool<strong>in</strong>g. The de-embrittl<strong>in</strong>g heat treatment temperature is<br />

typically 1100°F (593°C) or higher and may not be practical for many<br />

equipment items. If <strong>the</strong> de-embrittled component is exposed to <strong>the</strong> same<br />

service conditions it will re-embrittle faster than it did <strong>in</strong>itially.


4.2.5.3 Critical Factors 关 键 因 素<br />

a) The alloy composition, particularly chromium content, amount of ferrite<br />

phase, and operat<strong>in</strong>g temperature are critical factors.<br />

铬 , 铁 素 体 相 的 数 量 和 操 作 温 度<br />

b) Increas<strong>in</strong>g amounts of ferrite phase <strong>in</strong>crease susceptibility to damage<br />

when operat<strong>in</strong>g <strong>in</strong> <strong>the</strong> high temperature range of concern. A dramatic<br />

<strong>in</strong>crease <strong>in</strong> <strong>the</strong> ductile-to-brittle transition temperature will occur.<br />

越 来 越 多 的 铁 素 体 相 的 增 加 损 伤 的 易 感 性 ( 韧 脆 转 变 温 度 显 著 提 高 )<br />

c) A primary consideration is operat<strong>in</strong>g time at temperature with<strong>in</strong> <strong>the</strong> critical<br />

temperature range. <strong>Damage</strong> is cumulative and results from <strong>the</strong><br />

precipitation of an embrittl<strong>in</strong>g <strong>in</strong>termetallic phase that occurs most readily<br />

at approximately 885°F (475°C). Additional time is required to reach<br />

maximum embrittlement at temperatures above or below 885°F (475°C).<br />

For example, many thousands of hours may be required to cause<br />

embrittlement at 600°F (316°C). 损 伤 是 因 在 受 感 温 度 操 作 时 , 金 属 间 项<br />

(<strong>in</strong>termetallic phase) 的 溢 出 / 沉 淀 在 晶 间 导 致 的 .


d) S<strong>in</strong>ce 885°F embrittlement can occur <strong>in</strong> a relatively short period of time, it<br />

is often assumed that susceptible materials that have been exposed to<br />

temperatures <strong>in</strong> <strong>the</strong> 700°F to 1000°F (371°C to 538°C) range are affected.<br />

受 感 温 度 一 般 上 定 义 为 700°F 至 1000°F 之 间<br />

e) The effect on toughness is not pronounced at <strong>the</strong> operat<strong>in</strong>g temperature,<br />

but is significant at lower temperatures experienced dur<strong>in</strong>g plant<br />

shutdowns, startups or upsets. 对 韧 性 的 影 响 体 现 在 较 低 于 操 作 温 度 例 如 在<br />

停 机 , 启 动 和 颠 覆 状 态 时 .<br />

f) Embrittlement can result from temper<strong>in</strong>g at higher temperatures or by<br />

hold<strong>in</strong>g with<strong>in</strong> or cool<strong>in</strong>g through <strong>the</strong> transformation range.<br />

在 受 感 温 度 回 火 热 处 理 或 当 冷 却 时 在 受 感 ( 转 变 ) 温 度 停 留 会 导 致 885°F 脆 化 .


Fig. 2—Microstructure of solution-annealed 304LN sta<strong>in</strong>less steel


Fig. 3—Oxalic acid etched microstructures of 304LN sta<strong>in</strong>less steel sensitized for (a)<br />

1 h, (b) 25 h, (c) 50 h, and (d) 100 h.


4.2.5.7 Inspection and Monitor<strong>in</strong>g<br />

a) Impact or bend test<strong>in</strong>g of samples removed from service is <strong>the</strong> most positive<br />

<strong>in</strong>dicator of a problem.<br />

b) Most cases of embrittlement are found <strong>in</strong> <strong>the</strong> form of crack<strong>in</strong>g dur<strong>in</strong>g<br />

turnarounds, or dur<strong>in</strong>g startup or shutdown when <strong>the</strong> material is below about<br />

200°F (93°C) and <strong>the</strong> effects of embrittlement are most detrimental.<br />

c) An <strong>in</strong>crease <strong>in</strong> hardness is ano<strong>the</strong>r method of evaluat<strong>in</strong>g 885°F<br />

embrittlement.


Impact energy and br<strong>in</strong>ell hardness as function of time exposure qt 475°C<br />

475 o C Embrittlement <strong>in</strong> a Duplex Sta<strong>in</strong>less Steel UNS S31803


475 o C Embrittlement <strong>in</strong> a Duplex Sta<strong>in</strong>less Steel UNS S31803<br />

http://www.scielo.br/scielo.php?pid=S1516-14392001000400003&script=sci_arttext


http://www.sciencedirect.com/science/article/pii/S0921509309000197


• 885°F (475°C) Embrittlement of sta<strong>in</strong>less steels <strong>in</strong> alloys conta<strong>in</strong><strong>in</strong>g<br />

a ferrite phase (Ferritic/Martensitic/Duplex sta<strong>in</strong>less steel and ferrite<br />

phases <strong>in</strong> austenitic sta<strong>in</strong>less steel e.g. weld areas) 影 响 材 质 : 含 铁 素<br />

体 的 不 锈 钢<br />

• Gra<strong>in</strong>-boundary segregation of <strong>the</strong> chromium-rich precipitates<br />

<strong>in</strong>creases strength and hardness, decreases ductility and toughness,<br />

and changes corrosion resistance (lower). 含 富 铬 金 属 间<br />

(<strong>in</strong>termetallic) 在 晶 间 溢 出 导 致 脆 化 .<br />

• This type of embrittlement can be reversed by heat<strong>in</strong>g above <strong>the</strong><br />

precipitation range. 可 以 通 过 加 热 逆 转 恢 复<br />

• Impact test<strong>in</strong>g/bend test & hardness test<strong>in</strong>g used to evaluate<br />

susceptibility. 冲 击 试 验 , 弯 曲 试 验 , 硬 度 试 验 作 为 易 感 性 的 评 估 .<br />

• Restrict <strong>the</strong> used of ferritic steel to non-pressure boundary application.<br />

限 制 铁 素 体 不 锈 钢 用 于 非 受 压 用 途 .


4.2.6 Sigma-Phase Embrittlement<br />

“ 西 格 玛 ” 相 脆 化<br />

( 不 是 API510/570 考 试 项 )


Sigma-Phase Embrittlement<br />

1000 o F~1700 o F


885°F embrittlement<br />

Sigma phase embrittlement<br />

600°F~ 1000°F<br />

1000°F~ 1700°F<br />

300*, 400 & Duplex SS<br />

conta<strong>in</strong><strong>in</strong>g ferrite phase<br />

300, 400 & Duplex SS<br />

conta<strong>in</strong><strong>in</strong>g ferrite phases<br />

受 影 响 的 材 质 : 含 铁 素 体 的 不 锈 钢 ,<br />

* 锻 与 铸 件 奥 氏 体 不 锈 钢


4.2.6 Sigma Phase Embrittlement<br />

4.2.6.1 Description of <strong>Damage</strong><br />

Formation of a metallurgical phase known as sigma phase can result <strong>in</strong> a loss<br />

of fracture toughness <strong>in</strong> some sta<strong>in</strong>less steels as a result of high<br />

temperature exposure.<br />

4.2.6.2 Affected Materials<br />

a) 300 Series SS wrought metals, weld metal, and cast<strong>in</strong>gs. Cast 300 Series<br />

SS <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> HK and HP alloys are especially susceptible to sigma<br />

formation because of <strong>the</strong>ir high (10-40%) ferrite content.<br />

b) The 400 Series SS and o<strong>the</strong>r ferritic and martensitic SS with 17% Cr or<br />

more are also susceptible (e.g., Types 430 and 440).<br />

c) Duplex sta<strong>in</strong>less steels.<br />

受 影 响 的 材 质 : 铁 素 体 不 锈 钢 , 含 铁 素 体 的 马 氏 体 , 奥 氏 体 不 锈 钢 和 双 相 不 锈 钢 .<br />

脆 化 原 因 : 在 受 感 温 度 下 , 西 格 玛 相 形 成 , 在 铁 素 体 项 析 出 导 致 脆 化 .<br />

http://www.h<strong>in</strong>dawi.com/journals/isrn.metallurgy/2012/732471/


Sigma-Phase Embrittlement 西 格 玛 相 脆 化<br />

Description: Embrittlement of iron-chromium alloys caused by precipitation<br />

at gra<strong>in</strong> boundaries of <strong>the</strong> hard, brittle <strong>in</strong>termetallic sigma phase σ dur<strong>in</strong>g<br />

long periods of exposure to temperatures between approximately 565 o C and<br />

980 o C (1050 o F and 1800 o F). Sigma phase embrittlement results <strong>in</strong> severe<br />

loss <strong>in</strong> toughness and ductility and can make <strong>the</strong> embrittled material<br />

structure susceptible to <strong>in</strong>tergranular corrosion.<br />

在 长 时 间 暴 露 在 温 度 约 565 o C ~ 980 o C (1050 o F ~ 1800 o F) 之 间 , 硬 而 脆 的 金<br />

属 间 化 合 物 (σ 相 ) 在 铁 素 体 晶 界 处 析 出 , σ 相 脆 化 导 致 的 韧 性 和 延 展 性 严 重 损 失<br />

与 导 致 易 受 晶 间 腐 蚀 .<br />

http://www.keytometals.com/page.aspx?ID=CheckArticle&site=kts&LN=CN&NM=102


4.2.6.3 Critical Factors 关 键 因 素<br />

a) Alloy composition, time and temperature are <strong>the</strong> critical factors.<br />

化 学 成 分 , 时 间 , 温 度 都 是 关 键 因 素 .<br />

b) In susceptible alloys, <strong>the</strong> primary factor that affects sigma phase<br />

formation is <strong>the</strong> time of exposure at elevated temperature. 易 感 材 料 ; 时 间<br />

与 经 历 温 度 为 主 要 因 素 .<br />

c) Sigma phase occurs <strong>in</strong> ferritic (Fe-Cr), martensitic (Fe-Cr), austenitic (Fe-<br />

Cr-Ni) and duplex sta<strong>in</strong>less steels when exposed to temperatures <strong>in</strong> <strong>the</strong><br />

range of 1000°F to 1700°F (538°C to 927°C). Embrittlement can result by<br />

hold<strong>in</strong>g with<strong>in</strong> or cool<strong>in</strong>g through <strong>the</strong> transformation range. 铁 素 体 , 马 氏 体 ,<br />

奥 氏 体 , 双 相 钢 , 当 停 留 或 冷 却 途 径 1000°F to 1700°F 温 度 时 , 产 生 σ 相 析 出 .<br />

d) Sigma forms most rapidly from <strong>the</strong> ferrite phase that exists <strong>in</strong> 300 Series<br />

SS and duplex SS weld deposits. It can also form <strong>in</strong> <strong>the</strong> 300 Series SS<br />

base metal (austenite phase) but usually more slowly. σ 相 以 较 快 的 速 度<br />

在 铁 素 体 相 析 出 , 但 也 会 在 奥 氏 体 项 较 慢 的 速 度 析 出 .


e) The 300 Series SS can exhibit about 10% to 15% sigma phase. Cast<br />

austenitic sta<strong>in</strong>less steels can develop considerably more sigma.<br />

σ 相 在 奥 氏 体 不 锈 钢 以 10%~15% 表 现 出 来 , 铸 件 可 能 还 高 .<br />

f) Formation of sigma phase <strong>in</strong> austenitic sta<strong>in</strong>less steels can also occur <strong>in</strong> a<br />

few hours, as evidenced by <strong>the</strong> known tendency for sigma to form if an<br />

austenitic sta<strong>in</strong>less steel is subjected to a post weld heat treatment at<br />

1275°F (690°C).<br />

σ 相 在 奥 氏 体 的 析 出 只 需 几 个 小 时 , 这 脆 化 趋 向 可 以 从 1275°F 焊 接 热 处 理 后 ,<br />

出 现 σ 相 的 到 证 明 .<br />

g) The tensile and yield strength of sigmatized sta<strong>in</strong>less steels <strong>in</strong>creases<br />

slightly compared with solution annealed material. This <strong>in</strong>crease <strong>in</strong><br />

strength is accompanied by a reduction <strong>in</strong> ductility (measured by percent<br />

elongation and reduction <strong>in</strong> area) and a slight <strong>in</strong>crease <strong>in</strong> hardness.<br />

σ 相 脆 化 后 , 抗 拉 强 度 . 硬 度 相 比 固 溶 退 火 材 料 略 有 增 加 , 同 时 , 延 展 性 与 韧 性<br />

减 少 .


Σ(σ)phase<br />

<strong>in</strong> austenitic<br />

matrix<br />

http://www.<strong>in</strong>techo<br />

pen.com/books/met<br />

allurgy-advances<strong>in</strong>-materials-andprocesses/homogeni<br />

zation-heattreatment-toreduce-<strong>the</strong>-failureof-heat-resistantsteel-cast<strong>in</strong>gs


Σ(σ)phase<br />

<strong>in</strong> austenitic<br />

matrix


h) Sta<strong>in</strong>less steels with sigma can normally withstand normal operat<strong>in</strong>g<br />

stresses, but upon cool<strong>in</strong>g to temperatures below about 500°F (260°C)<br />

may show a complete lack of fracture toughness as measured <strong>in</strong> a Charpy<br />

impact test. Laboratory tests of embrittled weld metal have shown a<br />

complete lack of fracture toughness below 1000°F (538°C)<br />

一 般 上 材 料 在 正 常 操 作 温 度 时 不 受 西 格 玛 相 脆 化 影 响 , 但 是 当 材 料 温 度 降 至<br />

500°F 材 料 完 全 缺 乏 韧 性 ( 实 验 室 导 致 完 全 缺 乏 韧 性 的 温 度 可 能 高 至 1000°F).<br />

i) The metallurgical change is actually <strong>the</strong> precipitation of a hard, brittle<br />

<strong>in</strong>termetallic compound that can also render <strong>the</strong> material more susceptible<br />

to <strong>in</strong>tergranular corrosion. The precipitation rate <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g<br />

chromium and molybdenum content. 缺 乏 韧 性 是 因 硬 脆 性 金 属 间 化 合 物 沉<br />

淀 在 晶 间 . 随 着 铬 和 钼 含 量 提 高 , 沉 淀 率 相 应 加 速 .


σ 相 脆 化 - 缺 乏 韧 性 是 因 硬 脆 性 金 属 间 (<strong>in</strong>termetallic-sigma phase) 化 合 物 沉 淀<br />

在 晶 间 . 随 着 铬 和 钼 含 量 提 高 , 沉 淀 率 相 应 加 速 .<br />

Cr% & Mo%<br />

铬 和 钼 含 量 增 加<br />

The precipitation<br />

rate <strong>in</strong>creases<br />

σ 相 析 出 增 加


4.2.6.4 Affected Units or <strong>Equipment</strong><br />

a) Common examples <strong>in</strong>clude sta<strong>in</strong>less steel cyclones, pip<strong>in</strong>g ductwork and<br />

valves <strong>in</strong> high temperature FCC (fluidized catalytic crack<strong>in</strong>g )Regenerator<br />

service.<br />

b) 300 Series SS weld overlays and tube-to-tubesheets attachment welds can<br />

be embrittled dur<strong>in</strong>g PWHT treatment of <strong>the</strong> underly<strong>in</strong>g CrMo base metal.<br />

c) Sta<strong>in</strong>less steel heater tubes are susceptible and can be embrittled.


FCC (fluidized catalytic crack<strong>in</strong>g )<br />

Regenerator service


FCC (fluidized catalytic<br />

crack<strong>in</strong>g )<br />

Regenerator service


FCC (fluidized catalytic crack<strong>in</strong>g )<br />

Regenerator service<br />

http://www.phxequip.com/plant.73/fluid-catalytic-cracker-unit.aspx


FCC (fluidized catalytic crack<strong>in</strong>g )<br />

Regenerator service


FCC (fluidized catalytic crack<strong>in</strong>g )<br />

Regenerator service


Sta<strong>in</strong>less steel heater tubes


Sta<strong>in</strong>less steel heater tubes


tube-to-tubesheets attachment


tube-to-tubesheets attachment


tube-to-tubesheets attachment


tube-to-tubesheets attachment


4.2.6.5 Appearance or Morphology of <strong>Damage</strong> 损 伤 外 观 形 态<br />

a) Sigma phase embrittlement is a metallurgical change that is not readily<br />

apparent, and can only be confirmed through metallographic exam<strong>in</strong>ation<br />

and impact test<strong>in</strong>g. (Tables 4-1 and 4-2) 外 观 上 不 能 体 现 损 伤 , 只 能 依 靠 金 相<br />

分 析 和 冲 击 试 验<br />

b) <strong>Damage</strong> due to sigma phase embrittlement appears <strong>in</strong> <strong>the</strong> form of crack<strong>in</strong>g,<br />

particularly at welds or <strong>in</strong> areas of high restra<strong>in</strong>t. σ 相 脆 化 一 般 上 以 开 裂 的 形<br />

态 出 现 特 别 是 在 焊 缝 与 高 抑 制 区 域 .<br />

c) Tests performed on sigmatized 300 Series SS (304H) samples from FCC<br />

regenerator <strong>in</strong>ternals have shown that even with 10% sigma formation, <strong>the</strong><br />

Charpy impact toughness was 39 ft-lbs (53 J) at 1200°F (649°C).<br />

材 料 : 304H<br />

敏 化 度 : 10%σ 相<br />

温 度 / 冲 击 功 : 649°C / 53J


设 备 : 催 化 裂 化 再 生 器<br />

材 料 : 304H<br />

敏 化 度 : 10%σ 相<br />

温 度 / 冲 击 功 : 649°C / 53J<br />

新 材 料 的 机 械 性 能 :<br />

SPECIFICATION FOR HEAT-RESISTING<br />

CHROMIUM AND CHROMIUM-NICKEL STAINLESS<br />

STEEL PLATE, SHEET, AND STRIP FOR<br />

PRESSURE VESSELS<br />

ASTM SA-240


SPECIFICATION FOR HEAT-RESISTING CHROMIUM AND CHROMIUM-NICKEL STAINLESS STEEL PLATE,<br />

SHEET, AND STRIP FOR PRESSURE VESSELS ASTM SA-240


d) For <strong>the</strong> 10% sigmatized specimen, <strong>the</strong> values ranged from 0% ductility at<br />

room temperature to 100% at 1200°F (649°C). Thus, although <strong>the</strong> impact<br />

toughness is reduced at high temperature, <strong>the</strong> specimens broke <strong>in</strong> a<br />

100% ductile fashion, <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong> wrought material is still suitable<br />

at operat<strong>in</strong>g temperatures. See Figures 4-7 to 4-11. 敏 化 材 料 的 室 温 延 展<br />

性 或 许 降 至 为 零 . 但 在 1200°F 材 料 的 延 展 性 可 能 不 受 任 何 的 影 响 .<br />

e) Cast austenitic sta<strong>in</strong>less steels typically have high ferrite/sigma content<br />

(up to 40%) and may have very poor high temperature ductility. 铸 造 奥 氏<br />

体 不 锈 钢 敏 化 都 可 能 高 至 40% 的 σ 相 , 这 导 致 很 差 的 高 温 塑 性 / 延 展 性 .


Evaluation of Sigma Phase Embrittlement of a Sta<strong>in</strong>less Steel<br />

304H Fluid Catalyst Crack<strong>in</strong>g Unit Regenerator Cyclone 不 锈 钢<br />

304H 催 化 裂 化 再 生 旋 风 器 σ 相 脆 化 评 价 .<br />

Authors: Ali Y. Al-Kawaie and Abdelhak Kermad<br />

ABSTRACT<br />

Test<strong>in</strong>g was performed on a 304H sta<strong>in</strong>less steel sample removed from a Fluid Catalyst Crack<strong>in</strong>g<br />

Unit (FCCU) regenerator cyclone after 25 years of service to check for sigma phase formation.<br />

Sigma phase is a nonmagnetic <strong>in</strong>ter-metallic phase composed ma<strong>in</strong>ly of iron and chromium (Fe-<br />

Cr), which forms <strong>in</strong> ferritic and austenitic sta<strong>in</strong>less steels dur<strong>in</strong>g exposure at <strong>the</strong> temperature<br />

range 1,050 °F to 1,800 °F (560 °C to 980 °C), caus<strong>in</strong>g loss of ductility and toughness. Crack<strong>in</strong>g<br />

may also occur if <strong>the</strong> component was impact-loaded or excessively stressed dur<strong>in</strong>g shutdown or<br />

ma<strong>in</strong>tenance work. This article discusses <strong>the</strong> effect of sigma phase embrittlement on <strong>the</strong> FCCU<br />

regenerator cyclone after extended high temperature service.<br />

http://www.saudiaramco.com/content/dam/Publications/Journa<br />

l%20of%20Technology/Spr<strong>in</strong>g2011/Art%2012%20-<br />

%20JOT%20Internet.pdf


Table 2. Impact test<strong>in</strong>g (Test Method: ASTM E23)<br />

Table 3. Micro-hardness<br />

test<strong>in</strong>g. Test load: 200 g,<br />

Calibration Block Hardness:<br />

256 + 10 HV, Measured<br />

Hardness of <strong>the</strong> calibration<br />

block: 258 VHN.


Fig. 1. Cyclone<br />

sample, as received.


Fig. 2. Micrograph<br />

show<strong>in</strong>g carburized<br />

layer at <strong>the</strong> outer (top)<br />

surface, 100x (As<br />

received).


Note: solution anneal<strong>in</strong>g at 1,066 °C for four hours, followed by a water<br />

quench before test<strong>in</strong>g.<br />

Fig. 3. Micrograph<br />

show<strong>in</strong>g <strong>the</strong><br />

microstructure at <strong>the</strong><br />

outer (top) surface,<br />

100x (Heat treaded).


Fig. 4. Micrograph<br />

show<strong>in</strong>g sigma<br />

formation at <strong>the</strong> center<br />

of <strong>the</strong> sample.<br />

Estimated volume<br />

fraction 7%, 100x (As<br />

received).


Note: solution anneal<strong>in</strong>g at 1,066 °C for four hours, followed by a water<br />

quench before test<strong>in</strong>g.<br />

Fig. 5. Micrograph<br />

show<strong>in</strong>g <strong>the</strong><br />

microstructure at <strong>the</strong><br />

center of <strong>the</strong> heat<br />

treated sample, 100x<br />

(Heat treated).


Fig. 6. Micrograph<br />

show<strong>in</strong>g sigma phase<br />

at <strong>the</strong> <strong>in</strong>ner (bottom)<br />

surface of <strong>the</strong> orig<strong>in</strong>al<br />

sample, 100x (As<br />

received).


Note: solution anneal<strong>in</strong>g at 1,066 °C for four hours, followed by a water<br />

quench before test<strong>in</strong>g.<br />

Fig. 7. Micrograph<br />

show<strong>in</strong>g <strong>the</strong><br />

microstructure at <strong>the</strong><br />

<strong>in</strong>ner surface of <strong>the</strong><br />

heat treated sample,<br />

100x (Heat treated).


Fig. 8a. SEM fractography show<strong>in</strong>g <strong>the</strong> brittle fracture surface (Top - As received)


Fig. 8b. SEM fractography show<strong>in</strong>g <strong>the</strong> ductile fracture (Bottom - Heat treated) of <strong>the</strong><br />

impact tested samples.


4.2.6.6 Prevention / Mitigation<br />

a) The best way to prevent sigma phase embrittlement is to use alloys that are<br />

resistant to sigma formation or to avoid expos<strong>in</strong>g <strong>the</strong> material to <strong>the</strong><br />

embrittl<strong>in</strong>g range. 最 好 的 预 防 方 法 是 不 用 易 敏 材 料 与 避 免 使 材 料 暴 露 在 脆 化<br />

温 度 范 围 作 业 ( 这 牵 涉 到 设 定 合 适 的 IOW)<br />

b) The lack of fracture ductility at room temperature <strong>in</strong>dicates that care should<br />

be taken to avoid application of high stresses to sigmatized materials dur<strong>in</strong>g<br />

shutdown, as a brittle fracture could result. 室 温 断 裂 韧 性 不 足 是 σ 相 脆 化 损<br />

伤 机 理 的 特 点 . 这 显 著 地 影 响 设 备 在 启 动 , 关 断 与 瞬 态 状 态 的 使 用 ; 在 设 备 处 于<br />

低 温 状 态 时 避 免 设 备 受 到 高 应 力 ( 设 备 随 着 温 度 提 高 增 加 设 备 受 压 ).*<br />

c) The 300 Series SS can be de-sigmatized by solution anneal<strong>in</strong>g at 1950°F<br />

(1066°C) for four hours followed by a water quench. However, this is not<br />

practical for most equipment. σ 相 脆 化 损 伤 可 以 可 以 通 过 加 热 逆 转 恢 复 ( 温 度<br />

1950°F 固 溶 退 火 ). 然 而 这 往 往 并 不 是 在 役 设 备 实 用 的 修 护 方 案 .<br />

Note* 注 意 设 备 压 力 试 验 时 可 能 导 致 低 温 脆 裂 的 危 险 .


d) Sigma phase <strong>in</strong> welds can be m<strong>in</strong>imized by controll<strong>in</strong>g ferrite <strong>in</strong> <strong>the</strong> range of 5% to<br />

9% for Type 347 and somewhat less ferrite for Type 304. The weld metal ferrite<br />

content should be limited to <strong>the</strong> stated maximum to m<strong>in</strong>imize sigma formation<br />

dur<strong>in</strong>g service or fabrication, and must meet <strong>the</strong> stated m<strong>in</strong>imum <strong>in</strong> order to<br />

m<strong>in</strong>imize hot short crack<strong>in</strong>g dur<strong>in</strong>g weld<strong>in</strong>g. 奥 氏 体 不 锈 钢 铁 素 体 含 量 的 控 制 用<br />

于 减 少 σ 相 脆 化 的 形 成 .<br />

e) For sta<strong>in</strong>less steel weld overlay clad Cr-Mo components, <strong>the</strong> exposure time to<br />

PWHT temperatures should be limited wherever possible. 铬 钼 覆 盖 层 焊 后 热 处 理<br />

尽 量 减 少 暴 露 时 间 .


What causes knife-l<strong>in</strong>e attack?<br />

For stabilized sta<strong>in</strong>less steels and alloys, carbon<br />

is bonded with stabilizers (TiC or NbC) and no<br />

weld decay occurs <strong>in</strong> <strong>the</strong> heat affected zone<br />

dur<strong>in</strong>g weld<strong>in</strong>g. In <strong>the</strong> event of a subsequent heat<br />

treatment or weld<strong>in</strong>g (above 1200 o C), however,<br />

first <strong>the</strong> TiC / NbC may dissociated <strong>in</strong>to free Ti,<br />

Nb and C, on cool<strong>in</strong>g precipitation of chromium<br />

carbide Cr 23 C 6 is possible and this leaves <strong>the</strong><br />

narrow band adjacent to <strong>the</strong> fusion l<strong>in</strong>e<br />

susceptible to <strong>in</strong>tergranular corrosion.<br />

What causes weld decay? As <strong>in</strong> <strong>the</strong> case of <strong>in</strong>tergranular corrosion, gra<strong>in</strong> boundary precipitation, notably<br />

chromium carbides <strong>in</strong> non-stabilized sta<strong>in</strong>less steels, is a well recognized and accepted mechanism of weld<br />

decay. In this case, <strong>the</strong> precipitation of chromium carbides is <strong>in</strong>duced by <strong>the</strong> weld<strong>in</strong>g operation when <strong>the</strong><br />

heat affected zone (HAZ) experiences a particular temperature range (550 o C~850 o C). The precipitation of<br />

chromium carbides consumed <strong>the</strong> alloy<strong>in</strong>g element - chromium from a narrow band along <strong>the</strong> gra<strong>in</strong><br />

boundary and this makes <strong>the</strong> zone anodic to <strong>the</strong> unaffected gra<strong>in</strong>s. The chromium depleted zone becomes <strong>the</strong><br />

preferential path for corrosion attack or crack propagation if under tensile stress.


Anodic site


4.2.6.7 Inspection and Monitor<strong>in</strong>g 检 验 与 监 测<br />

a) Physical test<strong>in</strong>g of samples removed from service is <strong>the</strong> most positive<br />

<strong>in</strong>dicator of a problem. 设 备 采 样 机 械 试 验 时 最 好 的 方 法 确 认 损 伤 机 制 .<br />

b) Most cases of embrittlement are found <strong>in</strong> <strong>the</strong> form of crack<strong>in</strong>g <strong>in</strong> both<br />

wrought and cast (welded) metals dur<strong>in</strong>g turnarounds, or dur<strong>in</strong>g startup or<br />

shutdown when <strong>the</strong> material is below about 500°F (260°C) and <strong>the</strong> effects<br />

of embrittlement are most pronounced. σ 相 脆 化 开 裂 失 效 模 式 一 般 出 现 于 设<br />

备 温 度 处 于 低 于 500°F (260°C) 状 态 例 如 当 设 备 周 转 , 启 动 , 关 断 时 .<br />

4.2.6.8 Related <strong>Mechanisms</strong> 相 关 机 制<br />

Not applicable. 不 适 用


Figure 10: Shaeffler diagram show<strong>in</strong>g <strong>the</strong> embrittlement region of <strong>the</strong>σphase [33].<br />

http://www.h<strong>in</strong>dawi.com/journals/isrn.metallurgy/2012/732471/


http://www.metalconsult.com/failure-analysis-furnace-tubes.html


http://www.metalconsult.com/failure-analysis-furnace-tubes.html


http://www.metalconsult.com/failure-analysis-furnace-tubes.html


http://www.metallograf.de/start-eng.htm?/untersuchungen-eng/sigmaphase/sigmaphase.htm


http://www.<strong>in</strong>dustrialheat<strong>in</strong>g.com/articles/90371-sigma-phase-embrittlement<br />

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762009000300017


http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762009000300017


Table 4: Chemical composition of ferrite austenite and sigma phases at 900 o C


Polish<strong>in</strong>g mark<strong>in</strong>gs


Improperly etched specimen show<strong>in</strong>g little or no sign of sigma phase


NaOH etched


Oxalic acid etched-<br />

Duplex SS


Sigma-phase embrittlement<br />

• 高 温 现 象 :1000 o F~1700 o F<br />

• 影 响 材 质 : 铁 铬 合 金<br />

• 原 理 :σ 相 脆 化 损 伤 机 理 : 是 当 铁 铬 合 金 暴 露 在 高 温 下 , 硬 , 脆 性 的 σ 相 金 属 间<br />

化 合 物 晶 界 沉 淀 引 起 的 脆 性 现 象 .<br />

• 解 决 方 法 : σ 相 脆 化 损 伤 可 以 可 以 通 过 加 热 逆 转 恢 复 ( 温 度 1950°F 固 溶 退 火 ).<br />

然 而 这 往 往 并 不 是 在 役 设 备 实 用 的 修 护 方 案 .<br />

• 非 API 510/570 考 试 项


4.2.7 Brittle Fracture<br />

脆 性 破 裂<br />

API 510/570 考 试 学 习 科 目<br />

API510/570-Exam


Brittle Fracture<br />

Below DTBTT<br />

DTBT: Ductile to brittle<br />

transition temperature.<br />

API510/570-Exam


No shear lip, little micro void coalescence, little deformation<br />

API510/570-Exam


API510/570-Exam<br />

4.2.7 Brittle Fracture 脆 性 断 裂<br />

4.2.7.1 Description of <strong>Damage</strong> 损 伤 描 述<br />

Brittle fracture is <strong>the</strong> sudden rapid fracture under stress (residual or applied)<br />

where <strong>the</strong> material exhibits little or no evidence of ductility or plastic<br />

deformation. 脆 性 断 裂 - 在 应 力 ( 残 余 或 应 用 ) 作 用 下 突 然 快 速 断 裂 . 材 料 表 现 出 很<br />

少 的 延 展 性 , 塑 性 变 形 .<br />

4.2.7.2 Affected Materials 受 影 响 材 质<br />

Carbon steels and low alloy steels are of prime concern, particularly older<br />

steels. 400 Series SS are also susceptible. 受 影 响 的 材 质 有 ; 碳 钢 , 低 合 金 钢 与<br />

铁 素 体 / 马 氏 体 不 锈 钢<br />

Affected Materials Ferritic/Martensitic STEELS 只 对 铁 素 体 / 马 氏 体 钢 材 影 响


API510/570-Exam<br />

4.2.7.3 Critical Factors 关 键 因 素<br />

a) When <strong>the</strong> critical comb<strong>in</strong>ation of three factors is reached, brittle fracture can<br />

occur:<br />

1. The materials’ fracture toughness (resistance to crack like flaws) as<br />

measured <strong>in</strong> a Charpy impact test; 断 裂 韧 性<br />

2. The size, shape and stress concentration effect of a flaw;<br />

应 力 的 形 状 与 大 小<br />

3. The amount of residual and applied stresses on <strong>the</strong> flaw.<br />

残 余 或 外 加 应 力<br />

b) Susceptibility to brittle fracture may be <strong>in</strong>creased by <strong>the</strong> presence of<br />

embrittl<strong>in</strong>g phases. 晶 体 脆 化 相 存 在 会 增 加 脆 裂 易 感 性<br />

c) Steel cleanl<strong>in</strong>ess and gra<strong>in</strong> size have a significant <strong>in</strong>fluence on toughness<br />

and resistance to brittle fracture. 钢 的 纯 净 度 和 晶 粒 大 小 显 著 地 影 响 材 料 韧 性<br />

和 断 裂 抗 拒 能 力 .


API510/570-Exam<br />

d) Thicker material sections also have a lower resistance to brittle fracture<br />

due to higher constra<strong>in</strong>t which <strong>in</strong>creases triaxial stresses at <strong>the</strong> crack tip.<br />

较 厚 的 材 料 因 更 高 的 应 力 约 束 , 增 加 了 在 裂 纹 尖 端 的 三 轴 应 力 ; 导 致 较 低 的 断<br />

裂 阻 力<br />

d) In most cases, brittle fracture occurs only at temperatures below <strong>the</strong><br />

Charpy impact transition temperature (or ductile-to-brittle transition<br />

temperature), <strong>the</strong> po<strong>in</strong>t at which <strong>the</strong> toughness of <strong>the</strong> material drops off<br />

sharply. 一 般 上 脆 裂 发 生 在 低 于 韧 脆 转 变 温 度 .


API510/570-Exam<br />

Def<strong>in</strong>ition of Brittle Fracture 脆 性 断 裂 定 义<br />

a steel member may experience a brittle fracture. Three basic factors contribute to a<br />

brittle-cleavage type of fracture. They are;<br />

• a triaxial state of stress,<br />

• a low temperature, and<br />

• a high stra<strong>in</strong> rate or rapid rate of load<strong>in</strong>g.<br />

All <strong>the</strong>se factors need not be present. Crack often propagates by cleavage –<br />

break<strong>in</strong>g of atomic bonds along specific crystallographic planes (cleavage planes),<br />

propagate rapidly without fur<strong>the</strong>r <strong>in</strong>crease <strong>in</strong> applied stress (applied or residual)<br />

with little <strong>in</strong>dication of plastic deformation.<br />

In contrast, a ductile fracture occurs ma<strong>in</strong>ly by shear, usually preceded by<br />

considerable plastic deformation.


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam<br />

Figure 7: The fracture exam<strong>in</strong>ation us<strong>in</strong>g a SEM on C1 and C2 revealed features<br />

typical of transgranular fracture (left and middle) and signatures of <strong>in</strong>tergranular<br />

crack<strong>in</strong>g (left and right). The presence of both <strong>in</strong>tergranular and transgranular features<br />

<strong>in</strong>dicates a mixed-mode fracture morphology.<br />

http://www.drill<strong>in</strong>gcontractor.org/tubular-fractur<strong>in</strong>g-p<strong>in</strong>po<strong>in</strong>t<strong>in</strong>g-<strong>the</strong>-cause-14544


API510/570-Exam<br />

In Case 2 from Oklahoma, <strong>the</strong> p<strong>in</strong> connection twisted off while mak<strong>in</strong>g up<br />

<strong>the</strong> p<strong>in</strong> connection of a saver sub.<br />

http://www.drill<strong>in</strong>gcontractor.org/tubular-fractur<strong>in</strong>g-p<strong>in</strong>po<strong>in</strong>t<strong>in</strong>g-<strong>the</strong>-cause-14544


Figure 4: The fracture on <strong>the</strong> Case 1 sub showed a gra<strong>in</strong>y texture and “chevron<br />

marks” that po<strong>in</strong>t toward <strong>the</strong> <strong>in</strong>itiation site, which is typical morphology for brittle<br />

crack<strong>in</strong>g<br />

API510/570-Exam


API510/570-Exam<br />

Figure 5: The fracture<br />

on C3 exhibited a<br />

small fatigue region<br />

that was followed by<br />

brittle fracture. The<br />

fracture surface had a<br />

gra<strong>in</strong>y appearance<br />

and presented a<br />

m<strong>in</strong>uscule shear lip,<br />

which is also typical<br />

of a brittle fracture


API510/570-Exam<br />

Various stages dur<strong>in</strong>g ductile fracture 韧 性 断 裂 are schematically shown <strong>in</strong> above figure.<br />

(a) Neck<strong>in</strong>g, 缩 颈<br />

(b) Cavity formation (microvoid), 微 孔 形 成<br />

(c) Cavity coalescence to form a crack (microvoid coalescence), 微 孔 的 聚 结<br />

(d) Crack propagation, 裂 缝 蔓 延<br />

(e) Fracture (shear fracture). 断 裂 ( 剪 切 断 裂 )


API510/570-Exam


API510/570-Exam


API510/570-Exam<br />

Brittle fracture of a shaft caused by a<br />

small fatigue crack close to <strong>the</strong> keyway.<br />

The fatigue would be expected to start<br />

at <strong>the</strong> keyway root but actually began at<br />

a surface defect.<br />

http://www.surescreen.com/scientifics/library-of-failures.php


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


http://www.wermac.org/misc/pressuretest<strong>in</strong>gfailure2.html<br />

API510/570-Exam


API510/570-Exam<br />

4.2.7.4 Affected Units or <strong>Equipment</strong> 受 影 响 的 单 元 或 设 备<br />

a) <strong>Equipment</strong> manufactured to <strong>the</strong> ASME Boiler and Pressure Vessel Code,<br />

Section VIII, Division 1, prior to <strong>the</strong> December 1987 Addenda, were made<br />

with limited restrictions on notch toughness for vessels operat<strong>in</strong>g at cold<br />

temperatures. However, this does not mean that all vessels fabricated prior<br />

to this date will be subject to brittle fracture. Many designers specified<br />

supplemental impact tests on equipment that was <strong>in</strong>tended to be <strong>in</strong> cold<br />

service.<br />

ASME 锅 炉 和 压 力 容 器 规 范 1987 年 12 月 前 , 因 为 对 低 温 操 作 设 备 缺 乏 材 料 韧 性<br />

要 求 的 限 制 , 这 些 设 备 可 能 有 脆 裂 的 隐 患 . 然 而 虽 然 不 是 规 范 要 求 , 有 的 设 计 会 因<br />

设 备 低 温 操 作 , 对 材 质 附 加 低 温 冲 击 要 求 .<br />

b) <strong>Equipment</strong> made to <strong>the</strong> same code after this date were subject to<br />

<strong>the</strong> requirements of UCS 66 (impact exemption curves).<br />

引 用 ASME VIII DIV1 UCS 66 对 材 料 冲 击 要 求 宽 松 条 款 的 设 备 .


API510/570-Exam<br />

c) Most processes run at elevated temperature so <strong>the</strong> ma<strong>in</strong> concern is for brittle<br />

fracture dur<strong>in</strong>g startup, shutdown, or hydrotest/tightness test<strong>in</strong>g. Thick wall<br />

equipment on any unit should be considered. 在 设 备 因 周 转 , 启 动 , 停 机 时 低 温<br />

状 态<br />

d) Brittle fracture can also occur dur<strong>in</strong>g an auto-refrigeration event <strong>in</strong> units<br />

process<strong>in</strong>g light hydrocarbons such as methane, ethane/ethylene,<br />

propane/propylene, or butane. This <strong>in</strong>cludes alkylation units, olef<strong>in</strong> units and<br />

polymer plants (polyethylene and polypropylene). Storage bullets/spheres for<br />

light hydrocarbons may also be susceptible. 蒸 发 自 动 冷 却 服 务 .<br />

e) Brittle fracture can occur dur<strong>in</strong>g ambient temperature hydrotest<strong>in</strong>g due to<br />

high stresses and low toughness at <strong>the</strong> test<strong>in</strong>g temperature. 室 温 试 压 时


UCS-66 MATERIALS.<br />

ASME VIII Div.1- Charlie Chong/ Fion Zhang<br />

UCS-66


The ma<strong>in</strong> material property that API 510 / ASME VIII is concerned<br />

with is that of resistance to brittle fracture. The fundamental issue is<br />

<strong>the</strong>refore whe<strong>the</strong>r a material is suitable for <strong>the</strong> m<strong>in</strong>imum design metal<br />

temperature (MDMT design ) for which a vessel is designed. This topic is<br />

covered by clause UCS-66 of ASME VIII.<br />

ASME VIII Div.1- Charlie Chong/ Fion Zhang<br />

UCS-66


Steps:<br />

1. UG-20 for exemption on impact test<strong>in</strong>g.<br />

2. UCS-66.<br />

• Identified material Group A,B,C,D.<br />

• Figure UCS-66 to determ<strong>in</strong>e <strong>the</strong> allowable MDMT.<br />

• Figure UCS-66.1 to determ<strong>in</strong>e <strong>the</strong> reduction <strong>in</strong> MDMT based on<br />

co<strong>in</strong>cident ratio.<br />

3. UCS-68(c) to determ<strong>in</strong>e on fur<strong>the</strong>r reduction <strong>in</strong> MDMT.<br />

ASME VIII Div.1- Charlie Chong/ Fion Zhang<br />

UCS-66


Figure UCS 66.1 Co<strong>in</strong>cident Ratio<br />

The Co<strong>in</strong>cident Ratio is based on a vessel’s extra thickness due to its<br />

design calculations which were based on its Maximum Temperature.<br />

Mean<strong>in</strong>g that; As metal’s temperature <strong>in</strong>creases its strength decreases,<br />

hotter means weaker, <strong>the</strong>refore <strong>the</strong> allowable stress is decreased dur<strong>in</strong>g<br />

calculations result<strong>in</strong>g <strong>in</strong> vessel that requires thicker walls when hot<br />

than when it is operat<strong>in</strong>g at its coldest temperature, <strong>the</strong> MDMT.<br />

This ratio takes credit for <strong>the</strong> extra wall thickness that is present, but<br />

not needed to resist pressure at <strong>the</strong> MDMT. The follow<strong>in</strong>g graphic will<br />

help. Usually when <strong>the</strong>re is a drop <strong>in</strong> temperature <strong>the</strong>re is also a drop<br />

<strong>in</strong> <strong>the</strong> pressure. The two operat<strong>in</strong>g conditions are calculated and <strong>the</strong><br />

Ratio is determ<strong>in</strong>ed. This Ratio is given on <strong>the</strong> exam and you need<br />

only use <strong>the</strong> table to apply this rule.<br />

ASME VIII Div.1- Charlie Chong/ Fion Zhang<br />

UCS-66


How to use FIG. UCS-66 & FIG. UCS-66.1 to<br />

determ<strong>in</strong>e allowable impact test value<br />

(MDMT allowable )<br />

ASME VIII Div.1- Charlie Chong/ Fion Zhang<br />

UCS-66


Steps:<br />

1. Determ<strong>in</strong>e material group.<br />

2. Determ<strong>in</strong>e MDMT allowable on<br />

<strong>the</strong> graph.<br />

3. If Design MDMT higher than<br />

MDMT allowable , no test requires.<br />

4. If MDMT allowable is higher than<br />

design MDMT goto FIG. UCS-<br />

66.1<br />

ASME VIII Div.1- Charlie Chong/ Fion Zhang<br />

UCS-66


ASME VIII Div.1- Charlie Chong/ Fion Zhang<br />

UCS-66


Steps:<br />

5. If <strong>the</strong> co<strong>in</strong>cident ratio is 0.70<br />

reduction of 30 o F from <strong>the</strong><br />

MDMT allowable . The revised<br />

MDMT’ allowable = 59 o F.<br />

6. If <strong>the</strong> revised MDMT’<br />

allowable is higher than <strong>the</strong><br />

design MDMT, check on<br />

item 7.<br />

7. If material is P1, UCS-68(c)<br />

If postweld heat treat<strong>in</strong>g is<br />

performed when it is not<br />

o<strong>the</strong>rwise a requirement of<br />

this Division, a reduction of<br />

30 o F. The result<strong>in</strong>g MDMT<br />

allowable may be colder than -<br />

55 o F.<br />

ASME VIII Div.1- Charlie Chong/ Fion Zhang<br />

UCS-66


Once <strong>the</strong> MDMT allowable had been ascerta<strong>in</strong>ed, fur<strong>the</strong>r reductions are<br />

possible by with<strong>in</strong> -55ºF capp<strong>in</strong>g with exception<br />

1. Low co<strong>in</strong>cident stress ratio<br />

2. postweld heat treat<strong>in</strong>g is performed when it is not o<strong>the</strong>rwise a requirement<br />

of this Division on P1 materials.<br />

-55 o F<br />

ASME VIII Div.1- Charlie Chong/ Fion Zhang<br />

UCS-66


UCS-66 (b2) For m<strong>in</strong>imum design metal temperatures colder than -55ºF (-<br />

48ºC), impact test<strong>in</strong>g is required for all materials, except as allowed <strong>in</strong> (b)(3)<br />

below and <strong>in</strong> UCS-68(c).<br />

UCS-66 (b3) When <strong>the</strong> m<strong>in</strong>imum design metal temperature is colder than -<br />

55ºF (-48ºC) and no colder than -155ºF (-105ºC), and <strong>the</strong> co<strong>in</strong>cident ratio<br />

def<strong>in</strong>ed <strong>in</strong> Fig. UCS-66.1 is less than or equal to 0.35, impact test<strong>in</strong>g is not<br />

required.<br />

ASME VIII Div.1- Charlie Chong/ Fion Zhang<br />

UCS-66


UCS-66 (b2) For m<strong>in</strong>imum design metal temperatures colder than -55ºF (-<br />

48ºC), impact test<strong>in</strong>g is required for all materials, except as allowed <strong>in</strong> (b)(3)<br />

below and <strong>in</strong> UCS-68(c).<br />

UCS-68(c) If postweld heat treat<strong>in</strong>g is performed when it is not o<strong>the</strong>rwise a<br />

requirement of this Division, a 30ºF (17ºC) reduction <strong>in</strong> impact test<strong>in</strong>g<br />

exemption temperature may be given to <strong>the</strong> m<strong>in</strong>imum permissible<br />

temperature from Fig. UCS-66 for P-No. 1 materials. The result<strong>in</strong>g<br />

exemption temperature may be colder than -55ºF (-48ºC).<br />

ASME VIII Div.1- Charlie Chong/ Fion Zhang<br />

UCS-66


API510/570-Exam<br />

4.2.7.5 Appearance or Morphology of <strong>Damage</strong><br />

a) Cracks will typically be straight, non-branch<strong>in</strong>g, and largely devoid of any<br />

associated plastic deformation (no shear lip or localized neck<strong>in</strong>g around<br />

<strong>the</strong> crack) (Figure 4-6 to Figure 4-7).<br />

宏 观 : 直 , 不 分 枝 , 并 在 很 大 程 度 上 没 有 任 何 相 关 的 塑 性 变 形 .<br />

b) Microscopically, <strong>the</strong> fracture surface will be composed largely of cleavage,<br />

with limited <strong>in</strong>tergranular crack<strong>in</strong>g and very little microvoid coalescence.<br />

微 观 : 主 要 为 分 裂 ( 少 量 的 沿 晶 开 裂 ?) 与 非 常 小 的 微 孔 聚 合


API510/570-Exam


Crack propagation (cleavage) <strong>in</strong> brittle materials occurs through planar<br />

section<strong>in</strong>g of <strong>the</strong> atomic bonds between <strong>the</strong> atoms at <strong>the</strong> crack tip.<br />

API510/570-Exam


API510/570-Exam


API510/570-Exam<br />

4.2.7.6 Prevention / Mitigation 预 防 / 缓 解<br />

a) For new equipment, brittle fracture is best prevented by us<strong>in</strong>g materials<br />

specifically designed for low temperature operation <strong>in</strong>clud<strong>in</strong>g upset and autorefrigeration<br />

events. Materials with controlled chemical composition, special heat<br />

treatment and impact test verification may be required. Refer to UCS 66 <strong>in</strong><br />

Section VIII of <strong>the</strong> ASME BPV Code. 低 温 设 备 选 材 合 适 冲 击 要 求 材 料<br />

b) Brittle fracture is an “event” driven damage mechanism. For exist<strong>in</strong>g materials,<br />

where <strong>the</strong> right comb<strong>in</strong>ation of stress, material toughness and flaw size govern <strong>the</strong><br />

probability of <strong>the</strong> event, an eng<strong>in</strong>eer<strong>in</strong>g study can be performed <strong>in</strong> accordance<br />

with API 579-1/ASME FFS-1 , Section 3, Level 1 or 2. 脆 裂 为 “ 事 件 ” 驱 动 的 损<br />

伤 机 制 ( 因 素 : 应 力 , 韧 性 和 裂 纹 尺 寸 ) 应 用 FFS-1 适 用 性 分 析 , 评 估 设 备 完 整 性 .<br />

c) Preventative measures to m<strong>in</strong>imize <strong>the</strong> potential for brittle fracture <strong>in</strong> exist<strong>in</strong>g<br />

equipment are limited to controll<strong>in</strong>g <strong>the</strong> operat<strong>in</strong>g conditions (pressure,<br />

temperature), m<strong>in</strong>imiz<strong>in</strong>g pressure at ambient temperatures dur<strong>in</strong>g startup and<br />

shutdown, and periodic <strong>in</strong>spection at high stress locations. 维 持 IOW 操 作 参 数 ,<br />

周 转 期 间 启 动 , 关 断 设 备 受 压 与 温 度 控 制 与 在 高 应 力 区 的 定 期 检 查 .


API510/570-Exam<br />

d) Some reduction <strong>in</strong> <strong>the</strong> likelihood of a brittle fracture may be achieved by:<br />

缓 解 行 动 有 ;<br />

1. Perform<strong>in</strong>g a post weld heat treatment (PWHT) on <strong>the</strong> vessel if it was not<br />

orig<strong>in</strong>ally done dur<strong>in</strong>g manufactur<strong>in</strong>g; or if <strong>the</strong> vessel has been weld<br />

repaired/modified while <strong>in</strong> service without <strong>the</strong> subsequent PWHT. 焊 后 热<br />

处 理<br />

2. Perform a “warm” pre-stress hydrotest followed by a lower temperature<br />

hydrotest to extend <strong>the</strong> M<strong>in</strong>imum Safe Operat<strong>in</strong>g Temperature (MSOT)<br />

envelope. 周 转 期 间 水 压 试 验 / 温 度 控 制 .


API510/570-Exam<br />

4.2.7.7 Inspection and Monitor<strong>in</strong>g 检 验 与 监 测<br />

a) Inspection is not normally used to mitigate brittle fracture. 检 验 不 能 用 来 缓<br />

解 脆 性 开 裂<br />

b) Susceptible vessels should be <strong>in</strong>spected for pre-exist<strong>in</strong>g flaws/defects. 易<br />

感 容 器 的 存 在 缺 陷 的 监 测


API510/570-Exam<br />

4.2.7.8 Related <strong>Mechanisms</strong> 相 关 机 理<br />

Temper embrittlement (see 4.2.3), stra<strong>in</strong> age embrittlement (see 4.2.4), 885 o F<br />

(475 o C) embrittlement (see4.2.5), titanium hydrid<strong>in</strong>g (see 5.1.3.2) and sigma<br />

embrittlement (see 4.2.6).<br />

脆 性 破 裂 作 为 形 态 定 义 时 , 上 述 损 坏 机 理 , 破 断 形 态 可 以 归 类 为 ” 脆 性 破 裂 ”<br />

Temper embrittlement


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


Ductile fracture (non creep type)


Microvoid due to plastid yield<strong>in</strong>g & ductile<br />

fracture (non creep type)


API510/570-Exam


API510/570-Exam<br />

Fur<strong>the</strong>r read<strong>in</strong>g:<br />

http://www.sut.ac.th/eng<strong>in</strong>eer<strong>in</strong>g/metal/pdf/MechMet/14_Brittle%20fracture%20and%20impact%20test<strong>in</strong>g.pdf<br />

http://lecture.civileng<strong>in</strong>eer<strong>in</strong>gx.com/structural-analysis/structural-steel/brittle-fracture/<br />

http://www.keytometals.com/articles/art136.htm<br />

http://people.virg<strong>in</strong>ia.edu/~lz2n/mse209/Chapter8.pdf<br />

http://www.keytometals.com/page.aspx?ID=CheckArticle&site=kts&LN=CN&NM=136<br />

http://www.techtransfer.com/resources/wiki/entry/3645/


API510/570-Exam<br />

Brittle Fracture<br />

• 低 温 现 象 : 室 温 / 低 于 400 o F,<br />

• 影 响 材 质 : 铁 素 体 / 马 氏 体 钢 ,<br />

• 焊 后 热 处 理 作 为 预 防 与 缓 解 方 法 ,<br />

• 周 转 期 间 设 备 处 于 低 温 状 态 时 的 受 压 控 制 (MSOT),<br />

• 应 用 FFS-1 合 适 性 分 析 , 评 估 带 缺 陷 的 设 备 可 用 性 ,<br />

• 导 致 脆 性 开 裂 的 因 素 有 ; (1) 低 韧 性 铁 素 体 钢 材 , (2) 服 务 导 致 脆 化 , 例 如 ; 回 火<br />

脆 化 , 应 变 时 效 脆 性 ,885 o F 脆 化 , 钛 氢 化 , 西 格 玛 的 脆 化 .


4.2.8 Creep & Stress Rupture<br />

蠕 变 和 应 力 断 裂<br />

非 API 510/570 考 试 科 目


Creep & Stress<br />

Rupture<br />

700 o F ~ 1000 o F


Graphitisation<br />

Spheroidization<br />

Tempered Embrittlement<br />

Stra<strong>in</strong> Ag<strong>in</strong>g<br />

885 o F embrittlement<br />

Sigma-Phase<br />

Embrittlement<br />

Brittle Fracture<br />

Creep & stress rupture<br />

800 o F for C Steel<br />

875 o F for C ½ Mo Steel<br />

850 o F ~ 1400 o F<br />

650 o F~ 1070 o F<br />

Intermediate<br />

temperature<br />

600 o F~ 1000 o F<br />

1000 o F~ 1700 o F<br />

Below DTBTT<br />

700 o F ~ 1000 o F<br />

Pla<strong>in</strong> carbon steel<br />

C- ½ Mo<br />

Low alloy steel up to 9% Cr<br />

2 ¼ Cr-1Mo low alloy steel, 3Cr-1Mo (lesser<br />

extent), & HSLA Cr-Mo-V rotor steels<br />

Pre-1980’s C-steels with large gra<strong>in</strong> size and C- ½<br />

Mo<br />

300, 400 & Duplex SS conta<strong>in</strong><strong>in</strong>g ferrite phases<br />

300, 400 & Duplex SS conta<strong>in</strong><strong>in</strong>g ferrite phases<br />

C, C- ½ Mo, 400 SS<br />

All metals and alloys


4.2.8 Creep and Stress Rupture 蠕 变 和 应 力 开 裂<br />

4.2.8.1 Description of <strong>Damage</strong> 描 述<br />

a) At high temperatures, metal components can slowly and cont<strong>in</strong>uously<br />

deform under load below <strong>the</strong> yield stress. This time dependent deformation<br />

of stressed components is known as creep.<br />

b) Deformation leads to damage that may eventually lead to a rupture.<br />

在 高 温 和 载 荷 低 于 屈 服 应 力 下 , 金 属 部 件 缓 慢 , 持 续 下 的 变 形 . 这 变 形 导 致 损 伤 ,<br />

最 终 可 能 破 裂 .<br />

4.2.8.2 Affected Materials 受 影 响 的 材 料<br />

All metals and alloys. 所 有 的 金 属 和 合 金 。


http://www.ejsong.com/mdme/me<br />

mmods/MEM30007A/properties/Pr<br />

operties.html


4.2.8.3 Critical Factors 蠕 变 和 应 力 断 裂 关 键 因 素<br />

a) The rate of creep deformation is a function of <strong>the</strong> material, load, and<br />

temperature. The rate of damage (stra<strong>in</strong> rate) is sensitive to both load and<br />

temperature. Generally, an <strong>in</strong>crease of about 25°F (12°C) or an <strong>in</strong>crease of<br />

15% on stress can cut <strong>the</strong> rema<strong>in</strong><strong>in</strong>g life <strong>in</strong> half or more, depend<strong>in</strong>g on <strong>the</strong><br />

alloy.<br />

影 响 蠕 变 的 因 素 : (1) 材 质 易 感 性 , (2) 负 载 和 (3) 温 度 , 例 子 : 25°F(12°C) 或 15%<br />

应 力 增 加 一 般 上 导 致 使 用 寿 面 减 半 .<br />

b) Table 4-3 lists threshold temperatures above which creep damage is a<br />

concern. If <strong>the</strong> metal temperature exceeds <strong>the</strong>se values, <strong>the</strong>n creep damage<br />

and creep crack<strong>in</strong>g can occur.<br />

表 4-3 列 出 不 同 材 料 的 易 感 温 度


c) The level of creep damage is a function of <strong>the</strong> material and <strong>the</strong> co<strong>in</strong>cident<br />

temperature/stress level at which <strong>the</strong> creep deformation occurs. 蠕 变 破 坏 依<br />

赖 温 度 与 应 力 的 组 合 影 响 .<br />

d) The life of metal components becomes nearly <strong>in</strong>f<strong>in</strong>ite at temperatures below<br />

<strong>the</strong> threshold limit (Table 4-3) even at <strong>the</strong> high stresses near a crack tip.<br />

低 于 易 感 温 度 时 , 甚 至 在 高 应 力 的 使 用 下 , 材 料 几 乎 是 无 限 的 不 受 蠕 变 的 影 响 .<br />

e) The appearance of creep damage with little or no apparent deformation is<br />

often mistakenly referred to as creep embrittlement, but usually <strong>in</strong>dicates<br />

that <strong>the</strong> material has low creep ductility. 不 是 所 有 的 蠕 变 失 效 具 有 明 显 的 外 表<br />

变 形 . 低 延 展 性 蠕 变 在 外 观 上 不 容 易 被 识 别 .


f) Low creep ductility is: 低 延 展 性 蠕 变<br />

1) More severe for higher tensile strength materials and welds. 高 强 材 料<br />

2) More prevalent at <strong>the</strong> lower temperatures <strong>in</strong> <strong>the</strong> creep range, or low<br />

stresses <strong>in</strong> <strong>the</strong> upper creep range. 普 遍 于 (1) 蠕 变 低 温 度 范 围 或 (2) 低 应<br />

力 高 温 度 范 围 .<br />

3) More likely <strong>in</strong> a coarse-gra<strong>in</strong>ed material than a f<strong>in</strong>e-gra<strong>in</strong>ed material.<br />

粗 晶 材 料<br />

4) Not evidenced by a deterioration of ambient temperature properties.<br />

低 温 机 械 性 能 不 显 著 地 退 化 .<br />

5) Promoted by certa<strong>in</strong> carbide types <strong>in</strong> some CrMo steels.<br />

某 些 碳 化 物 促 进 破 坏<br />

g) Increased stress due to loss <strong>in</strong> thickness from corrosion will reduce time to<br />

failure. 腐 蚀 厚 度 损 失 加 剧 蠕 变 破 坏


不 是 所 有 的 蠕 变 失 效 具 有 明 显 的 外 表 变 形 !<br />

低 延 展 性 蠕 变<br />

Is all creep failure associated with apparent deformation?<br />

The appearance of creep damage with little or no apparent deformation is<br />

often mistakenly referred to as creep embrittlement, but usually <strong>in</strong>dicates that<br />

<strong>the</strong> material has low creep ductility. 经 常 被 误 称 蠕 变 脆 化 其 实 是 低 延 展 性 蠕 变


4.2.8.4 Affected Units or <strong>Equipment</strong> 受 影 响 的 设 备<br />

a) Creep damage is found <strong>in</strong> high temperature equipment operat<strong>in</strong>g above<br />

<strong>the</strong> creep range. Heater tubes <strong>in</strong> fired heaters are especially susceptible<br />

as well as tube supports, hangers and o<strong>the</strong>r furnace <strong>in</strong>ternals. 一 切 高 温 设<br />

备 , 特 别 是 加 热 器 的 加 热 管 , 管 支 架 , 吊 架 和 炉 内 附 件 等 .<br />

b) Pip<strong>in</strong>g and equipment, such as hot-wall catalytic reform<strong>in</strong>g reactors and<br />

furnace tubes, hydrogen reform<strong>in</strong>g furnace tubes, hot wall FCC reactors,<br />

FCC ma<strong>in</strong> fractionator and regenerator <strong>in</strong>ternals all operate <strong>in</strong> or near <strong>the</strong><br />

creep range. 催 化 裂 化 反 应 器 的 管 道 , 罐 壁 , 氢 转 化 炉 炉 管 , 炉 管 等 .


c) Low creep ductility failures have occurred <strong>in</strong> weld heat-affected zones<br />

(HAZ) at nozzles and o<strong>the</strong>r high stress areas on catalytic reformer<br />

reactors. Crack<strong>in</strong>g has also been found at long seam welds <strong>in</strong> some high<br />

temperature pip<strong>in</strong>g and <strong>in</strong> reactors on catalytic reformers.<br />

催 化 重 整 反 应 器 焊 缝 与 热 影 响 区<br />

d) Welds jo<strong>in</strong><strong>in</strong>g dissimilar materials (ferritic to austenitic welds) may suffer<br />

creep related damage at high temperatures due to differential <strong>the</strong>rmal<br />

expansion stresses. 异 种 材 料 的 焊 接 接 合 ( 例 如 : 铁 素 体 / 奥 氏 体 ) 经 历 因 热 膨<br />

胀 差 异 导 致 的 应 力 与 高 温 蠕 变 .


4.2.8.6 Prevention / Mitigation 预 防 与 缓 解<br />

a) There is little that <strong>in</strong>spectors or operators can do to prevent this damage<br />

once a susceptible material has been placed <strong>in</strong>to creep service, o<strong>the</strong>r<br />

than to m<strong>in</strong>imize <strong>the</strong> metal temperature, particularly with fired heater tubes.<br />

Avoid<strong>in</strong>g stress concentrators is important dur<strong>in</strong>g design and fabrication.<br />

(1) 温 度 控 制 与 (2) 设 计 时 避 免 应 力 集 中 点 .<br />

b) Low creep ductility can be m<strong>in</strong>imized by <strong>the</strong> careful selection of chemistry<br />

for low alloy materials. Higher post weld heat treatment temperatures may<br />

help m<strong>in</strong>imize creep crack<strong>in</strong>g of materials with low creep ductility such as<br />

1.25Cr-0.5Mo.<br />

低 合 金 钢 的 低 延 性 蠕 变 ; (1) 通 过 焊 后 热 处 理 , (2) 材 料 化 学 成 分 控 制 .


c) Creep damage is not reversible. Once damage or crack<strong>in</strong>g is detected<br />

much of <strong>the</strong> life of <strong>the</strong> component has been used up and typically <strong>the</strong><br />

options are to repair or replace <strong>the</strong> damaged component. Higher PWHT <strong>in</strong><br />

some cases can produce a more creep ductile material with longer life. 蠕<br />

变 损 伤 是 不 可 逆 转<br />

1. <strong>Equipment</strong> – Repair of creep damaged catalytic reformer reactor nozzles<br />

has been successfully accomplished by gr<strong>in</strong>d<strong>in</strong>g out <strong>the</strong> affected area<br />

(mak<strong>in</strong>g sure all <strong>the</strong> damaged metal is removed), re-weld<strong>in</strong>g and careful<br />

blend gr<strong>in</strong>d<strong>in</strong>g to help m<strong>in</strong>imize stress concentration. PWHT temperatures<br />

must be carefully selected and may require a higher PWHT than orig<strong>in</strong>ally<br />

specified.<br />

催 化 重 整 反 应 器 管 口 修 护 例 子 : (1) 磨 出 受 影 响 的 区 域 , (2) 修 补 焊 接 填 充 , (3)<br />

打 磨 平 滑 减 少 应 力 集 中 , (4) 高 于 原 设 计 的 焊 后 热 处 理 .


c2 Fired Heater Tubes 炉 管<br />

• Alloys with improved creep resistance may be required for longer life.<br />

改 进 的 抗 蠕 变 性 合 金 管<br />

• Heaters should be designed and operated to m<strong>in</strong>imize hot spots and<br />

localized overheat<strong>in</strong>g (Figure 4-19).<br />

减 少 热 点 和 局 部 过 热<br />

• Visual <strong>in</strong>spection followed by thickness measurements and or strap<br />

read<strong>in</strong>gs may be required to assess rema<strong>in</strong><strong>in</strong>g life of heater tubes <strong>in</strong><br />

accordance with API 579-1/ASME FFS-1.<br />

目 视 , 捆 扎 法 ( 测 量 外 径 变 化 ) 以 识 别 受 影 响 的 管 道 . 运 用 合 适 性 分 析 法 FFS, 评<br />

估 受 影 响 的 管 道 是 否 能 继 续 的 使 用 .<br />

• M<strong>in</strong>imiz<strong>in</strong>g process side foul<strong>in</strong>g/deposits and fire side deposits/scal<strong>in</strong>g<br />

can maximize tube life.<br />

减 少 工 艺 侧 的 污 垢 / 堆 积 , 火 侧 的 堆 积 / 氧 化 皮 加 厚


4.2.8.7 Inspection and Monitor<strong>in</strong>g 检 验 与 监 测<br />

a) Creep damage with <strong>the</strong> associated microvoid formation, fissur<strong>in</strong>g and<br />

dimensional changes is not effectively found by any one <strong>in</strong>spection<br />

technique. A comb<strong>in</strong>ation of techniques (UT, RT, EC, dimensional<br />

measurements and replication) should be employed. Destructive sampl<strong>in</strong>g<br />

and metallographic exam<strong>in</strong>ation are used to confirm damage. 蠕 变 体 现 为<br />

微 孔 , 裂 隙 与 尺 寸 变 化 . 当 个 无 损 探 伤 方 法 或 许 不 容 易 探 测 到 蠕 变 破 坏 . 综 合<br />

考 虑 运 用 多 种 探 伤 方 法 与 晶 相 模 塑 法 (<strong>in</strong>-situ replication) 或 切 片 晶 相 微 观 观<br />

察 .<br />

b) For pressure vessels, <strong>in</strong>spection should focus on welds of CrMo alloys<br />

operat<strong>in</strong>g <strong>in</strong> <strong>the</strong> creep range. The 1 Cr-0.5Mo and 1.25Cr-0.5Mo materials<br />

are particularly prone to low creep ductility. Most <strong>in</strong>spections are<br />

performed visually and followed by PT or WFMT on several-year <strong>in</strong>tervals.<br />

Angle beam (shear wave) UT can also be employed, although <strong>the</strong> early<br />

stages of creep damage are very difficult to detect. Initial fabrication flaws<br />

should be mapped and documented for future reference. 铬 钼 材 质 特 别 是<br />

焊 缝 区 域 是 检 验 关 注 点 . 多 数 的 检 验 步 骤 为 ; (1) 外 观 目 视 (2) PT/WFMT (2+)<br />

斜 束 剪 切 波 UT. ( 提 防 建 造 缺 陷 导 致 误 判 )


c) Fired heater tubes should be <strong>in</strong>spected for evidence of overheat<strong>in</strong>g,<br />

corrosion, and erosion as follows: 炉 管 检 验<br />

1. Tubes should be VT exam<strong>in</strong>ed for bulg<strong>in</strong>g, blister<strong>in</strong>g, crack<strong>in</strong>g,<br />

sagg<strong>in</strong>g and bow<strong>in</strong>g. 目 视 观 察 ; 鼓 , 起 泡 , 开 裂 和 弯 曲 与 垂 落 .<br />

2. Wall thickness measurements of selected heater tubes should be<br />

made where wall losses are most likely to occur. 厚 度 检 测<br />

3. Tubes should be exam<strong>in</strong>ed for evidence of diametric growth (creep)<br />

with a strap or go/no go gauge, and <strong>in</strong> limited cases by metallography<br />

on <strong>in</strong> place replicas or tube samples. However, metallography on <strong>the</strong><br />

OD of a component may not provide a clear <strong>in</strong>dication of subsurface<br />

damage. 检 测 外 径 变 化 ( 上 下 限 制 测 量 规 ), 现 场 晶 相 模 塑 法 (replica)<br />

4. Retirement criteria based on diametric growth and loss of wall<br />

thickness is highly dependent on <strong>the</strong> tube material and <strong>the</strong> specific<br />

operat<strong>in</strong>g conditions. 基 于 直 径 生 长 和 损 失 的 壁 厚 的 报 废 准 则 很 大 程 度<br />

上 依 赖 于 管 材 与 具 体 操 作 条 件 .


4.2.8.8 Related <strong>Mechanisms</strong> 相 关 机 理<br />

a) Creep damage that occurs as a result of exposure to very high<br />

temperatures is described <strong>in</strong> 4.2.10. (Overheat<strong>in</strong>g stress rupture 过 热 的 应<br />

力 破 裂 )<br />

b) Reheat crack<strong>in</strong>g (see 4.2.19) is a related mechanism found <strong>in</strong> heavy wall<br />

equipment. 再 热 裂 纹 - 厚 壁 的 设 备 发 现 的 相 关 机 理


Figure 4-17 – P<strong>in</strong>ched<br />

Alloy 800H pigtail<br />

opened up creep<br />

fissures on <strong>the</strong> surface.


Figure 4-18 – Creep rupture of an HK40 heater tube.


a<br />

b<br />

Figure 4-19 – Creep Failure of 310 SS Heater Tube Guide Bolt after approximately 7<br />

years service at 1400°F (760°C). a.) Cross-section at 10X, as-polished.


a<br />

b<br />

Figure 4-19 – Creep Failure of 310 SS Heater Tube Guide Bolt after approximately 7 years service<br />

at 1400°F (760°C). b) Voids and <strong>in</strong>tergranular separation characteristic of long term creep, 100X,<br />

etched.


蠕 变 和 应 力 开 裂 学 习 重 点 :<br />

1. 温 度 : 高 温 ,<br />

2. 原 理 : 在 高 温 和 载 荷 低 于 屈 服 应 力 下 , 金 属 部 件 缓 慢 , 持 续 下 的 变 形 . 这 变<br />

形 导 致 损 伤 , 最 终 可 能 破 裂 .<br />

3. 易 感 材 质 : 全 部 工 程 材 料 .<br />

4. 易 感 设 备 : 一 切 高 温 设 备 , 特 别 是 加 热 器 的 加 热 管 , 内 构 件 .<br />

5. 非 API 510/570 考 试 题 非 API 510/570 考 试 题


4.2.9 Thermal Fatigue<br />

热 疲 劳<br />

API510/570-Exam


Thermal Fatigue<br />

Operat<strong>in</strong>g Temp.<br />

API510/570-Exam


API510/570-Exam<br />

Graphitisation<br />

Spheroidization<br />

Tempered Embrittlement<br />

Stra<strong>in</strong> Ag<strong>in</strong>g<br />

885 o F embrittlement<br />

Sigma-Phase<br />

Embrittlement<br />

Brittle Fracture<br />

Creep & stress rupture<br />

Thermal fatigues<br />

800 o F for C Steel<br />

875 o F for C ½ Mo Steel<br />

850 o F ~ 1400 o F<br />

650 o F~ 1070 o F<br />

Intermediate<br />

temperature<br />

600 o F~ 1000 o F<br />

1000 o F~ 1700 o F<br />

Below DTBTT<br />

700 o F ~ 1000 o F<br />

Operat<strong>in</strong>g temp.<br />

Pla<strong>in</strong> carbon steel<br />

C- ½ Mo<br />

Low alloy steel up to 9% Cr<br />

2 ¼ Cr-1Mo low alloy steel, 3Cr-1Mo (lesser<br />

extent), & HSLA Cr-Mo-V rotor steels<br />

Pre-1980’s C-steels with large gra<strong>in</strong> size and C- ½<br />

Mo<br />

300, 400 & Duplex SS conta<strong>in</strong><strong>in</strong>g ferrite phases<br />

300, 400 & Duplex SS conta<strong>in</strong><strong>in</strong>g ferrite phases<br />

C, C- ½ Mo, 400 SS<br />

All metals and alloys<br />

All metals and alloys


API510/570-Exam<br />

4.2.9 Thermal Fatigue 热 疲 劳<br />

4.2.9.1 Description of <strong>Damage</strong> 损 伤 描 述<br />

Thermal fatigue is <strong>the</strong> result of cyclic stresses caused by variations <strong>in</strong><br />

temperature. <strong>Damage</strong> is <strong>in</strong> <strong>the</strong> form of crack<strong>in</strong>g that may occur anywhere <strong>in</strong> a<br />

metallic component where relative movement or differential expansion is<br />

constra<strong>in</strong>ed, particularly under repeated <strong>the</strong>rmal cycl<strong>in</strong>g.<br />

热 疲 劳 开 裂 是 由 温 度 变 化 引 起 循 环 应 力 引 起 的 开 裂 .<br />

4.2.9.2 Affected Materials 受 影 响 的 材 料<br />

All materials of construction. 所 有 施 工 材 料


API510/570-Exam<br />

4.2.9.3 Critical Factors 关 键 因 素<br />

a) Key factors affect<strong>in</strong>g <strong>the</strong>rmal fatigue are <strong>the</strong> magnitude of <strong>the</strong> temperature<br />

sw<strong>in</strong>g and <strong>the</strong> frequency (number of cycles). 温 度 摆 动 的 幅 度 和 频 率<br />

b) Time to failure is a function of <strong>the</strong> magnitude of <strong>the</strong> stress and <strong>the</strong> number of<br />

cycles and decreases with <strong>in</strong>creas<strong>in</strong>g stress and <strong>in</strong>creas<strong>in</strong>g cycles. 故 障 时 间<br />

有 赖 于 (1) 温 度 摆 动 的 幅 度 (2) 频 率 (3) 应 力 的 大 小<br />

c) Startup and shutdown of equipment <strong>in</strong>crease <strong>the</strong> susceptibility to <strong>the</strong>rmal<br />

fatigue. There is no set limit on temperature sw<strong>in</strong>gs; however, as a practical<br />

rule, crack<strong>in</strong>g may be suspected if <strong>the</strong> temperature sw<strong>in</strong>gs exceeds about<br />

200°F (93°C). 周 转 / 启 动 / 停 机 增 加 热 疲 劳 的 易 感 性 . 作 为 一 个 实 际 的 规 则 大 于<br />

200°F 摆 动 幅 度 作 为 热 疲 劳 损 伤 怀 疑 点 .


API510/570-Exam<br />

d) <strong>Damage</strong> is also promoted by rapid changes <strong>in</strong> surface temperature that<br />

result <strong>in</strong> a <strong>the</strong>rmal gradient through <strong>the</strong> thickness or along <strong>the</strong> length of a<br />

component. For example: cold water on a hot tube (<strong>the</strong>rmal shock); rigid<br />

attachments and a smaller temperature differential; <strong>in</strong>flexibility to<br />

accommodate differential expansion. 促 进 因 素 : 沿 着 管 道 长 度 或 厚 度 的 温 度 偏<br />

差 , 自 由 膨 胀 阻 碍 ( 缺 少 弹 性 的 设 计 )<br />

e) Notches (such as <strong>the</strong> toe of a weld) and sharp corners (such as <strong>the</strong><br />

<strong>in</strong>tersection of a nozzle with a vessel shell) and o<strong>the</strong>r stress concentrations<br />

may serve as <strong>in</strong>itiation sites. 缺 口 - 焊 趾 处 , 尖 锐 点 ( 应 力 集 中 点 ).


API510/570-Exam<br />

4.2.9.4 Affected Units or <strong>Equipment</strong><br />

a) Examples <strong>in</strong>clude <strong>the</strong> mix po<strong>in</strong>ts of hot and cold streams such as hydrogen<br />

mix po<strong>in</strong>ts <strong>in</strong> hydroprocess<strong>in</strong>g units 加 氢 装 置 , and locations where<br />

condensate comes <strong>in</strong> contact with steam systems, such as de-superheat<strong>in</strong>g<br />

or attemporat<strong>in</strong>g equipment 减 温 装 置 (Figures 4-20 and 4-23). 不 同 温 度 流 体<br />

混 合 点 .<br />

b) Thermal fatigue crack<strong>in</strong>g has been a major problem <strong>in</strong> coke drum shells.<br />

Thermal fatigue can also occur on coke drum skirts where stresses are<br />

promoted by a variation <strong>in</strong> temperature between <strong>the</strong> drum and skirt (Figure<br />

4–21 and Figure 4–22). 焦 炭 鼓 裙 边 与 塔 壁 . ( 考 试 题 )<br />

c) In steam generat<strong>in</strong>g equipment, <strong>the</strong> most common locations are at rigid<br />

attachments between neighbor<strong>in</strong>g tubes <strong>in</strong> <strong>the</strong> superheater and reheater.<br />

Slip spacers designed to accommodate relative movement may become<br />

frozen and act as a rigid attachment when plugged with fly ash.<br />

蒸 汽 发 生 装 置 ( 过 热 器 和 再 热 器 管 路 )


Figure 4-20 – Thermal fatigue cracks on <strong>the</strong> <strong>in</strong>side of a heavy wall SS pipe downstream of a<br />

cooler H2 <strong>in</strong>jection <strong>in</strong>to a hot hydrocarbon l<strong>in</strong>e.<br />

API510/570-Exam


Figure 4-21 – Bulg<strong>in</strong>g <strong>in</strong> a skirt of a coke drum.<br />

API510/570-Exam


Figure 4-22 –Thermal fatigue crack<strong>in</strong>g associated with<br />

bulged skirt shown <strong>in</strong> Figure 4-21.<br />

API510/570-Exam


Figure 4-23 – Thermal fatigue of 304L sta<strong>in</strong>less at mix po<strong>in</strong>t <strong>in</strong> <strong>the</strong> BFW preheater<br />

bypass l<strong>in</strong>e around <strong>the</strong> high temperature shift effluent exchanger <strong>in</strong> a hydrogen<br />

reformer. The delta T is 325°F (181°C) at an 8 <strong>in</strong>ch bypass l<strong>in</strong>e ty<strong>in</strong>g <strong>in</strong>to a 14 <strong>in</strong>ch<br />

l<strong>in</strong>e, 3 yrs after startup.<br />

API510/570-Exam


API510/570-Exam<br />

Figure 4-24 – In a carbon steel sample, metallographic section through a <strong>the</strong>rmal fatigue crack<br />

<strong>in</strong>dicates orig<strong>in</strong> at <strong>the</strong> toe of an attachment weld. Mag. 50X, etched.


API510/570-Exam<br />

Figure 4-25 – Older cracks fill with oxide, may stop and restart (note jog part way along <strong>the</strong><br />

crack), and do not necessarily require a change <strong>in</strong> section thickness to <strong>in</strong>itiate <strong>the</strong> crack. Mag.<br />

100X, etched.


API510/570-Exam<br />

d) Tubes <strong>in</strong> <strong>the</strong> high temperature superheater or reheater that penetrate<br />

through <strong>the</strong> cooler water-wall tubes may crack at <strong>the</strong> header connection if<br />

<strong>the</strong> tube is not sufficiently flexible. These cracks are most common at <strong>the</strong><br />

end where <strong>the</strong> expansion of <strong>the</strong> header relative to <strong>the</strong> water-wall will be<br />

greatest. 穿 过 水 冷 冷 却 器 壁 的 过 热 器 , 再 热 器 管 路 .<br />

d) Steam actuated soot blowers may cause <strong>the</strong>rmal fatigue damage if <strong>the</strong> first<br />

steam exit<strong>in</strong>g <strong>the</strong> soot blower nozzle conta<strong>in</strong>s condensate. Rapid cool<strong>in</strong>g of<br />

<strong>the</strong> tube by <strong>the</strong> liquid water will promote this form of damage. Similarly,<br />

water lanc<strong>in</strong>g or water cannon use on water-wall tubes may have <strong>the</strong> same<br />

effect. (1) 蒸 汽 驱 动 的 吹 灰 器 接 触 冷 凝 液 的 热 管 路 , (2) 其 他 接 触 冷 凝 液 的 热 管<br />

路 服 务 .


API510/570-Exam


http://www.slashgear.com/bill-gates-help<strong>in</strong>g-ch<strong>in</strong>a-build-super-safenuclear-reactor-08200894/<br />

API510/570-Exam


API510/570-Exam<br />

4.2.9.5 Appearance or Morphology of <strong>Damage</strong> 破 坏 外 观 形 貌<br />

a) Thermal fatigue cracks usually <strong>in</strong>itiate on <strong>the</strong> surface of <strong>the</strong> component.<br />

They are generally wide and often filled with oxides due to elevated<br />

temperature exposure. Cracks may occur as s<strong>in</strong>gle or multiple cracks.<br />

表 面 发 起 点 , 开 裂 表 面 氧 化 , 裂 缝 可 能 为 单 个 或 多 个 裂 纹 延 伸 .<br />

b) Thermal fatigue cracks propagate transverse to <strong>the</strong> stress and <strong>the</strong>y are<br />

usually dagger-shaped, transgranular, and oxide filled (Figure 4-24 and 4-<br />

25). However, crack<strong>in</strong>g may be axial or circumferential, or both, at <strong>the</strong> same<br />

location. 应 力 方 向 横 向 开 裂 , 穿 晶 , 氧 化 , 刀 纹 状 (?), 开 裂 方 向 为 ; 轴 向 或 圆 周 向<br />

或 并 存 .


API510/570-Exam<br />

c) In steam generat<strong>in</strong>g equipment, cracks usually follow <strong>the</strong> toe of <strong>the</strong> fillet<br />

weld, as <strong>the</strong> change <strong>in</strong> section thickness creates a stress raiser. Cracks<br />

often start at <strong>the</strong> end of an attachment lug and if <strong>the</strong>re is a bend<strong>in</strong>g moment<br />

as a result of <strong>the</strong> constra<strong>in</strong>t, <strong>the</strong>y will develop <strong>in</strong>to circumferential cracks <strong>in</strong>to<br />

<strong>the</strong> tube. 在 蒸 汽 发 生 装 置 , 通 常 开 裂 起 点 在 焊 道 应 力 集 中 点 , 周 圆 的 延 伸 .<br />

d) Water <strong>in</strong> soot blowers may lead to a craz<strong>in</strong>g pattern. The predom<strong>in</strong>ant<br />

cracks will be circumferential and <strong>the</strong> m<strong>in</strong>or cracks will be axial. (Figure 4-<br />

26 to 4-27). 水 助 吹 灰 器 的 裂 纹 一 般 上 体 现 为 纹 状 .


API510/570-Exam<br />

Figure 4-27 – Photomicrograph of <strong>the</strong> failed<br />

superheated steam outlet shown <strong>in</strong> Figure 4-26.<br />

Etched.<br />

Figure 4-26 – Metallographic cross-section of a superheated<br />

steam outlet that failed from <strong>the</strong>rmal fatigue. Unetched.


API510/570-Exam<br />

4.2.9.6 Prevention / Mitigation 预 防 / 缓 解<br />

a) Thermal fatigue is best prevented through design and operation to<br />

m<strong>in</strong>imize <strong>the</strong>rmal stresses and <strong>the</strong>rmal cycl<strong>in</strong>g. Several methods of<br />

prevention apply depend<strong>in</strong>g on <strong>the</strong> application.<br />

1. Designs that <strong>in</strong>corporate reduction of stress concentrators, blend gr<strong>in</strong>d<strong>in</strong>g<br />

of weld profiles, and smooth transitions should be used. 减 少 应 力 集 中 , 焊<br />

缝 节 点 疲 劳 处 理 , 圆 滑 过 渡 .<br />

2. Controlled rates of heat<strong>in</strong>g and cool<strong>in</strong>g dur<strong>in</strong>g startup and shutdown of<br />

equipment can lower stresses. 周 转 ( 开 机 , 关 机 ) 控 制 加 热 和 冷 却 速 率 .<br />

3. Differential <strong>the</strong>rmal expansion between adjo<strong>in</strong><strong>in</strong>g components of dissimilar<br />

materials should be considered. 设 计 阶 段 考 虑 异 种 材 料 之 间 的 差 热 膨 胀 .


API510/570-Exam<br />

b) Designs should <strong>in</strong>corporate sufficient flexibility to accommodate differential<br />

expansion. 设 计 时 考 虑 具 有 足 够 的 灵 活 性<br />

1. In steam generat<strong>in</strong>g equipment, slip spacers should slip and rigid<br />

attachments should be avoided. 滑 动 垫 片 .<br />

2. Dra<strong>in</strong> l<strong>in</strong>es should be provided on soot-blowers to prevent condensate <strong>in</strong><br />

<strong>the</strong> first portion of <strong>the</strong> soot blow<strong>in</strong>g cycle. 吹 灰 器 安 装 排 水 线 避 免 冷 凝 液 聚 集 .<br />

3. In some cases, a l<strong>in</strong>er or sleeve may be <strong>in</strong>stalled to prevent a colder liquid<br />

from contact<strong>in</strong>g <strong>the</strong> hotter pressure boundary wall 安 装 衬 垫 或 套 用 于 防 止<br />

冷 液 体 接 触 热 的 压 力 边 界 墙


API510/570-Exam<br />

4.2.9.7 Inspection and Monitor<strong>in</strong>g 检 查 和 监 督<br />

a) S<strong>in</strong>ce crack<strong>in</strong>g is usually surface connected, visual exam<strong>in</strong>ation, MT and<br />

PT are effective methods of <strong>in</strong>spection. 由 于 裂 缝 通 常 是 表 面 连 接 MT/PT 是<br />

有 效 的 检 查 方 法 .<br />

b) External SWUT <strong>in</strong>spection can be used for non-<strong>in</strong>trusive <strong>in</strong>spection for<br />

<strong>in</strong>ternal crack<strong>in</strong>g and where re<strong>in</strong>forc<strong>in</strong>g pads prevent nozzle exam<strong>in</strong>ation.<br />

切 波 角 度 超 声 可 以 用 于 非 侵 入 性 检 查 , 例 如 : 被 补 强 板 妨 碍 的 容 器 / 管 口 区 域 .<br />

c) Heavy wall reactor <strong>in</strong>ternal attachment welds can be <strong>in</strong>spected us<strong>in</strong>g<br />

specialized ultrasonic techniques. 厚 壁 反 应 器 内 部 连 接 焊 缝 运 用 切 波 角 度 超<br />

声 探 测 法<br />

4.2.9.8 Related <strong>Mechanisms</strong> 相 关 机 制<br />

Corrosion fatigue (see 4.5.2) and dissimilar metal weld crack<strong>in</strong>g (see 4.2.12).<br />

腐 蚀 疲 劳 , 异 种 金 属 焊 缝 开 裂 .


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam<br />

571-4<br />

Charlie Chong/ Fion Zhang


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


热 疲 劳 学 习 重 点 :<br />

a) 易 感 温 度 : 高 温<br />

b) 原 理 : 热 疲 劳 开 裂 是 由 温 度 变 化 引 起 循 环 应 力 引 起 的 开 裂 ,<br />

c) 易 感 材 质 : 一 切 工 程 材 料 ,<br />

d) 易 感 设 备 : 蒸 汽 发 生 装 置 , 蒸 汽 驱 动 的 吹 灰 器 等 , 高 温 设 备 ,<br />

e) API 510/570 考 试 题 .


4.2.10 Short Term Overheat<strong>in</strong>g Stress Rupture<br />

短 期 过 热 应 力 开 裂<br />

非 API 510/570 考 试 题


Short Term<br />

Overheat<strong>in</strong>g Stress Rupture<br />

Local over-heat<strong>in</strong>g.


4.2.10 Short Term Overheat<strong>in</strong>g – Stress Rupture<br />

4.2.10.1 Description of <strong>Damage</strong> 损 伤 描 述<br />

Permanent deformation occurr<strong>in</strong>g at relatively low stress levels as a result of<br />

localized overheat<strong>in</strong>g. This usually results <strong>in</strong> bulg<strong>in</strong>g and eventually failure<br />

by stress rupture.<br />

4.2.10.2 Affected Materials 影 响 材 质<br />

All fired heater tube materials and common materials of construction.<br />

一 切 建 造 材 料


4.2.10.3 Critical Factors 关 键 因 素<br />

a) Temperature, time and stress are critical factors. 温 度 , 时 间 , 应 力<br />

a) Usually due to flame imp<strong>in</strong>gement or local overheat<strong>in</strong>g. 火 焰 冲 击 或 局 部 过 热<br />

b) Time to failure will <strong>in</strong>crease as <strong>in</strong>ternal pressures or load<strong>in</strong>g decrease.<br />

However, bulg<strong>in</strong>g and distortion can be significant at low stresses, as<br />

temperatures <strong>in</strong>crease. 失 效 时 间 随 着 内 部 压 力 或 负 载 减 少 增 长 .<br />

c) Local overheat<strong>in</strong>g above <strong>the</strong> design temperature. 局 部 过 热<br />

d) Loss <strong>in</strong> thickness due to corrosion will reduce time to failure by <strong>in</strong>creas<strong>in</strong>g<br />

<strong>the</strong> stress. 由 于 腐 蚀 厚 度 损 失 增 加 易 感 性 .


4.2.10.4 Affected Units or <strong>Equipment</strong> 受 影 响 的 单 元 或 设 备<br />

a) All boiler and fired heater tubes are susceptible. 所 有 锅 炉 和 加 热 炉 管<br />

b) Furnaces with cok<strong>in</strong>g tendencies such as crude, vacuum, heavy oil<br />

hydroprocess<strong>in</strong>g and coker units are often fired harder to ma<strong>in</strong>ta<strong>in</strong> heater<br />

outlet temperatures and are more susceptible to localized overheat<strong>in</strong>g. 焦<br />

化 倾 向 的 设 备<br />

c) Hydroprocess<strong>in</strong>g reactors may be susceptible to localized overheat<strong>in</strong>g of<br />

reactor beds due to <strong>in</strong>adequate hydrogen quench or flow mal-distribution.<br />

氢 反 应 器 - 易 受 局 部 过 热 加 反 应 器 床<br />

d) Refractory l<strong>in</strong>ed equipment <strong>in</strong> <strong>the</strong> FCC, sulfur plant and o<strong>the</strong>r units may<br />

suffer localized overheat<strong>in</strong>g due to refractory damage and/or excessive<br />

fir<strong>in</strong>g. 催 化 裂 化 , 硫 磺 厂 与 其 他 可 能 遭 受 局 部 过 热 的 耐 火 材 料 衬 里 的 设 备 .


4.2.10.5 Appearance or Morphology of <strong>Damage</strong> 破 坏 外 观 形 貌<br />

a) <strong>Damage</strong> is typically characterized by localized deformation or bulg<strong>in</strong>g on<br />

<strong>the</strong> order of 3% to 10% or more, depend<strong>in</strong>g on <strong>the</strong> alloy, temperature and<br />

stress level. 损 坏 的 典 型 特 征 是 局 部 变 形 或 膨 胀 (3%~10% 或 更 多 )<br />

b) Ruptures are characterized by open “fishmouth” failures and are usually<br />

accompanied by th<strong>in</strong>n<strong>in</strong>g at <strong>the</strong> fracture surface (Figure 4-28 to 4-31).<br />

破 裂 的 特 点 是 在 变 薄 断 裂 面 “ 鱼 嘴 ” 形 象 的 开 裂 的 特 征 .


4.2.10.6 Prevention / Mitigation 预 防 / 缓 解<br />

a) M<strong>in</strong>imize localized temperature excursions. 减 少 局 部 温 度 漂 移<br />

b) Fired heaters require proper burner management and foul<strong>in</strong>g/deposit<br />

control to m<strong>in</strong>imize hot spots and localized overheat<strong>in</strong>g. 火 焰 加 热 器 需 要 适<br />

当 的 燃 烧 器 管 理 / 污 垢 和 沉 积 控 制 以 减 少 局 部 过 热 .<br />

c) Utilize burners which produce a more diffuse flame pattern.<br />

d) In hydroprocess<strong>in</strong>g equipment, <strong>in</strong>stall and ma<strong>in</strong>ta<strong>in</strong> bed <strong>the</strong>rmocouples <strong>in</strong><br />

reactors and m<strong>in</strong>imize <strong>the</strong> likelihood of hot spots through proper design<br />

and operation.<br />

e) Ma<strong>in</strong>ta<strong>in</strong> refractory <strong>in</strong> serviceable condition <strong>in</strong> refractory l<strong>in</strong>ed equipment.


短 期 过 热 应 力 开 裂 学 习 重 点 :<br />

a) 易 感 温 度 : 高 温<br />

b) 原 理 : 热 疲 劳 开 裂 是 由 温 度 变 化 引 起 循 环 应 力 引 起 的 开 裂 ,<br />

c) 易 感 材 质 : 一 切 工 程 材 料 ,<br />

d) 易 感 设 备 : 蒸 汽 发 生 装 置 , 蒸 汽 驱 动 的 吹 灰 器 等 , 高 温 设 备 ,<br />

e) 非 API 510/570 考 试 题 .


4.2.11 Steam Blanket<strong>in</strong>g<br />

蒸 汽 封


Steam Blanket<strong>in</strong>g<br />

Local over-heat<strong>in</strong>g.


4.2.11 Steam Blanket<strong>in</strong>g<br />

4.2.11.1 Description of <strong>Damage</strong><br />

The operation of steam generat<strong>in</strong>g equipment is a balance between <strong>the</strong> heat<br />

flow from <strong>the</strong> combustion of <strong>the</strong> fuel and <strong>the</strong> generation of steam with<strong>in</strong> <strong>the</strong><br />

waterwall or generat<strong>in</strong>g tube. The flow of heat energy through <strong>the</strong> wall of <strong>the</strong><br />

tube results <strong>in</strong> <strong>the</strong> formation of discrete steam bubbles (nucleate boil<strong>in</strong>g) on<br />

<strong>the</strong> ID surface. The mov<strong>in</strong>g fluid sweeps <strong>the</strong> bubbles away. When <strong>the</strong> heat<br />

flow balance is disturbed, <strong>in</strong>dividual bubbles jo<strong>in</strong> to form a steam blanket, a<br />

condition known as Departure From Nucleate Boil<strong>in</strong>g (DNB). Once a steam<br />

blanket forms, tube rupture can occur rapidly, as a result of short term<br />

overheat<strong>in</strong>g, usually with<strong>in</strong> a few m<strong>in</strong>utes.<br />

4.2.11.2 Affected Materials<br />

Carbon steel and low alloy steels.


<strong>in</strong>dividual bubbles jo<strong>in</strong> to form a steam blanket, a condition known as<br />

Departure From Nucleate Boil<strong>in</strong>g (DNB).


<strong>in</strong>dividual bubbles jo<strong>in</strong> to form a steam blanket, a condition known as<br />

Departure From Nucleate Boil<strong>in</strong>g (DNB).


Heat transfer and mass transfer dur<strong>in</strong>g nucleate boil<strong>in</strong>g has a significant effect on <strong>the</strong><br />

heat transfer rate. This heat transfer process helps quickly and efficiently to carry<br />

away <strong>the</strong> energy created at <strong>the</strong> heat transfer surface and is <strong>the</strong>refore sometimes<br />

desirable - for example <strong>in</strong> nuclear power plants, where liquid is used as a coolant.<br />

The effects of nucleate boil<strong>in</strong>g take place at two locations:<br />

• <strong>the</strong> liquid-wall <strong>in</strong>terface<br />

• <strong>the</strong> bubble-liquid <strong>in</strong>terface<br />

http://en.wikipedia.org/wiki/Nucleate_boil<strong>in</strong>g


4.2.11.3 Critical Factors<br />

a) Heat flux and fluid flow are critical factors.<br />

b) Flame imp<strong>in</strong>gement from misdirected or damaged burners can provide a<br />

heat flux greater than <strong>the</strong> steam generat<strong>in</strong>g tube can accommodate.<br />

c) On <strong>the</strong> water side, anyth<strong>in</strong>g that restricts fluid flow (for example, p<strong>in</strong>hole<br />

leaks lower <strong>in</strong> <strong>the</strong> steam circuit or dented tubes from slag falls) will reduce<br />

fluid flow and can lead to DNB conditions.<br />

d) Failure occurs as a result of <strong>the</strong> hoop stress <strong>in</strong> <strong>the</strong> tube from <strong>the</strong> <strong>in</strong>ternal<br />

steam pressure at <strong>the</strong> elevated temperature.


4.2.11.4 Affected Units or <strong>Equipment</strong><br />

All steam-generat<strong>in</strong>g units <strong>in</strong>clud<strong>in</strong>g fired boilers, waste heat exchangers <strong>in</strong><br />

sulfur plants, hydrogen reformers and FCC units. Failures can occur <strong>in</strong><br />

superheaters and reheaters dur<strong>in</strong>g start-up when condensate blocks steam flow.


4.2.11.5 Appearance or Morphology of <strong>Damage</strong><br />

a) These short-term, high-temperature failures always show an open burst<br />

with <strong>the</strong> fracture edges drawn to a near knife-edge (Figure 4-32).<br />

b) The microstructure will always show severe elongation of <strong>the</strong> gra<strong>in</strong><br />

structure due to <strong>the</strong> plastic deformation that occurs at <strong>the</strong> time of failure.<br />

Figure 4-32 – Short-term high-temperature failures from DNB are wideopen<br />

bursts with <strong>the</strong> failure lips drawn to a near knife edge. They are ductile<br />

ruptures. Mag. 25X.


4.2.11.6 Prevention / Mitigation<br />

a) When a DNB condition has developed, tube rupture will quickly follow.<br />

Proper burner management should be practiced to m<strong>in</strong>imize flame<br />

imp<strong>in</strong>gement.<br />

b) Proper BFW treatment can help prevent some conditions that can lead to<br />

restricted fluid flow.<br />

c) Tubes should be visually <strong>in</strong>spected for bulg<strong>in</strong>g.<br />

4.2.11.7 Inspection and Monitor<strong>in</strong>g<br />

Burners should be properly ma<strong>in</strong>ta<strong>in</strong>ed to prevent flame imp<strong>in</strong>gement.


Causes of Caustic Crack<strong>in</strong>g<br />

Caustic is a boiler water additive. It is added to preserve <strong>the</strong> th<strong>in</strong> film of iron oxide to protect <strong>the</strong> boiler from corrosion. The<br />

follow<strong>in</strong>g are <strong>the</strong> causes of concentration of caustics:<br />

1. Small bubbles of steam nucleated at <strong>the</strong> metal surface <strong>in</strong> m<strong>in</strong>ute concentrations of solids <strong>in</strong> <strong>the</strong> boiler water would be<br />

deposited on <strong>the</strong> metal surface. As <strong>the</strong> solids are formed <strong>the</strong>y are simultaneously removed from <strong>the</strong> metal surface by<br />

water which re-dissolves <strong>the</strong>m. However, when <strong>the</strong> rate of bubble formation exceeds <strong>the</strong> rate of dissolution of <strong>the</strong> solids,<br />

concentration of caustics would beg<strong>in</strong> to <strong>in</strong>crease.<br />

2. The deposits of solids shield <strong>the</strong> metal from <strong>the</strong> back water. Steam forms under <strong>the</strong> deposits and escapes leav<strong>in</strong>g beh<strong>in</strong>d a<br />

caustic residue.<br />

3. Caustic also concentrates by evaporation if a water l<strong>in</strong>e exists.<br />

Mechanism<br />

Concentrated caustic dissolves <strong>the</strong> protective magnetite oxides<br />

http://faculty.kfupm.edu.sa/ME/hussa<strong>in</strong>i/Corrosion%20Eng<strong>in</strong>eer<strong>in</strong>g/04.10.01.htm


蒸 汽 封 学 习 重 点 :<br />

a) 易 感 温 度 : 高 温<br />

b) 原 理 : 当 热 流 量 平 衡 被 打 破 , 单 个 气 泡 的 加 入 形 成 蒸 汽 毛 毯 , 一 种 被 称<br />

为 偏 离 泡 核 沸 腾 ,<br />

c) 易 感 材 质 : 碳 钢 和 低 合 金 钢 ,<br />

d) 易 感 设 备 : 所 有 蒸 汽 发 电 机 组 包 括 锅 炉 , 硫 磺 厂 余 热 换 热 器 , 制 氢 转 化 炉 和<br />

催 化 裂 化 装 置 ,<br />

e) 预 防 / 缓 解 : 锅 炉 热 管 理 ( 火 焰 , 锅 炉 水 管 理 ), 锅 炉 管 目 视 检 验 .<br />

f) 非 API 510/570 考 试 题 .


4.2.12 Dissimilar Weld Crack<strong>in</strong>g<br />

异 种 钢 焊 接 开 裂


4.2.12 Dissimilar Metal Weld (DMW) Crack<strong>in</strong>g<br />

4.2.12.1 Description of <strong>Damage</strong><br />

Crack<strong>in</strong>g of dissimilar metal welds occurs <strong>in</strong> <strong>the</strong> ferritic (carbon steel or low<br />

alloy steel) side of a weld between an austenitic (300 Series SS) and a ferritic<br />

material operat<strong>in</strong>g at high temperature.<br />

4.2.12.2 Affected Materials<br />

The most common are ferritic materials such as carbon steel and low alloy<br />

steels that are welded to <strong>the</strong> austenitic sta<strong>in</strong>less steels as well as any<br />

material comb<strong>in</strong>ations that have widely differ<strong>in</strong>g <strong>the</strong>rmal expansion<br />

coefficients.


4.2.12.3 Critical Factors<br />

a) Important factors <strong>in</strong>clude <strong>the</strong> type of filler metal used to jo<strong>in</strong> <strong>the</strong> materials,<br />

heat<strong>in</strong>g and cool<strong>in</strong>g rate, metal temperature, time at temperature, weld<br />

geometry and <strong>the</strong>rmal cycl<strong>in</strong>g.<br />

b) Crack<strong>in</strong>g can occur because of <strong>the</strong> different coefficients of <strong>the</strong>rmal<br />

expansion between ferritic and austenitic (e.g. 300 Series sta<strong>in</strong>less steel<br />

or nickel-base alloys) which differ by about 25 to 30% or more. At high<br />

operat<strong>in</strong>g temperatures, <strong>the</strong> differences <strong>in</strong> <strong>the</strong>rmal expansion leads to<br />

high stress at <strong>the</strong> heat-affected zone on <strong>the</strong> ferritic side (Table 4-4).<br />

c) As <strong>the</strong> operat<strong>in</strong>g temperature <strong>in</strong>creases, differential <strong>the</strong>rmal expansion<br />

between <strong>the</strong> metals results <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g stress at <strong>the</strong> weldment,<br />

particularly if a 300 Series SS weld metal is used. Ferritic/austenitic jo<strong>in</strong>ts<br />

can generate significant <strong>the</strong>rmal expansion/<strong>the</strong>rmal fatigue stresses at<br />

temperatures greater than 510°F (260°C).


Table 4-4: Coefficients of Thermal Expansion for Common Materials


510°F<br />

Ferritic/austenitic jo<strong>in</strong>ts can<br />

generate significant <strong>the</strong>rmal<br />

expansion/<strong>the</strong>rmal fatigue<br />

stresses at temperatures<br />

greater than 510°F (260°C).


d) Thermal cycl<strong>in</strong>g aggravates <strong>the</strong> problem. Stresses dur<strong>in</strong>g start up and shut<br />

down can be significant.<br />

e) Stresses act<strong>in</strong>g on <strong>the</strong> weldment are significantly higher when an austenitic<br />

sta<strong>in</strong>less steel filler metal is used. A nickel base filler metal has a<br />

coefficient of <strong>the</strong>rmal expansion that is closer to carbon steel, result<strong>in</strong>g <strong>in</strong><br />

significantly lower stress at elevated temperatures.<br />

f) For dissimilar welds that operate at elevated temperatures, <strong>the</strong> problem is<br />

aggravated by <strong>the</strong> diffusion of carbon out of <strong>the</strong> heat-affected zone of <strong>the</strong><br />

ferritic material and <strong>in</strong>to <strong>the</strong> weld metal. The loss of carbon reduces <strong>the</strong><br />

creep strength of <strong>the</strong> ferritic material heat-affected zone, <strong>the</strong>reby <strong>in</strong>creas<strong>in</strong>g<br />

<strong>the</strong> crack<strong>in</strong>g probability (Figure 4-35). The temperature at which carbon<br />

diffusion becomes a concern is above 800°F to 950°F (427°C to 510°C) for<br />

carbon steels and low alloy steels, respectively.


Austenitic Steel<br />

Ferritic Steel<br />

Creep void due to loss of<br />

Carbon at HAZ<br />

Figure 4-35 – High magnification photomicrograph of a DMW jo<strong>in</strong><strong>in</strong>g a<br />

ferritic alloy (SA213 T-22) used <strong>in</strong> high temperature service. Creep<br />

cracks (black specks) can be observed <strong>in</strong> <strong>the</strong> ferritic alloy heat-affected<br />

zones. Mag. 50X, etched.


g) Dissimilar metal welds on a ferritic steel that are made with a 300 Series SS<br />

weld metal or a nickel based filler metal result <strong>in</strong> a narrow region (mixed<br />

zone) of high hardness at <strong>the</strong> toe of <strong>the</strong> weld, near <strong>the</strong> fusion l<strong>in</strong>e on <strong>the</strong><br />

ferritic steel side. These high hardness zones render <strong>the</strong> material<br />

susceptible to various forms of environmental crack<strong>in</strong>g such as sulfide stress<br />

crack<strong>in</strong>g or hydrogen stress crack<strong>in</strong>g (Figures 4-36 and 4-37). PWHT of <strong>the</strong><br />

weldment will not prevent environmental crack<strong>in</strong>g if <strong>the</strong> weld is exposed to<br />

wet H 2 S conditions.(?)<br />

h) DMW’s for high temperature service <strong>in</strong> hydrogen environments must be<br />

carefully designed and <strong>in</strong>spected to prevent hydrogen disbond<strong>in</strong>g (Figures<br />

4-38 to 4-41).


Environmental Crack<strong>in</strong>g<br />

– Ambient service<br />

Figure 4-36 – Weld detail used to jo<strong>in</strong> a carbon steel elbow (bottom) to a weld overlaid<br />

pipe section (top) <strong>in</strong> high pressure wet H 2<br />

S service. Sulfide stress crack<strong>in</strong>g (SSC) occurred<br />

along <strong>the</strong> toe of <strong>the</strong> weld (arrow), <strong>in</strong> a narrow zone of high hardness.


Environmental Crack<strong>in</strong>g<br />

– Ambient service<br />

Figure 4-37 – High magnification photomicrograph of SSC <strong>in</strong> pipe section shown <strong>in</strong><br />

Figure 4-36.


High temperature service<br />

Blister<br />

Figure 4-38 – Failure of DMW jo<strong>in</strong><strong>in</strong>g 1.25Cr-0.5Mo to Alloy 800H <strong>in</strong> a Hydro-dealkylation<br />

(HAD) Reactor Effluent Exchanger. Crack propagation due to stresses driven at high<br />

temperature of 875°F (468°C) and a hydrogen partial pressure of 280 psig (1.93 MPa).


High temperature service<br />

Blister<br />

Figure 4-39 – High magnification photomicrograph of <strong>the</strong> crack <strong>in</strong> Figure 4-38 show<strong>in</strong>g<br />

blister<strong>in</strong>g and disbondment along <strong>the</strong> weld fusion l<strong>in</strong>e <strong>in</strong>terface.


High temperature service<br />

Figure 4-40 – High magnification photomicrograph of <strong>the</strong> crack shown above <strong>in</strong> Figure 4-39.<br />

Plastic deformation of <strong>the</strong> gra<strong>in</strong> structure can be found at <strong>the</strong> vic<strong>in</strong>ity of <strong>the</strong> blister.


High temperature service<br />

Figure 4-41 – Failure of nickel alloy DMW jo<strong>in</strong><strong>in</strong>g HP40 (Nb modified) tube to 1.25Cr-0.5Mo<br />

flange <strong>in</strong> a Steam Methane Reformer due to cold hydrogen disbond<strong>in</strong>g of <strong>the</strong> butter<strong>in</strong>g layer.<br />

Process temperature 914°-941°F (490o to 505°C), Pressure (2.14 MPA), H2 content 10-20%<br />

(off-gas).


i) In environments that promote liquid ash corrosion, weld crack<strong>in</strong>g problems<br />

may be accelerated by stress-assisted corrosion. The ferritic heat-affected<br />

zone will preferentially corrode due to <strong>the</strong> large <strong>the</strong>rmal stra<strong>in</strong>. The results<br />

are long, narrow, oxide wedges that parallel <strong>the</strong> fusion l<strong>in</strong>e of <strong>the</strong> weld<br />

(Figure 4-42).<br />

j) Poor geometry of <strong>the</strong> weld, excessive undercut, and o<strong>the</strong>r stress<br />

<strong>in</strong>tensification factors will promote crack formation.


Intergranular liquid metal<br />

embrittlement (coal ash<br />

corrosion)<br />

Figure 4-42 – When both liquid phase coal ash corrosion and a DMW exists, stress assisted<br />

corrosion of <strong>the</strong> 2.25 Cr-1Mo heat-affected zone may occur. Note that <strong>the</strong>re is a lack of creep<br />

damage at <strong>the</strong> crack tip. Mag. 25X, etched.


4.2.12.4 Affected Units or <strong>Equipment</strong><br />

a) Dissimilar metal welds are utilized <strong>in</strong> special applications <strong>in</strong> ref<strong>in</strong>eries and<br />

o<strong>the</strong>r process plants.<br />

b) Examples of DMW’s <strong>in</strong>clude:<br />

• Welds used to jo<strong>in</strong> clad pipe <strong>in</strong> locations such as transitions <strong>in</strong><br />

hydroprocess<strong>in</strong>g reactor outlet pip<strong>in</strong>g from overlaid low alloy CrMo nozzles<br />

or pip<strong>in</strong>g to solid 300 Series sta<strong>in</strong>less steel pipe.<br />

• Hydroprocess<strong>in</strong>g exchanger <strong>in</strong>let and outlet pip<strong>in</strong>g.<br />

• Alloy transitions <strong>in</strong>side fired heaters (e.g. 9Cr to 317L <strong>in</strong> a crude furnace)<br />

• Hydrogen reformer furnace 1.25 Cr <strong>in</strong>let pigtails to Alloy 800 sockolets or<br />

weldolets on Hydrogen reformer tubes<br />

• Hydrogen reformer furnace Alloy 800 outlet cones to CS or 1.25 Cr<br />

refractory l<strong>in</strong>ed transfer l<strong>in</strong>es.


• Alloy transitions <strong>in</strong>side fired heaters (e.g. 9Cr to 317L <strong>in</strong> a crude or<br />

vacuum furnace)<br />

• Welds jo<strong>in</strong><strong>in</strong>g clad pipe sections to <strong>the</strong>mselves or to unclad carbon or<br />

low alloy steel pipe (e.g. Alloy C276 clad CS pip<strong>in</strong>g <strong>in</strong> crude unit<br />

overhead system)<br />

• Nickel base alloy welds jo<strong>in</strong><strong>in</strong>g socket weld valves <strong>in</strong> 5 and 9 Cr pip<strong>in</strong>g<br />

systems<br />

• 300 series SS weld overlay <strong>in</strong> numerous ref<strong>in</strong>ery reactors and pressure<br />

vessels<br />

• Similar DMWs have been used <strong>in</strong> FCCU reactors and regenerator<br />

vessels and <strong>in</strong> Coker Units.<br />

c) All superheaters and reheaters that have welds between ferritic<br />

materials (1.25Cr-0.5Mo and 2.25Cr-1Mo) and <strong>the</strong> austenitic materials<br />

(300 Series SS, 304H, 321H and 347H).


4.2.12.5 Appearance or Morphology of <strong>Damage</strong><br />

a) In most cases, <strong>the</strong> cracks form at <strong>the</strong> toe of <strong>the</strong> weld <strong>in</strong> <strong>the</strong> heat-affected<br />

zone of <strong>the</strong> ferritic material (Figure 4-36 to Figure 4-42).<br />

b) Welds jo<strong>in</strong><strong>in</strong>g tubes are <strong>the</strong> most common problem area, but support lugs<br />

or attachments of cast or wrought 300 Series SS to 400 Series SS are<br />

also affected.


4.2.12.6 Prevention / Mitigation 预 防 / 缓 解<br />

a) For high temperature applications, nickel base filler metals which have a<br />

coefficient of <strong>the</strong>rmal expansion closer to carbon steel and low alloy steels<br />

may dramatically <strong>in</strong>crease <strong>the</strong> life of <strong>the</strong> jo<strong>in</strong>t, because of <strong>the</strong> significant<br />

reduction <strong>in</strong> <strong>the</strong>rmal stress act<strong>in</strong>g on <strong>the</strong> steel (ferritic) side of <strong>the</strong> jo<strong>in</strong>t.<br />

Refer to API 577 and API 582 for additional <strong>in</strong>formation on filler metal<br />

selection, weld<strong>in</strong>g procedures and weld <strong>in</strong>spection.<br />

b) If 300 Series SS weld<strong>in</strong>g electrodes are used, <strong>the</strong> dissimilar metal weld<br />

should be located <strong>in</strong> a low temperature region.<br />

c) Consider butter<strong>in</strong>g <strong>the</strong> ferritic side of <strong>the</strong> jo<strong>in</strong>t with <strong>the</strong> SS or nickel base<br />

filler metal and perform PWHT prior to complet<strong>in</strong>g <strong>the</strong> DMW to m<strong>in</strong>imize <strong>the</strong><br />

hardness of <strong>the</strong> mixed weld zone <strong>in</strong> order to m<strong>in</strong>imize susceptibility to<br />

environmental crack<strong>in</strong>g. See Figure 4-34 and 4-35.(Figure 4-33 and 4-34)<br />

d) On buttered jo<strong>in</strong>ts, <strong>the</strong> thickness of <strong>the</strong> weld metal should be a m<strong>in</strong>imum of<br />

0.25 <strong>in</strong>ch (6.35 mm) after <strong>the</strong> bevel is mach<strong>in</strong>ed. Figure 4-35.(Figure 4-34)


Figure 4-33 – Two primary DMW<br />

configurations.<br />

a ) Ferritic steel pipe (left) welded to<br />

clad or weld overlaid pipe (right)<br />

b) Solid Sta<strong>in</strong>less steel pipe (left)<br />

welded to clad or weld overlaid pipe<br />

(right)


Figure 4-34 – Schematic of typical weld detail used to jo<strong>in</strong> a solid sta<strong>in</strong>less steel pipe to a clad or<br />

weld overlaid pipe. The sequence is: 1) Butter <strong>the</strong> weld bevel on <strong>the</strong> ferritic steel side, 2) Perform<br />

PWHT of <strong>the</strong> ferritic side prior to mak<strong>in</strong>g dissimilar weld, 3) Complete <strong>the</strong> dissimilar weld us<strong>in</strong>g<br />

alloy filler metal, 4) Do not PWHT <strong>the</strong> completed dissimilar weld.


e) In steam generat<strong>in</strong>g equipment, <strong>the</strong> weld at <strong>the</strong> high temperature end<br />

should be made <strong>in</strong> <strong>the</strong> penthouse or header enclosure, out of <strong>the</strong> heat<br />

transfer zone.<br />

f) For high temperature <strong>in</strong>stallations, consider Install<strong>in</strong>g a pup piece that has<br />

an <strong>in</strong>termediate <strong>the</strong>rmal expansion coefficient between <strong>the</strong> two materials<br />

to be jo<strong>in</strong>ed.


4.2.12.7 Inspection and Monitor<strong>in</strong>g<br />

a) The follow<strong>in</strong>g elements should be considered for non-destructive<br />

exam<strong>in</strong>ation of critical dissimilar butt welds before <strong>the</strong>y are put <strong>in</strong>to<br />

service:<br />

• 100% PT after butter<strong>in</strong>g and completion<br />

• 100% UT on butter layer after PWHT (check bond<strong>in</strong>g)<br />

•100% RT<br />

• 100% UT – recordable<br />

•PMI<br />

b) For dissimilar welds <strong>in</strong> fired heater tubes, RT and UT shear wave<br />

<strong>in</strong>spection should be performed.<br />

c) Environmental crack<strong>in</strong>g will also result <strong>in</strong> surface break<strong>in</strong>g cracks <strong>in</strong>itiat<strong>in</strong>g<br />

on <strong>the</strong> ID surface exposed to <strong>the</strong> corrosive environment, which can be<br />

detected us<strong>in</strong>g WFMT or external SWUT methods.


4.2.12.8 Related <strong>Mechanisms</strong><br />

Thermal fatigue (see 4.2.9), corrosion fatigue (see 4.5.2), creep (see 4.2.8),<br />

and sulfide stress crack<strong>in</strong>g<br />

(see 5.1.2.3.)


异 种 钢 焊 接 开 裂 学 习 重 点 :<br />

a) 易 感 温 度 : 室 温 与 高 温 两 种<br />

b) 原 理 : (1) 室 温 感 应 - 铁 素 体 混 合 区 高 强 度 导 致 环 境 开 裂 与 氢 裂 , (2) 高 温<br />

感 应 - 铁 素 体 热 影 响 区 脱 碳 导 致 高 温 强 度 降 低 与 蠕 变 强 度 .<br />

c) 易 感 材 质 : 铁 素 体 / 奥 氏 体 异 种 焊 接 ,<br />

d) 非 API510/570 考 试 题


4.2.13 Thermal Shock<br />

热 冲 击


4.2.13 Thermal Shock 温 度 突 变<br />

4.2.13.1 Description of <strong>Damage</strong><br />

A form of <strong>the</strong>rmal fatigue crack<strong>in</strong>g – <strong>the</strong>rmal shock – can occur when high and<br />

non-uniform <strong>the</strong>rmal stresses develop over a relatively short time <strong>in</strong> a piece of<br />

equipment due to differential expansion or contraction. If <strong>the</strong> <strong>the</strong>rmal<br />

expansion/contraction is restra<strong>in</strong>ed, stresses above <strong>the</strong> yield strength of <strong>the</strong><br />

material can result. Thermal shock usually occurs when a colder liquid contacts<br />

a warmer metal surface.<br />

当 的 液 体 接 触 一 个 高 温 的 金 属 表 面 时 , 在 很 短 的 时 间 , 高 和 非 均 匀 的 热 应 力 发 生 .<br />

如 果 热 膨 胀 / 收 缩 受 到 抑 制 , 可 能 会 导 致 材 料 的 屈 服 强 度 以 上 的 应 力 .<br />

4.2.13.2 Affected Materials<br />

All metals and alloys.


4.2.13.3 Critical Factors<br />

a) The magnitude of <strong>the</strong> temperature differential and <strong>the</strong> coefficient of<br />

<strong>the</strong>rmal expansion of <strong>the</strong> material determ<strong>in</strong>e <strong>the</strong> magnitude of <strong>the</strong> stress.<br />

b) Cyclic stresses generated by temperature cycl<strong>in</strong>g of <strong>the</strong> material may<br />

<strong>in</strong>itiate fatigue cracks.<br />

c) Sta<strong>in</strong>less steels have higher coefficients of <strong>the</strong>rmal expansion than<br />

carbon and alloy steels or nickel base alloys and are more likely to see<br />

higher stresses.<br />

d) High temperature exposure dur<strong>in</strong>g a fire.<br />

e) Temperature changes that can result from water quench<strong>in</strong>g as a result of<br />

ra<strong>in</strong> deluges.


f) Fracture is related to constra<strong>in</strong>t on a component that prevents <strong>the</strong><br />

component from expand<strong>in</strong>g or contract<strong>in</strong>g with a change <strong>in</strong> temperature.<br />

g) Crack<strong>in</strong>g <strong>in</strong> cast components such as valves may <strong>in</strong>itiate at cast<strong>in</strong>g flaws on<br />

<strong>the</strong> ID and progress through <strong>the</strong> thickness.<br />

h) Thick sections can develop high <strong>the</strong>rmal gradients.


4.2.13.4 Affected Units or <strong>Equipment</strong><br />

a) FCC, cokers, catalytic reform<strong>in</strong>g and high severity hydroprocess<strong>in</strong>g units<br />

are high temperature units where <strong>the</strong>rmal shock is possible.<br />

b) High temperature pip<strong>in</strong>g and equipment <strong>in</strong> any unit can be affected.<br />

c) Materials that have lost ductility, such as CrMo equipment (temper<br />

embrittlement) are particularly susceptible to <strong>the</strong>rmal shock.<br />

d) <strong>Equipment</strong> subjected to accelerated cool<strong>in</strong>g procedures to m<strong>in</strong>imize<br />

shutdown time.


4.2.13.5 Appearance or Morphology of <strong>Damage</strong><br />

Surface <strong>in</strong>itiat<strong>in</strong>g cracks may also appear as “craze” cracks.<br />

4.2.13.6 Prevention / Mitigation<br />

a) Prevent <strong>in</strong>terruptions <strong>in</strong> <strong>the</strong> flow of high temperature l<strong>in</strong>es.<br />

b) Design to m<strong>in</strong>imize severe restra<strong>in</strong>t.<br />

c) Install <strong>the</strong>rmal sleeves to prevent liquid imp<strong>in</strong>gement on <strong>the</strong> pressure<br />

boundary components.<br />

d) M<strong>in</strong>imize ra<strong>in</strong> or fire water deluge situations.<br />

e) Review hot/cold <strong>in</strong>jection po<strong>in</strong>ts for potential <strong>the</strong>rmal shock.


4.2.13.7 Inspection and Monitor<strong>in</strong>g<br />

a) This type of damage is highly localized and difficult to locate.<br />

b) PT and MT can be used to confirm crack<strong>in</strong>g.<br />

4.2.13.8 Related <strong>Mechanisms</strong><br />

Thermal fatigue (see 4.2.9).


高 温 突 变 学 习 重 点 :<br />

a) 易 感 温 度 : 高 温<br />

b) 原 理 : 当 冷 液 体 接 触 高 温 的 金 属 表 面 时 , 高 和 非 均 匀 的 热 应 力 发 生 . 在 热 膨<br />

胀 / 收 缩 受 到 抑 制 下 形 成 屈 服 强 度 以 上 的 应 力 , 导 致 材 料 开 裂 .<br />

c) 易 感 材 质 : 一 切 工 程 材 料 ,<br />

d) 易 感 设 备 : 高 温 设 备 ,<br />

e) 非 API 510/570 考 试 题


4.2.14 Erosion/ Erosion Corrosion<br />

冲 刷 腐 蚀<br />

API510/570-Exam


API510/570-Exam<br />

4.2.14 Erosion/Erosion – Corrosion 冲 蚀 / 冲 蚀 - 腐 蚀<br />

4.2.14.1 Description of <strong>Damage</strong><br />

a) Erosion is <strong>the</strong> accelerated mechanical removal of surface material as a<br />

result of relative movement between, or impact from solids, liquids, vapor or<br />

any comb<strong>in</strong>ation <strong>the</strong>reof.<br />

b) Erosion-corrosion is a description for <strong>the</strong> damage that occurs when<br />

corrosion contributes to erosion by remov<strong>in</strong>g protective films or scales, or by<br />

expos<strong>in</strong>g <strong>the</strong> metal surface to fur<strong>the</strong>r corrosion under <strong>the</strong> comb<strong>in</strong>ed action<br />

of erosion and corrosion.<br />

• 冲 蚀 - 当 材 料 表 面 ( 固 体 , 液 体 , 气 体 或 它 们 的 任 何 组 合 ) 之 间 的 相 对 运 动 / 撞 击<br />

的 影 响 而 加 速 材 料 表 面 机 械 去 除 .<br />

• 冲 蚀 - 腐 蚀 - 腐 蚀 导 致 侵 金 属 表 面 保 护 膜 / 氧 化 皮 的 丢 失 , 冲 蚀 机 表 面 去 除 , 冲 蚀 -<br />

腐 蚀 的 协 作 效 应 加 深 便 面 损 坏 .<br />

4.2.14.2 Affected Materials<br />

All metals, alloys and refractory.


API510/570-Exam<br />

4.2.14.3 Critical Factors<br />

a) In most cases, corrosion plays some role so that pure erosion (sometimes<br />

referred to as abrasive wear) is rare. It is critical to consider <strong>the</strong> role that<br />

corrosion contributes.<br />

b) Metal loss rates depend on <strong>the</strong> velocity and concentration of impact<strong>in</strong>g<br />

medium (i.e., particles, liquids, droplets, slurries, two-phase flow), <strong>the</strong> size<br />

and hardness of impact<strong>in</strong>g particles, <strong>the</strong> hardness and corrosion resistance<br />

of material subject to erosion, and <strong>the</strong> angle of impact.<br />

c) Softer alloys such as copper and alum<strong>in</strong>um alloys that are easily worn from<br />

mechanical damage may be subject to severe metal loss under high velocity<br />

conditions.<br />

d) Although <strong>in</strong>creas<strong>in</strong>g hardness of <strong>the</strong> metal substrate is a common approach<br />

to m<strong>in</strong>imize damage, it is not always a good <strong>in</strong>dicator of improved resistance<br />

to erosion, particularly where corrosion plays a significant role.


API510/570-Exam<br />

e) For each environment-material comb<strong>in</strong>ation, <strong>the</strong>re is often a threshold<br />

velocity above which impact<strong>in</strong>g objects may produce metal loss. Increas<strong>in</strong>g<br />

velocities above this threshold result <strong>in</strong> an <strong>in</strong>crease <strong>in</strong> metal loss rates as<br />

shown <strong>in</strong> Table 4-5. This table illustrates <strong>the</strong> relative susceptibility of a<br />

variety of metals and alloys to erosion/corrosion by seawater at different<br />

velocities.<br />

f) The size, shape, density and hardness of <strong>the</strong> impact<strong>in</strong>g medium affect <strong>the</strong><br />

metal loss rate.<br />

g) Increas<strong>in</strong>g <strong>the</strong> corrosivity of <strong>the</strong> environment may reduce <strong>the</strong> stability of<br />

protective surface films and <strong>in</strong>crease <strong>the</strong> susceptibility to metal loss. Metal<br />

may be removed from <strong>the</strong> surface as dissolved ions, or as solid corrosion<br />

products which are mechanically swept from <strong>the</strong> metal surface.<br />

h) Factors which contribute to an <strong>in</strong>crease <strong>in</strong> corrosivity of <strong>the</strong> environment,<br />

such as temperature, pH, etc., can <strong>in</strong>crease susceptibility to metal loss.


API510/570-Exam<br />

4.2.14.4 Affected Units or <strong>Equipment</strong><br />

a) All types of equipment exposed to mov<strong>in</strong>g fluids and/or catalyst are subject<br />

to erosion and erosion corrosion. This <strong>in</strong>cludes pip<strong>in</strong>g systems, particularly<br />

<strong>the</strong> bends, elbows, tees and reducers; pip<strong>in</strong>g systems downstream of<br />

letdown valves and block valves; pumps; blowers; propellers; impellers;<br />

agitators; agitated vessels; heat exchanger tub<strong>in</strong>g; measur<strong>in</strong>g device<br />

orifices; turb<strong>in</strong>e blades; nozzles; ducts and vapor l<strong>in</strong>es; scrapers; cutters;<br />

and wear plates.<br />

b) Erosion can be caused by gas borne catalyst particles or by particles<br />

carried by a liquid such as a slurry. In ref<strong>in</strong>eries, this form of damage occurs<br />

as a result of catalyst movement <strong>in</strong> FCC reactor/regenerator systems <strong>in</strong><br />

catalyst handl<strong>in</strong>g equipment (valves, cyclones, pip<strong>in</strong>g, reactors) and slurry<br />

pip<strong>in</strong>g (Figure 4-43); coke handl<strong>in</strong>g equipment <strong>in</strong> both delayed and fluidized<br />

bed cokers (Figure 4-44); and as wear on pumps (Figure 4-45),<br />

compressors and o<strong>the</strong>r rotat<strong>in</strong>g equipment.


API510/570-Exam<br />

c) Hydroprocess<strong>in</strong>g reactor effluent pip<strong>in</strong>g may be subject to erosion-corrosion<br />

by ammonium bisulfide. The metal loss is dependent on several factors<br />

<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> ammonium bisulfide concentration, velocity and alloy corrosion<br />

resistance.<br />

d) Crude and vacuum unit pip<strong>in</strong>g and vessels exposed to naph<strong>the</strong>nic acids <strong>in</strong><br />

some crude oils may suffer severe erosion-corrosion metal loss depend<strong>in</strong>g<br />

on <strong>the</strong> temperature, velocity, sulfur content and TAN level.


API510/570-Exam<br />

4.2.14.5 Appearance or Morphology of <strong>Damage</strong><br />

a) Erosion and erosion-corrosion are characterized by a localized loss <strong>in</strong><br />

thickness <strong>in</strong> <strong>the</strong> form of pits, grooves, gullies, waves, rounded holes and<br />

valleys. These losses often exhibit a directional pattern.<br />

b) Failures can occur <strong>in</strong> a relatively short time.


API510/570-Exam<br />

4.2.14.6 Prevention / Mitigation<br />

a) Improvements <strong>in</strong> design <strong>in</strong>volve changes <strong>in</strong> shape, geometry and materials<br />

selection. Some examples are: <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> pipe diameter to decrease<br />

velocity; streaml<strong>in</strong><strong>in</strong>g bends to reduce imp<strong>in</strong>gement; <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> wall<br />

thickness; and us<strong>in</strong>g replaceable imp<strong>in</strong>gement baffles.<br />

b) Improved resistance to erosion is usually achieved through <strong>in</strong>creas<strong>in</strong>g<br />

substrate hardness us<strong>in</strong>g harder alloys, hardfac<strong>in</strong>g or surface-harden<strong>in</strong>g<br />

treatments. Erosion resistant refractories <strong>in</strong> cyclones and slide valves have<br />

been very successful.


API510/570-Exam<br />

c) Erosion-corrosion is best mitigated by us<strong>in</strong>g more corrosion-resistant alloys<br />

and/or alter<strong>in</strong>g <strong>the</strong> process environment to reduce corrosivity, for example,<br />

deaeration, condensate <strong>in</strong>jection or <strong>the</strong> addition of <strong>in</strong>hibitors. Resistance is<br />

generally not improved through <strong>in</strong>creas<strong>in</strong>g substrate hardness alone.<br />

d) Heat exchangers utilize imp<strong>in</strong>gement plates and occasionally tube ferrules<br />

to m<strong>in</strong>imize erosion problems.<br />

e) Higher molybdenum conta<strong>in</strong><strong>in</strong>g alloys are used for improved resistance to<br />

naph<strong>the</strong>nic acid corrosion.


API510/570-Exam<br />

4.2.14.7 Inspection and Monitor<strong>in</strong>g<br />

a) Visual exam<strong>in</strong>ation of suspected or troublesome areas, as well as UT<br />

checks or RT can be used to detect <strong>the</strong> extent of metal loss.<br />

b) Specialized corrosion coupons and on-l<strong>in</strong>e corrosion monitor<strong>in</strong>g electrical<br />

resistance probes have been used <strong>in</strong> some applications.<br />

c) IR scans are used to detect refractory loss on stream.<br />

4.2.14.8 Related <strong>Mechanisms</strong><br />

Specialized term<strong>in</strong>ology has been developed for various forms of erosion and<br />

erosion-corrosion <strong>in</strong> specific environments and/or services. This term<strong>in</strong>ology<br />

<strong>in</strong>cludes cavitation, liquid imp<strong>in</strong>gement erosion, frett<strong>in</strong>g and o<strong>the</strong>r similar<br />

terms.


Figure 4-43 – Erosion Corrosion of a 1.25Cr 300 # valve flange on an FCC<br />

Catalyst withdrawal l<strong>in</strong>e.<br />

API510/570-Exam


Figure 4-44 – Erosion of a 9Cr-1Mo coker heater return bend.<br />

API510/570-Exam


Figure 4-45 – Erosion-Corrosion of is ASTM A48 Class 30<br />

Cast Iron Impeller <strong>in</strong> recycle water pump.<br />

API510/570-Exam


定 义 :<br />

Corrosion 腐 蚀 – 化 学 现 象<br />

Erosion 冲 蚀 - 机 械 现 象<br />

Erosion- corrosion 冲 蚀 - 腐 蚀 - 化 学 与 机 械 组 合 现 象<br />

API510/570-Exam


金 属 可 能 从 表 面 以 (1) 溶 解 离 子 腐 蚀 或 作 为 (2) 固 体 机 械 扫 冲 蚀<br />

API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam<br />

Flow Direction


Flow Direction<br />

API510/570-Exam


Flow Direction<br />

API510/570-Exam


Flow Direction<br />

API510/570-Exam


API510/570-Exam


Imp<strong>in</strong>gement<br />

po<strong>in</strong>t<br />

API510/570-Exam<br />

Flow Direction


API510/570-Exam


API510/570-Exam


API510/570-Exam<br />

冲 蚀 / 冲 蚀 - 腐 蚀 学 习 重 点 :<br />

a) 易 感 温 度 : 操 作 温 度 ,<br />

b) 原 理 : 设 备 溶 液 流 动 ( 液 体 , 气 体 , 固 体 或 其 组 合 ) 导 致 机 械 磨 损 与 通 过 保 护<br />

性 氧 化 膜 机 械 去 除 加 剧 表 面 腐 蚀 .<br />

c) 易 感 材 质 : 一 切 工 程 材 料 ,<br />

d) 易 感 设 备 : ,<br />

e) API 510/570 考 试 题 .


4.2.15 Cavitation<br />

气 穴 现 象


4.2.15 Cavitation<br />

4.2.15.1 Description of <strong>Damage</strong><br />

• 当 液 体 受 压 波 动 , 在 压 力 的 快 速 变 化 时 , 小 气 空 会 在 低 压 区 域 产 生 , 这 无 数<br />

小 气 泡 形 成 , 瞬 间 在 高 压 区 域 崩 溃 . 上 述 的 崩 溃 的 气 泡 产 生 严 重 的 局 部 冲 击<br />

力 , 可 导 致 金 属 损 失 的 侵 蚀 现 象 , 这 叫 做 气 穴 现 象 .<br />

a) Cavitation is a form of erosion caused by <strong>the</strong> formation and <strong>in</strong>stantaneous<br />

collapse of <strong>in</strong>numerable t<strong>in</strong>y vapor bubbles.<br />

b) The collaps<strong>in</strong>g bubbles exert severe localized impact forces that can<br />

result <strong>in</strong> metal loss referred to as cavitation damage.<br />

c) The bubbles may conta<strong>in</strong> <strong>the</strong> vapor phase of <strong>the</strong> liquid, air or o<strong>the</strong>r gas<br />

entra<strong>in</strong>ed <strong>in</strong> <strong>the</strong> liquid medium.<br />

4.2.15.2 Affected Materials<br />

• Most common materials of construction <strong>in</strong>clud<strong>in</strong>g copper and brass, cast<br />

iron, carbon steel, low alloy steels, 300 Series SS, 400 Series SS and<br />

nickel base alloys.


4.2.15.3 Critical Factors<br />

a) In a pump, <strong>the</strong> difference between <strong>the</strong> actual pressure or head of <strong>the</strong> liquid<br />

available (measured on <strong>the</strong> suction side) and <strong>the</strong> vapor pressure of that liquid<br />

is called <strong>the</strong> Net Positive Suction Head (NPSH) available. The m<strong>in</strong>imum<br />

head required to prevent cavitation with a given liquid at a given flow rate is<br />

called <strong>the</strong> net positive suction head required. Inadequate NPSH can result <strong>in</strong><br />

cavitation.<br />

b) Temperatures approach<strong>in</strong>g <strong>the</strong> boil<strong>in</strong>g po<strong>in</strong>t of <strong>the</strong> liquid are more likely to<br />

result <strong>in</strong> bubble formation than lower temperature operation.<br />

c) The presence of solid or abrasive particles is not required for cavitation<br />

damage but will accelerate <strong>the</strong> damage.


4.2.15.4 Affected Units or <strong>Equipment</strong><br />

a) Cavitation is most often observed <strong>in</strong> pump cas<strong>in</strong>gs, pump impellers (low<br />

pressure side) and <strong>in</strong> pip<strong>in</strong>g downstream of orifices or control valves.<br />

b) <strong>Damage</strong> can also be found <strong>in</strong> restricted-flow passages or o<strong>the</strong>r areas<br />

where turbulent flow is subjected to rapid pressure changes with<strong>in</strong> a<br />

localized region. Examples of affected equipment <strong>in</strong>clude heat exchanger<br />

tubes, venturis, seals and impellers.<br />

4.2.15.5 Appearance or Morphology of <strong>Damage</strong><br />

Cavitation damage generally looks like sharp-edged pitt<strong>in</strong>g but may also have<br />

a gouged appearance <strong>in</strong> rotational components. However, damage occurs<br />

only <strong>in</strong> localized low-pressure zones (see Figure 4-46, Figure 4-47 to<br />

Figure 4-49).


4.2.15.6 Prevention / Mitigation<br />

a) Resistance to cavitation damage <strong>in</strong> a specific environment may not be<br />

significantly improved by a material change. A mechanical modification,<br />

design or operat<strong>in</strong>g change is usually required.<br />

b) Cavitation is best prevented by avoid<strong>in</strong>g conditions that allow <strong>the</strong><br />

absolute pressure to fall below <strong>the</strong> vapor pressure of <strong>the</strong> liquid or by<br />

chang<strong>in</strong>g <strong>the</strong> material properties.<br />

Examples <strong>in</strong>clude:<br />

1. Streaml<strong>in</strong>e <strong>the</strong> flow path to reduce turbulence.<br />

2. Decrease fluid velocities.<br />

3. Remove entra<strong>in</strong>ed air.<br />

4. Increase <strong>the</strong> suction pressure of pumps.<br />

5. Alter <strong>the</strong> fluid properties, perhaps by add<strong>in</strong>g additives.<br />

6. Use hard surfac<strong>in</strong>g or hardfac<strong>in</strong>g.<br />

7. Use of harder and/or more corrosion resistant alloys.


c) Attack is accelerated by <strong>the</strong> mechanical disruption of protective films at <strong>the</strong><br />

liquid-solid <strong>in</strong>terface (such as a protective corrosion scale or passive films).<br />

Therefore, chang<strong>in</strong>g to a more corrosion resistant and/or higher hardness<br />

material may not improve cavitation resistance. Excessively hard materials<br />

may not be suitable if <strong>the</strong>y lack <strong>the</strong> toughness required to withstand <strong>the</strong> high<br />

local pressures and impact (shear loads) of <strong>the</strong> collaps<strong>in</strong>g bubbles.


4.2.15.7 Inspection and Monitor<strong>in</strong>g<br />

a) Cavitat<strong>in</strong>g pumps may sound like pebbles are be<strong>in</strong>g thrashed around <strong>in</strong>side.<br />

a) Techniques <strong>in</strong>clude limited monitor<strong>in</strong>g of fluid properties as well as acoustic<br />

monitor<strong>in</strong>g of turbulent areas to detect characteristic sound frequencies.<br />

a) Visual exam<strong>in</strong>ation of suspected areas, as well as external UT and RT can<br />

be used to monitor for loss <strong>in</strong> thickness.<br />

4.2.15.8 Related <strong>Mechanisms</strong><br />

Liquid imp<strong>in</strong>gement or erosion (see 4.2.14).


气 穴 腐 蚀 学 习 重 点 :<br />

a) 易 感 温 度 : 操 作 温 度<br />

b) 原 理 : 当 液 体 受 压 波 动 , 在 压 力 的 快 速 变 化 时 , 小 气 空 会 在 低 压 区 域 产 生 ,<br />

这 无 数 小 气 泡 形 成 , 瞬 间 在 高 压 区 域 崩 溃 . 上 述 的 崩 溃 的 气 泡 产 生 严 重 的<br />

局 部 冲 击 力 , 可 导 致 金 属 损 失 的 侵 蚀 现 象 , 这 叫 做 气 穴 现 象 .<br />

c) 易 感 材 质 : 一 切 工 程 材 料 ,<br />

d) 易 感 设 备 : 泵 , 限 流 通 道 或 其 他 湍 流 流 动 设 备 与 管 道 .<br />

e) 预 防 / 缓 解 : 更 改 设 计 以 减 少 湍 流 , 提 高 泵 的 吸 入 压 力 , 改 变 流 体 的 性 质 如<br />

通 过 加 入 添 加 剂 , 增 加 材 料 硬 度 等 .<br />

f) 非 API 510/570 考 试 题 .


4.2.16 Mechanical Fatigue<br />

机 械 疲 劳<br />

API510/570-Exam


API510/570-Exam<br />

4.2.16 Mechanical Fatigue 机 械 疲 劳<br />

4.2.16.1 Description of <strong>Damage</strong><br />

a) Fatigue crack<strong>in</strong>g is a mechanical form of degradation that occurs when a<br />

component is exposed to cyclical stresses for an extended period, often<br />

result<strong>in</strong>g <strong>in</strong> sudden, unexpected failure. 长 期 的 循 环 应 力 造 成 破 坏 .<br />

b) These stresses can arise from ei<strong>the</strong>r (1) mechanical load<strong>in</strong>g or (2) <strong>the</strong>rmal<br />

cycl<strong>in</strong>g and are typically well below <strong>the</strong> yield strength of <strong>the</strong> material.<br />

通 常 低 于 屈 服 强 度 的 机 械 载 荷 或 循 环 热 应 力<br />

4.2.16.2 Affected Materials<br />

• All eng<strong>in</strong>eer<strong>in</strong>g alloys are subject to fatigue crack<strong>in</strong>g although <strong>the</strong> stress<br />

levels and number of cycles necessary to cause failure vary by material.


API510/570-Exam<br />

4.2.16.3 Critical Factors<br />

Geometry, stress level, number of cycles, and material properties (strength, hardness,<br />

microstructure) are <strong>the</strong> predom<strong>in</strong>ant factors <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong> fatigue resistance of a<br />

component.<br />

a) Design: Fatigue cracks usually <strong>in</strong>itiate on <strong>the</strong> surface at notches or stress raisers under<br />

cyclic load<strong>in</strong>g. For this reason, design of a component is <strong>the</strong> most important factor <strong>in</strong><br />

determ<strong>in</strong><strong>in</strong>g a component’s resistance to fatigue crack<strong>in</strong>g. Several common surface<br />

features can lead to <strong>the</strong> <strong>in</strong>itiation of fatigue cracks as <strong>the</strong>y can act as stress<br />

concentrations. Some of <strong>the</strong>se common features are:<br />

1. Mechanical notches (sharp corners or groves);<br />

2. Key holes on drive shafts of rotat<strong>in</strong>g equipment;<br />

3. Weld jo<strong>in</strong>t, flaws and/or mismatches;<br />

4. Quench nozzle areas;<br />

5. Tool mark<strong>in</strong>gs;<br />

6. Gr<strong>in</strong>d<strong>in</strong>g marks;<br />

7. Lips on drilled holes;<br />

8. Thread root notches;<br />

9. Corrosion.


API510/570-Exam<br />

b) Metallurgical Issues and Microstructure<br />

1. For some materials such as titanium, carbon steel and low alloy steel, <strong>the</strong> number of<br />

cycles to fatigue fracture decreases with stress amplitude until an endurance limit<br />

reached. Below this stress endurance limit, fatigue crack<strong>in</strong>g will not occur,<br />

regardless of <strong>the</strong> number of cycles.<br />

2. For alloys with endurance limits, <strong>the</strong>re is a correlation between Ultimate Tensile<br />

Strength (UTS) and <strong>the</strong> m<strong>in</strong>imum stress amplitude necessary to <strong>in</strong>itiate fatigue<br />

crack<strong>in</strong>g. The ratio of endurance limit over UTS is typically between 0.4 and 0.5.<br />

Materials like austenitic sta<strong>in</strong>less steels and alum<strong>in</strong>um that do not have an endurance<br />

limit will have a fatigue limit def<strong>in</strong>ed by <strong>the</strong> number of cycles at a given stress<br />

amplitude.<br />

3. Inclusions found <strong>in</strong> metal can have an accelerat<strong>in</strong>g effect on fatigue crack<strong>in</strong>g. This is<br />

of importance when deal<strong>in</strong>g with older, “dirty” steels or weldments, as <strong>the</strong>se often<br />

have <strong>in</strong>clusions and discont<strong>in</strong>uities that can degrade fatigue resistance.<br />

4. Heat treatment can have a significant effect on <strong>the</strong> toughness and hence fatigue<br />

resistance of a metal. In general, f<strong>in</strong>er gra<strong>in</strong>ed microstructures tend to perform better<br />

than coarse gra<strong>in</strong>ed. Heat treatments such as quench<strong>in</strong>g and temper<strong>in</strong>g, can improve<br />

fatigue resistance of carbon and low alloy steels.


API510/570-Exam<br />

For alloys with endurance limits, <strong>the</strong>re is a correlation between Ultimate<br />

Tensile Strength (UTS) and <strong>the</strong> m<strong>in</strong>imum stress amplitude necessary to<br />

<strong>in</strong>itiate fatigue crack<strong>in</strong>g. The ratio of endurance limit over UTS is typically<br />

between 0.4 and 0.5. Materials like austenitic sta<strong>in</strong>less steels and alum<strong>in</strong>um<br />

that do not have an endurance limit will have a fatigue limit def<strong>in</strong>ed by <strong>the</strong><br />

number of cycles at a given stress amplitude.<br />

疲 劳 极 限 合 金 : 引 发 疲 劳 开 裂 最 小 应 力 振 幅 和 材 料 抗 拉 强 度 存 在 相 关 性 , 这 通<br />

常 在 0.4 和 0.5UTS 之 间 .<br />

奥 氏 体 不 锈 钢 和 铝 材 料 , 没 有 引 发 疲 劳 开 裂 极 限 的 最 小 应 力 振 幅 .


API510/570-Exam


API510/570-Exam<br />

c) Carbon Steel and Titanium: These materials exhibit an endurance limit<br />

below which fatigue crack<strong>in</strong>g will not occur, regardless of <strong>the</strong> number of<br />

cycles.<br />

d) 300 Series SS, 400 Series SS, alum<strong>in</strong>um and most o<strong>the</strong>r non-ferrous alloys:<br />

1. These alloys have a fatigue characteristic that does not exhibit an<br />

endurance limit. This means that fatigue fracture can be achieved under<br />

cyclical load<strong>in</strong>g eventually, regardless of stress amplitude.<br />

2. Maximum cyclical stress amplitude is determ<strong>in</strong>ed by relat<strong>in</strong>g <strong>the</strong> stress<br />

necessary to cause fracture to <strong>the</strong> desired number of cycles necessary<br />

<strong>in</strong> a component’s lifetime. This is typically 10 6 to 10 7 cycles.


API510/570-Exam<br />

4.2.16.4 Affected Units or <strong>Equipment</strong><br />

a) Thermal Cycl<strong>in</strong>g<br />

1. <strong>Equipment</strong> that cycles daily <strong>in</strong> operation such as coke drums.<br />

2. <strong>Equipment</strong> that may be auxiliary or on cont<strong>in</strong>uous standby but sees <strong>in</strong>termittent<br />

service such as auxiliary boiler.<br />

3. Quench nozzle connections that see significant temperature deltas dur<strong>in</strong>g operations<br />

such as water wash<strong>in</strong>g systems.<br />

b) Mechanical Load<strong>in</strong>g<br />

1. Pressure Sw<strong>in</strong>g Absorbers on hydrogen purification units.<br />

2. Rotat<strong>in</strong>g shafts on centrifugal pumps and compressors that have stress concentrations<br />

due to changes <strong>in</strong> radii and key ways.<br />

3. Components such as small diameter pip<strong>in</strong>g that may see vibration from adjacent<br />

equipment and/or w<strong>in</strong>d. For small components, resonance can also produce a cyclical<br />

load and should be taken <strong>in</strong>to consideration dur<strong>in</strong>g design and reviewed for potential<br />

problems after <strong>in</strong>stallation.<br />

4. High pressure drop control valves or steam reduc<strong>in</strong>g stations can cause serious<br />

vibration problems <strong>in</strong> connected pip<strong>in</strong>g.


a) Thermal Cycl<strong>in</strong>g<br />

API510/570-Exam


API510/570-Exam<br />

b) Mechanical Load<strong>in</strong>g<br />

Amplitude


API510/570-Exam<br />

4.2.16.5 Appearance or Morphology of <strong>Damage</strong><br />

a) The signature mark of a fatigue failure is a “clam shell” type f<strong>in</strong>gerpr<strong>in</strong>t that<br />

has concentric r<strong>in</strong>gs called “beach marks” emanat<strong>in</strong>g from <strong>the</strong> crack <strong>in</strong>itiation<br />

site (Figure 4-50 and Figure 4-51). This signature pattern results from <strong>the</strong><br />

“waves” of crack propagation that occur dur<strong>in</strong>g cycles above <strong>the</strong> threshold<br />

load<strong>in</strong>g. These concentric cracks cont<strong>in</strong>ue to propagate until <strong>the</strong> crosssectional<br />

area is reduced to <strong>the</strong> po<strong>in</strong>t where failure due to overload occurs.<br />

b) Cracks nucleat<strong>in</strong>g from a surface stress concentration or defect will typically<br />

result <strong>in</strong> a s<strong>in</strong>gle “clam shell” f<strong>in</strong>gerpr<strong>in</strong>t (Figure 4-52 to Figure 4-56).<br />

c) Cracks result<strong>in</strong>g from cyclical overstress of a component without significant<br />

stress concentration will typically result <strong>in</strong> a fatigue failure with multiple<br />

po<strong>in</strong>ts of nucleation and hence multiple “clam shell” f<strong>in</strong>gerpr<strong>in</strong>ts. These<br />

multiple nucleation sites are <strong>the</strong> result of microscopic yield<strong>in</strong>g that occurs<br />

when <strong>the</strong> component is momentarily cycled above its yield strength.


Figure 4-50 – Schematic of a fatigue fracture surface show<strong>in</strong>g “beach marks”.<br />

API510/570-Exam


Figure 4-51 – Compressor rod fracture surface show<strong>in</strong>g “beach marks”<br />

API510/570-Exam


Figure 4-52 – Higher magnification view of figure above show<strong>in</strong>g “beach marks”.<br />

API510/570-Exam


Figure 4-53 – Fatigue fracture surface of a carbon steel pipe.<br />

API510/570-Exam


Figure 4-54 – Fatigue crack <strong>in</strong> a 16-<strong>in</strong>ch pipe-to-elbow weld <strong>in</strong> <strong>the</strong> fill l<strong>in</strong>e of<br />

crude oil storage tank after 50 years <strong>in</strong> service.<br />

API510/570-Exam


Figure 4-55 – A cross-section through <strong>the</strong> weld show<strong>in</strong>g <strong>the</strong> crack location.<br />

API510/570-Exam


Figure 4-56 – The surface of <strong>the</strong> fracture faces of <strong>the</strong> crack shown <strong>in</strong><br />

Figure 4-54 and Figure 4-55.<br />

API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam<br />

The signature mark of<br />

a fatigue failure is a<br />

“clam shell 蛤 壳 ”type<br />

f<strong>in</strong>gerpr<strong>in</strong>t that has<br />

concentric r<strong>in</strong>gs called<br />

“beach marks”<br />

emanat<strong>in</strong>g from <strong>the</strong><br />

crack <strong>in</strong>itiation site


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


API510/570-Exam


http://www.efunda.com/formulae/solid_mechanics/fatigue/fatigue_lowcycle.cfm<br />

API510/570-Exam


530.352 Materials Selection<br />

Lecture #23 Fatigue<br />

Tuesday<br />

November 8 th , 2005<br />

http://www.me.jhu.edu/hemker/MatSel/lectures/23%20Fatigue.ppt<br />

159


Failure even at low Stresses<br />

• Failure often occurs even when:<br />

applied < fracture<br />

yield<strong>in</strong>g<br />

and<br />

applied <<br />

• 90% of all mechanical failures are<br />

related to dynamic load<strong>in</strong>g.<br />

• Dynamic Load<strong>in</strong>g -> > Cyclic Stresses<br />

160


Examples of Fatigue Failures<br />

Plastic Tricycle:<br />

161


Examples of Fatigue Failures<br />

Door Stop:<br />

162


Examples of Fatigue Failures<br />

Railway Accidents:<br />

• Versailles 1842<br />

• first fatigue problem<br />

• axial failure<br />

• Today<br />

• flaws <strong>in</strong> 10% of<br />

rails.<br />

163


Types of Fatigue<br />

• Fatigue of uncracked components<br />

• No pre-cracks; <strong>in</strong>itiation controlled fracture<br />

• Examples : most small components: p<strong>in</strong>s, gears,<br />

axles, ...<br />

• High cycle fatigue<br />

• fatigue<br />

• Low cycle fatigue<br />

< yield ; N f > 10,000<br />

• fatigue<br />

> yield ; N f < 10,000<br />

164


Types of Fatigue:<br />

Fatigue of cracked structures<br />

–Pre-cracks exist: propagation<br />

controls fracture<br />

–Examples : most large components,<br />

particularly those conta<strong>in</strong><strong>in</strong>g welds:<br />

bridges, airplanes, ships, pressure<br />

vessels, ...<br />

165


Cyclic Load<strong>in</strong>g<br />

<br />

Weight<br />

+<br />

time<br />

-<br />

166


Basic Fatigue Term<strong>in</strong>ology:<br />

+<br />

max<br />

<br />

0<br />

-<br />

mean<br />

m<strong>in</strong><br />

time<br />

max m<strong>in</strong> <br />

mean max m<strong>in</strong> <br />

amplitude max m<strong>in</strong> <br />

N = number of fatigue cycles<br />

N f = number of cycles<br />

to failure<br />

167


High Cycle Fatigue<br />

S-N Curves<br />

• Apply controlled <br />

applied < ~ 2 / 3 yield<br />

• Stress is elastic<br />

on gross scale.<br />

• Locally <strong>the</strong> metal<br />

deforms plastically.<br />

Stress<br />

50<br />

40<br />

30<br />

10<br />

0<br />

Mild Steel<br />

Al alloys<br />

10 5 10 6 10 7 10 8 10 9<br />

N failure<br />

Fatigue limit<br />

168


Low Cycle Fatigue<br />

• Apply controlled amounts of <br />

• total = elastic + <br />

plastic<br />

total<br />

• Empirical Observations and Rules<br />

• Coff<strong>in</strong>-Manson Law<br />

• M<strong>in</strong>er’s s Rule<br />

169


Coff<strong>in</strong>-Manson Law<br />

For low cycle fatigue:<br />

plastic N failure<br />

1/2<br />

= Const.<br />

log pl<br />

y = y /E<br />

~10 4<br />

log N failure<br />

170


M<strong>in</strong>er’s s Rule<br />

Rule of Accumulative damage:<br />

N 1 N 2 N 3<br />

<br />

N i<br />

= N 1<br />

failure @ i<br />

Fraction of life time @ i<br />

171


• Crack <strong>in</strong>itiation<br />

The Fatigue Process<br />

• early development of damage<br />

• Stage I crack growth<br />

• deepen<strong>in</strong>g of <strong>in</strong>itial crack on shear planes<br />

• Stage II crack growth<br />

• growth of well def<strong>in</strong>ed crack on planes normal<br />

to maximum tensile stress<br />

• Ultimate Failure<br />

172


Crack <strong>in</strong>itiation<br />

Cracks start at:<br />

• Surfaces<br />

• Inclusions<br />

• Exist<strong>in</strong>g<br />

cracks<br />

Alternate stresses -> slip bands<br />

-> surface rumpl<strong>in</strong>g<br />

173


Crack Initiation:<br />

174


Crack Growth<br />

Striation <strong>in</strong>dicat<strong>in</strong>g<br />

steps <strong>in</strong> crack<br />

advancement.<br />

175


Propagation <strong>in</strong> Cracked<br />

Structures<br />

a o ~ a detectible < a critical<br />

a o -> a critical = FAILURE !!!<br />

K = K -K max m<strong>in</strong><br />

= (a) 1/2<br />

da = A K m<br />

1<br />

dN<br />

log da/dN<br />

threshold<br />

l<strong>in</strong>ear<br />

Fast fracture<br />

log K<br />

176


Real world comparisons:<br />

log da/dN<br />

threshold<br />

l<strong>in</strong>ear<br />

Fast fracture<br />

log K<br />

177


Fracture surfaces:<br />

178


Fracture Surfaces:<br />

Initiation<br />

site<br />

Fatigue<br />

crack<strong>in</strong>g<br />

F<strong>in</strong>al fracture<br />

179


API510/570-Exam<br />

机 械 疲 劳 学 习 重 点 :<br />

a) 易 感 温 度 : 操 作 温 度 ,<br />

b) 原 理 : 长 期 的 循 环 应 力 造 成 破 坏 .<br />

c) 易 感 材 质 : 一 切 工 程 材 料 ,<br />

d) 易 感 设 备 : 温 度 循 环 设 备 , 机 械 振 动 设 备 ,<br />

e) 预 防 / 缓 解 : 通 过 设 计 减 少 振 动 与 温 度 循 环 .<br />

f) API 510/570 考 试 题 .


4.2.17 Vibration Induced Fatigue<br />

振 动 疲 劳<br />

API 570-Exam


API 570-Exam<br />

4.2.17 Vibration-Induced Fatigue 振 动 引 起 的 疲 劳<br />

4.2.17.1 Description of <strong>Damage</strong><br />

A form of mechanical fatigue <strong>in</strong> which cracks are produced as <strong>the</strong> result of<br />

dynamic load<strong>in</strong>g due to vibration, water hammer, or unstable fluid flow.<br />

4.2.17.2 Affected Materials<br />

All eng<strong>in</strong>eer<strong>in</strong>g materials.<br />

4.2.17.3 Critical Factors<br />

a) The amplitude and frequency of vibration as well as <strong>the</strong> fatigue<br />

resistance of <strong>the</strong> components are critical factors. 振 动 的 振 幅 和 频 率<br />

b) There is a high likelihood of crack<strong>in</strong>g when <strong>the</strong> <strong>in</strong>put load is<br />

synchronous or nearly synchronizes with <strong>the</strong> natural frequency of <strong>the</strong><br />

component. 共 鸣 ( 同 步 ) 频 率<br />

c) A lack of or excessive support or stiffen<strong>in</strong>g allows vibration and<br />

possible crack<strong>in</strong>g problems that usually <strong>in</strong>itiate at stress raisers or<br />

notches. 局 部 应 力 集 中 或 缺 口


API 570-Exam<br />

4.2.17.4 Affected Units or <strong>Equipment</strong><br />

a) Socket welds and small bore pip<strong>in</strong>g at or near pumps and compressors that<br />

are not sufficiently gusseted.<br />

b) Small bore bypass l<strong>in</strong>es and flow loops around rotat<strong>in</strong>g and reciprocat<strong>in</strong>g<br />

equipment.<br />

c) Small branch connections with unsupported valves or controllers.<br />

d) Safety relief valves are subject to chatter, premature pop-off, frett<strong>in</strong>g and<br />

failure to operate properly.<br />

e) High pressure drop control valves and steam reduc<strong>in</strong>g stations.<br />

f) Heat exchanger tubes may be susceptible to vortex shedd<strong>in</strong>g.


API 570-Exam<br />

4.2.17.5 Appearance or Morphology of <strong>Damage</strong><br />

a) <strong>Damage</strong> is usually <strong>in</strong> <strong>the</strong> form of a crack <strong>in</strong>itiat<strong>in</strong>g at a po<strong>in</strong>t of high stress or<br />

discont<strong>in</strong>uity such as a thread or weld jo<strong>in</strong>t (Figure 4-57 and Figure 4-58).<br />

b) A potential warn<strong>in</strong>g sign of vibration damage to refractories is <strong>the</strong> visible<br />

damage result<strong>in</strong>g from <strong>the</strong> failure of <strong>the</strong> refractory and/or <strong>the</strong> anchor<strong>in</strong>g<br />

system. High sk<strong>in</strong> temperatures may result from refractory damage.


API 570-Exam<br />

4.2.17.6 Prevention / Mitigation<br />

a) Vibration-<strong>in</strong>duced fatigue can be elim<strong>in</strong>ated or reduced through design and<br />

<strong>the</strong> use of supports and vibration dampen<strong>in</strong>g equipment. Material upgrades<br />

are not usually a solution.<br />

b) Install gussets or stiffeners on small bore connections. Elim<strong>in</strong>ate<br />

unnecessary connections and <strong>in</strong>spect field <strong>in</strong>stallations.<br />

c) Vortex shedd<strong>in</strong>g can be m<strong>in</strong>imized at <strong>the</strong> outlet of control valves and safety<br />

valves through proper side branch siz<strong>in</strong>g and flow stabilization techniques.<br />

d) Vibration effects may be shifted when a vibrat<strong>in</strong>g section is anchored.<br />

Special studies may be necessary before anchors or dampeners are<br />

provided, unless <strong>the</strong> vibration is elim<strong>in</strong>ated by remov<strong>in</strong>g <strong>the</strong> source.


API 570-Exam<br />

4.2.17.7 Inspection and Monitor<strong>in</strong>g<br />

a) Look for visible signs of vibration, pipe movement or water hammer.<br />

b) Check for <strong>the</strong> audible sounds of vibration emanat<strong>in</strong>g from pip<strong>in</strong>g<br />

components such as control valves and fitt<strong>in</strong>gs.<br />

c) Conduct visual <strong>in</strong>spection dur<strong>in</strong>g transient conditions (such as startups,<br />

shutdowns, upsets, etc.) for <strong>in</strong>termittent vibrat<strong>in</strong>g conditions.<br />

d) Measure pipe vibrations us<strong>in</strong>g special monitor<strong>in</strong>g equipment.<br />

e) The use of surface <strong>in</strong>spection methods (such as PT, MT) can be effective<br />

<strong>in</strong> a focused plan.<br />

f) Check pipe supports and spr<strong>in</strong>g hangers on a regular schedule.<br />

g) <strong>Damage</strong> to <strong>in</strong>sulation jacket<strong>in</strong>g may <strong>in</strong>dicate excessive vibration. This<br />

can result <strong>in</strong> wett<strong>in</strong>g <strong>the</strong> <strong>in</strong>sulation which will cause corrosion.


API 570-Exam<br />

4.2.17.8 Related <strong>Mechanisms</strong><br />

Mechanical fatigue (see 4.2.16) and refractory degradation (see 4.2.18).


Figure 4-57 – Vibration <strong>in</strong>duced fatigue of a 1-<strong>in</strong>ch socket weld flange <strong>in</strong> a<br />

<strong>the</strong>rmal relief system shortly after startup.<br />

API 570-Exam


Figure 4-58 – Cross-sectional view of <strong>the</strong> crack <strong>in</strong> <strong>the</strong> socket weld <strong>in</strong> Figure 4-57.<br />

API 570-Exam


API 570-Exam


API 570-Exam


振 动 引 起 的 疲 劳 学 习 重 点 :<br />

a) 易 感 温 度 : 操 作 温 度<br />

b) 原 理 : 热 疲 劳 开 裂 是 由 振 动 引 起 循 环 应 力 引 起 的 开 裂 ,<br />

c) 易 感 材 质 : 一 切 工 程 材 料 ,<br />

d) 易 感 设 备 : 小 口 径 管 路 , 高 压 力 差 管 路 ,<br />

e) 预 防 / 缓 解 : 设 计 控 制 , 振 动 阻 尼 装 置 , 支 撑 ,<br />

f) API 570 考 试 题 .


4.2.18 Refractory Degradation<br />

耐 火 垫 退 化


4.2.18 Refractory Degradation 耐 火 材 料 退 化<br />

4.2.18.1 Description of <strong>Damage</strong><br />

Both <strong>the</strong>rmal <strong>in</strong>sulat<strong>in</strong>g and erosion resistant refractories are susceptible to<br />

various forms of mechanical damage (crack<strong>in</strong>g, spall<strong>in</strong>g and erosion) as well<br />

as corrosion due to oxidation, sulfidation and o<strong>the</strong>r high temperature<br />

mechanisms.<br />

4.2.18.2 Affected Materials<br />

Refractory materials <strong>in</strong>clude <strong>in</strong>sulat<strong>in</strong>g ceramic fibers, castables, refractory<br />

brick and plastic refractories.


4.2.18.3 Critical Factors<br />

a) Refractory selection, design and <strong>in</strong>stallation are <strong>the</strong> keys to m<strong>in</strong>imiz<strong>in</strong>g<br />

damage.<br />

b) Refractory l<strong>in</strong>ed equipment should be designed for erosion, <strong>the</strong>rmal shock<br />

and <strong>the</strong>rmal expansion.<br />

c) Dry out schedules, cure times and application procedures should be <strong>in</strong><br />

accordance with <strong>the</strong> manufacturer’s specifications and <strong>the</strong> appropriate<br />

ASTM requirements.<br />

d) Anchor materials must be compatible with <strong>the</strong>rmal coefficients of expansion<br />

of <strong>the</strong> base metal.<br />

e) Anchors must be resistant to oxidation <strong>in</strong> high temperature services.


f) Anchors must be resistant to condens<strong>in</strong>g sulfurous acids <strong>in</strong> heaters and<br />

flue gas environments.<br />

g) Refractory type and density must be selected to resist abrasion and erosion<br />

based on service requirements.<br />

h) Needles and o<strong>the</strong>r fillers must be compatible with <strong>the</strong> process environment<br />

composition and temperature.


4.2.18.4 Affected Units or <strong>Equipment</strong><br />

a) Refractories are extensively used <strong>in</strong> FCC reactor regenerator vessels,<br />

pip<strong>in</strong>g, cyclones, slide valves and <strong>in</strong>ternals; <strong>in</strong> fluid cokers; <strong>in</strong> cold shell<br />

catalytic reform<strong>in</strong>g reactors; and <strong>in</strong> waste heat boilers and <strong>the</strong>rmal reactors<br />

<strong>in</strong> sulfur plants.<br />

b) Boiler fire boxes and stacks which also use refractory are affected.


4.2.18.5 Appearance or Morphology of <strong>Damage</strong><br />

a) Refractory may show signs of excessive crack<strong>in</strong>g, spall<strong>in</strong>g or lift-off from<br />

<strong>the</strong> substrate, soften<strong>in</strong>g or general degradation from exposure to moisture.<br />

b) Coke deposits may develop beh<strong>in</strong>d refractory and promote crack<strong>in</strong>g and<br />

deterioration.<br />

c) In erosive services, refractory may be washed away or th<strong>in</strong>ned, expos<strong>in</strong>g<br />

<strong>the</strong> anchor<strong>in</strong>g system. (Figure 4-59)<br />

4.2.18.6 Prevention / Mitigation<br />

Proper selection of refractory, anchors and fillers and <strong>the</strong>ir proper design and<br />

<strong>in</strong>stallation are <strong>the</strong> keys to m<strong>in</strong>imiz<strong>in</strong>g refractory damage.


4.2.18.7 Inspection and Monitor<strong>in</strong>g<br />

a) Conduct visual <strong>in</strong>spection dur<strong>in</strong>g shutdowns.<br />

b) Survey cold-wall equipment onstream us<strong>in</strong>g IR to monitor for hot spots to<br />

help identify refractory damage.<br />

4.2.18.8 Related <strong>Mechanisms</strong><br />

Oxidation (see 4.4.1), sulfidation (see 4.4.2) and flue gas dew po<strong>in</strong>t corrosion<br />

(see 4.3.7).


Figure 4-59 – <strong>Damage</strong>d refractory and ferrules.


耐 火 材 料 退 化 学 习 重 点 :<br />

a) 易 感 温 度 : 高 温<br />

b) 原 理 : 机 械 或 腐 蚀 引 起 退 化 ,<br />

c) 易 感 材 质 : 耐 火 材 料 ,<br />

d) 易 感 设 备 : 耐 火 材 料 设 备 ,<br />

e) 预 防 / 缓 解 : 锚 杆 材 料 必 须 与 基 体 金 属 的 热 膨 胀 系 数 相 兼 容 , 锚 栓 必 须 耐 高<br />

温 氧 化 ,<br />

f) 非 API 510/570 考 试 题 .


4.2.19 Reheat Crack<strong>in</strong>g<br />

再 热 裂 纹


4.2.19 Reheat Crack<strong>in</strong>g<br />

4.2.19.1 Description of <strong>Damage</strong><br />

由 于 再 次 受 热 产 生 的 应 力 松 弛 的 金 属 开 裂<br />

Crack<strong>in</strong>g of a metal due to stress relaxation dur<strong>in</strong>g Post Weld Heat Treatment<br />

(PWHT) or <strong>in</strong> service at elevated temperatures. It is most often observed <strong>in</strong><br />

heavy wall sections.<br />

4.2.19.2 Affected Materials<br />

Low alloy steels as well as 300 Series SS and nickel base alloys such as<br />

Alloy 800H. (ferritic & Austenitic)<br />

4.2.19.8 Related <strong>Mechanisms</strong><br />

Reheat crack<strong>in</strong>g has also been referred to <strong>in</strong> <strong>the</strong> literature as “stress relief<br />

crack<strong>in</strong>g” and “stress relaxation crack<strong>in</strong>g”. 应 力 松 弛 开 裂


再 热 裂 纹<br />

Reheat crack<strong>in</strong>g occurs at elevated temperatures when creep ductility is<br />

<strong>in</strong>sufficient to accommodate <strong>the</strong> stra<strong>in</strong>s required for <strong>the</strong> relief of<br />

applied or residual stresses. The gra<strong>in</strong> size has an important <strong>in</strong>fluence on<br />

<strong>the</strong> high temperature ductility and on <strong>the</strong> reheat crack<strong>in</strong>g susceptibility.<br />

A large gra<strong>in</strong> size result <strong>in</strong> less ductile heat affected zones, mak<strong>in</strong>g <strong>the</strong><br />

material more susceptible to reheat crack<strong>in</strong>g.<br />

在 升 高 的 温 度 下 , 再 热 裂 纹 发 生 ; 当 蠕 变 延 性 不 足 以 容 纳 , 所 需 的 ” 应 用 ” 或 ” 残 余<br />

应 力 ” 松 弛 变 化 . 大 粒 径 的 晶 粒 , 焊 接 热 影 响 区 韧 性 较 差 , 这 造 成 焊 接 热 影 响 易<br />

受 再 热 开 裂 .


4.2.19.3 Critical Factors<br />

Important parameters <strong>in</strong>clude <strong>the</strong> type of material (chemical composition,<br />

impurity elements), gra<strong>in</strong> size, residual stresses from fabrication (cold<br />

work<strong>in</strong>g, weld<strong>in</strong>g), section thickness (which controls restra<strong>in</strong>t and stress<br />

state), notches and stress concentrators, weld metal and base metal<br />

strength, weld<strong>in</strong>g and heat treat<strong>in</strong>g conditions. From <strong>the</strong> various <strong>the</strong>ories<br />

of reheat crack<strong>in</strong>g for both 300 Series SS and low alloy steels, crack<strong>in</strong>g<br />

features are as follows:<br />

a) Reheat crack<strong>in</strong>g requires <strong>the</strong> presence of high stresses and is <strong>the</strong>refore<br />

more likely to occur <strong>in</strong> thicker sections and higher strength materials.<br />

b) Reheat crack<strong>in</strong>g occurs at elevated temperatures when creep ductility is<br />

<strong>in</strong>sufficient to accommodate <strong>the</strong> stra<strong>in</strong>s required for <strong>the</strong> relief of applied or<br />

residual stresses. 蠕 变 延 性 不 足 以 适 应 (1) 应 用 或 (2) 残 余 应 力 缓 减 , 所 需 的<br />

伸 张 .


c) In <strong>the</strong> first half of 2008, numerous cases of reheat crack<strong>in</strong>g occurred<br />

dur<strong>in</strong>g 2 ¼ Cr-1 Mo-V reactor fabrication. The cracks were <strong>in</strong> weld metal<br />

only, transverse to <strong>the</strong> weld<strong>in</strong>g direction, and <strong>in</strong> only SAW welds. It was<br />

traced to a contam<strong>in</strong>ant <strong>in</strong> <strong>the</strong> weld<strong>in</strong>g flux.<br />

d) Reheat crack<strong>in</strong>g can ei<strong>the</strong>r occur dur<strong>in</strong>g PWHT or <strong>in</strong> service at high<br />

temperature. In both cases, cracks are <strong>in</strong>tergranular and show little or no<br />

evidence of deformation.<br />

e) F<strong>in</strong>e <strong>in</strong>tragranular precipitate particles make <strong>the</strong> gra<strong>in</strong>s stronger than <strong>the</strong><br />

gra<strong>in</strong> boundaries and force <strong>the</strong> creep deformation to occur at <strong>the</strong> gra<strong>in</strong><br />

boundaries.<br />

f) Stress relief and stabilization heat treatment of 300 Series SS for<br />

maximiz<strong>in</strong>g chloride SCC and PTASCC resistance can cause reheat<br />

crack<strong>in</strong>g problems, particularly <strong>in</strong> thicker sections.


http://www.hydrocarbonprocess<strong>in</strong>g.com/Article/27<br />

64339/How-to-fabricate-reactors-for-severeservice.html


https://etd.ohiol<strong>in</strong>k.edu/ap/0?0:APPLICATION_PROCESS%3DDOWNLOAD_ET<br />

D_SUB_DOC_ACCNUM:::F1501_ID:osu1188419315%2C<strong>in</strong>l<strong>in</strong>e


http://www.staff.ncl.ac.uk/s.j.bull/mmm373/WFAULT/sld017.htm


4.2.19.4 Affected Units or <strong>Equipment</strong><br />

a) Reheat crack<strong>in</strong>g is most likely to occur <strong>in</strong> heavy wall vessels <strong>in</strong> areas of<br />

high restra<strong>in</strong>t <strong>in</strong>clud<strong>in</strong>g nozzle welds and heavy wall pip<strong>in</strong>g.<br />

b) HSLA steels are very susceptible to reheat crack<strong>in</strong>g.<br />

4.2.19.5 Appearance or Morphology of <strong>Damage</strong><br />

a) Reheat crack<strong>in</strong>g is <strong>in</strong>tergranular and can be surface break<strong>in</strong>g or embedded<br />

depend<strong>in</strong>g on <strong>the</strong> state of stress and geometry. It is most frequently<br />

observed <strong>in</strong> coarse-gra<strong>in</strong>ed sections of a weld heat affected zone.<br />

b) In many cases, cracks are conf<strong>in</strong>ed to <strong>the</strong> heat-affected zone, <strong>in</strong>itiate at<br />

some type of stress concentration, and may act as an <strong>in</strong>itiation site for<br />

fatigue. Figure 4-60 to 4-63.


Figure 4-60 – Samples removed from a cracked 12-<strong>in</strong>ch NPS 321SS<br />

elbow <strong>in</strong> hot recycle H2 l<strong>in</strong>e that operated at 985°F <strong>in</strong> hydrocracker.


Figure 4-61 – Crack at weld from SS321 elbow shown <strong>in</strong> <strong>the</strong> Figure 4-60.


Figure 4-62 – Cross-section through <strong>the</strong> weldment show<strong>in</strong>g <strong>the</strong> crack <strong>in</strong> Figure 4-61.


Figure 4-63 –<br />

Photomicrographs of <strong>the</strong><br />

weldment area.


4.2.19.6 Prevention / Mitigation<br />

a) Jo<strong>in</strong>t configurations <strong>in</strong> heavy wall sections should be designed to m<strong>in</strong>imize<br />

restra<strong>in</strong>t dur<strong>in</strong>g weld<strong>in</strong>g and PWHT. Adequate preheat must also be applied.<br />

b) The gra<strong>in</strong> size has an important <strong>in</strong>fluence on <strong>the</strong> high temperature ductility and<br />

on <strong>the</strong> reheat crack<strong>in</strong>g susceptibility. A large gra<strong>in</strong> size results <strong>in</strong> less ductile<br />

heat-affected zones, mak<strong>in</strong>g <strong>the</strong> material more susceptible to reheat crack<strong>in</strong>g.<br />

c) Metallurgical notches aris<strong>in</strong>g from <strong>the</strong> weld<strong>in</strong>g operation are frequently <strong>the</strong><br />

cause of heat-affected zone crack<strong>in</strong>g (at <strong>the</strong> boundary between <strong>the</strong> weld and<br />

<strong>the</strong> heat-affected zone).<br />

d) In design and fabrication, it is advisable to avoid sharp changes <strong>in</strong> cross<br />

section, such as short radius fillets or undercuts that can give rise to stress<br />

concentrations. Long-seam welds are particularly susceptible to mismatch<br />

caused by fitup problems.


e) For 2 ¼ Cr-1 Mo-V SAW weld materials, prequalification screen<strong>in</strong>g tests for<br />

reheat crack<strong>in</strong>g such as high temperature (650 o C) Gleeble tensile tests<br />

should be considered.<br />

f) For Alloy 800H, <strong>the</strong> risk of <strong>in</strong>-service crack<strong>in</strong>g can be reduced by us<strong>in</strong>g base<br />

metal and match<strong>in</strong>g weld metal with Al+Ti 540 o C, <strong>the</strong> material may need to be<br />

purchased with a <strong>the</strong>rmal stabilization heat treatment, and with PWHT of<br />

welds and cold worked sections. Welds should be made with match<strong>in</strong>g Alloy<br />

800H filler material and should be stress relieved. Refer to ASME Section VIII,<br />

Div. 1 Code <strong>in</strong> UNF-56(e) for additional <strong>in</strong>formation.<br />

h) For thick-wall SS pip<strong>in</strong>g, PWHT should be avoided whenever possible.


4.2.19.7 Inspection and Monitor<strong>in</strong>g<br />

a) Surface cracks can be detected with UT and MT exam<strong>in</strong>ation of carbon<br />

and low alloy steels<br />

b) UT and PT exam<strong>in</strong>ation can be used to detect cracks <strong>in</strong> 300 Series SS<br />

and nickel base alloys.<br />

c) Embedded cracks can only be found through UT exam<strong>in</strong>ation.<br />

d) Inspection for reheat crack<strong>in</strong>g <strong>in</strong> 2 ¼ Cr-1 Mo-V reactors dur<strong>in</strong>g<br />

fabrication is typically done with TOFD or manual shear wave UT with<br />

<strong>the</strong> demonstration block hav<strong>in</strong>g defects as small as 3 mm side drilled<br />

holes<br />

4.2.19.8 Related <strong>Mechanisms</strong><br />

Reheat crack<strong>in</strong>g has also been referred to <strong>in</strong> <strong>the</strong> literature as “stress relief<br />

crack<strong>in</strong>g” and “stress relaxation crack<strong>in</strong>g”.


http://www.twi-global.com/technical-knowledge/job-knowledge/defectsimperfections-<strong>in</strong>-welds-reheat-crack<strong>in</strong>g-048/


http://www.staff.ncl.ac.uk/s.j.bull/mmm373/WFAULT/sld017.htm


再 热 裂 纹 学 习 重 点 :<br />

a) 易 感 温 度 : 高 温<br />

b) 原 理 : 蠕 变 延 性 不 足 以 适 应 (1) 应 用 或 (2) 残 余 应 力 缓 减 , 所 需 的 伸 张 引<br />

起 的 开 裂 ,<br />

c) 易 感 材 质 : 铁 素 体 , 奥 氏 体 , 厚 壁 钢 材 ,<br />

d) 易 感 设 备 : 高 温 服 务 , 厚 壁 设 备 ,<br />

e) 非 API 510/570 考 试 题 .


4.2.20 GOX-Enhanced Ignition & Combustion<br />

气 化 氧 - 增 强 燃 烧


4.2.20 Gaseous Oxygen-Enhanced Ignition and Combustion<br />

气 态 氧 增 强 的 点 火 和 燃 烧<br />

4.2.20.1 Description of <strong>Damage</strong><br />

Many metals are flammable <strong>in</strong> oxygen and enriched air (>25% oxygen)<br />

services even at low pressures, whereas <strong>the</strong>y are non-flammable <strong>in</strong> air. The<br />

spontaneous ignition or combustion of metallic and nonmetallic components<br />

can result <strong>in</strong> fires and explosions <strong>in</strong> certa<strong>in</strong> oxygen-enriched gaseous<br />

environments if not properly designed, operated and ma<strong>in</strong>ta<strong>in</strong>ed. Once ignited,<br />

metals and non-metals burn more vigorously with higher oxygen purity,<br />

pressure and temperature


4.2.20.2 Affected Materials<br />

a) Carbon steels and low alloy steels are flammable <strong>in</strong> low pressure oxygen,<br />

greater than about 15 psig (0.103 MPa). With special precautions, <strong>the</strong>se<br />

materials are safely used <strong>in</strong> high pressure oxygen.<br />

b) Austenitic sta<strong>in</strong>less steels (300 series) have better resistance to low pressure<br />

oxygen and are generally difficult to ignite at pressures below about 200 psig<br />

(1.38 MPa).<br />

c) Copper alloys (with >55% copper) and nickel alloys (with >50% nickel) are<br />

very fire resistant and are generally considered non-flammable. Because of<br />

<strong>the</strong>ir excellent oxygen “compatibility” <strong>the</strong>y are often selected for imp<strong>in</strong>gement<br />

and turbulent services such as valves and <strong>in</strong>strumentation (Figure 4-69).<br />

Alloy 400 is highly resistant.


d) Although widely used for oxygen cyl<strong>in</strong>ders and <strong>in</strong> oxygen manufactur<strong>in</strong>g<br />

plants, alum<strong>in</strong>um is usually avoided for flow<strong>in</strong>g oxygen. If ignited it burns<br />

quickly and with a large energy release.<br />

e) The easiest materials to ignite are plastics, rubbers, and hydrocarbon<br />

lubricants and <strong>the</strong>se are m<strong>in</strong>imized <strong>in</strong> oxygen systems.<br />

f) Titanium alloys are generally avoided <strong>in</strong> oxygen and oxygen-enriched<br />

service because <strong>the</strong>y have low ignition energies and release a large<br />

amount of energy dur<strong>in</strong>g combustion. Tests <strong>in</strong>dicate that titanium can<br />

susta<strong>in</strong> combustion at oxygen pressure as low as 7 kPa (1 psi) absolute.<br />

Most <strong>in</strong>dustry documents caution aga<strong>in</strong>st <strong>the</strong> use of titanium <strong>in</strong> oxygen<br />

systems (References 6 and 7).<br />

Note: These are general guidel<strong>in</strong>es and should not be considered for design.


4.2.20.3 Critical Factors<br />

a) Many factors affect <strong>the</strong> likelihood of combustion and ignition <strong>in</strong> oxygen<br />

services <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> system pressure, oxygen content of <strong>the</strong> stream,<br />

l<strong>in</strong>e velocity, component thickness, design and pip<strong>in</strong>g configuration,<br />

cleanl<strong>in</strong>ess and temperature.<br />

b) The primary concern under high velocity oxygen flow conditions is <strong>the</strong><br />

entra<strong>in</strong>ment of particulate and <strong>the</strong>ir subsequent imp<strong>in</strong>gement on a<br />

surface, such as at a pipe bend. Oxygen velocities <strong>in</strong> carbon steel and<br />

sta<strong>in</strong>less steel pip<strong>in</strong>g should comply with <strong>in</strong>dustry limits as shown <strong>in</strong><br />

Reference 1. Allowable velocity is a function of pressure and flow<br />

condition (direct imp<strong>in</strong>gement or non-imp<strong>in</strong>gement).


c) The temperature of a material affects its flammability. As temperature<br />

<strong>in</strong>creases, a lower amount of additional energy is required for ignition and<br />

susta<strong>in</strong>ed combustion. The m<strong>in</strong>imum temperature at which a substance will<br />

support combustion, under a specific set of conditions is referred to as <strong>the</strong><br />

ignition temperature. Published ignition temperatures for most alloys are<br />

near <strong>the</strong> alloy’s melt<strong>in</strong>g temperature. However, <strong>the</strong>se are measured <strong>in</strong> nonflow<strong>in</strong>g<br />

conditions. Actual systems can suffer ignition and combustion at<br />

room temperature (and lower) due to particle impact and o<strong>the</strong>r mechanisms.<br />

d) System cleanl<strong>in</strong>ess is important for <strong>the</strong> safe operation of oxygen systems.<br />

Contam<strong>in</strong>ation of with metallic f<strong>in</strong>es or hydrocarbons such as oils and<br />

greases dur<strong>in</strong>g construction or ma<strong>in</strong>tenance activities can lead to fires<br />

dur<strong>in</strong>g subsequent start up of <strong>the</strong> unit. These materials are easy to ignite<br />

and can lead to a large fire and breach of <strong>the</strong> system.


e) Imp<strong>in</strong>gement areas such as sharp elbows, tees and valves have a higher<br />

risk of ignition than straight pipe. Particles <strong>in</strong> <strong>the</strong> flow<strong>in</strong>g oxygen can strike<br />

<strong>the</strong>se areas and cause ignition. Operation of valves and regulators (open<strong>in</strong>g<br />

/ clos<strong>in</strong>g) cause high turbulence and imp<strong>in</strong>gement and only components<br />

selected and cleaned specifically for oxygen service should be used.


4.2.20.4 Affected Units or <strong>Equipment</strong><br />

a) These guidel<strong>in</strong>es apply to any unit that uses oxygen or enriched air for<br />

combustion or o<strong>the</strong>r process reasons.<br />

b) Oxygen is sometimes used <strong>in</strong> sulfur recovery units (SRU) and fluid catalytic<br />

crack<strong>in</strong>g units (FCCU), Gasification, and Partial Oxidation (POX) units.<br />

Figures 4-64 to 4-66.<br />

c) Oxygen pip<strong>in</strong>g systems especially valves, regulators, and o<strong>the</strong>r imp<strong>in</strong>gement<br />

areas are potentially vulnerable. Non-metals such as those used for seats<br />

and seals, are easier to ignite than metals (Figure 4-69).


4.2.20.5 Appearance or Morphology of <strong>Damage</strong><br />

a) In some cases a small component will burn, such as a valve seat, without<br />

k<strong>in</strong>dl<strong>in</strong>g o<strong>the</strong>r materials and without any outward sign of fire damage. It is<br />

noticed when <strong>the</strong> component is removed because it is not function<strong>in</strong>g<br />

properly. Figure 4-67 to 4-68.<br />

b) Also, external heat damage (glow<strong>in</strong>g pipe or heat t<strong>in</strong>t) is a strong <strong>in</strong>dication<br />

of an <strong>in</strong>ternal fire. This can be caused by accumulation of flammable debris<br />

at a low po<strong>in</strong>t or o<strong>the</strong>r location and combustion or smolder<strong>in</strong>g of <strong>the</strong> debris.<br />

c) The worst situation is when <strong>the</strong> pressure envelope is breached because of<br />

fire. Oxygen fires can cause significant burn<strong>in</strong>g of metal components and<br />

extensive structural damage (Figure 4-68).


4.2.20.6 Prevention / Mitigation<br />

Refer to <strong>in</strong>dustry recommended guidel<strong>in</strong>es <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> references listed below.<br />

Some general considerations are as follows:<br />

a) Oxygen fires are a sudden occurrence and not a progressive degradation or<br />

weaken<strong>in</strong>g of <strong>the</strong> material. Prevention is best accomplished be keep<strong>in</strong>g<br />

systems clean, or clean<strong>in</strong>g <strong>the</strong>m after ma<strong>in</strong>tenance or <strong>in</strong>spections.<br />

b) Ma<strong>in</strong>ta<strong>in</strong> velocity with<strong>in</strong> recommended limits. If practical, avoid velocities that<br />

are nom<strong>in</strong>ally above 100 feet/second (30 m/sec) <strong>in</strong> gaseous oxygen.<br />

c) Ensure that replacement components are suitable for oxygen service.<br />

d) Oxygen systems should be thoroughly cleaned after ma<strong>in</strong>tenance.<br />

e) M<strong>in</strong>imize lubricants and use only “oxygen compatible” lubricants.<br />

f) Do not unnecessarily open oxygen systems for visual or o<strong>the</strong>r <strong>in</strong>spections as<br />

this could <strong>in</strong>troduce contam<strong>in</strong>ation.


g) A thorough review is needed before modify<strong>in</strong>g oxygen systems to operate at<br />

higher pressures, temperatures, or velocities.<br />

h) M<strong>in</strong>imize sudden changes <strong>in</strong> pressure <strong>in</strong> <strong>the</strong> system. If high pressure oxygen<br />

suddenly enters a system <strong>in</strong>itially at low pressure by quick operation of a<br />

valve, <strong>the</strong> “dead end” of that system experiences heat<strong>in</strong>g from adiabatic<br />

compression of <strong>the</strong> oxygen. Adiabatic compression heat<strong>in</strong>g can ignite<br />

plastics and rubbers, but will not ignite metals. Valve seats, seals, nonmetallic<br />

hoses, etc can be ignited by this mechanism.<br />

i) Do not use plastic pipe <strong>in</strong> oxygen pip<strong>in</strong>g systems.<br />

j) Personnel activities near oxygen pip<strong>in</strong>g and systems should be m<strong>in</strong>imized<br />

dur<strong>in</strong>g start ups.


4.2.20.7 Inspection and Monitor<strong>in</strong>g<br />

a) Most commercial oxygen is dry and non-corrosive at normal ambient<br />

temperatures. Because of <strong>the</strong> sudden catastrophic ignition of metals under<br />

certa<strong>in</strong> conditions this type of damage is difficult to <strong>in</strong>spect for <strong>in</strong> advance.<br />

b) Tell-tale signs of a m<strong>in</strong>or fire such as external heat damage, or signs of<br />

malfunction<strong>in</strong>g valves or o<strong>the</strong>r components conta<strong>in</strong><strong>in</strong>g non-metallic<br />

components may be <strong>in</strong>dicative of a problem.<br />

c) Blacklights can be used to check for hydrocarbon contam<strong>in</strong>ation.<br />

4.2.20.8 Related <strong>Mechanisms</strong><br />

Not applicable.


Figure 4-64 – Thermal combustor<br />

on <strong>the</strong> front end of a reaction<br />

furnace on a sulfur recovery unit.


Figure 4-65 – Same as figure above after<br />

damage due to oxygen combustion result<strong>in</strong>g<br />

from oxygen <strong>in</strong>jection <strong>in</strong>to <strong>the</strong> <strong>the</strong>rmal<br />

combustor on <strong>the</strong> front end of <strong>the</strong> reaction<br />

furnace.


Figure 4-66 – Same as figure<br />

above when viewed from a<br />

different angle.


Figure 4-67 – Photograph of a burned 304 SS elbow. The fire started <strong>in</strong> an upstream<br />

sta<strong>in</strong>less steel wire filter (due to particle impact) and <strong>the</strong> burn<strong>in</strong>g filter material<br />

impacted <strong>the</strong> elbow and ignited it. Th<strong>in</strong> sta<strong>in</strong>less steel components (e.g., filter) are much<br />

more flammable than thicker SS. Th<strong>in</strong> SS (


Figure 4-68 – Photograph illustrat<strong>in</strong>g burn through of a brass pressure gage.<br />

Brass is generally suitable for oxygen service. However, <strong>the</strong> gauge was not<br />

was not <strong>in</strong>tended for oxygen service and was not “oil free”. Hydrocarbon<br />

contam<strong>in</strong>ation, probably from manufacture, caused <strong>the</strong> fire.


Figure 4-69 – Burn-through of<br />

a PTFE-l<strong>in</strong>ed sta<strong>in</strong>less steel<br />

hose <strong>in</strong> high pressure gaseous<br />

oxygen (GOX) service. Grease<br />

contam<strong>in</strong>ation ignited and<br />

penetrated <strong>the</strong> hose.


气 化 氧 - 增 强 燃 烧 学 习 重 点 :<br />

a) 易 感 温 度 : 操 作 温 度<br />

b) 原 理 : 氧 气 导 致 燃 烧 ,<br />

c) 易 感 材 质 : 铁 素 体 , 奥 氏 体 , 其 他 ,<br />

d) 易 感 设 备 : 气 态 氧 设 备 ,<br />

e) 预 防 / 缓 解 : 正 确 材 料 选 择 , 清 洁 度 , 流 速 ( 避 免 冲 击 ), 外 来 固 体 ,<br />

f) 非 API 510/570 考 试 题 .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!