04.09.2014 Views

influence du climat et de la prédation sur l'utilisation de l'habitat et la ...

influence du climat et de la prédation sur l'utilisation de l'habitat et la ...

influence du climat et de la prédation sur l'utilisation de l'habitat et la ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

UNIVERSITÉ DU QUÉBEC À RIMOUSKI<br />

UNIVERSITÉ DE LA ROCHELLE<br />

INFLUENCE DU CLIMAT ET DE LA PRÉDATION SUR<br />

L'UTILISATION DE L'HABITAT ET LA SURVIE DU<br />

PORC-ÉPIC D'AMÉRIQUE<br />

THÈSE<br />

PRÉSENTÉE<br />

COMME EXIGENCE PARTIELLE<br />

DU DOCTORAT EN BIOLOGIE EXTENSIONNÉ DE<br />

L'UNIVERSITÉ DU QUÉBEC À MONTRÉAL<br />

PAR<br />

GÉRALDINE MABILLE<br />

SEPTEMBRE 2007


UNIVERSITÉ DU QUÉBEC À RIMOUSKI<br />

Service <strong>de</strong> <strong>la</strong> bibliothèque<br />

Avertissement<br />

La diffusion <strong>de</strong> ce mémoire ou <strong>de</strong> c<strong>et</strong>te thèse se fait dans le respect <strong>de</strong>s droits <strong>de</strong> son<br />

auteur, qui a signé le formu<strong>la</strong>ire « Autorisation <strong>de</strong> repro<strong>du</strong>ire <strong>et</strong> <strong>de</strong> diffuser un rapport,<br />

un mémoire ou une thèse ». En signant ce formu<strong>la</strong>ire, l’auteur concè<strong>de</strong> à l’Université <strong>du</strong><br />

Québec à Rimouski une licence non exclusive d’utilisation <strong>et</strong> <strong>de</strong> publication <strong>de</strong> <strong>la</strong> totalité<br />

ou d’une partie importante <strong>de</strong> son travail <strong>de</strong> recherche pour <strong>de</strong>s fins pédagogiques <strong>et</strong> non<br />

commerciales. Plus précisément, l’auteur autorise l’Université <strong>du</strong> Québec à Rimouski à<br />

repro<strong>du</strong>ire, diffuser, prêter, distribuer ou vendre <strong>de</strong>s copies <strong>de</strong> son travail <strong>de</strong> recherche à<br />

<strong>de</strong>s fins non commerciales <strong>sur</strong> quelque support que ce soit, y compris l’Intern<strong>et</strong>. C<strong>et</strong>te<br />

licence <strong>et</strong> c<strong>et</strong>te autorisation n’entraînent pas une renonciation <strong>de</strong> <strong>la</strong> part <strong>de</strong> l’auteur à ses<br />

droits moraux ni à ses droits <strong>de</strong> propriété intellectuelle. Sauf entente contraire, l’auteur<br />

conserve <strong>la</strong> liberté <strong>de</strong> diffuser <strong>et</strong> <strong>de</strong> commercialiser ou non ce travail dont il possè<strong>de</strong> un<br />

exemp<strong>la</strong>ire.


Remerciements<br />

C<strong>et</strong>te thèse n'aurait pu voir le jour sans le soutien que j'ai reçu <strong>de</strong> nombreuses personnes.<br />

Je tiens tout d'abord à remercier Dominique Berteaux pour m'avoir accueillie dans son<br />

équipe <strong>et</strong> pour l'encadrement qu'il m'a offert tout au long <strong>de</strong> mon doctorat. Merci aussi à<br />

Henri Weimerskirch pour avoir accepté <strong>de</strong> co-diriger un suj<strong>et</strong> « porcs-épics» <strong>et</strong> pour m'avoir<br />

fait croire en mes capacités à faire <strong>de</strong> <strong>la</strong> recherche. J'espère pouvoir m<strong>et</strong>tre à profit pendant<br />

longtemps tout ce que j'ai appris à vos côtés. En plus <strong>de</strong> mon directeur <strong>de</strong> thèse Dominique<br />

Berteaux, Patrick Morin a contribué à l'é<strong>la</strong>boration <strong>de</strong>s objectifs <strong>et</strong> à <strong>la</strong> rédaction <strong>du</strong> chapitre<br />

2. Merci également à Don Thomas <strong>et</strong> Daniel Fortin pour leur participation active à <strong>la</strong><br />

rédaction <strong>et</strong> à <strong>la</strong> mise en forme <strong>du</strong> manuscrit présenté au chapitre 4. La mention <strong>du</strong> nom <strong>de</strong><br />

Sébastien Descamps parmi les auteurs ayant participé au chapitre 3 est loin <strong>de</strong> représenter sa<br />

contribution réelle à l'ensemble <strong>de</strong> mon doctorat. Merci pour nos nombreuses discussions<br />

génératrices d'idées, pour ta lecture critique <strong>de</strong> mes différents chapitres, pour ton ai<strong>de</strong> en<br />

statistiques, <strong>et</strong> pour ta disponibilité constante. Je remercie également les membres <strong>du</strong> jury<br />

William Vickery, Christian Dussault <strong>et</strong> Joël Bêty pour avoir accepté d'évaluer ce travail.<br />

En écologie, les travaux <strong>de</strong> terrain profitent <strong>la</strong>rgement <strong>de</strong> l'enthousiasme <strong>et</strong> <strong>de</strong> l'envie<br />

d'apprendre <strong>de</strong>s étudiants <strong>et</strong> techniciens qui participent au minutieux travail <strong>de</strong> récolte <strong>de</strong><br />

données. Le suivi <strong>de</strong> <strong>la</strong> popu<strong>la</strong>tion <strong>de</strong> porcs-épics, quoique encore jeune, a déjà mis à<br />

contribution <strong>de</strong> nombreuses personnes dont Guil<strong>la</strong>ume Szor, Bran<strong>de</strong>e Diner, Émilie Robert,<br />

<strong>et</strong> Patrick Morin que je remercie. Dans le cadre plus spécifique <strong>de</strong> mon proj<strong>et</strong>, je suis<br />

particulièrement reconnaissante envers : Gabriel Arguin, Marie-C<strong>la</strong>ire Bédard, Patrick<br />

Bergeron, Yves Briand, Sébastien Descamps, Julie Desrochers, Gabriel Fontaine, Marie-<br />

Andrée Giroux, llya Klvana, Ève-Marie Morriss<strong>et</strong>te, Christophe Ndong M'ba, Kim Poitras <strong>et</strong><br />

Julie Roberge. Je profite <strong>de</strong> l'occasion pour également remercier le personnel <strong>du</strong> Parc<br />

National <strong>du</strong> Bic pour leur accueil <strong>et</strong> leur soutien pendant mon travail.<br />

Pour leurs conseils statistiques ou géomatiques merci à A<strong>la</strong>in Caron, Gaétan Daigle,<br />

Anne Loison <strong>et</strong> Patrick Morin. Pour son support informatique <strong>de</strong> tous les instants <strong>et</strong> pour<br />

m' avoir supportée comme voisine <strong>de</strong> bureau pendant plus <strong>de</strong> quatre ans, un grand merci au<br />

« grand Arnaud » Mosnier. Pour le <strong>climat</strong> dynamique <strong>et</strong> <strong>la</strong> bonne ambiance qu' ils ont su créer


11<br />

ou maintenir, je remercie tous les étudiants <strong>de</strong> l'équipe « Joël-Dominique ». Merci aussi aux<br />

nombreux étudiants que j'ai pu croiser à Rimouski ou ailleurs <strong>et</strong> qui m'ont aidé à avancer <strong>et</strong> à<br />

générer <strong>de</strong> nouvelles idées.<br />

Je veux remercier ma famille pour avoir cru en moi, même sans toujours comprendre<br />

exactement ce pour quoi je me démenais; mes ami(e)s <strong>et</strong> particulièrement Laï<strong>la</strong> <strong>et</strong> Lydia pour<br />

me ramener parfois à <strong>la</strong> <strong>du</strong>re réalité .. . il n'y a pas que l'écologie dans <strong>la</strong> vie! Par <strong>de</strong>ssus tout,<br />

merci à Sébastien pour m' avoir soutenue à chaque étape <strong>de</strong> ce long périple. Toujours là pour<br />

m'encourager, m'ai<strong>de</strong>r, <strong>et</strong> prendre le re<strong>la</strong>is auprès <strong>de</strong> notre p<strong>et</strong>ite fille quand j'étais peu<br />

disponible. Sans toi, sans doute n'aurais-je pas fini! Finalement, merci à ma p<strong>et</strong>ite Cléo pour<br />

son amour <strong>et</strong> le bonheur qu'elle m'apporte chaque jour. Maman a presque fini son doctorat. ..<br />

C<strong>et</strong>te recherche a été réalisée grâce au soutien financier <strong>du</strong> Conseil <strong>de</strong> Recherche en<br />

Sciences Naturelles <strong>et</strong> en Génie <strong>du</strong> Canada, Fonds Québécois <strong>de</strong> <strong>la</strong> Recherche <strong>sur</strong> <strong>la</strong> Nature<br />

<strong>et</strong> les Technologies, le Programme <strong>de</strong>s Chaires <strong>de</strong> Recherche <strong>du</strong> Canada, <strong>la</strong> Fondation<br />

Canadienne pour l'innovation. Pour mon financement personnel, je remercie le Conseil<br />

international d'Étu<strong>de</strong>s Canadiennes, le Centre d'Étu<strong>de</strong>s Nordiques <strong>et</strong> l'Association <strong>de</strong>s<br />

Femmes Françaises Diplômées <strong>de</strong>s Universités (bourse Marie-Louise Fumestin).


Table <strong>de</strong>s matières<br />

LISTE DES TABLEAUX<br />

LISTE DES FIGURES<br />

LISTE DES ANNEXES<br />

RÉSUMÉ<br />

v<br />

IX<br />

xv<br />

XVI<br />

CHAPITRE 1<br />

INTRODUCTION<br />

1.1 Impact <strong>de</strong>s variations <strong>climat</strong>iques <strong>sur</strong> les écosystèmes<br />

l.2<br />

l.3<br />

1.4<br />

1.5<br />

l.6<br />

l.7.<br />

Impact <strong>de</strong>s variations <strong>climat</strong>iques <strong>sur</strong> les popu<strong>la</strong>tions<br />

Impact <strong>de</strong>s variations <strong>climat</strong>iques <strong>sur</strong> les indivi<strong>du</strong>s<br />

Utilisation <strong>de</strong> <strong>l'habitat</strong>, <strong>climat</strong> <strong>et</strong> valeur repro<strong>du</strong>ctive <strong>de</strong>s indivi<strong>du</strong>s<br />

Un système sensible aux fluctuations <strong>climat</strong>iques: le porc-épie d' Amérique<br />

au Bas-St-Laurent<br />

La popu<strong>la</strong>tion <strong>de</strong> porcs-épies au parc national <strong>du</strong> Bic<br />

Objectifs spécifiques <strong>et</strong> p<strong>la</strong>n <strong>de</strong> <strong>la</strong> thèse<br />

2<br />

4<br />

6<br />

7<br />

10<br />

14<br />

CHAPITRE 2<br />

HANDLING NORTH AMERICAN PORCUPINES: REVlEW OF EXISTING<br />

METHODS AND NEW METHODS TO INCREASE ANIMAL WELF ARE 17<br />

2.1 Abstract<br />

18<br />

2.2 Intro<strong>du</strong>ction<br />

18<br />

2.3 Materials and m<strong>et</strong>hods<br />

20<br />

2.4 Resu1ts<br />

25<br />

2.5 Discussion<br />

28<br />

2.6 Conclusion<br />

30


IV<br />

CHAPITRE 3<br />

PREDA TION AS A POSSIBLE MECHANISM RELA TING WINTER<br />

WEATHER TO POPULATION DYNAMICS IN A NORTH AMERICAN<br />

PORCUPINE POPULATION<br />

3.1 Abstract<br />

3.2 Intro<strong>du</strong>ction<br />

3.3 Materials and m<strong>et</strong>hods<br />

3.4 Results<br />

3.5 Discussion<br />

3.6 Conclusion<br />

31<br />

32<br />

33<br />

36<br />

41<br />

50<br />

53<br />

CHAPITRE 4<br />

NAVIGATING THE THERMAL MAP: PORCUPINES EAT IN THE COLD BUT<br />

REST IN THE W ARM 54<br />

4.1 Abstract<br />

55<br />

4.2 Intro<strong>du</strong>ction<br />

56<br />

4.3 Materials and m<strong>et</strong>hods<br />

4.4 Results<br />

4.5 Discussion<br />

4.6 Complément d'information<br />

58<br />

65<br />

73<br />

77<br />

CHAPITRE 5<br />

ARE JUVENILE PORCUPINES MAXIMIZING SURVIVAL BY SELECTING<br />

THEIR MICRO HABIT A T? 82<br />

5.1 Abstract<br />

83<br />

5.2 Intro<strong>du</strong>ction<br />

83<br />

5.3 Materials and m<strong>et</strong>hods<br />

86<br />

5.4 Results<br />

92<br />

5.5 Discussion<br />

99<br />

CHAPITRE 6<br />

CONCLUSION<br />

ANNEXES<br />

RÉFÉRENCES<br />

105<br />

118<br />

121


Liste <strong>de</strong>s tableaux<br />

Chapitre 3<br />

Table 3.1 Monitoring effort according to season and year in a North American<br />

porcupine popu<strong>la</strong>tion in Parc National <strong>du</strong> Bic, Québec, May 2000-May 2006. Survey<br />

corresponds to the number of nights and person-hours spent searching for porcupines<br />

randomly in the study area. Radio-tracking corresponds to the effort ma<strong>de</strong> following<br />

porcupines by telem<strong>et</strong>ry (number of indivi<strong>du</strong>als followed, proportion of the total<br />

popu<strong>la</strong>tion, and me an number of days bearing a col<strong>la</strong>r)<br />

37<br />

Table 3.2 Structure and size of a North American porcupine popu<strong>la</strong>tion followed<br />

in Parc National <strong>du</strong> Bic, Québec, May 2000-May 2006. Popu<strong>la</strong>tion growth rate was<br />

calcu<strong>la</strong>ted as popu<strong>la</strong>tion size in year t+ 1 divi<strong>de</strong>d by popu<strong>la</strong>tion size in year t<br />

42<br />

Table 3.3<br />

Mo<strong>de</strong>l selection for sighting probabilities (P) in a popu<strong>la</strong>tion of North<br />

American porcupines, Parc National <strong>du</strong> Bic, Québec, May 2000-May 2005. We used<br />

data on 159 indivi<strong>du</strong>als. We consi<strong>de</strong>red <strong>sur</strong>vival rate to be time-<strong>de</strong>pen<strong>de</strong>nt (~ t ) in all<br />

mo<strong>de</strong>ls and tested for an effect of sex, age (a, consi<strong>de</strong>ring two age c<strong>la</strong>sses: juveniles<br />

and 2 1-yr-old), season (s), and year (y) on sighting probabilities. We tested for an<br />

effect of use of telem<strong>et</strong>ry on summer sighting probability and co<strong>de</strong>d 0: years when<br />

50% of marked indivi<strong>du</strong>als were followed by telem<strong>et</strong>ry<br />

(i .e. high telem<strong>et</strong>ry effort in 2001, 2003, and 2004). Mo<strong>de</strong>l in bold represents the<br />

selected mo<strong>de</strong>l<br />

43


VI<br />

Table 3.4<br />

Tests of the effects ofsex, age (a, consi<strong>de</strong>ring two age c<strong>la</strong>sses: juveniles<br />

and ::': l-yr-old), season (s) and year (y) on seasonal <strong>sur</strong>vival rates (~) in a popu<strong>la</strong>tion of<br />

North American porcupines, Parc National <strong>du</strong> Bic, Québec, May 2000-May 2005. We<br />

used data on 159 indivi<strong>du</strong>als and mo<strong>de</strong>led sighting probabilities following mo<strong>de</strong>!<br />

selected in Table 3.3. Mo<strong>de</strong>l in bold represents the selected mo<strong>de</strong>!<br />

44<br />

Table 3.5<br />

Tests of the effects of local weather variables on winter <strong>sur</strong>vival rates<br />

(~w) in a popu<strong>la</strong>tion of North American porcupines, Parc National <strong>du</strong> Bic, Québec,<br />

May 2000-May 2005. We used data on 159 indivi<strong>du</strong>als. Mo<strong>de</strong>l in bold represents the<br />

selected mo<strong>de</strong>!. We show the percentage ofyearly variation in <strong>sur</strong>vival that is<br />

exp<strong>la</strong>ined by each environmental covariate (r 2 )<br />

46<br />

Table 3.6 Tests of <strong>la</strong>gged (1 year: y-l ; 2 years: y-2) effects of winter precipitation<br />

on winter <strong>sur</strong>vival rates (~w) in a popu<strong>la</strong>tion of North American porcupines, Parc<br />

National <strong>du</strong> Bic, Québec, May 2000-May 2005. We used data on 159 indivi<strong>du</strong>als.<br />

Mo<strong>de</strong>l in bold represents the selected mo<strong>de</strong>!. We also performed tests of <strong>la</strong>gged<br />

Effects of snowfall and spring temperature on <strong>sur</strong>vival but don't show results here<br />

since no mo<strong>de</strong>l was b<strong>et</strong>ter th an the selected mo<strong>de</strong>!<br />

46<br />

Chapitre 4<br />

Table 4.1<br />

Linear mixed effect mo<strong>de</strong>ls for the power consumed by porcupine<br />

mounts exposed to avai<strong>la</strong>ble conditions of operative temperature (Tc), Parc National<br />

<strong>du</strong> Bic, Québec, December to March 2004-2005. We first tested for an effect of Tc,<br />

microhabitat, and Tex microhabitat. We removed non-significant (NS) interactions<br />

b<strong>et</strong>ween Tcx microhabitat from final mo<strong>de</strong>ls. When testing the effect of microhabitat,<br />

we first consi<strong>de</strong>red al! microhabitats sampled (i .e. "<strong>de</strong>n", "ground open", "ground<br />

covered", "<strong>de</strong>ci<strong>du</strong>ous", "conifer open", "conifer covered" : mo<strong>de</strong>ll). Then we grouped<br />

certain micro habitats and compared effects of groups of microhabitats ("<strong>de</strong>n" vs<br />

non-<strong>de</strong>n microhabitats: mo<strong>de</strong>l 2; arboreal vs terrestrial: mo<strong>de</strong>l 3; open vs covered:<br />

mo<strong>de</strong>! 4). The type and number (n) of mea<strong>sur</strong>es consi<strong>de</strong>red for analysis are specified 66


VB<br />

Table 4.2<br />

Power consumed (in Watts, me an ± SE) by porcupine mounts exposed<br />

to avai<strong>la</strong>ble conditions of operative temperature and p<strong>la</strong>ced in "<strong>de</strong>n" and non-<strong>de</strong>n<br />

microhabitats, Parc National <strong>du</strong> Bic, Québec, December to March, 2004-2005. Means<br />

were calcu<strong>la</strong>ted by first averaging the mea<strong>sur</strong>ements obtained for a given microhabitat<br />

and day, and then b<strong>et</strong>ween days for each group of microhabitats. Samples sizes are<br />

specified as (number of days, number of mea<strong>sur</strong>ements). Power consumed in non-<strong>de</strong>n<br />

microhabitats is also given as a percentage of power consumed in "<strong>de</strong>n"<br />

67<br />

Table 4.3<br />

Number of activity bouts in a day (mean ± SE), <strong>du</strong>ration of activity<br />

bouts (in hour, mean ± SE), and re<strong>la</strong>tive distribution of activity b<strong>et</strong>ween day and night<br />

(nocturnality in<strong>de</strong>x: b<strong>et</strong>ween 0: totally diurnal and 2: totally nocturnal, mean ± SE) as a<br />

function of operative temperature for North American porcupines, Parc National <strong>du</strong> Bic,<br />

Québec, January to April, 2004-2005. Samples sizes are specified as (number of<br />

indivi<strong>du</strong>als, number of observations)<br />

71<br />

Tableau 4.4<br />

Temps moyen passé <strong>de</strong>hors en 24 h (h), <strong>du</strong>rée moyenne <strong>de</strong>s sorties (min),<br />

nombre moyen <strong>de</strong> sorties en 24 h <strong>et</strong> indice <strong>de</strong> nocturnalité moyen (0 : activité totalement<br />

diurne, 2 : activité totalement nocturne) pour les porcs-épics d'Amérique suivis en février<br />

2004 <strong>et</strong> février 2005 au Parc National <strong>du</strong> Bic, Québec, Canada. Les seuils <strong>de</strong> signification<br />

pour les différences entre indivi<strong>du</strong>s dans l' utilisation <strong>de</strong> <strong>l'habitat</strong> sont indiqués par<br />

* (p


V III<br />

Chapitre 5<br />

Table 5.1 Coefficients for the resource selection functions at the microhabitat<br />

(1 m) and local (15 m) scales for hiding sites used by 14 juvenile North American<br />

porcupines in Parc National <strong>du</strong> Bic, Québec, May to August, 2003-2004<br />

94<br />

Table 5.2 Use of <strong>de</strong>n (% of locations in <strong>de</strong>n) and use of coyer when outsi<strong>de</strong> of the<br />

<strong>de</strong>n (mean % ofprotective coyer) as a function ofm<strong>et</strong>eorological conditions for 14<br />

juvenile North American porcupines in Parc National <strong>du</strong> Bic, Québec, May to August,<br />

2003-2004. We consi<strong>de</strong>red wind to be present when tree leaves were agitated and rain<br />

to be present when at least a light rain was falling (see m<strong>et</strong>hods). Sample sizes (N)<br />

represent number of indivi<strong>du</strong>als and number of observations<br />

96<br />

Table 5.3 Use of coyer by juvenile North American porcupines at the microhabitat<br />

(1 m) and local (15 m) scales in Parc National <strong>du</strong> Bic, Québec, May to August,<br />

2003-2004. Results are reported as the mean for each indivi<strong>du</strong>al (A to N) and for the<br />

popu<strong>la</strong>tion (mean calcu<strong>la</strong>ted from indivi<strong>du</strong>al means). Levels of significance for<br />

b<strong>et</strong>ween-indivi<strong>du</strong>al differences in habitat use are indicated as * (p


Liste <strong>de</strong>s figures<br />

Chapitre 1<br />

Figure 1.1 Eff<strong>et</strong>s possibles <strong>du</strong> <strong>climat</strong> <strong>sur</strong> une chaîne trophique à trois niveaux,<br />

basé <strong>sur</strong> <strong>de</strong>s observations empiriques <strong>de</strong>s interactions entre les loups, les orignaux, les<br />

sapins baumiers, <strong>et</strong> le <strong>climat</strong> à l'île Royale, É.U. (tirée <strong>de</strong> Post & Forchhammer 2001).<br />

Le <strong>climat</strong> a un eff<strong>et</strong> direct <strong>sur</strong> chacun <strong>de</strong>s niveaux trophiques mais les interactions<br />

entre espèces peuvent aussi être influencées par les fluctuations <strong>climat</strong>iques.<br />

4<br />

Figure 1.2 Exemple <strong>de</strong> cycle <strong>de</strong> vie chez <strong>de</strong>s herbivores <strong>de</strong> gran<strong>de</strong> taille (tirée <strong>de</strong><br />

Gail<strong>la</strong>rd <strong>et</strong> al. 2000). Nombres encerclés: 1: nouveau-né, 2: jeune sevré, 3: jeune <strong>de</strong><br />

l'année, 4: indivi<strong>du</strong> <strong>de</strong> <strong>de</strong>ux ans (souvent l'âge <strong>de</strong> première repro<strong>du</strong>ction), 5: indivi<strong>du</strong><br />

« dans <strong>la</strong> force <strong>de</strong> l'âge» (prime-age), 6: indivi<strong>du</strong> sénescent. Les lignes droites<br />

indiquent <strong>la</strong> <strong>sur</strong>vie d' un groupe d'âge à un autre. Les lignes courbes indiquent <strong>la</strong><br />

pro<strong>du</strong>ction <strong>de</strong> jeunes (donc <strong>la</strong> repro<strong>du</strong>ction).<br />

5<br />

Figure 1.3<br />

Fluctuations dans l'indice d' abondance <strong>de</strong> porcs-épies (abondance<br />

re<strong>la</strong>tive <strong>de</strong> cicatrices d'une année à l'autre, moyenne <strong>sur</strong> trois sites d'échantillonnage), <strong>la</strong><br />

radiation so<strong>la</strong>ire (W/m\ <strong>la</strong> température moyenne au printemps (Mai-Juin, oC), les<br />

précipitations hivernales totales (Novembre-Avril, en mm) <strong>et</strong> les chutes <strong>de</strong> neige<br />

(Novembre-Avril, en cm) entre 1868 (1877 pour les paramètres météorologiques) <strong>et</strong><br />

2000 (tirée <strong>de</strong> Klvana <strong>et</strong> al. 2004). 9<br />

Figure 1.4 Localisation <strong>du</strong> parc national <strong>du</strong> Bic, Bas-St-Laurent, Québec, Canada. 10


x<br />

Figure 1.5<br />

Carte <strong>de</strong> l'aire d'étu<strong>de</strong> dans le secteur Est <strong>du</strong> parc national <strong>du</strong> Bic,<br />

Québec (tirée <strong>de</strong> Morin <strong>et</strong> al. 2005). L'aire d'étu<strong>de</strong> est caractérisée par une forêt boréale<br />

mixte dominée, en ordre d'importance, par : le peuplier faux-tremble (Populus<br />

tremuloi<strong>de</strong>s), le cèdre (Thuja occi<strong>de</strong>ntalis), l'épin<strong>et</strong>te b<strong>la</strong>nche (Picea g<strong>la</strong>uca) <strong>et</strong> le sapin<br />

baumier (Abies balsamea). L'aire d'étu<strong>de</strong> est fragmentée par <strong>de</strong>s champs où les<br />

porcs-épics viennent se nourrir en été <strong>et</strong> où ils sont facilement capturés.<br />

12<br />

Figure 1.6<br />

Photo par D. Berteaux.<br />

Porc-épic d'Amérique marqué à l'ai<strong>de</strong> <strong>de</strong> boucles d'oreilles <strong>de</strong> couleur.<br />

12<br />

Figure 1.7 Déclin d'abondance <strong>de</strong>s porcs-épics au parc national <strong>du</strong> Bic, Québec :<br />

a) nombre d' indivi<strong>du</strong>s capturés <strong>sur</strong> une aire d'étu<strong>de</strong> d'environ 2 km 2 à l'Est <strong>du</strong> parc<br />

(D. Berteaux, données non publiées), b) estimation <strong>de</strong> <strong>de</strong>nsité <strong>de</strong> porcs-épics<br />

(indivi<strong>du</strong>s/km 2 ) par inventaires <strong>de</strong> pistes dans trois secteurs, à l'Ouest <strong>de</strong> l' aire<br />

d'étu<strong>de</strong> utilisée pour les captures <strong>de</strong> porcs-épics (Y. Lemay, données non publiées). 13<br />

Chapitre 2<br />

Figure 2.1<br />

Dip n<strong>et</strong> <strong>de</strong>veloped to capture North American porcupines in<br />

Parc National <strong>du</strong> Bic, Québec, May 2000-May 2005. Photo by S. Descamps.<br />

22<br />

Figure 2.2<br />

Tygon tubing system used to attach radio transmitter to North<br />

American porcupines in Parc National <strong>du</strong> Bic, Québec, May 2000-May 2005. Note<br />

that the m<strong>et</strong>allic part (cramp) used to close the col<strong>la</strong>r is visible on the picture but was<br />

inserted into the Tygon after the col<strong>la</strong>r was adjusted around the porcupine's neck.<br />

Photo by S. Descamps.<br />

24


XI<br />

Figure 2.3 Number oftimes ajuvenile was found through a systematic se arch<br />

around a female North American porcupine in Parc National <strong>du</strong> Bic, Québec, May 2000<br />

to May 2005, according to a) number of search(es) performed to find the juvenile<br />

(inclu<strong>de</strong>s the successful search), and b) time spent searching (min) before finding a<br />

juvenile (only data from successful searches are shown).<br />

27<br />

Chapitre 3<br />

Figure 3.1 Standardized yearly so<strong>la</strong>r irradiance, winter precipitation, snowfall and<br />

spring temperature b<strong>et</strong>ween 1998 and 2004. So<strong>la</strong>r irradiance was obtained from the<br />

PMOD/WRC (Davos, Switzer<strong>la</strong>nd), and weather records from the Environment Canada<br />

weather station at Rimouski, about 20 km from Parc National <strong>du</strong> Bic, Québec. 42<br />

Figure 3.2 Mean monthly <strong>sur</strong>vival probability b<strong>et</strong>ween August in year t and May<br />

in year t + 1 according to age (white symbols: juveniles; b<strong>la</strong>ck symbols: indivi<strong>du</strong>als<br />

:::: l-yr-old) in a North American porcupine popu<strong>la</strong>tion, Parc National <strong>du</strong> Bic, Québec,<br />

August 2000-May 2005. Results correspond to estimated values (mean ± SE) from<br />

mo<strong>de</strong>l selected in table 3.4. Secondary axis shows environmental covariates re<strong>la</strong>ted<br />

to winter <strong>sur</strong>vival: dotted line corresponds to me an so<strong>la</strong>r irradiance (for year t, in W/m 2 ) ,<br />

long-dashed line cOiTesponds to winter precipitation recor<strong>de</strong>d at Rimouski (from<br />

November, year t to April, year t + 1, in mm). 45<br />

Figure 3.3 Causes of mortality d<strong>et</strong>ermined for carcasses found <strong>du</strong>ring monitoring<br />

of a North American porcupine popu<strong>la</strong>tion in Parc National <strong>du</strong> Bic, Québec,<br />

May 2000-May 2006. Percentage of carcasses <strong>de</strong>ad by starvation, road kill, tree fall and<br />

predation are shown respectively in white, light grey, dark grey and b<strong>la</strong>ck. Sample sizes<br />

for each year are indicated at the top of each bar. 47


XlI<br />

Figure 3.4 Causes of mortality for <strong>de</strong>ad juveniles (in white, n = 9) and indivi<strong>du</strong>als<br />

2:1-yr-old (in b<strong>la</strong>ck, n = 37) in North American porcupines, Parc National <strong>du</strong> Bic,<br />

Québec, May 2000-May 2006. 48<br />

Figure 3.5 Season of mortality for the: a) <strong>de</strong>predated juveniles (in white, n = 6)<br />

and indivi<strong>du</strong>als 2:1-yr-old (in b<strong>la</strong>ck, n = 22), and b) starved juveniles (in white, n =2)<br />

and indivi<strong>du</strong>als 2:1-yr-old (in b<strong>la</strong>ck, n = Il), in North American porcupines, Parc<br />

National <strong>du</strong> Bic, Québec, May 2000-May 2006. Seasons were <strong>de</strong>fined as: summer<br />

(from May to August), winter but no snow (from September to approximately mid-<br />

November), and winter with snow covering the ground (approximately from mid-<br />

November to end of April). 49<br />

Chapitre 4<br />

Figure 4.1 Mean daily air temperature (oC) mea<strong>sur</strong>ed outsi<strong>de</strong> (b<strong>la</strong>ck solid line)<br />

and insi<strong>de</strong> (grey solid hne) ni ne porcupine <strong>de</strong>ns, Parc National <strong>du</strong> Bic, Québec,<br />

15 December 2004-14 April 2005. B<strong>la</strong>ck dashed line indicates the mean outsi<strong>de</strong><br />

tempe rature (-2A°C) above which temperature insi<strong>de</strong> the <strong>de</strong>n became lower than<br />

outsi<strong>de</strong> temperature.<br />

65<br />

Figure 4.2 Power consumed by porcupine mounts exposed to avai<strong>la</strong>ble conditions<br />

of operative temperature and p<strong>la</strong>ced in non-<strong>de</strong>n microhabitats, Parc National <strong>du</strong> Bic,<br />

Québec, December to March, 2004-2005. Means for non-<strong>de</strong>n microhabitats are shown<br />

as a percentage of power consumed in "<strong>de</strong>n" (from Table 4.2). Sample sizes are<br />

specified above the bars as : number of days for which data was obtained, total number<br />

of mea<strong>sur</strong>ements on those days. a) ln arboreal ("conifer open", "conifer covered" and<br />

"<strong>de</strong>ci<strong>du</strong>ous" pooled, white bars) and terrestrial microhabitats ("ground open" and<br />

"ground covered" pooled, b<strong>la</strong>ck bars). b) In open ("conifer open", "<strong>de</strong>ci<strong>du</strong>ous" and<br />

"ground open" pooled, white bars) and covered microhabitats ("ground covered"<br />

and "coniferous covered" pooled, b<strong>la</strong>ck bars).<br />

68


Xlll<br />

Figure 4.3 Time spent outsi<strong>de</strong> of a <strong>de</strong>n (mean ± SE) in a day for male (open circles)<br />

and female (filled circles) North American porcupines and occurrence of feeding<br />

behaviour (mean ± SE) wh en in a coniferous tree (filled squares: males and females<br />

pooled since difference b<strong>et</strong>ween sexes was not significant) as a function of operative<br />

temperature, Parc National <strong>du</strong> Bic, Québec, January to April, 2004-2005. Sample<br />

sizes are specified near each symbol as: number of indivi<strong>du</strong>als, number of<br />

observations on those indivi<strong>du</strong>als. 70<br />

Figure 4.4 Estimated time spent feeding (mean ± SE) in a day for male (white bars)<br />

and female (dark bars) North American porcupines, Parc National <strong>du</strong> Bic, Québec,<br />

January to April, 2004-2005. Time spent feeding was estimated for each indivi<strong>du</strong>al and<br />

c1ass of operative tempe rature (Te) and then averaged for males and females for each<br />

c<strong>la</strong>ss of Tc.<br />

73<br />

Chapitre 5<br />

Figure 5.1 Characteristics of microhabitats mea<strong>sur</strong>ed within 1 m of hiding sites used<br />

by 14 juvenile North American porcupines, and at random locations in Parc National <strong>du</strong><br />

Bic, Québec, May to August, 2003-2004. Results shown are means (± SE) for the<br />

popu<strong>la</strong>tion (calcu<strong>la</strong>ted from indivi<strong>du</strong>al means). a) Proportion ofhiding sites that were in a<br />

<strong>de</strong>n (/10), proportion of protective co ver (/10) around hiding sites, air temperature (oC),<br />

and wind speed (cm/s) in the microhabitat (n = 14 indivi<strong>du</strong>als and 299 observations for ail<br />

variables). b) Percentage oftimes the tree used was an aspen, fruit-bearing, other<br />

<strong>de</strong>ci<strong>du</strong>ous, cedar, or other coniferous tree Bars to the right show mean circumference<br />

(cm) of the tree (n = 10 indivi<strong>du</strong>als and 73 observations for aU variables). 93


XIV<br />

Figure 5.2 Characteristics of veg<strong>et</strong>ative cover within 15 m of hiding sites used by 14<br />

juvenile North American porcupines compared to veg<strong>et</strong>ative cover avai<strong>la</strong>ble at random<br />

locations, in Parc National <strong>du</strong> Bic, Québec, May to August, 2003-2004. From left to right:<br />

percentage of tree, shrub and herb cover present on the site, and mean percentage of times<br />

the dominant tree species was an aspen, fruit-bearing, other <strong>de</strong>ci<strong>du</strong>ous, cedar, or other<br />

coniferous tree (n = 14 indivi<strong>du</strong>als and 299 observations for all variables). Results<br />

shown are means (± SE) for the popu<strong>la</strong>tion (caJcu<strong>la</strong>ted from indivi<strong>du</strong> al means). 95<br />

Chapitre 6<br />

Figure 6.1 Schéma récapitu<strong>la</strong>tif <strong>de</strong>s principaux suj<strong>et</strong>s traités dans <strong>la</strong> thèse. On<br />

s'est intéressé aux eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> <strong>et</strong> <strong>de</strong> <strong>la</strong> prédation <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie, aux eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong><br />

<strong>et</strong> <strong>de</strong> <strong>la</strong> prédation <strong>sur</strong> <strong>l'utilisation</strong> <strong>de</strong> <strong>l'habitat</strong>, <strong>et</strong> aux conséquences <strong>de</strong>s différences<br />

indivi<strong>du</strong>elles d'utilisation <strong>de</strong> <strong>l'habitat</strong> <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie. 105


Liste <strong>de</strong>s annexes<br />

Annexe 1 Description <strong>de</strong>s micro habitats - chapitre 4 118<br />

Annexe 2 Étalonnage <strong>de</strong>s modèles en cuivre - chapitre 4 119<br />

Annexe 3<br />

Puissance consommée par les modèles taxi<strong>de</strong>rmiques en fonction<br />

<strong>de</strong> <strong>la</strong> température opérante - chapitre 4 120


Résumé<br />

Ce travail <strong>de</strong> doctorat avait pour principal objectif <strong>de</strong> mieux comprendre les eff<strong>et</strong>s <strong>du</strong><br />

<strong>climat</strong> <strong>et</strong> <strong>de</strong> <strong>la</strong> prédation <strong>sur</strong> <strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>tions animales, en utilisant comme<br />

modèle d'étu<strong>de</strong> une popu<strong>la</strong>tion <strong>de</strong> porcs-épies d'Amérique (Er<strong>et</strong>hizon dorsatum) située au<br />

Bas-St-Laurent, Québec, Canada. C<strong>et</strong>te popu<strong>la</strong>tion est suivie <strong>de</strong>puis mai 2000 <strong>et</strong> tous les<br />

indivi<strong>du</strong>s trouvés sont capturés <strong>et</strong> marqués <strong>de</strong> manière permanente (à l'ai<strong>de</strong> <strong>de</strong> boucles<br />

d'oreilles). La popu<strong>la</strong>tion a connu un déclin d'abondance marqué entre 2000 <strong>et</strong> 2006, déclin<br />

qui pourrait être en lien avec l'augmentation récente <strong>de</strong> l'abondance <strong>de</strong> pékans (Martes<br />

pennanti) dans <strong>la</strong> région. Le pékan est un prédateur efficace <strong>du</strong> porc-épie <strong>et</strong> son impact<br />

négatif <strong>sur</strong> <strong>la</strong> taille <strong>de</strong>s popu<strong>la</strong>tions <strong>de</strong> porcs-épies a déjà été signalé dans <strong>la</strong> littérature. Par<br />

ailleurs, <strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>tions <strong>de</strong> porcs-épies au Bas-St-Laurent semble influencée<br />

par le <strong>climat</strong>. En eff<strong>et</strong>, une étu<strong>de</strong> récente montre que l'abondance <strong>de</strong>s porcs-épies au Bas-St-<br />

Laurent a fluctué entre 1870 <strong>et</strong> 2000 <strong>de</strong> manière cyclique, en lien avec les cycles d'activité<br />

so<strong>la</strong>ire <strong>et</strong> les cycles dans certaines variables météorologiques locales.<br />

Le calcul <strong>de</strong>s taux <strong>de</strong> <strong>sur</strong>vie par saison (été: mai à aôut, hiver : août à mai) a pennis <strong>de</strong><br />

démontrer que les taux <strong>de</strong> <strong>sur</strong>vie en hiver sont plus bas <strong>et</strong> plus variables que les taux <strong>de</strong><br />

<strong>sur</strong>vie en été, <strong>et</strong> qu' ils sont négativement reliés au niveau <strong>de</strong> précipitations hivernales. Par<br />

ailleurs, l'examen <strong>de</strong>s causes <strong>de</strong> mortalité indique que les taux <strong>de</strong> prédation sont plus élevés<br />

les années <strong>de</strong> fortes précipitations hivernales, <strong>et</strong> que <strong>la</strong> prédation <strong>sur</strong> les a<strong>du</strong>ltes semble liée à<br />

<strong>la</strong> présence <strong>de</strong> neige au sol. Ces résultats suggèrent que les taux <strong>de</strong> prédation varient en<br />

fonction <strong>de</strong>s conditions <strong>de</strong> neige <strong>et</strong> donc que les conditions <strong>climat</strong>iques peuvent <strong>influence</strong>r les<br />

re<strong>la</strong>tions prédateurs-proies.<br />

La qualité <strong>de</strong> <strong>l'habitat</strong> qu'un animal utilise peut potentiellement <strong>influence</strong>r sa <strong>sur</strong>vie <strong>et</strong><br />

son succès repro<strong>du</strong>cteur. J'ai donc examiné comment les variations <strong>de</strong>s conditions<br />

météorologiques <strong>et</strong> <strong>du</strong> risque <strong>de</strong> prédation <strong>influence</strong>nt l' utilisation <strong>de</strong> <strong>l'habitat</strong>, <strong>et</strong> avec quelles<br />

conséquences pour <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s indivi<strong>du</strong>s. Nos résultats montrent que les animaux modifient<br />

leur utilisation <strong>de</strong> l' habitat en fonction <strong>du</strong> risque <strong>de</strong> prédation <strong>et</strong> <strong>de</strong>s conditions<br />

météorologiques. Les indivi<strong>du</strong>s diffèrent dans leur utilisation <strong>de</strong> <strong>l'habitat</strong> <strong>et</strong> ces différences<br />

d' utilisation <strong>de</strong> l' habitat sont liées à <strong>de</strong>s différences <strong>de</strong> <strong>sur</strong>vie, probablement via <strong>de</strong>s<br />

différences dans l'exposition à <strong>la</strong> prédation, principale cause <strong>de</strong> mortalité dans notre<br />

popu<strong>la</strong>tion.<br />

Chez les espèces longévives comme le porc-épie, les fluctuations <strong>de</strong>s taux <strong>de</strong> <strong>sur</strong>vie ont<br />

une <strong>influence</strong> importante <strong>sur</strong> <strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>tions. Ce travail <strong>de</strong> doctorat montre que<br />

le <strong>climat</strong> <strong>et</strong> <strong>la</strong> prédation <strong>influence</strong>nt <strong>la</strong> <strong>sur</strong>vie chez les porcs-épies, <strong>et</strong> donc potentiellement <strong>la</strong><br />

dynamique <strong>de</strong>s popu<strong>la</strong>tions. Il montre également que <strong>de</strong>s modifications dans <strong>l'utilisation</strong> <strong>de</strong><br />

<strong>l'habitat</strong> peuvent mo<strong>du</strong>ler les eff<strong>et</strong>s <strong>de</strong> <strong>la</strong> prédation <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie.<br />

Mots-clés: écologie animale, dynamique <strong>de</strong>s popu<strong>la</strong>tions, <strong>climat</strong>, prédation, utilisation <strong>de</strong><br />

<strong>l'habitat</strong>, <strong>sur</strong>vie, porc-épie, pékan


Chapitre 1<br />

Intro<strong>du</strong>ction<br />

1.1 Impact <strong>de</strong>s variations <strong>climat</strong>iques <strong>sur</strong> les écosystèmes<br />

L'augmentation <strong>de</strong>s gaz à eff<strong>et</strong> <strong>de</strong> serre, liée aux activités anthropiques, est une <strong>de</strong>s<br />

causes <strong>du</strong> changement <strong>climat</strong>ique actuel (P<strong>et</strong>it <strong>et</strong> al. 1999). Ce changement <strong>climat</strong>ique s'est<br />

tra<strong>du</strong>it par un réchauffement moyen <strong>de</strong>s températures <strong>de</strong> 0.6 ± 0.2°C pendant le 20 éme siècle<br />

(Houghton <strong>et</strong> al. 2001). Ce réchauffement <strong>influence</strong> <strong>la</strong> structure <strong>et</strong> le fonctionnement <strong>de</strong>s<br />

écosystèmes : extinction <strong>de</strong> certaines espèces, modification <strong>de</strong>s aires <strong>de</strong> répartition,<br />

modification <strong>de</strong> <strong>la</strong> composition <strong>de</strong>s communautés, changements dans <strong>la</strong> phénologie <strong>de</strong>s<br />

évènements <strong>de</strong> repro<strong>du</strong>ction ou <strong>de</strong> migration (Pounds <strong>et</strong> al. 1999, Hughes 2000, Walther <strong>et</strong> al.<br />

2002, Parmesan & Yohe 2003, Root <strong>et</strong> al. 2003). En plus <strong>du</strong> réchauffement global<br />

(directionnel), différentes variations <strong>climat</strong>iques ont un impact <strong>sur</strong> les écosystèmes. Les<br />

oscil<strong>la</strong>tions <strong>climat</strong>iques à gran<strong>de</strong> échelle d'une part, comme l'oscil<strong>la</strong>tion <strong>de</strong> l'At<strong>la</strong>ntique Nord<br />

(Hurrell 1995) ou l'oscil<strong>la</strong>tion australe dans le Pacifique Sud (Phi<strong>la</strong>n<strong>de</strong>r 1990), sont le<br />

résultat <strong>de</strong> mouvements atmosphériques <strong>et</strong> <strong>influence</strong>nt les mêmes paramètres<br />

météorologiques que le réchauffement global (e.g. variations dans les températures <strong>et</strong> les<br />

précipitations). Elles ont donc certains eff<strong>et</strong>s semb<strong>la</strong>bles <strong>sur</strong> <strong>la</strong> dynamique <strong>de</strong>s systèmes<br />

écologiques (Lima <strong>et</strong> al. 1999, Holmgren <strong>et</strong> al. 2001 , Ottersen <strong>et</strong> al. 2001 , Stens<strong>et</strong>h <strong>et</strong> al.<br />

2003a). Les variations d'activité so<strong>la</strong>ire d'autre part, <strong>influence</strong>nt le <strong>climat</strong> selon différentes<br />

pério<strong>de</strong>s <strong>de</strong> temps (revues dans Tsiropou<strong>la</strong> 2003, Versteegh 2005), avec là aussi <strong>de</strong>s eff<strong>et</strong>s <strong>sur</strong><br />

le fonctionnement <strong>de</strong>s écosystèmes (Sinc<strong>la</strong>ir <strong>et</strong> al. 1993, Sinc<strong>la</strong>ir & Gosline 1997, Klvana <strong>et</strong><br />

al. 2004, Se<strong>la</strong>s <strong>et</strong> al. 2004).<br />

Le réchauffement <strong>climat</strong>ique se tra<strong>du</strong>it par un changement directionnel <strong>du</strong> <strong>climat</strong> <strong>de</strong> notre<br />

p<strong>la</strong>nète, <strong>et</strong> semble aussi avoir un impact <strong>sur</strong> l'amplitu<strong>de</strong> <strong>et</strong> <strong>la</strong> fréquence <strong>de</strong>s oscil<strong>la</strong>tions<br />

<strong>climat</strong>iques à gran<strong>de</strong> échelle (Timmermann <strong>et</strong> al. 1999, Visbeck <strong>et</strong> al. 2001 , Gill<strong>et</strong>t <strong>et</strong> al.<br />

2003). Face à c<strong>et</strong>te variabilité <strong>climat</strong>ique croissante, comprendre les processus par lesquels le<br />

<strong>climat</strong> agit <strong>sur</strong> les écosystèmes est <strong>de</strong>venu un enjeu capital pour toute une génération<br />

d'écologistes. Bien que les eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> aient été bien documentés, <strong>de</strong> nombreuses<br />

incertitu<strong>de</strong>s subsistent quant à <strong>la</strong> nature <strong>de</strong>s liens existant entre les processus physiques <strong>et</strong><br />

biologiques (Harrington <strong>et</strong> al. 1999). I<strong>de</strong>ntifier les mécanismes impliqués dans les réponses


2<br />

biologiques aux fluctuations <strong>climat</strong>iques est un premier pas indispensable si l' on veut prédire<br />

les eff<strong>et</strong>s, <strong>et</strong> possiblement s'adapter au réchauffement <strong>climat</strong>ique (B erteaux <strong>et</strong> al. 2006).<br />

1.2 Impact <strong>de</strong>s variations <strong>climat</strong>iques <strong>sur</strong> les popu<strong>la</strong>tions<br />

Le <strong>climat</strong> est <strong>la</strong> synthèse <strong>de</strong>s conditions atmosphériques dans une région donnée <strong>sur</strong> un e<br />

longue péri o<strong>de</strong> <strong>de</strong> temps. Les conditions météorologiques, par contre, quali fient l' ensemble<br />

<strong>de</strong>s conditions physiques dont on peut ressentir directement les eff<strong>et</strong>s à un moment précis <strong>et</strong><br />

en un point précis. À proprement parl er, on ne <strong>de</strong>vrait donc utiliser le mot « <strong>climat</strong> » que<br />

lorsqu'on s' intéresse aux phénomènes atmosphériques s'exprimant <strong>sur</strong> une longue péri o<strong>de</strong> <strong>de</strong><br />

temps ou <strong>sur</strong> une <strong>la</strong>rge région géographique. De nombreuses étu<strong>de</strong>s en écologie discutent <strong>de</strong>s<br />

eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> ou <strong>de</strong> <strong>la</strong> variation <strong>climat</strong>ique <strong>sur</strong> <strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>ti ons (Albon &<br />

C lutton-Brock 1988, Lima <strong>et</strong> al. 2002a, Barbraud & Weimerskirch 2003, Krebs & Berteaux<br />

2006). Cependant, ces travaux examinent en fa it bien souvent les eff<strong>et</strong>s <strong>de</strong>s fluctuati ons <strong>de</strong>s<br />

conditions météorologiques <strong>et</strong> non <strong>du</strong> <strong>climat</strong> <strong>sur</strong> les popu<strong>la</strong>tions. Pour être cohérent avec les<br />

tennes employés dans <strong>la</strong> plupart <strong>de</strong>s étu<strong>de</strong>s, nous utiliserons les <strong>de</strong>ux termes (i.e. <strong>climat</strong> <strong>et</strong><br />

condi tions météorologiques) <strong>de</strong> mani ère interchangeable dans c<strong>et</strong>te thèse. On gar<strong>de</strong>ra<br />

cependant en mémoire les distincti ons existantes.<br />

La compréhension <strong>de</strong>s eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> <strong>sur</strong> <strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>tions est un e étape<br />

importante si l'on veut prévoir le <strong>de</strong>venir <strong>de</strong>s espèces, <strong>de</strong>s communautés, <strong>et</strong> <strong>de</strong>s écosystèmes.<br />

L ' étu<strong>de</strong> <strong>de</strong> <strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>ti ons a pour obj ectif<strong>la</strong> compréhension <strong>de</strong>s processus<br />

con<strong>du</strong>isant à <strong>la</strong> structure <strong>et</strong> à <strong>la</strong> taille <strong>de</strong>s popu<strong>la</strong>tions au cours <strong>du</strong> temps (Begon <strong>et</strong> al. 1996).<br />

L ' abondance d ' une popu<strong>la</strong>tion est déterminée par <strong>la</strong> <strong>sur</strong>vie, <strong>la</strong> fécondité, <strong>et</strong> les mouvements<br />

<strong>de</strong>s indivi<strong>du</strong>s (Stem-ns 1992, Krebs 1994). Les facteurs qui <strong>influence</strong>nt les processus<br />

démographiques peuvent être c<strong>la</strong>ssés en facteurs régul ateurs (qui ramènent une popu<strong>la</strong>tion à<br />

son point d 'équilibre lorsqu'elle s' en écarte) ou limitants (qui agissent <strong>sur</strong> <strong>la</strong> <strong>de</strong>nsité moyenne<br />

ou <strong>la</strong> <strong>de</strong>nsité à l' équilibre d' une popu<strong>la</strong>ti on) (Krebs 1994). Les facteurs régul ateurs sont par<br />

défi ni tion <strong>de</strong>s facteurs dont l'eff<strong>et</strong> est dépendant <strong>de</strong> <strong>la</strong> <strong>de</strong>nsité <strong>et</strong> sont typiquement <strong>de</strong>s<br />

facteurs bi oti ques (compétition, prédation, parasitisme) alors que les facteurs limitants<br />

peuvent être <strong>de</strong>s facteurs biotiques (généralement dépendants <strong>de</strong> <strong>la</strong> <strong>de</strong>nsité) ou abiotiques<br />

(généralement indépendants <strong>de</strong> <strong>la</strong> <strong>de</strong>nsité: <strong>climat</strong>, environnement physique ou chimique).


3<br />

L ' importance re<strong>la</strong>tive <strong>de</strong>s facteurs dépendants <strong>et</strong> indépendants <strong>de</strong> <strong>la</strong> <strong>de</strong>nsité dans <strong>la</strong><br />

déterminati on <strong>de</strong> l'abondance <strong>de</strong>s popu<strong>la</strong>tions a été longtemps discutée en écologie (e.g.<br />

Davidson & A ndrewartha 1948, Nicholson 1954, Hairston <strong>et</strong> al. 1960, Doug<strong>la</strong>s & Lesli e<br />

1986, Forchhammer <strong>et</strong> al. 1998, Barbraud & Weimerskirch 2003, Berryman & Lima 2006).<br />

On sait maintenant que les <strong>de</strong>ux types <strong>de</strong> facteurs peuvent avoir <strong>de</strong>s eff<strong>et</strong>s importants, <strong>et</strong><br />

peuvent interagir pour détenniner l'abondance <strong>de</strong>s popu<strong>la</strong>ti ons (Sa<strong>et</strong>her 1997, Gail<strong>la</strong>rd <strong>et</strong> a l.<br />

2000).<br />

Le <strong>climat</strong> <strong>influence</strong> <strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>ti ons animales par <strong>de</strong>s eff<strong>et</strong>s directs <strong>sur</strong> <strong>la</strong><br />

physiologie <strong>de</strong>s indivi<strong>du</strong>s (coüts <strong>de</strong> thermorégul ati on, coüts <strong>de</strong> locomoti on), ou par <strong>de</strong>s eff<strong>et</strong>s<br />

indirects en modifiant <strong>la</strong> nature <strong>de</strong>s interactions biologiques (compétition, re<strong>la</strong>tions<br />

prédateurs-proies, accès à <strong>la</strong> nourriture). Dans un système à trois niveaux trophiques<br />

(végétation, herbivore, carnivore, F ig. l.l), chaque ni veau peut voir son abondance modi fiée<br />

par les eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> <strong>et</strong> <strong>de</strong> <strong>la</strong> <strong>de</strong>nsité, ainsi que par une modi ficati on <strong>de</strong>s interacti ons<br />

trophiques (<strong>du</strong>e par exemple à un impact <strong>du</strong> <strong>climat</strong> <strong>sur</strong> l'efficacité <strong>de</strong> chasse <strong>de</strong>s prédateurs<br />

ou <strong>sur</strong> l'accessibilité <strong>de</strong> <strong>la</strong> végétati on pour les herbivores). Ainsi, <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s ori gnaux<br />

(A lces alces) à l'île Royale (É.U.) est plus faible les années <strong>de</strong> fo rt enneigement à <strong>la</strong> fo is<br />

parce que <strong>la</strong> mortalité <strong>de</strong>s indivi<strong>du</strong>s âgés augmente, <strong>et</strong> parce que les loups gris (Canis lupus)<br />

augmentent leur efficacité <strong>de</strong> chasse (en chassant en plus grands groupes) quand <strong>la</strong> neige est<br />

profon<strong>de</strong> (Post <strong>et</strong> al. 1999b). Les interacti ons trophiques sont donc <strong>de</strong>s voies par lesquell es<br />

les eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> peuvent se propager à tout un écosystème (Fig. 1.1 ).<br />

Une approche souvent utilisée pour prédire les eff<strong>et</strong>s <strong>de</strong>s changements <strong>climat</strong>iques est <strong>de</strong><br />

modéliser le <strong>climat</strong> futur, d ' en dé<strong>du</strong>ire <strong>la</strong> répartition <strong>de</strong> <strong>la</strong> végétation, puis <strong>la</strong> composition <strong>de</strong><br />

<strong>la</strong> communauté animale (Schmitz 2003). C<strong>et</strong>te approche a pour inconvénient <strong>de</strong> négli ger les<br />

eff<strong>et</strong>s potentie ls <strong>du</strong> <strong>climat</strong> <strong>sur</strong> les interactions entre espèces (Davis <strong>et</strong> al. 1998, Wilmers &<br />

Post 2006, Suttle <strong>et</strong> al. 2007), <strong>et</strong> notamment <strong>sur</strong> les interacti ons entre prédateurs <strong>et</strong> proies qui<br />

sont sensibles aux conditions environnementales (Post <strong>et</strong> al. 1999b, Hebblewhite 2005,<br />

Lensing & Wise 2006, Wilmers <strong>et</strong> al. 2006).


4<br />

-1Y<br />

Densité ~<br />

~ Prédateur<br />

1<br />

~\<br />

'. ,<br />

\<br />

Figure 1.1 : Eff<strong>et</strong>s possibles <strong>du</strong> <strong>climat</strong> <strong>sur</strong> une chaîne trophique à trois ni veaux, basé <strong>sur</strong> <strong>de</strong>s<br />

observations empi riques <strong>de</strong>s interactions entre les loups, les orignaux, les sapins baumiers, <strong>et</strong><br />

le <strong>climat</strong> à l'île Royale, É.U. (tirée <strong>de</strong> Post & Forchhammer 2001 ). Le <strong>climat</strong> a un eff<strong>et</strong> direct<br />

<strong>sur</strong> chacun <strong>de</strong>s ni veaux trophiques mais les interactions entre espèces peuvent aussi être<br />

influencées par les flu ctuations <strong>climat</strong>iques.<br />

1.3 Impact <strong>de</strong>s variations <strong>climat</strong>iques <strong>sur</strong> les indivi<strong>du</strong>s<br />

La dynamique <strong>de</strong>s popu<strong>la</strong>tions animales est fonction <strong>du</strong> succès repro<strong>du</strong>cteur <strong>et</strong> <strong>de</strong> <strong>la</strong><br />

<strong>sur</strong>vie <strong>de</strong>s indivi<strong>du</strong>s, qui eux-mêmes dépen<strong>de</strong>nt <strong>de</strong> plusieurs fac teurs (e .g. physiologie,<br />

comp0l1ement, conditions environnementales). Cependant, beaucoup d'étu<strong>de</strong>s s'intéressant à<br />

<strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>tions sont basées <strong>sur</strong> <strong>de</strong>s sui vis <strong>de</strong> taille ou d'abondance <strong>de</strong><br />

popu<strong>la</strong>tions (e.g. Owen-Smith & Mills 2006). Pour examiner les effe ts <strong>du</strong> <strong>climat</strong> <strong>sur</strong> <strong>la</strong><br />

dynamique <strong>de</strong> <strong>la</strong> popu<strong>la</strong>tion, on compare alors le taux d'accroissement <strong>de</strong> <strong>la</strong> popu<strong>la</strong>tion à un<br />

ou plusieurs facteurs <strong>climat</strong>iques (Forchhammer <strong>et</strong> al. 1998, Post & Stens<strong>et</strong>h 1998, Stens<strong>et</strong>h<br />

<strong>et</strong> al. 2002, Hebblewhite 2005). Le problème avec c<strong>et</strong>te métho<strong>de</strong> est que le dénombrement


5<br />

<strong>de</strong>s popu<strong>la</strong>tions ne donne qu' une me<strong>sur</strong>e globale <strong>de</strong> <strong>la</strong> performance <strong>de</strong> <strong>la</strong> popul ation.<br />

Déterminer si les facteurs <strong>climat</strong>iques ont un eff<strong>et</strong> positif, négati f, ou nul <strong>sur</strong> <strong>la</strong> taille <strong>de</strong>s<br />

popul ations n'est pas suffisant pour gérer les popu<strong>la</strong>ti ons (Gail<strong>la</strong>rd <strong>et</strong> al. 2003). À l' inverse,<br />

les suivis basés <strong>sur</strong> les indivi<strong>du</strong>s perm<strong>et</strong>tent d ' i<strong>de</strong>ntifier les mécanismes démographiques<br />

impliqués dans les changem ents d 'abondance <strong>de</strong>s popu<strong>la</strong>ti ons, <strong>et</strong> constituent un premier pas<br />

vers <strong>de</strong>s modè les perm<strong>et</strong>tant <strong>la</strong> gestion <strong>de</strong>s popu<strong>la</strong>tions. Les popu<strong>la</strong>ti ons <strong>de</strong> mammifères<br />

peuvent être structurées par c<strong>la</strong>sse d 'âge (Charlesworth 1994) <strong>et</strong> un sui vi indiv i<strong>du</strong>el à long<br />

terme perm<strong>et</strong> <strong>de</strong> dételm iner rigoureusement les taux <strong>de</strong> <strong>sur</strong>vie <strong>et</strong> <strong>de</strong> repro<strong>du</strong>cti on à d ifférents<br />

sta<strong>de</strong>s <strong>du</strong> cycle <strong>de</strong> vie <strong>de</strong>s indivi<strong>du</strong>s (Fig. 1.2).<br />

Sta<strong>de</strong> juvénile<br />

1<br />

1<br />

1 Jeune <strong>de</strong> 1 A<strong>du</strong>lte dans <strong>la</strong><br />

l'année ; force <strong>de</strong> l'âge<br />

\<br />

1 Sta<strong>de</strong> sénescent<br />

Année 0<br />

1<br />

2 3 4 567 9 10 I l<br />

1<br />

Figure 1.2 : Exemple <strong>de</strong> cycle <strong>de</strong> vie chez <strong>de</strong>s herbivores <strong>de</strong> gran<strong>de</strong> taille (tirée <strong>de</strong> Gail<strong>la</strong>rd <strong>et</strong><br />

a l. 2000). Nombres encerclés: 1: nouveau-né, 2: jeune sevré, 3: j eune <strong>de</strong> l' année, 4: indivi <strong>du</strong><br />

<strong>de</strong> <strong>de</strong>ux ans (souvent l' âge <strong>de</strong> première repro<strong>du</strong>cti on), 5: indivi<strong>du</strong> « dans <strong>la</strong> force <strong>de</strong> l'âge »<br />

(prime-age), 6: indivi<strong>du</strong> sénescent. Les lignes droites ind iq uent <strong>la</strong> <strong>sur</strong>vie d ' un groupe d ' âge à<br />

un autre. Les li gnes courbes indiquent <strong>la</strong> pro<strong>du</strong>cti on <strong>de</strong> j eunes (donc <strong>la</strong> repro<strong>du</strong>ction).<br />

Les facteurs les plus importants pour <strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>ti ons peuvent vari er selon<br />

les espèces considérées. E n eff<strong>et</strong>, puisqu' il existe <strong>de</strong>s compromis d 'allocation d 'énergie entre<br />

<strong>la</strong> croissance, <strong>la</strong> maintenance <strong>et</strong> <strong>la</strong> repro<strong>du</strong>ction (Stearns 1992), les espèces qui se<br />

repro<strong>du</strong>isent intensément (nombreuses pOliées, gran<strong>de</strong> taill e <strong>de</strong> portée) ont généralement une<br />

<strong>du</strong>rée <strong>de</strong> vie courte (courte <strong>du</strong>rée <strong>de</strong> génération) alors que les espèces à fa ible taux <strong>de</strong><br />

repro<strong>du</strong>ction (peu <strong>de</strong> portées, p<strong>et</strong>ite taille <strong>de</strong> portée) sont plus longévives (gran<strong>de</strong> <strong>du</strong>rée <strong>de</strong>


6<br />

génération) (Gail<strong>la</strong>rd <strong>et</strong> al. 1989, Gail<strong>la</strong>rd <strong>et</strong> al. 2005). Pour les espèces à <strong>du</strong>rée <strong>de</strong> vie courte,<br />

ce sont les variations <strong>de</strong>s taux <strong>de</strong> repro<strong>du</strong>ction qui <strong>influence</strong>nt le plus <strong>la</strong> dynamique <strong>de</strong>s<br />

popu<strong>la</strong>tions alors que ce sont les variations <strong>de</strong>s taux <strong>de</strong> <strong>sur</strong>vie qui <strong>influence</strong>nt le plus <strong>la</strong><br />

dynamique <strong>de</strong>s popu<strong>la</strong>tions chez les espèces à <strong>du</strong>rée <strong>de</strong> vie longue (Gail<strong>la</strong>rd <strong>et</strong> al. 1989,<br />

Gail<strong>la</strong>rd <strong>et</strong> al. 2005). Néanmoins, les paramètres démographiques qui <strong>influence</strong>nt fortement<br />

<strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>tions (i.e. les paramètres à forte é<strong>la</strong>sticité, Caswell 2001) sont<br />

généralement peu sensibles aux variations environnementales (Gail<strong>la</strong>rd & Yoccoz 2003). Par<br />

exemple chez les herbivores <strong>de</strong> gran<strong>de</strong> taille, dont <strong>la</strong> dynamique est fOliement influencée par<br />

<strong>la</strong> <strong>sur</strong>vie <strong>et</strong> particulièrement par les taux <strong>de</strong> <strong>sur</strong>vie <strong>de</strong>s a<strong>du</strong>ltes, <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s a<strong>du</strong>ltes est assez<br />

stable dans le temps alors que <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s jeunes est plus variable (Gail<strong>la</strong>rd <strong>et</strong> al. 1998).<br />

Grâce à un suivi indivi<strong>du</strong>el à long terme, on peut déterminer quels paramètres<br />

démographiques sont sensibles aux variations environnementales (e.g. variations <strong>climat</strong>iques)<br />

<strong>et</strong> évaluer l'impact <strong>de</strong>s variations observées, par exemple dans <strong>la</strong> <strong>sur</strong>vie juvénile, <strong>sur</strong> <strong>la</strong><br />

dynamique <strong>de</strong> <strong>la</strong> popu<strong>la</strong>tion (e.g. Coulson <strong>et</strong> al. 2001).<br />

1.4 Utilisation <strong>de</strong> l' habitat, <strong>climat</strong> <strong>et</strong> valeur repro<strong>du</strong>ctive <strong>de</strong>s indivi<strong>du</strong>s<br />

L'utilisation <strong>de</strong> l' habitat découle d ' une sélection qui <strong>de</strong>vrait tendre à favoriser les habitats<br />

où <strong>la</strong> <strong>sur</strong>vie <strong>et</strong> <strong>la</strong> repro<strong>du</strong>ction <strong>de</strong>s indivi<strong>du</strong>s seraient élevées (Levins 1968). Ainsi, les<br />

indivi<strong>du</strong>s utilisant <strong>de</strong>s habitats moins profitables <strong>de</strong>vraient avoir une valeur repro<strong>du</strong>ctive<br />

moins bonne, c'est-à-dire <strong>la</strong>isser moins <strong>de</strong> <strong>de</strong>scendants contribuant aux générations futures<br />

(Danchin <strong>et</strong> al. 2005). Alors que les patrons d' utilisation <strong>de</strong> l' habitat observés résultent <strong>de</strong><br />

processus complexes, incluant les interactions intra <strong>et</strong> interspécifiques, <strong>la</strong> sélection <strong>du</strong><br />

microhabitat par les indivi<strong>du</strong>s est <strong>la</strong> base <strong>sur</strong> <strong>la</strong>quelle tous les autres processus agissent<br />

(Bowers 1995, Arakaki & Tokeshi 2005). Les indivi<strong>du</strong>s peuvent utiliser <strong>de</strong>s ressources (e.g.<br />

<strong>de</strong>s microhabitats) différentes si leur efficacité d'utilisation <strong>de</strong>s ressources, leurs préférences,<br />

ou leurs besoins sont différents, <strong>et</strong> reflètent une capacité morphologique, compOliementale ou<br />

physiologique variable à traiter <strong>de</strong>s ressources alternatives (Bolnick <strong>et</strong> al. 2003). Les<br />

différences entre indivi<strong>du</strong>s dans l' utilisation <strong>de</strong> l 'habitat peuvent alors se tra<strong>du</strong>ire par <strong>de</strong>s<br />

différences dans <strong>la</strong> <strong>sur</strong>vie ou le succès repro<strong>du</strong>cteur (Rosenzweig 1981 , 199 1, McLoughlin <strong>et</strong><br />

al. 2005, P<strong>et</strong>torelli <strong>et</strong> al. 2005, McLoughlin <strong>et</strong> al. 2006). Par exemple, chez le tétras pâle


7<br />

(Tympanuchus pallidicinctus) les indivi<strong>du</strong>s utilisant <strong>de</strong>s microhabitats avec plus <strong>de</strong> couveli <strong>et</strong><br />

un micro<strong>climat</strong> plus frais pendant l'été ont une meilleure <strong>sur</strong>vie que les autres (Patten <strong>et</strong> al.<br />

2005).<br />

Le <strong>climat</strong> se manifeste à différentes échelles <strong>de</strong> temps <strong>et</strong> d'espace. Dans le cadre <strong>de</strong><br />

l' étu<strong>de</strong> <strong>de</strong>s eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> <strong>sur</strong> l' utilisation <strong>de</strong> l'espace par les animaux, les écologistes<br />

s' intéressent généralement à l'eff<strong>et</strong> <strong>de</strong>s variations <strong>climat</strong>iques saisonnières <strong>sur</strong> le<br />

comportement <strong>de</strong>s animaux (e.g. migrati on, hibernati on). Néanmoins, les animaux peuvent<br />

aussi modifier leur comportement <strong>de</strong> mani ère plus subtile, par exemple en modifiant les<br />

échanges thermiques avec leur environnement via l' utilisation <strong>de</strong> sites <strong>de</strong> repos protégés<br />

(Byman <strong>et</strong> al. 1988, Buskirk <strong>et</strong> al. 1989, Taylor & Buskirk 1994, Humphries <strong>et</strong> al. 2005),<br />

l'adoption <strong>de</strong> postures qui minimisent ou maximisent <strong>la</strong> perte <strong>de</strong> chaleur (Bak.ken & Gates<br />

1975, Hayes <strong>et</strong> al. 1992, Fortin & Gauthier 2000, Bustamante <strong>et</strong> al. 2002), ou le choix <strong>de</strong> sites<br />

d'alimentati on offrant <strong>de</strong>s micro<strong>climat</strong>s favorables (Wiersma & Piersma 1994, Brotons <strong>et</strong> al.<br />

2000). L' utilisation d' une ou plusieurs <strong>de</strong> ces stratégies peut perm<strong>et</strong>tre <strong>de</strong> ré<strong>du</strong>ire<br />

considérablement <strong>la</strong> dépense énergétique nécessaire à maintenir une température corporelle<br />

constante (Humphries <strong>et</strong> al. 2005), ce qui peut avoir <strong>de</strong>s conséquences <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s<br />

indi vi<strong>du</strong>s (Sea1an<strong>de</strong>r 1952, Bult & Lynch 1997, Soto-Gamboa <strong>et</strong> al. 1999, Merritt & Zegers<br />

2002, Dawson <strong>et</strong> al. 2005). La mani ère dont les indivi<strong>du</strong>s utilisent leur habitat peut donc<br />

mo<strong>du</strong>ler les eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> <strong>sur</strong> <strong>la</strong> probabilité <strong>de</strong> <strong>sur</strong>vie indivi<strong>du</strong>elle, <strong>et</strong> c'est pourquoi il est<br />

important <strong>de</strong> considérer les différences entre indivi<strong>du</strong>s dans l' util isati on <strong>de</strong> 1 ' habitat quand on<br />

s' intéresse aux eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> <strong>sur</strong> <strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>ti ons.<br />

1.5 Un système sensible aux fluctuations <strong>climat</strong>iques: le porc-épie d'Amérique au Bas­<br />

St-Laurent<br />

Chez les mammifères, les eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> <strong>sur</strong> <strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>tions ont été<br />

principalement étudiés dans <strong>de</strong>s popu<strong>la</strong>ti ons <strong>de</strong> p<strong>et</strong>its mammifères (e.g. Lima <strong>et</strong> al. 1999,<br />

Merritt <strong>et</strong> a l. 2001 , Aars & Ims 2002, Lima <strong>et</strong> al. 2002b, Stens<strong>et</strong>h <strong>et</strong> a l. 2003b, Korslund &<br />

Steen 2006, Saitoh <strong>et</strong> al. 2006) ou chez les herbivores <strong>de</strong> gran<strong>de</strong> taille (e.g. Albon & Clutton-<br />

Brock 1988, Putman <strong>et</strong> al. 1996, Post & Stens<strong>et</strong>h 1998, Forchhammer <strong>et</strong> al. 200 1, Post &<br />

Forchhammer 2002, Wang <strong>et</strong> al. 2002, Berryman & Lima 2006). Une approche couramment


8<br />

utilisée pour étudier les eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> <strong>sur</strong> <strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>tions est <strong>de</strong> corréler <strong>la</strong><br />

variabilité <strong>climat</strong>ique inter-annuelle avec <strong>la</strong> variabilité observée dans les paramètres<br />

démographiques. C<strong>et</strong>te approche nécessite <strong>l'utilisation</strong> <strong>de</strong> données à long tenne <strong>et</strong> c'est<br />

pourquoi les données <strong>de</strong> récolte <strong>de</strong> chasse par exemple ont été <strong>la</strong>rgement exploitées pour<br />

traiter ces questions (Langvatn <strong>et</strong> al. 1996, Post <strong>et</strong> al. 1999a, Mysterud <strong>et</strong> al. 2000). L'un <strong>de</strong>s<br />

inconvénients <strong>de</strong> c<strong>et</strong>te approche à gran<strong>de</strong> échelle est qu'elle se base <strong>sur</strong> <strong>de</strong>s corré<strong>la</strong>tions <strong>et</strong> ne<br />

démontre pas <strong>de</strong> re<strong>la</strong>tion <strong>de</strong> cause à eff<strong>et</strong> entre les paramètres (Krebs & Berteaux 2006). Les<br />

mécanismes par lesquels le <strong>climat</strong> agit <strong>sur</strong> les popu<strong>la</strong>tions restent flous, ce qui limite les<br />

capacités <strong>de</strong> prédiction face aux changements <strong>climat</strong>iques (Berteaux <strong>et</strong> al. 2006).<br />

Une approche alternative est <strong>de</strong> m<strong>et</strong>tre en p<strong>la</strong>ce <strong>de</strong>s étu<strong>de</strong>s à plus p<strong>et</strong>ite échelle<br />

temporelle ou spatiale où l'on utilise un suivi détaillé (impliquant souvent une manipu<strong>la</strong>tion<br />

expérimentale <strong>de</strong> certains paramètres météorologiques) pour tenter <strong>de</strong> comprendre les<br />

re<strong>la</strong>tions <strong>de</strong> cause à eff<strong>et</strong>s entre les facteurs physiques <strong>et</strong> biologiques (Lenart <strong>et</strong> al. 2002,<br />

Suttle <strong>et</strong> al. 2007). Le problème <strong>de</strong> c<strong>et</strong>te approche est que les résultats obtenus à p<strong>et</strong>ite échelle<br />

sont difficilement extrapo<strong>la</strong>bles à gran<strong>de</strong> échelle (P<strong>et</strong>ersen & Hastings 2001, P<strong>et</strong>ers &<br />

Herrick 2004). Pour avancer dans <strong>la</strong> recherche <strong>sur</strong> le <strong>climat</strong>, Root & Schnei<strong>de</strong>r (1995)<br />

proposent une approche basée <strong>sur</strong> une alternance d'étu<strong>de</strong>s à gran<strong>de</strong> <strong>et</strong> p<strong>et</strong>ite échelles dans un<br />

cycle d'analyse qu'ils appellent le « Strategie Cyclieal Sealing ». Dans ce cycle, les étu<strong>de</strong>s à<br />

gran<strong>de</strong> échelle perm<strong>et</strong>tent <strong>de</strong> générer <strong>de</strong>s hypothèses, qui sont ensuite testées par <strong>de</strong>s étu<strong>de</strong>s à<br />

p<strong>et</strong>ite échelle. Appliquer c<strong>et</strong>te métho<strong>de</strong> à différents systèmes <strong>de</strong>vrait améliorer notre capacité<br />

à appréhen<strong>de</strong>r les conséquences écologiques <strong>de</strong>s changements globaux (Root & Schnei<strong>de</strong>r<br />

1995).<br />

Klvana <strong>et</strong> al. (2004) ont récemment mis en évi<strong>de</strong>nce dans l'Est <strong>du</strong> Québec l'impact <strong>de</strong>s<br />

variations <strong>climat</strong>iques <strong>sur</strong> un herbivore <strong>de</strong> taille moyenne : le porc-épic d'Amérique<br />

(Er<strong>et</strong>hizon dorsatum). Ils ont utilisé les cicatrices <strong>la</strong>issées par les porcs-épics <strong>sur</strong> l'écorce <strong>de</strong>s<br />

arbres, lorsqu'ils s'y alimentent pendant l'automne <strong>et</strong> l'hiver, comme indice d'abondance <strong>de</strong><br />

porcs-épies. En datant ces cicatrices par <strong>de</strong>ndrochronologie, ils ont estimé l'abondance <strong>de</strong><br />

porcs-épies au cours <strong>de</strong>s 130 <strong>de</strong>rnières années. Ils montrent que l'abondance <strong>de</strong> porcs-épics a<br />

fluctué <strong>de</strong>puis 1868 suivant <strong>de</strong>s cycles réguliers <strong>de</strong> Il <strong>et</strong> 22 ans, en synchronie avec les<br />

cycles d'activité so<strong>la</strong>ire, <strong>et</strong> avec les cycles dans les relevés locaux <strong>de</strong> température <strong>et</strong><br />

précipitation (Fig. 1.3).


9<br />

1940 1000 1960<br />

139----------<br />

c<br />

~ !3 ûS i<br />

ii 1367 1<br />

(1l<br />

ct .,<br />

1 J , \::;,C/ .<br />

136Sl ~.<br />

1880 900 1920 1940 960 1980<br />

6 . 00 ·<br />

1 60 tllOO 19 0 1940 19M 1980 ISBO 1900<br />

190 1<br />

1960 19130<br />

Figure 1.3 : Fluctuations dans l' indice d'abondance <strong>de</strong> porcs-épies (abondance re <strong>la</strong>ti ve <strong>de</strong><br />

cicatrices d' une année à l'autre, moyenne <strong>sur</strong> trois sites d'échantillonnage), <strong>la</strong> radi ation<br />

so<strong>la</strong>ire (W/m 2 ) , <strong>la</strong> température moyenne au printemps (Mai-Juin, oC), les précipitati ons<br />

hi vernales totales (Novembre-Avril, en mm) <strong>et</strong> les chutes <strong>de</strong> neige (Novembre-Avril , en cm)<br />

entre 1868 (1 877 pour les paramètres météorologiques) <strong>et</strong> 2000 (tirée <strong>de</strong> Kl vana <strong>et</strong> al. 2004).<br />

C<strong>et</strong>te étu<strong>de</strong>, fa ite <strong>sur</strong> une gran<strong>de</strong> échelle temporelle, perm<strong>et</strong> <strong>de</strong> générer les hypothèses<br />

suivantes :<br />

1) le cycle so<strong>la</strong>ire a un impact <strong>sur</strong> celi ains paramètres météorologiques locaux (i.e.<br />

températures au printemps, précipitati ons hi vernales, <strong>et</strong> chutes <strong>de</strong> neige),<br />

2) les températures au printemps, le ni veau <strong>de</strong> précipitations hivernales <strong>et</strong> les chutes <strong>de</strong><br />

neige <strong>influence</strong>nt <strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>tions <strong>de</strong> porcs-épies au Bas-St-Laurent.<br />

Sui vant l' approche suggérée par Root & Schnei<strong>de</strong>r (1 995), l'un <strong>de</strong>s objectifs <strong>de</strong> mon<br />

travail <strong>de</strong> doctorat a été <strong>de</strong> m<strong>et</strong>tre à l'épreuve <strong>la</strong> <strong>de</strong>uxième <strong>de</strong> ces hypothèses en utilisant <strong>de</strong>s<br />

données issues d' un suivi indivi<strong>du</strong>el fi n, <strong>sur</strong> une popu<strong>la</strong>tion <strong>de</strong> porcs-épies d'Amérique au<br />

Bas-St-Laurent. Je me suis intéressée à <strong>la</strong> démographie d ' une part, en étudiant les variations<br />

<strong>de</strong> <strong>sur</strong>vie en fo nction <strong>de</strong>s fluctuations dans les paramètres météorologiques, <strong>et</strong> au<br />

compoltement d'autre part, en examinant comment les paramètres météorologiques<br />

<strong>influence</strong>nt l' utilisati on <strong>de</strong> l' habi tat, <strong>et</strong> avec quelles conséquences pour <strong>la</strong> <strong>sur</strong>v ie <strong>de</strong>s<br />

indi vi <strong>du</strong>s.


10<br />

1.6 La popu<strong>la</strong>tion <strong>de</strong> porcs-épies au parc national <strong>du</strong> Bie<br />

J'ai utilisé pour ce travail <strong>de</strong> recherche une popu<strong>la</strong>tion <strong>de</strong> porcs-épics d'Amérique sui vie<br />

<strong>de</strong>puis mai 2000 au parc national <strong>du</strong> Bic, dans <strong>la</strong> région <strong>du</strong> Bas-St-Laurent, au Québec (Fig.<br />

1.4).<br />

Forestville<br />

N<br />

i<br />

Mont-Joli<br />

- Rimouski .--------~<br />

·OBiC<br />

Parc national <strong>du</strong> Bic _· ,<br />

Figure 1.4 : Localisation <strong>du</strong> parc national <strong>du</strong> Bic, Bas-St-Laurent, Québec, Canada.<br />

Le porc-épic d'Amérique est un rongeur <strong>de</strong> taille moyenne (5 à 14 Kg), assez longévif (7<br />

à 8 ans), qui est arboricole <strong>et</strong> exclusivement herbivore (Roze 1989). Les fe melles pro<strong>du</strong>isent<br />

généralement leur premier jeune à l'âge <strong>de</strong> <strong>de</strong>ux ans <strong>et</strong> ne pro<strong>du</strong>isent qu 'un seul jeune par an<br />

(Roze 1989, Hale & Fuller 1996). La féc ondation a lieu en septembre-octobre, les femelles<br />

sont gestantes tout l' hiver, <strong>et</strong> donnent naissance à leur jeune entre <strong>la</strong> mi -mai <strong>et</strong> <strong>la</strong> fin juin<br />

(S truthers 1928). Comme pour beaucoup d' herbivo res vivant en régions tempérées, l'hi ver<br />

est une saison diffi cil e pour le porc-épic pui sque <strong>la</strong> quantité <strong>et</strong> <strong>la</strong> qualité nutriti ve <strong>de</strong> <strong>la</strong><br />

mat ière végétale diminuent alors que les besoins d'énergie pour maintenir une température<br />

corporelle constante augmentent (Fournier & Thomas 1999). Les porcs-épics restent acti fs en<br />

hiver mais diminuent leurs dép<strong>la</strong>cements <strong>et</strong> utilisent <strong>de</strong>s tanières pour se soustraire au fro id


1 1<br />

(Roze 1987). Ils per<strong>de</strong>nt 10 à 40 % <strong>de</strong> leur poids <strong>et</strong> certains indivi<strong>du</strong>s peuvent mourir par<br />

inanition si 1 'hiver est trop rigoureux (Sweitzer & Berger 1993). Le porc-épie d'Amérique<br />

étant longévif, <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s a<strong>du</strong>ltes <strong>de</strong>vrait fortement <strong>influence</strong>r <strong>la</strong> dynamique <strong>de</strong> ses<br />

popu<strong>la</strong>tions (Gai l<strong>la</strong>rd <strong>et</strong> al. 1998). Une diminution <strong>de</strong> <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s a<strong>du</strong>ltes pendant l' hiver<br />

pourrait donc avoir un eff<strong>et</strong> important <strong>sur</strong> <strong>la</strong> taille <strong>de</strong>s popu<strong>la</strong>tions. D'autre part, comme chez<br />

d 'autres herbivores longévifs, <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s juvéniles <strong>de</strong>vrait être fortement influencée par les<br />

fluctuations environnementales (Albon <strong>et</strong> al. 1987, Clutton-Brock <strong>et</strong> al. 1987, Portier <strong>et</strong> al.<br />

1998, Milner <strong>et</strong> al. 1999, Crampe <strong>et</strong> al. 2002). Il n'existe cependant pas <strong>de</strong> données publ iées<br />

pouvant confimler c<strong>et</strong>te hypothèse chez le porc-épie d'Amérique.<br />

Dominique Berteaux a mis en p<strong>la</strong>ce à l'été 2000 le suivi indivi<strong>du</strong>el d'une popu<strong>la</strong>tion <strong>de</strong><br />

porcs-épies <strong>sur</strong> une aire d'étu<strong>de</strong> d'environ 2 km 2 (Fig. 1.5) dans le secteur Est <strong>du</strong> parc<br />

national <strong>du</strong> Bic (48°20'N, 68°46'0). Le suivi est basé <strong>sur</strong> <strong>la</strong> capture d'animaux que l'on<br />

marque <strong>de</strong> manière permanente à l'ai<strong>de</strong> <strong>de</strong> boucles d'oreilles (Fig. 1.6). La présence <strong>de</strong><br />

champs au centre <strong>de</strong> l'aire d'étu<strong>de</strong> (Fig. 1.5) penn<strong>et</strong> une recapture facile <strong>de</strong>s indivi<strong>du</strong>s au<br />

début d'été, quand les feuilles <strong>de</strong>s arbres n'ont pas encore commencé à pousser <strong>et</strong> que les<br />

porcs-épies viennent se nourrir <strong>de</strong> jeunes pousses d'herbe dans les champs. On peut<br />

également équiper les an imaux d'ém<strong>et</strong>teurs VHF pour ensuite les localiser par télémétrie. Les<br />

porcs-épies sont <strong>de</strong>s animaux qui se dép<strong>la</strong>cent re<strong>la</strong>tivement lentement, <strong>et</strong> passent une gran<strong>de</strong><br />

partie <strong>de</strong> leur temps immobiles dans les arbres. On peut donc se rendre jusqu'à l'animal en<br />

suivant le signal <strong>de</strong> télémétrie, ce qui perm<strong>et</strong> d'accé<strong>de</strong>r à <strong>de</strong>s données précises concernant sa<br />

localisation <strong>et</strong> son compOitement, été comme hiver (Comtois & Berteaux 2005, Morin <strong>et</strong> al.<br />

2005).<br />

Le parc national <strong>du</strong> Bic abritait <strong>de</strong> hautes <strong>de</strong>nsités <strong>de</strong> porcs-épies <strong>et</strong> <strong>la</strong> popu<strong>la</strong>tion d 'étu<strong>de</strong><br />

(i.e. ensemble <strong>de</strong> porcs-épies fréquentant l'aire d'étu<strong>de</strong>) comptait environ 120 indivi<strong>du</strong>s en<br />

2000. La popu<strong>la</strong>tion d ' étu<strong>de</strong> a cependant connu un déclin marqué dans les <strong>de</strong>rnières années,<br />

<strong>et</strong> seulement un indivi<strong>du</strong> a été capturé à l'été 2006 (D. Berteaux, données non publiées, Fig.<br />

1.7a). Des estimations <strong>de</strong> <strong>de</strong>nsité <strong>de</strong> porcs-épies, faites par recherche <strong>de</strong> traces en hiver le<br />

long <strong>de</strong> transects situés dans les secteurs <strong>du</strong> parc non utilisés pour les captures, montrent<br />

également un déclin très marqué ces <strong>de</strong>rnières années (Y. Lemay, données non publiées, Fig.<br />

1.7b).


12<br />

-- -<br />

o 100 200 400 600<br />

800<br />

---- -- Mètres<br />

Légen<strong>de</strong><br />

• Conifères<br />

" Mixtes<br />

Feuillus<br />

Champs<br />

Anthropi que<br />

Eau<br />

Figure 1.5 : Carte <strong>de</strong> l'aire d'étu<strong>de</strong> dans le secteur Est <strong>du</strong> parc national <strong>du</strong> Bic, Québec (tirée<br />

<strong>de</strong> Morin <strong>et</strong> al. 2005). L'aire d'étu<strong>de</strong> est caractérisée par une forêt boréale mixte dominée, en<br />

ordre d' importance, par: le peuplier faux-tremble (Populus tremuloi<strong>de</strong>s), le cèdre (Thuja<br />

occi<strong>de</strong>ntalis), l'épin<strong>et</strong>te b<strong>la</strong>nche (Picea g<strong>la</strong>uca) <strong>et</strong> le sapin baumier (Abies balsamea). L'aire<br />

d'étu<strong>de</strong> est fragmentée par <strong>de</strong>s champs où les porcs-épics viennent se nourrir en été <strong>et</strong> où ils<br />

sont facilement capturés.<br />

Figure 1.6 : Porc-épic d'Amérique marqué à l'ai<strong>de</strong> <strong>de</strong> boucles d'oreilles <strong>de</strong> couleur. Photo<br />

par D. Berteaux.


13<br />

140<br />

a)<br />

1<br />

20 -<br />

o -l-<br />

2000<br />

2001 2002 2003<br />

2004<br />

--,<br />

2005<br />

2006<br />

Année<br />

45<br />

b)<br />

40<br />

35<br />

N<br />

E 30<br />

.:.c:<br />

-; 25<br />

::J<br />

"0<br />

':;; 20<br />

"0<br />

c:<br />

15<br />

10<br />

5<br />

-<br />

1989 1991 1993 1995 1999 2000 2001 2002 2003 2004 2005 2006<br />

Année<br />

Figure 1.7 : Déclin d ' abondance <strong>de</strong>s porcs-épies au parc national <strong>du</strong> Bic, Québec : a) nombre<br />

d ' indivi<strong>du</strong>s capturés <strong>sur</strong> une aire d'étu<strong>de</strong> d'environ 2 km 2 à l'Est <strong>du</strong> parc (D. Berteaux,<br />

données non publiées), b) estimation <strong>de</strong> <strong>de</strong>nsité <strong>de</strong> porcs-épies (indivi<strong>du</strong>s/km 2 ) par<br />

inventaires <strong>de</strong> pistes dans trois secteurs, à l'Ouest <strong>de</strong> l'aire d'étu<strong>de</strong> utilisée pour les captures<br />

<strong>de</strong> porcs-épies (Y. Lemay, données non publiées).


14<br />

Le déclin d'abondance observé dans notre popu<strong>la</strong>ti on d'étu<strong>de</strong> ne semble donc pas lié au<br />

sui vi indivi<strong>du</strong>el mis en p<strong>la</strong>ce en 2000. En fa it, ce déclin pourrait être lié au r<strong>et</strong>our <strong>du</strong> pékan<br />

(Martes pennanti) dans <strong>la</strong> région (voir chap. 3). Les pékans sont <strong>de</strong>s prédateurs efficaces <strong>du</strong><br />

porc-épic (Powell & Bran<strong>de</strong>r 1977, Earle & Kramm 1982, Powell 1993) <strong>et</strong> leur nombre a<br />

augmenté rapi<strong>de</strong>ment <strong>de</strong>puis le milieu <strong>de</strong>s années 1990 dans l'Est <strong>du</strong> Québec (Poulin <strong>et</strong> al.<br />

2006). En plus <strong>de</strong> considérer les eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong>, je me sui s donc également intéressée aux<br />

impacts <strong>de</strong> <strong>la</strong> prédation <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie <strong>et</strong> l' utilisation <strong>de</strong> <strong>l'habitat</strong> par les porcs-épies.<br />

1.7. Objectifs spécifiques <strong>et</strong> p<strong>la</strong>n <strong>de</strong> <strong>la</strong> thèse<br />

Le but général <strong>de</strong> ce proj<strong>et</strong> est d'améliorer les connaissances <strong>de</strong>s eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> <strong>et</strong> <strong>de</strong> <strong>la</strong><br />

prédation <strong>sur</strong> <strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>tions en utilisant un e espèce animale ayant été<br />

jusqu' ici peu étudiée. La <strong>sur</strong>vie a un eff<strong>et</strong> important <strong>sur</strong> <strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>tions chez<br />

les espèces longévives. C'est pourquoi nous nous sommes interessés aux eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> <strong>et</strong><br />

<strong>de</strong> <strong>la</strong> prédation <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie. La façon dont les animaux utilisent leur habitat peut fa ire que les<br />

indivi<strong>du</strong>s se trouvent dans <strong>de</strong>s conditions légèrement di fférentes face aux facteurs<br />

environnementaux (e.g. environnement thermique mais auss i ri sque <strong>de</strong> prédati on), avec <strong>de</strong>s<br />

conséquences possibles <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie. Ainsi, l' utilisati on <strong>de</strong> 1 ' habitat peut potentiellement<br />

mo<strong>du</strong>ler les eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> <strong>et</strong> <strong>de</strong> <strong>la</strong> prédati on <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie, <strong>et</strong> donc <strong>sur</strong> <strong>la</strong> dynamique <strong>de</strong>s<br />

popu<strong>la</strong>tions. L'étu<strong>de</strong> est basée <strong>sur</strong> un suivi indivi<strong>du</strong>el fin <strong>de</strong> <strong>la</strong> <strong>sur</strong>vie <strong>et</strong> <strong>de</strong> l' utilisati on <strong>de</strong><br />

l' habitat dans une popu<strong>la</strong>tion <strong>de</strong> porcs-épics d 'Amérique. Déterminer les taux <strong>de</strong> <strong>sur</strong>v ie est<br />

re<strong>la</strong>ti vement simple dans <strong>la</strong> popu<strong>la</strong>ti on d'étu<strong>de</strong>, contrairement aux taux <strong>de</strong> repro<strong>du</strong>ction qui<br />

sont diffi ciles à déterminer <strong>de</strong> mani ère fi able chez c<strong>et</strong>te espèce dont les femelles cachent les<br />

jeunes à <strong>la</strong> naissance (voir chap. 2). Nous ne nous sommes pas intéressés aux ta ux <strong>de</strong><br />

repro<strong>du</strong>cti on au cours <strong>de</strong> c<strong>et</strong>te étu<strong>de</strong>. Comme on l'a vu précé<strong>de</strong>mment, <strong>la</strong> possibili té d' établir<br />

<strong>de</strong> manière précise <strong>la</strong> localisation <strong>de</strong>s indivi<strong>du</strong>s à l'ai<strong>de</strong> <strong>de</strong> <strong>la</strong> télémétrie perm<strong>et</strong> d 'accé<strong>de</strong>r à<br />

<strong>de</strong>s données détaillées concernant leur utili sation <strong>de</strong> l' habitat. Ma thèse s'organi se autour <strong>de</strong><br />

quatre arti cles.<br />

Le premier article présente les métho<strong>de</strong>s nécessaires à un sui vi indivi<strong>du</strong>el détaillé <strong>du</strong><br />

porc-épic d'Amérique (chap. 2). Les porcs-épics portent <strong>de</strong>s épines qui ren<strong>de</strong>nt les


15<br />

manipu<strong>la</strong>tions <strong>et</strong> <strong>la</strong> pose d'ém<strong>et</strong>teurs VHF difficiles. Au cours <strong>de</strong> l'étu<strong>de</strong> <strong>de</strong> sept ans initiée<br />

par D. Berteaux, nous avons amélioré les métho<strong>de</strong>s connues pour marquer <strong>et</strong> poser <strong>de</strong>s<br />

co lliers ém<strong>et</strong>teurs à <strong>de</strong>s porcs-épics a<strong>du</strong>ltes. Nous avons aussi développé <strong>de</strong>s métho<strong>de</strong>s pour<br />

chercher les jeunes porcs-épics (qui se cachent pendant les premières semaines sui vant <strong>la</strong><br />

naissance), les marquer <strong>et</strong> leur poser <strong>de</strong>s ém<strong>et</strong>teurs VHF adaptés à leur taille. Ce chapitre<br />

expose les métho<strong>de</strong>s utilisées pour le suivi <strong>de</strong> <strong>la</strong> popu<strong>la</strong>tion, <strong>et</strong> m<strong>et</strong> en évi<strong>de</strong>nce les<br />

nouveautés apportées par rapport aux métho<strong>de</strong>s déjà publiées dans <strong>la</strong> littérature.<br />

Le <strong>de</strong>uxième article utilise les données <strong>de</strong> capture-marquage-recapture pour calcul er <strong>de</strong><br />

mani ère robuste les taux <strong>de</strong> <strong>sur</strong>vie (chap. 3). Klvana <strong>et</strong> al. (2004) génèrent l' hypothèse que<br />

les températures au printemps, les précipitations hi vernales, <strong>et</strong> les chutes <strong>de</strong> neige <strong>influence</strong>nt<br />

l'abondance <strong>de</strong>s porcs-épics au Bas-St-Laurent. Ce chapitre m<strong>et</strong> à l' épreuve c<strong>et</strong>te hypothèse<br />

en testant l'eff<strong>et</strong> <strong>de</strong> ces paramètres météorologiques <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie. Les fluctuations<br />

<strong>climat</strong>iques pouvant modifier les interactions prédateurs-proies (Post <strong>et</strong> al. 1999b,<br />

Hebblewhite 2005) <strong>et</strong> <strong>la</strong> prédati on étant un facteur impoliant dans mon système d'étu<strong>de</strong>,<br />

j 'étudie également l'évolution <strong>du</strong> taux <strong>de</strong> prédation en foncti on <strong>de</strong>s conditions<br />

météorologiques.<br />

Le troisième article détermine comment les porcs-épics a<strong>du</strong>ltes modifient leur utilisati on<br />

<strong>de</strong> l' habitat en fonction <strong>de</strong>s conditions environnementales au cours <strong>de</strong> l'hiver (chap. 4).<br />

J'établis tout d'abord une carte <strong>de</strong>s mi cro<strong>climat</strong>s di sponibles dans l'environnement à l'ai<strong>de</strong><br />

<strong>de</strong> mannequins taxi<strong>de</strong>rmiques chauffés. J'examine ensuite comment les animaux naviguent<br />

<strong>sur</strong> c<strong>et</strong>te calie thermique pendant <strong>la</strong> saison froi<strong>de</strong>. Plus paliiculièrement j 'étudie comment le<br />

patro n d'utilisati on <strong>de</strong> <strong>la</strong> tani ère (e.g. temps passé en <strong>de</strong>hors <strong>de</strong> <strong>la</strong> tani ère, nombre <strong>de</strong> sorti es)<br />

<strong>et</strong> l' utilisation <strong>de</strong>s microhabitats à l'extéri eur <strong>de</strong> <strong>la</strong> tani ère vari ent en foncti on <strong>de</strong>s conditions<br />

<strong>de</strong> température <strong>et</strong> <strong>de</strong> neige. À <strong>la</strong> suite <strong>de</strong> l'article, je teste si les différences entre indi vi<strong>du</strong>s<br />

dans les patrons d'activité <strong>et</strong> l' utilisati on <strong>de</strong> l' habitat, se tra<strong>du</strong>isent par <strong>de</strong>s différences <strong>de</strong><br />

<strong>sur</strong>vIe.<br />

Le quatrième <strong>et</strong> <strong>de</strong>rnier aliicle s'intéresse à l' utilisation <strong>du</strong> couvert par les jeunes porcsépics<br />

« 3 mois) <strong>et</strong> aux conséquences <strong>de</strong> l' utilisation <strong>du</strong> couveli <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie au cours <strong>de</strong> leur<br />

premi er été <strong>de</strong> vie (chap. 5). Chez les ongulés, les jeunes qui se cachent pour se soustraire<br />

aux prédateurs sélecti onnent <strong>de</strong>s habitats avec beaucoup <strong>de</strong> couveli (revue dans Mysterud &<br />

Ostbye 1999). Cependant, pendant l'été, les milieux ombragés (i.e. couverts) sont caractéri sés


16<br />

par <strong>de</strong>s conditions thermiques plus fraîches que les milieux ouverts (Demarchi & Bunnell<br />

1993), <strong>et</strong> donc moins favorables pour <strong>de</strong>s jeunes sensibles à l'hypothermie. Dans c<strong>et</strong> article,<br />

je véri fie d'abord si les jeunes porcs-épies sélectionnent <strong>de</strong>s microhabitats avec beaucoup <strong>de</strong><br />

couvert. J'examine ensuite les di ffé rences entre indivi<strong>du</strong>s dans l' utilisati on <strong>de</strong> l' habi tat <strong>et</strong> les<br />

conséquences <strong>de</strong>s di fférences interindivi<strong>du</strong>elles dans l' utilisation <strong>de</strong> l' habitat <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s<br />

juvéniles au cours <strong>de</strong> l'été.


Chapitre 2 Handling North American porcupines:<br />

review of existing m<strong>et</strong>hods and new m<strong>et</strong>hods to increase<br />

animal welfare<br />

M abille G ., M orin P., Berteaux D .<br />

(soumis, Wildlife Research)<br />

Les étu<strong>de</strong>s à long terme, basées <strong>sur</strong> <strong>la</strong> capture-recapture d ' indivi<strong>du</strong>s marqués au sein<br />

d ' une popu<strong>la</strong>tion, perm<strong>et</strong>tent <strong>de</strong> calculer <strong>de</strong> manière robuste les taux <strong>de</strong> <strong>sur</strong>v ie entre <strong>de</strong>ux<br />

évènements <strong>de</strong> capture. On peut ensuite tenter d'expliquer <strong>la</strong> vari abilité observée dans <strong>la</strong><br />

<strong>sur</strong>vie <strong>et</strong> ainsi i<strong>de</strong>ntifier certains <strong>de</strong>s facteurs impliqués dans les fluctuations <strong>de</strong> taille <strong>de</strong>s<br />

popu<strong>la</strong>ti ons. Les porcs-épics sont <strong>du</strong>rs à localiser dans <strong>de</strong>s environnements foresti ers <strong>et</strong> <strong>du</strong>rs à<br />

manipuler à cause <strong>de</strong> leurs piquants. Sans doute à cause <strong>de</strong> ces diffi cultés, peu d ' étu<strong>de</strong>s se<br />

sont intéressées aux facteurs influençant <strong>la</strong> démographie <strong>de</strong> c<strong>et</strong> herbivore, qui peut pourtant<br />

atteindre <strong>de</strong> fortes abondances, <strong>et</strong> j ouer un rô le important dans certains écosystèmes (Curtis<br />

1941, Curtis 1944). Dominique Berteaux a mis en p<strong>la</strong>ce à l'été 2000 un sui vi indivi<strong>du</strong>el d ' une<br />

popu<strong>la</strong>ti on <strong>de</strong> porcs-épics dans le Bas-St-Laurent. Pendant sept années, nous avons amélioré<br />

les métho<strong>de</strong>s <strong>de</strong> s ui v i existantes <strong>et</strong> développé <strong>de</strong> nouvell es métho<strong>de</strong>s afin <strong>de</strong> limiter le<br />

dérangement <strong>de</strong>s animaux <strong>et</strong> <strong>de</strong> maximiser l' efficacité <strong>du</strong> suivi. Nous détaillons ici les<br />

méth o<strong>de</strong>s que nous avons utilisées en soulignant les progrès effectués par rapport aux<br />

méth o<strong>de</strong>s existantes. N ous pensons que partager l' expe11ise acquise servira à fa ire progresser<br />

les standards en terme <strong>de</strong> manipu<strong>la</strong>ti on d ' animaux sauvages. Les métho<strong>de</strong>s décri tes ont<br />

également permis <strong>de</strong> récolter <strong>de</strong>s données précises concernant <strong>la</strong> <strong>sur</strong>vie <strong>et</strong> l' utilisation <strong>de</strong><br />

l ' babitat <strong>de</strong>s porcs-épics, données que je m<strong>et</strong>s à contribution dans le reste <strong>de</strong> m on doctorat.


18<br />

2.1. Abstract<br />

Wildlife biologists are un<strong>de</strong>r increased pres<strong>sur</strong>e to handle animais safely. Through an<br />

intensive seven-year field study of a North American porcupine (Er<strong>et</strong>hizon dorsatum)<br />

popu<strong>la</strong>tion, we <strong>de</strong>voted consi<strong>de</strong>rable efforts sem'ching, capturing, and handling <strong>la</strong>rge numbers<br />

of a<strong>du</strong>lt and juvenile indivi<strong>du</strong>als. Few published reports <strong>de</strong>scribe techniques adapted to this<br />

challenging species. We improved avai<strong>la</strong>ble techniques and <strong>de</strong>veloped new ones. We<br />

<strong>de</strong>scribe one m<strong>et</strong>hod to sem'ch for juvenile porcupines, four new capture m<strong>et</strong>hods, one long<strong>la</strong>sting<br />

marking technique, and a customized radio col<strong>la</strong>r minimizing wounds to animaIs. The<br />

m<strong>et</strong>hod we used to sem'ch for juveniles allowed a success rate of 47.7% (21 juveniles found<br />

around 44 females). The most efficient capture m<strong>et</strong>hod involved using a dip n<strong>et</strong> and yiel<strong>de</strong>d<br />

1,026 captures (out of 1,154 captures perfOlmed <strong>du</strong>ring the study). We marked animaIs using<br />

various types of ear tags, which allowed us to i<strong>de</strong>ntify animaIs from a distance and in the<br />

long tenn. Only 8.5% ofmarked indivi<strong>du</strong>als (n = 14 out of 165 marked indivi<strong>du</strong>als) 10st their<br />

i<strong>de</strong>ntity through tag loss, whereas only 3.5% of radiocol<strong>la</strong>red porcupines (n = 6 out of 171<br />

col<strong>la</strong>rs fitted) suffered from wounds directly attributable to radio col<strong>la</strong>rs. We suggest possible<br />

ways to further increase efficiency of our m<strong>et</strong>hods.<br />

Key-words : capture, dip n<strong>et</strong>, juvenile, marking, porcupine, Québec, telem<strong>et</strong>ry<br />

2.2. Intro<strong>du</strong>ction<br />

Porcupines are present on four of the six continents, and can locally reach high <strong>de</strong>nsities<br />

(Roze 1989). A lthough they form two very distinct taxonomic groups (New World and O ld<br />

Word porcupines), they share the common feature of bearing quillS that impose significant<br />

challenges to anyone in need of manipu<strong>la</strong>ting them. lnterestingly, published infonnation on<br />

how to handle these animaIs is not abundant. We studied intensively a popu<strong>la</strong>tion of North<br />

American porcupines (Er<strong>et</strong>hizon dorsatum) for se ven years in Canada and were confronted<br />

with the problem of handling porcupines. Here we first review published m<strong>et</strong>hods to search,<br />

capture and mark NOl1h American porcupines, we th en exp<strong>la</strong>in why some important


19<br />

information is <strong>la</strong>cking in the published literature, and we finally suggest four research<br />

obj ecti ves that will structure the rest of the paper.<br />

Porcupines usually live in forests where they are difficult to locate. Hale and Fuller<br />

( 1999) report low success wh en walking along transects to search for porcupines. Sweitzer<br />

and Berger (1997) worked in re<strong>la</strong>tively open habitats and were successful at locating<br />

porcupines using trained dogs and night-vision equipment. However, by far the most efficient<br />

<strong>de</strong>scribed technique to find porcupines involves snow tracking to locate <strong>de</strong>ns where<br />

porcupines concentrate their activity in winter (Strick<strong>la</strong>n <strong>et</strong> al. 1995, Zimmerling 2005).<br />

Capture techniques inclu<strong>de</strong> constraining porcupines in a garbage can (Craig & Keller<br />

1986), climbing trees to catch indivi<strong>du</strong>als using heavy gloves (Roze 1989, Strick<strong>la</strong>n <strong>et</strong> al.<br />

1995), p<strong>la</strong>cing cage-type live traps outsi<strong>de</strong> occupied <strong>de</strong>ns, trees or on well-used paths (Hale<br />

& Fuller 1996, Griesemer <strong>et</strong> al. 1999, lise & Hellgren 2001, Zimmerling & Craft 2001),<br />

n<strong>et</strong>ting the animal before (Zimmerling & Croft 2001 , Zimmerling 2005) or after (lIse &<br />

Hellgren 2001) chemical immobilization, and using heavy gloves after immobilizing animaIs<br />

in trees or <strong>de</strong>ns using a jabstick (Sweitzer & Berger 1992, Griesemer <strong>et</strong> al. 1999, lise &<br />

Hellgren 2001) or a blow dart (Griesemer <strong>et</strong> al. 1999).<br />

Marking techniques involve m<strong>et</strong>al ear tags (Craig & Keller 1986, Zimmerling & Croft<br />

2001) to which are som<strong>et</strong>imes attached colored p<strong>la</strong>stic tags to allow i<strong>de</strong>ntification at a<br />

distance (Sweitzer & Berger 1992, Griesemer <strong>et</strong> al. 1999), spraying tail with enamel paint<br />

(Sweitzer & Berger 1992), tattooing (Griesemer <strong>et</strong> al. 1999), fitting radio transmitter using<br />

hm·ness and back pack (Craig & Keller 1986), or radiocol<strong>la</strong>ring (e.g. Roze 1987, Sweitzer &<br />

Berger 1992, Griesemer <strong>et</strong> al. 1999, lIse & Hellgren 2001). F<strong>la</strong>gs have been attached to<br />

antennas of radio col<strong>la</strong>rs to ease i<strong>de</strong>ntification of indivi<strong>du</strong>als at a distance (Griesemer <strong>et</strong> al.<br />

1999).<br />

Published techniques to search for, capture, and mark porcupines represent a fraction of<br />

those that have been tried by biologists, and m<strong>et</strong>hod sections of publications usually do not<br />

quantify efficiency of techniques. Griesemer <strong>et</strong> al. (1999) evaluate some m<strong>et</strong>hods to capture<br />

and mark a<strong>du</strong>lt porcllpines. They do not <strong>de</strong>al with jllveniles, however, and some of their<br />

reported m<strong>et</strong>hods nee<strong>de</strong>d improvement. Specifically, the m<strong>et</strong>hod they used for mm"king did<br />

not allow i<strong>de</strong>ntification at a distance and was not long-<strong>la</strong>sting (25% of indivi<strong>du</strong>als had lost ail<br />

tags 6-18 months after tagging). AIso, 7% of their radio col<strong>la</strong>rs created wOllnds (Griesemer <strong>et</strong>


20<br />

al. ( 1999). The experience gained by practicing conservationists must be repo11ed and ma<strong>de</strong><br />

wi<strong>de</strong>1y avai<strong>la</strong>ble for the field to progress (Suther<strong>la</strong>nd 2006).<br />

During our seven-year study of porcupines, we used most handling techniques <strong>de</strong>scribed<br />

in the literature and <strong>de</strong>veloped new ones to increase efficiency of field work, to mark<br />

indivi<strong>du</strong>als <strong>du</strong>rably, and to fUl1her minimize animal discomfort. Building on Hale and Fuller<br />

(1996), we also <strong>de</strong>veloped m<strong>et</strong>hods to find, mark, and radiocol<strong>la</strong>r juveniles. The objectives of<br />

this paper are 1) to d<strong>et</strong>ail known m<strong>et</strong>hods to search for, capture, and mark porcupines,<br />

currently poorly <strong>de</strong>scribed in the literature, 2) to present new techniques (including<br />

techniques suitable for working with juveniles and in the winter season), 3) to evaluate the<br />

success rate of aIl the m<strong>et</strong>hods we used, and 4) to suggest possible ways to fUlther increase<br />

efficiency of existing m<strong>et</strong>hods.<br />

2.3. Material and m<strong>et</strong>hods<br />

Studyarea<br />

We worked in Parc National <strong>du</strong> Bic (68°46'W, 48°21 'N) on the south shore of the St.<br />

Lawrence River estuary, Québec, Canada. The study area is characterized by a rugged<br />

topography and belongs to the eastern bals am fir-yellow birch (B<strong>et</strong>u<strong>la</strong> alleghaniensis Britt.)<br />

ecological domain, in the mid-Appa<strong>la</strong>chian hills ecological region (Grondin <strong>et</strong> al. 1999).<br />

Open fields, left in fallow or used for growing barley and oats, occupy the center of the study<br />

area (see Morin <strong>et</strong> al. 2005 for d<strong>et</strong>ails and a map).<br />

Sem'ching<br />

Porcupines foraged in fields, especially in May after snow had melted but tree leaves<br />

were not y<strong>et</strong> avai<strong>la</strong>ble. We patrolled fields at night, using portable spotlights (Mo<strong>de</strong>l Q-Beam<br />

Max Million, The Brinkmann Corporation, Dal<strong>la</strong>s, TX) to locate porcupines. We also used<br />

spotlights to search for porcupines in trees. We monitored searching effort (person-hours<br />

spent patrolling) and recor<strong>de</strong>d the number of porcupines captured and observed each ni ght.<br />

We used snow tracking in winter to find occupied <strong>de</strong>ns. When porcupine <strong>de</strong>nsities were<br />

low, chances to find tracks were re<strong>du</strong>ced, so we fitted animais with radio col<strong>la</strong>rs (see below)<br />

at the end of summer, in or<strong>de</strong>r to locate them easily in winter.


21<br />

We searched for juvenile porcupines around <strong>la</strong>ctating females. Females were<br />

radiocol<strong>la</strong>red at the beginning of spring and regu<strong>la</strong>rly captured to check for <strong>la</strong>ctation through<br />

manual expression of milk (llse & Hellgren 2001). Once a female was found to be <strong>la</strong>ctating,<br />

searches stmted to find her juvenile. We located the female using telem<strong>et</strong>ry and spent 60<br />

minutes sem·ching an increasingly <strong>la</strong>rge area around it. We searched carefully the base of<br />

trees, un<strong>de</strong>r <strong>de</strong> ad trees or branches, in the lower branches of small trees, and in shallow <strong>de</strong>ns.<br />

We used a pOltable f<strong>la</strong>shlight to increase d<strong>et</strong>ection success in dark environments. When a<br />

juvenile was found, we noted the amount oftime e<strong>la</strong>psed since the beginning of the search<br />

and the distance from the juvenile to its mother.<br />

Capturing<br />

We captured a<strong>du</strong>lts andjuveniles from May 2000 to May 2006, at different periods of the<br />

year. We began captures using published m<strong>et</strong>hods, that is heavy gloves (PYC gloves fitted<br />

over leather work gloves), cage traps (82 x27 x33 cm, Tomahawk Live Trap Company,<br />

Tomahawk, WI), jab stick, and dip n<strong>et</strong>. We som<strong>et</strong>imes climbed trees to catch an animal by<br />

hand or in a dip n<strong>et</strong>. Our dip n<strong>et</strong> (Fig. 2.1) consisted of a 50 cm-diam<strong>et</strong>er fishing dip n<strong>et</strong> fit to<br />

a 77 cm-long pole and bearing a strong 17 mm-mesh fishing n<strong>et</strong>. A drawcord closed the n<strong>et</strong><br />

once an animal was caught. We also used a noose pole (4 m extension pole, Tomahawk Live<br />

Trap Company, Tomahawk, WI) to capture indivi<strong>du</strong>als.<br />

We <strong>de</strong>veloped three techniques not <strong>de</strong>scribed in the literature. First, when an animal was<br />

high in a tree, we agitated a 4-m long (l cm diam<strong>et</strong>er) fiberg<strong>la</strong>ss pole near the porcupine's<br />

head, which prompted it to come down from the tree and allowed us to catch it on the ground<br />

with a dip n<strong>et</strong>. Second, if the tree was too high for the porcupine to be reached, we strapped<br />

three or four single-door cage tfaps (same as ab ove) vertically around the tree trunk. Traps<br />

were p<strong>la</strong>ced l.5 m above ground, so the porcupine entered one of the traps when <strong>de</strong>scending<br />

the tree. We checked traps 2-12 h <strong>la</strong>ter. Finally, when the capture ofa given indivi<strong>du</strong>al was<br />

absolutely necessary but that indivi<strong>du</strong>al was inaccessible in a tree, we waited silently at the<br />

base of the tree, until the porcupine came down by itself and we caught it in a dip n<strong>et</strong>.


22<br />

Figure 2.1 : Dip n<strong>et</strong> <strong>de</strong>veloped to capture North American porcupines in Parc National <strong>du</strong><br />

Bic, Québec, May 2000-May 2005. Photo by S. Descamps.<br />

1 n winter, porcupines spent most of their time insi<strong>de</strong> inaccessible rock <strong>de</strong>n s, which are<br />

highly avai<strong>la</strong>ble in our study area (Morin <strong>et</strong> al. 2005). We p<strong>la</strong>ced single-doO!' live traps baited<br />

with apples and pean ut butter in porcupine paths near occupied <strong>de</strong>ns. We covered traps with<br />

fabric tarps to <strong>de</strong>crease heat loss of trapped indivi<strong>du</strong>als. When an animal proved difficult to<br />

capture, we fitted a live trap into the entrance of the <strong>de</strong>n and blocked ail alternative exits. If<br />

<strong>de</strong>n morphology ma<strong>de</strong> this operation impossible, we waited for the porcupine at the entrance<br />

of its <strong>de</strong>n and caught it into a dip n<strong>et</strong>. We p<strong>la</strong>ced movement d<strong>et</strong>ectors (Vigil 650X,<br />

Circuitronique Estrie, Rock Forest, Québec) outsi<strong>de</strong> the <strong>de</strong>n several days before capture to<br />

d<strong>et</strong>ennine the daily activity sche<strong>du</strong>le of the porcupine and thus minimize waiting time.<br />

Juveniles were captured by band using leather gloves.<br />

Hand/ing<br />

We transferred captured porcupines to a dip n<strong>et</strong> for manipu<strong>la</strong>tions. We mea<strong>sur</strong>ed body<br />

mass using a spring scale (Peso<strong>la</strong> Macro Line 1, 2, 5, 10 or 20 kg, Peso<strong>la</strong> AG, Baar,


23<br />

Switzer<strong>la</strong>nd). To check sex and repro<strong>du</strong>ctive status of an indivi<strong>du</strong>al, we twisted the n<strong>et</strong><br />

several times to restrain its movements. We d<strong>et</strong><strong>et</strong>mined male repro<strong>du</strong>ctive status from the<br />

abdominal or sc rotai position of testicles, and female repro<strong>du</strong>ctive status by palpation and<br />

manual extraction ofmilk (Ilse & Hellgren 2001). We used chemical immobilization (Morin<br />

& Berteaux 2003) only when marking or col<strong>la</strong>ring porcupines.<br />

Marking<br />

We ear-tagged porcupines with a unique combination oftwo color- and sign-co<strong>de</strong>d<br />

p<strong>la</strong>stic tags (15 x45 mm, modified from Sweitzer and Berger (1992), Alltlex Canada, St-<br />

Hyacinthe, Que.) to allow i<strong>de</strong>ntification at a distance. Both tags bore the same sign but colors<br />

were in<strong>de</strong>pen<strong>de</strong>nt. We attached p<strong>la</strong>stic tags to the bottom part of the ear using self-piercing<br />

aluminum ear tags (tag size three, National Band and Tag Co., Newport, KY). We disinfected<br />

ears by washing the site with chlorexidine v<strong>et</strong>erinary soap, rinsing with water, and applying<br />

iodine tincture before piercing. We attached tags in the carti<strong>la</strong>ginous bottom part of the ear.<br />

We attached two smaller self-piercing aluminum ear tags (tag size one, National Band and<br />

Tag Co.; hereafter ca lied mini-tags) to the upper part of the ears. We suspected they wou Id be<br />

lost less often than <strong>la</strong>rger aluminum tags bearing p<strong>la</strong>stic tags, and would therefore help to<br />

maintain i<strong>de</strong>ntification of indivi<strong>du</strong>als. We tested this hypothesis by comparing loss rate of<br />

tags versus mini-tags.<br />

Ears of juveniles were too small to support tags so we marked them using two mini-tags<br />

only. We threa<strong>de</strong>d unique combinations of colored p<strong>la</strong>stic-coated wires through mini-tags for<br />

i<strong>de</strong>ntification of juveniles at a distance. Capture techniques and immobilization proce<strong>du</strong>res<br />

were approved by the McGill Animal Care Committee (permit 4213), the Comité <strong>de</strong><br />

protection <strong>de</strong>s animaux <strong>de</strong> l'Université <strong>du</strong> Québec à Rimouski (permit CPAI2-02-06) and the<br />

Société <strong>de</strong> <strong>la</strong> Faune <strong>et</strong> <strong>de</strong>s Parcs, Gouvernement <strong>du</strong> Québec (permits 20000417-001-0 I-S-P to<br />

20060501-002-01-S-F).<br />

Co /<strong>la</strong>ring<br />

We used Lotek SMRC-5RB VHF transmitters (Lotek Wireless Inc., Newmark<strong>et</strong>, Ont.)<br />

mounted on customized, home ma<strong>de</strong> col<strong>la</strong>rs (Morin <strong>et</strong> al. 2005). We did not test back pack<br />

attachment for our radio transmitters (Craig & Keller 1986) because we believed animal<br />

movements would be less constrained by col<strong>la</strong>rs. We first tested leather col<strong>la</strong>rs modified<br />

from nylon coll ars <strong>de</strong>scribed in Griesemer <strong>et</strong> al. (1999). Following Sweitzer and Berger


24<br />

(1992), we also tested a p<strong>la</strong>stic attachment system (Fig. 2.2) that was ma<strong>de</strong> of a 1 mmdiam<strong>et</strong>er<br />

m<strong>et</strong>al wire inserted within Tygon tubing (0.63 xO.95 cm [l/4x3/8 inch], VWR<br />

International, catalogue number 63014-472, Ville Mont-Royal, Que.). We fastened col<strong>la</strong>rs<br />

loosely enough to allow animais to gain mass (Berteaux <strong>et</strong> al. 2005), but tight enough to<br />

prevent loss and re<strong>du</strong>ce chances of an animal g<strong>et</strong>ting hung by its col<strong>la</strong>r in a tree. We<br />

attempted to capture, immobilize, and check neck condition of col<strong>la</strong>red porcupines every<br />

three months.<br />

Figure 2.2 : Tygon tubing system used to attach radio transmitter to North American<br />

porcupines in Parc National <strong>du</strong> Bic, Québec, May 2000-May 2005. Note that the m<strong>et</strong>allic part<br />

(cramp) used to close the col<strong>la</strong>r is visible on the picture but was inserted into the Tygon after<br />

the col<strong>la</strong>r was adjusted around the porcupine's neck. Photo by S. Descamps.<br />

We equipped juveniles captured soon after birth with Holohil VHF transmitters (mo<strong>de</strong>l<br />

R 1-2DM 7.5 g, Holohil Systems Ltd., Carp, Ont.) mounted on a m<strong>et</strong>al wire inserted within<br />

clear flexible Vinyl tubing (0.31 x0.47 cm [l/8x311 6 inch], United States P<strong>la</strong>stic Corp.,<br />

catalogue number 5900 l , Lima, OH). We captured and weighed col<strong>la</strong>red juveniles every<br />

week to check mass gain. Juveniles were chemically immobilized after each mass gain of 400<br />

g to verify if size of coll ars nee<strong>de</strong>d adjustment. When juveniles reached 3 kg, we changed


25<br />

transmitters fo r <strong>la</strong>rger units supported by more powerful batteries (RI-2DM 199 VHF<br />

transmitters, Holohil Systems Ltd.) and mounted on a m<strong>et</strong>al wire inse11ed within small Tygon<br />

tubing (0.31 xO.63 cm [1 /8x 1/4 inch] , VWR Internati onal, Catalog number 63 014-468).<br />

Evaluation of our m<strong>et</strong>hods, and statistics<br />

We evaluated our m<strong>et</strong>hods using qualitative fie ld observati ons rather th an quantitative<br />

data. We d<strong>et</strong>ennined the best capturing technique as the easiest one to use and the one<br />

apparently in<strong>du</strong>cing the least stress to the animal. We d<strong>et</strong>ermined the best marking and the<br />

best co l<strong>la</strong>ring techni ques as the longest-I asti ng and the one provoking the least wounds to the<br />

animais, respectively. We compared loss rates of tags versus mini-tags using a chi-square<br />

test. Ali quantitative results are presented as means ± SE.<br />

2.4. Results<br />

Searching and cap tu ring<br />

We searched for porcupines <strong>du</strong>ring 2,6 17 person-hours. This yiel<strong>de</strong>d 1,7 16 observations<br />

perfo rmed on 165 indi vi<strong>du</strong>als (8 1 males and 84 fe males) that were captured 1, 154 times. We<br />

ma<strong>de</strong> 37 captures using gloves, one using the jabsti ck, 1,026 using the dipn<strong>et</strong> (l 0 and six<br />

after waitin g for the animal to come down a tree or to exit its <strong>de</strong>n, respecti vely), 10 by<br />

climbing a tree to n<strong>et</strong> the porcupine, 14 using the noose pole, 14 usin g a pole to drive<br />

porcupines down a tree, six using the vertical traps and 46 using traps in winter. Our dip n<strong>et</strong><br />

was easy to use and animais struggled less than when hand-captured by the tait or captured<br />

w ith a noose pole. The n<strong>et</strong> did not in<strong>du</strong>ce abundant quill loss as 100) so we avoi<strong>de</strong>d those techniques. Of<br />

the 46 captures ma<strong>de</strong> using traps, eight were perfo rmed with traps blocking <strong>de</strong>n entrance.<br />

These eight captures resulted from about 15 capture attempts. However, five of the eight<br />

caught porcupines changed <strong>de</strong>n afterwards. A few porcupines (n < 5) acci<strong>de</strong>ntall y fe ll on the<br />

ground wh en we tried to capture them by climbing trees.<br />

We searched fo r juveniles around 35 di fferent mothers fo r a total of 44 moth er-years. We<br />

fo und 2 1 juveniles and our success rate was thus 47.7%. We perfo rmed 295 searches (mean:<br />

6.5 ± 1.0 sem"cbes per mother per year, range: 1-24 searches). We spent 282.5 hours


26<br />

sem'ching fOl' juveniles and found 7.4 juveniles per 100 hours of search. However, we found<br />

16 and 18 of the 21 juveniles within the first tl1ree and five searches performed around their<br />

mother, respectively (Fig. 2.3a). We found 17 of the 21 juveniles within the first 30 minutes<br />

of the search (Fig. 2.3b). We could ca1cu<strong>la</strong>te distance b<strong>et</strong>ween juvenile and mother for 19<br />

juveniles found. Distance was:::; 5 m for 11 juveniles, < Sm and:::; 15 m for sixjuveniles, and<br />

< 15 m and :::; 30 m for the two remaining ones.<br />

Marking<br />

We marked 136 a<strong>du</strong>lts and 29 juveniles. Color and sign-co<strong>de</strong>d ear tags were readable<br />

with binocu<strong>la</strong>rs from 10-20 m <strong>de</strong>pending on veg<strong>et</strong>ation <strong>de</strong>nsity. Juveniles never lost their<br />

mini-tags. Sixt y-one of the 136 a<strong>du</strong>lts lost one or more aluminum tags b<strong>et</strong>ween consecutive<br />

captures (mean time interval b<strong>et</strong>ween consecutive captures = 61 ± 3 days) but could be<br />

r<strong>et</strong>agged before they had lost ail four tags. Tags were lost more often tban mini-tags (79 tags<br />

vs. 35 mini-tags, li = 21.48, p


27<br />

8<br />

a)<br />

7<br />

"0<br />

c:<br />

:l<br />

0 6<br />

-If)<br />

~<br />

c: 5<br />

QJ<br />

><br />

:l<br />

.~<br />

...<br />

-0<br />

QJ<br />

4<br />

.0 3<br />

E<br />

:l<br />

Z<br />

2<br />

o<br />

2 3 4 5 6 7 8 9 10 11 12<br />

Number of search(es) performed before success<br />

"0<br />

c:<br />

:l<br />

0<br />

-If)<br />

~<br />

c:<br />

QJ<br />

><br />

:l<br />

...<br />

10<br />

9 "<br />

8<br />

7 ~<br />

: 1<br />

-0<br />

QJ 4 -<br />

.0<br />

E<br />

:l 3 J<br />

Z<br />

2 l<br />

b)<br />

1 1<br />

0<br />

0-10 10-20 20-30 30-40 40-50 50-60<br />

Time spent searching before success (min)<br />

Figure 2.3 : Number of times a juvenile was found through a systematic search around a<br />

female North American porcupine in Parc National <strong>du</strong> Bic, Québec, May 2000 to May 2005,<br />

according to a) number of search(es) perfonned to find the juvenile (inclu<strong>de</strong>s the successful<br />

sem'ch), and b) time spent searching (min) before finding a juvenil e (only data from<br />

successful sem'ches are shown).


28<br />

2.5. Discussion<br />

Searching<br />

Finding a<strong>du</strong>lt porcupines was re<strong>la</strong>tively easy in our study area in spring and at the end of<br />

autumn, when porcupines used open fields to forage. Juveniles were much more challenging<br />

to find . Had we limited to three the number of searches around each mother on a given year,<br />

and to 30 minutes the <strong>du</strong>ration of each search, we would have re<strong>du</strong>ced the total time spent<br />

sem·ching to 48.1 hours and the number of juveniles found per 100 hours of search wou Id<br />

have increased to 33 (16 juveniJes found in 48.1 hours). Hale and Fuller (1996) reported 10<br />

juveniles found after 176 one-hour searches around 23 a<strong>du</strong>lt females. Their overall success<br />

rate of 43.5 juveniles per 100 mothers is close to ours. Their searching m<strong>et</strong>hod and the<br />

number of sem"ches performed before finding each new juvenile was, however, not reported.<br />

Doing a maximum of three 30-minute searches per mother would increase search efficiency<br />

when many potential mothers are avai<strong>la</strong>ble. A greater search effort wou Id still be useful if<br />

few a<strong>du</strong>lt females are known and the number offound juveniles must be maximized. We<br />

recommend investing most of the effort searching the first 15 m around the mother,<br />

especially in a <strong>de</strong>nse forest habitat where searching a <strong>la</strong>rger radius is not efficient.<br />

Ascel1aining the repro<strong>du</strong>ctive status of females around which the searches are ma<strong>de</strong><br />

might increase success rate ofsearches. We consi<strong>de</strong>red a female to be <strong>la</strong>ctating ifsome liquid<br />

COLI Id be manually extracted from nipples. This was not al ways reliable. For example, we<br />

ma<strong>de</strong> Il lInsuccessful searches around a female who <strong>la</strong>ter proved to be pregnant <strong>du</strong>ring these<br />

searches (the twelfth search yiel<strong>de</strong>d a newborn porcupine; see Fig. 2.3a). An alternative,<br />

probably b<strong>et</strong>ter m<strong>et</strong>hod to d<strong>et</strong>ermine repro<strong>du</strong>ctive status consists in checking nipples after<br />

stimu<strong>la</strong>tion of milk release by injection of oxytocin (Roze 1989, Hale & Fuller 1996). We<br />

tried this m<strong>et</strong>hod in the first stages of our study but abandoned it after a few unsuccessful<br />

tests. We, however, suspect that our <strong>la</strong>ck of experience with porcupine handling biased<br />

negatively this early test.<br />

Capu/ring<br />

The most efficient capture m<strong>et</strong>hod usually was the dip n<strong>et</strong>. Use of a dip n<strong>et</strong> had already<br />

been repol1ed (Zimmerling & Croft 2001 , Zimmerling 2005) but authors did not <strong>de</strong>scribe<br />

equipment nor did they evaluate m<strong>et</strong>hod efficiency. A single experienced observer can safely


29<br />

record sex, repro<strong>du</strong>cti ve status, and mass without using chemical immobilizati on, although<br />

we recomm end an inexperienced observer to work with a helper. There is a ri sk of mortali ty<br />

when chemical immobilizati on is used (this study: three <strong>de</strong>aths) so we minimized its use<br />

(Morin & Belteaux 2003).<br />

Success rate of cage traps p<strong>la</strong>ced on the ground varied greatl y and was on average low.<br />

Some indivi<strong>du</strong>als never entered traps while others were trap happy . This low effi ciency is<br />

<strong>sur</strong>prising given the wi<strong>de</strong>spread use of this m<strong>et</strong>hod (Hale & Fuller 1996, Griesemer <strong>et</strong> al.<br />

1999, Ilse & Hell gren 2001 ). Baiting with pean ut butter in addition to sliced apples<br />

(Gri esemer <strong>et</strong> al. 1999) improved our success rate and winter trapping was more successful<br />

than summer trapping (results not shown). Blocking <strong>de</strong>n entrance with a trap seemed to<br />

prompt <strong>de</strong>n abandonment so this should be used as a <strong>la</strong>st resort. Velt ical traps p<strong>la</strong>ced on tree<br />

trunks were successful when the porcupine could not reach the ground by transferring into a<br />

ne ighboring tree.<br />

C limbing trees to capture porcupines was commonl y used in some studies (e.g. Roze<br />

1989, Strick<strong>la</strong>n <strong>et</strong> al. 1995). We avoi<strong>de</strong>d this technique after a few porcupines fe U from their<br />

tree, although we observed no obvious in jury.<br />

Marking<br />

Mal'king was long-<strong>la</strong>sting and allowed i<strong>de</strong>ntificati on at a distance. The fact that p<strong>la</strong>stic<br />

tags were of di fferent colors but disp<strong>la</strong>yed the same sign ma<strong>de</strong> visual i<strong>de</strong>ntificati on much<br />

easier. We often i<strong>de</strong>ntified animaIs foraging or resting in a tree without disrupting their<br />

behavior. Throughout our seven-year study, 8.5% (n = 14 out of 165) of marked animaIs lost<br />

their i<strong>de</strong>ntity. This significantly improves the 25% 10ss of ail tags reported by Griesemer <strong>et</strong><br />

al. (1999). Attachment of tags in the calti<strong>la</strong>ginous bottom palt of the ear and ear dis infection<br />

greatly minimized tag loss. M ini-tags helped avoiding i<strong>de</strong>ntity loss of porcupines. Although<br />

more costl y, Passive Integrated Transpon<strong>de</strong>rs (PIT) have now become a b<strong>et</strong>ter alternati ve to<br />

mini-tags (Schooley <strong>et</strong> al. 1993, Michard <strong>et</strong> al. 1995, Forman & Will iamson 2005) so we<br />

recommend their use to prevent i<strong>de</strong>ntity loss.<br />

Co /<strong>la</strong>ring<br />

O ur leather coll ars in<strong>du</strong>ced wounds in 23 .6% of cases and we abandoned them after the<br />

second year of study. We did not test the attachment systems suggested by G riesemer <strong>et</strong> al.<br />

(1999), because 66% of their machine-belting coll ars (n = 19 out of 29) and 7% of their


30<br />

tubu<strong>la</strong>r webbing col<strong>la</strong>rs (n = 1 out of 14) created wounds (Gri esemer <strong>et</strong> al. (1999). Only 3.5%<br />

of our Tygon tubing col<strong>la</strong>rs (n = 6 out of 17 1) created wounds. Tygon tubing col<strong>la</strong>rs<br />

re mained soft and fl exible even at cold temperatures, whi ch helped prevent skin abrasion.<br />

Because we tested Tygon tubing col<strong>la</strong>rs in ail seasons, and for long time peri ods, we are<br />

confi <strong>de</strong>nt that it is a suitable transmitter attachment system and recommend its use. Contact<br />

b<strong>et</strong>ween tube and skin did not cause abrasion and growin g quills easil y fo und thei r way on<br />

either si<strong>de</strong> of the col<strong>la</strong>r.<br />

The th ree instances of a porcupine g<strong>et</strong>ting hung by its col<strong>la</strong>r in a tree occurred in winter.<br />

A simi<strong>la</strong>r problem was witnessed in two red squilTel studies (J. Ferron, Université <strong>du</strong> Québec<br />

à Rimouski, personal communication; S. A. Boutin, University of A lberta, personal<br />

communicati on). Since porcupines loose weight <strong>du</strong>ring w inter (Roze 1984, Sweitzer &<br />

Berger 1993), col<strong>la</strong>rs fitted in autumn become loose as winter progresses, in creasin g hangin g<br />

ri sk. However, R. A. Sweitzer (i n litt.) did not report thi s problem with porcupines. To re<strong>du</strong>ce<br />

this th reat, we recommend a regu<strong>la</strong>r check of col<strong>la</strong>rs, especially at the beginning of winter<br />

when porcupines are loosing mass faster (Sweitzer & Berger 1993).<br />

We present the first repOli of radi o coll ars fitted to juvenile porcupines (:::; 1. 5 kg) . Radi o<br />

co l<strong>la</strong>rs are di fficult to fi t onjuveniles because of their rapid mass gain that fo rces regu<strong>la</strong>r<br />

checks of col<strong>la</strong>r size. Our <strong>de</strong>scription should help future investigators minimizin g the number<br />

of chemical immobilizati ons nee<strong>de</strong>d fo r adjusting col<strong>la</strong>r size. Flexibl e Tygon was<br />

unnecessary fo r newborn s because col<strong>la</strong>rs did not face cold temperatures. When we changed<br />

col<strong>la</strong>rs before winter, we used Tygon tubing to prevent subsequent neck abrasion.<br />

2.6. Conclusion<br />

Given the unique morphology of porcupines and the scarcity of published info rn<strong>la</strong>ti on<br />

regarding their study techniques, our fi ndings wi ll complement existing knowledge and<br />

fac ilitate ftui her research on this (or simi<strong>la</strong>r) species. The pres<strong>sur</strong>e on wildl ife ecologists fo r<br />

using safe and humane techniques has never been so hi gh (FarnswOli h & Rosovsky 1993,<br />

Powell & Proul x 2003, Beier 2005, Minteer & Collins 2005). Our account should help to<br />

feed the toolbox of wildlife technicians and biologists, as weil as the databases of an imal care<br />

committees.


Chapitre 3 Predation as a possible mechanism re<strong>la</strong>ting<br />

win ter weather to popu<strong>la</strong>tion dynamics in a North American<br />

porcupine popu<strong>la</strong>tion<br />

Mabille G., Descamps S., Berteaux D.<br />

(à soum<strong>et</strong>tre, Oec%gia)<br />

Dans un contexte <strong>de</strong> réchauffement cli matique, comprendre les mécanismes par lesquels<br />

le <strong>climat</strong> agit <strong>sur</strong> <strong>la</strong> dynamique <strong>de</strong>s popul ations animales est <strong>de</strong>venu un enjeu scientifiq ue <strong>et</strong><br />

politique important. Pour progresser dans <strong>la</strong> recherche <strong>sur</strong> les eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong>, une métho<strong>de</strong><br />

est d'alterner les étu<strong>de</strong>s à gran<strong>de</strong> échelle (qui penu<strong>et</strong>tent <strong>de</strong> générer <strong>de</strong>s hypothèses) avec <strong>de</strong>s<br />

étu<strong>de</strong>s à p<strong>et</strong>ite échelle (pour m<strong>et</strong>tre à l'épreuve ces hypoth èses). Klvana <strong>et</strong> al. (2004) génèrent<br />

l ' hypothèse que l'abondance <strong>de</strong>s porcs-épics au Bas-St-Laurent est infl uencée par les<br />

va ri ations d' activité so<strong>la</strong>ire, via un eff<strong>et</strong> <strong>sur</strong> les vari ables météorologiques locales. Nous<br />

utilisons ici les données <strong>de</strong> capture-recapture récoltées <strong>sur</strong> notre popu<strong>la</strong>ti on d'étu<strong>de</strong> (chap. 2)<br />

pour m<strong>et</strong>tre à l'épreuve c<strong>et</strong>te hypothèse <strong>et</strong> i<strong>de</strong>ntifier le(s) mécanisme(s) par le(s)quel(s)<br />

l'acti vité so<strong>la</strong>ire <strong>influence</strong> l'abondance <strong>de</strong> porcs-épics. Notre étu<strong>de</strong> confilme l'existence<br />

d'une cOlTé<strong>la</strong>tion entre les vari ati ons d'activité so<strong>la</strong>ire <strong>et</strong> le taux d'accroissement <strong>de</strong> <strong>la</strong><br />

popu<strong>la</strong>tion d'étu<strong>de</strong>. De plus, <strong>la</strong> radi ati on so<strong>la</strong>ire est corrélée avec les précipitati ons<br />

hivernales, elles-mêmes corrélées aux vari ations observées dans <strong>la</strong> <strong>sur</strong>vie hi vernale <strong>de</strong>s<br />

porcs-épics (j uvéniles <strong>et</strong> a<strong>du</strong>ltes). L'examen <strong>de</strong>s causes <strong>de</strong> morta lité indique que les taux <strong>de</strong><br />

prédation sont plus élevés les années <strong>de</strong> fortes précipitations hi vernales <strong>et</strong> que <strong>la</strong> prédation<br />

<strong>sur</strong> les porcs-épics a<strong>du</strong>ltes semble liée à <strong>la</strong> présence <strong>de</strong> neige au sol. Les vari ations d'acti vité<br />

so<strong>la</strong>ire pourraient donc affecter <strong>la</strong> taille <strong>de</strong>s popu<strong>la</strong>ti ons <strong>de</strong> porcs-épics par <strong>de</strong>s eff<strong>et</strong>s en<br />

casca<strong>de</strong>s <strong>sur</strong> les précipitations hi vernales, les taux <strong>de</strong> <strong>sur</strong>vie <strong>de</strong>s porcs-épics en hiver, <strong>et</strong> une<br />

fl uctuation <strong>de</strong>s taux <strong>de</strong> prédation en fo ncti on <strong>de</strong>s conditions <strong>de</strong> neige. Notre étu<strong>de</strong> confinne<br />

1 ' hypothèse générée par Klvana <strong>et</strong> al. (2004) <strong>et</strong> i<strong>de</strong>nti fie un mécanisme possible par lequel le<br />

cli mat hivernal pourrait affecter <strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>tions <strong>de</strong> porcs-épics.


32<br />

3.1. Abstract<br />

Un<strong>de</strong>rstanding the effects of <strong>climat</strong>e on popu<strong>la</strong>tion dynamics of mammals is p<strong>la</strong>gued by<br />

experimental difficulties. One way to move ahead with <strong>climat</strong>e research may be to alternate<br />

<strong>la</strong>rge and small-scale studies on a given system. ln such a "cyclical scaling", <strong>la</strong>rge-scale<br />

studies serve to generate hypotheses that can be challenged with small-scale studies. Klvana<br />

<strong>et</strong> al. (2004) showed that North American porcupine (Er<strong>et</strong>hizon dorsatum) popu<strong>la</strong>tions in<br />

eastern Québec have regu<strong>la</strong>rly fluctuated over the past 130 years in re<strong>la</strong>tion to fluctuations in<br />

the so<strong>la</strong>r cycle and local weather variables. This generated the hypothesis that so<strong>la</strong>r activity<br />

may affect porcupines' abundance through effects on weather variables. We used a smallscale<br />

study to challenge this hypothesis and shed light on the mechanism(s) linking porcupine<br />

abundance to weather conditions. We stalted in 2000 a capture-recapture study which implied<br />

systematically searching and capturing porcupines in May and August each year. This <strong>de</strong>sign<br />

allowed estimating "summer" (May to August) and "winter" (August to May) <strong>sur</strong>vival rates<br />

b<strong>et</strong>ween 2000 and 2005. Summer <strong>sur</strong>vival was high and constant over the study period (mean<br />

monthly <strong>sur</strong>vival: 0.86 for juveniles and 0.97 for indivi<strong>du</strong>als ~1-yr-old) while winter <strong>sur</strong>vival<br />

was lower and variable from year to year (mean monthly <strong>sur</strong>vival: 0.53-0.83 for juveniles and<br />

0.84-0.96 for indivi<strong>du</strong>als ~ l-yr-old). Local winter precipitation was negatively corre<strong>la</strong>ted to<br />

so<strong>la</strong>r irradiance and exp<strong>la</strong>ined a <strong>la</strong>rge part of the variation in winter <strong>sur</strong>vival (r 2 = 0.87) with<br />

winter <strong>sur</strong>vival being negatively <strong>influence</strong>d by winter precipitation. Predation rates were<br />

elevated in years of hi gh winter precipitation and 95% of <strong>de</strong>predated porcupines were killed<br />

when snow was covering the ground. Predation rates thus appeared strongly re<strong>la</strong>ted to snow<br />

conditions, and variations of predation rates according to snow conditions may exp<strong>la</strong>in the<br />

observed re<strong>la</strong>tionship b<strong>et</strong>ween winter precipitation and <strong>sur</strong>vival of porcupines.<br />

Key-words : capture-mark-recapture, <strong>climat</strong>ic variations, mOitai ity causes, predator-prey,<br />

seasonal <strong>sur</strong>vival


33<br />

3.2. Intro<strong>du</strong>ction<br />

A growing number of studies indicates that <strong>climat</strong>e affects popu<strong>la</strong>tion dynamics of<br />

mammals (Krebs & Be11eaux 2006). Climate can have direct effects on indivi<strong>du</strong>als (for<br />

example winter weather <strong>influence</strong>s popu<strong>la</strong>tion dynamics through effects on locomotion<br />

(Telfer & Kelsall 1984) or thermoregu<strong>la</strong>tion (Cook <strong>et</strong> al. 1998)); or indirect ones by affecting<br />

species interactions. For example, <strong>de</strong>ep snow may <strong>influence</strong> predator-prey re<strong>la</strong>tionships (Post<br />

<strong>et</strong> al. 1999b, Hebblewhite 2005) and access to food resources (Turner <strong>et</strong> al. 1994, Post &<br />

Stens<strong>et</strong>h 1999). Obviously, the different ways in which <strong>climat</strong>e <strong>influence</strong>s popu<strong>la</strong>tion<br />

dynamics are complex and our un<strong>de</strong>rstanding of mechanisms linking <strong>climat</strong>e to popu<strong>la</strong>tion<br />

growth rate is limited (Owen-Smith & Mills 2006). Because we can hardly manipu<strong>la</strong>te<br />

<strong>climat</strong>e, testing specifically for changes driven by weather variations is p<strong>la</strong>gued by<br />

experimental difficulties. The two main approaches that have been used are 1) small scale<br />

studies that aim at d<strong>et</strong>ermining mechanisms linking weather variations and changes in<br />

biological processes; and 2) <strong>la</strong>rge scale studies (i.e. data collected over long time periods<br />

and/or <strong>la</strong>rge areas) that aim at corre<strong>la</strong>ting the observed <strong>climat</strong>ic variability with changes in<br />

ecosystem functioning. Both approaches have important drawbacks and Root and Schnei<strong>de</strong>r<br />

(1995) suggested alternating studies performed on <strong>la</strong>rge and small scales to move ahead with<br />

<strong>climat</strong>e research. ln such cycles of analysis, <strong>la</strong>rge-scale studies would generate hypotheses<br />

that wou Id be tested using small-scale studies.<br />

The so<strong>la</strong>r cycle is known to have an impact on weather (Sinc<strong>la</strong>ir <strong>et</strong> al. 1993) with<br />

cascading effects on entire ecosystems (Verschuren <strong>et</strong> al. 2000, Ho<strong>de</strong>ll <strong>et</strong> al. 2001). For<br />

instance, the repro<strong>du</strong>ctive output of snowshoe hares in Yukon was found to be cyclic and<br />

highly corre<strong>la</strong>ted with sunspot numbers with a two years time <strong>la</strong>g (Stefan & Krebs 200 l,<br />

Krebs & Be11eaux 2006). Possible mechanisms involved in this re<strong>la</strong>tionship inclu<strong>de</strong> an effect<br />

of so<strong>la</strong>r activity on snow <strong>de</strong>pth which might in turn affect food supplies (Krebs & Berteaux<br />

2006) and lynx hunting success (Sten s<strong>et</strong>h <strong>et</strong> al. 1999,2004). North American porcupine<br />

(Er<strong>et</strong>hizon dorsatum) popu<strong>la</strong>tions in the Bas St. Laurent region of eastern Québec seem also<br />

to be affected by the so<strong>la</strong>r cycle. Klvana <strong>et</strong> al. (2004) found that an in<strong>de</strong>x of porcupine<br />

abundance (porcupine feeding scars) was re<strong>la</strong>ted to fluctuations in the so<strong>la</strong>r cycle, winter


34<br />

precipitation, snowfall, and spring temperature over the past 130 years. As for the snowshoe<br />

hares, one possible mechanism linking so<strong>la</strong>r activity to porcupine abundance could be that<br />

the so<strong>la</strong>r activity affects snow conditions which may in turn affect access to food resources<br />

(Roze 1989) or hunting behaviour of predators (e.g. coyotes, Thibault & Ouell<strong>et</strong> 2005). The<br />

so<strong>la</strong>r activity could also <strong>influence</strong> spring tempe rature which can have direct effects on<br />

thermoregu<strong>la</strong>tion of juvenile porcupines (Haim <strong>et</strong> al. 1992) or indirect effects on condition of<br />

indivi<strong>du</strong>als through an impact on veg<strong>et</strong>ation growth (Albon <strong>et</strong> al. 1987, Langvatn <strong>et</strong> al. 1996,<br />

Post & Stens<strong>et</strong>h 1999). Klvana <strong>et</strong> al. (2004) did not i<strong>de</strong>ntify the mechanism(s) linking<br />

porcupine abundance to weather conditions but their study, ma<strong>de</strong> on a <strong>la</strong>rge temporal and<br />

spatial scale, raised the hypothesis that so<strong>la</strong>r activity <strong>influence</strong>d popu<strong>la</strong>tion dynamics of<br />

porcupines through an effect on local weather variables. Following the approach suggested<br />

by Root and Schnei<strong>de</strong>r (1995), we s<strong>et</strong> up a study on a smaller temporal and spatial scale, and<br />

in the same porcupine popu<strong>la</strong>tion as in Klvana <strong>et</strong> al. (2004) to challenge this hypothesis and<br />

shed light on the mechanism(s) lin king porcupine abundance to weather conditions.<br />

We stm1ed a multi-annual capture-recapture study that allowed us to estimate annual<br />

popu<strong>la</strong>tion size, "summer" (May to August), and "winter" (August to May) <strong>sur</strong>vival rates<br />

separately, and to d<strong>et</strong>ermine causes of mortality for the carcasses we found. Reliable<br />

estimates of annual <strong>sur</strong>vival rates have been calcu<strong>la</strong>ted using capture-recapture <strong>de</strong>signs for<br />

several mammal species (e.g. Jorgenson <strong>et</strong> al. 1997 on bighorn sheep, Bonenfant <strong>et</strong> al. 2002<br />

on red <strong>de</strong>er, Ozgul <strong>et</strong> al. 2006 on yellow-bellied marmots, Baker & Thompson 2007 on monk<br />

seals) but calcu<strong>la</strong>tions of seasonal <strong>sur</strong>vival rates from indivi<strong>du</strong>al-based capture-recapture data<br />

are infrequent, especially in mammals (but see Lima <strong>et</strong> al. 2001 on mouse opossums, Crespin<br />

<strong>et</strong> al. 2002 on bank voles, Lima <strong>et</strong> al. 2002a on leaf-eared mouse, Sendor & Simon 2003 on<br />

pipistrelle bats). Using seasonal <strong>sur</strong>vival rates is crucial to un<strong>de</strong>rstand how mortality risks<br />

faced by animais vary <strong>du</strong>ring their annual cycle (Gauthier <strong>et</strong> al. 2001). ln pm1icu<strong>la</strong>r, in our<br />

system, we were interested in distinguishing effects of spring temperature on summer and/or<br />

winter <strong>sur</strong>vival and in assessing differences in variability b<strong>et</strong>ween winter and summer<br />

<strong>sur</strong>vival rates.<br />

Our study, based on a small temporal and spatial scale, allowed us to test for a<br />

re<strong>la</strong>tionship b<strong>et</strong>ween porcupine abundance, so<strong>la</strong>r activity, and local weather, and to d<strong>et</strong>ermine<br />

wh<strong>et</strong>her the effects of local weather on porcupine abundance are mediated tlu'ough changes in


35<br />

predation risk. To do so, we tested the following predictions: first, changes in abundance of<br />

porcupines are corre<strong>la</strong>ted with so<strong>la</strong>r activity. Second, so<strong>la</strong>r activity is cOITe<strong>la</strong>ted to winter<br />

precipitation, snowfall, and spring temperature. Third, changes in winter precipitation,<br />

snowfall and spring temperature are corre<strong>la</strong>ted to changes in abundance of porcupines. More<br />

specifically in long-lived vertebrates, <strong>sur</strong>vival is the <strong>de</strong>mographic param<strong>et</strong>er that has the<br />

<strong>la</strong>rgest <strong>influence</strong> on changes in abundance (i.e. the <strong>la</strong>rgest e<strong>la</strong>sticity) (Gail<strong>la</strong>rd <strong>et</strong> al. 2000,<br />

Sa<strong>et</strong>her & Bakke 2000, Eberhardt 2002). Because N0l1h American porcupines are re<strong>la</strong>tively<br />

long-lived (Roze 1989), we therefore investigated the re<strong>la</strong>tionship b<strong>et</strong>ween <strong>sur</strong>vival of<br />

porcupines and local weather with the predictions that an increase in winter precipitation<br />

and/or snowfall and a <strong>de</strong>crease in spring tempe rature should lead to a <strong>de</strong>crease in <strong>sur</strong>vival of<br />

porcupines.<br />

Finally, in a fourth step, we investigated some potential mechanisms linking weather<br />

variables to <strong>sur</strong>vival of porcupines. Three non-exclusive mechanisms can be proposed, each<br />

leading to specific predictions:<br />

1) Low spring tempe ratures increase starvation probability of neonates and then<br />

<strong>de</strong>crease juvenile summer <strong>sur</strong>vival. Young mammals are sensitive to hypothennia because of<br />

their immature thennoregu<strong>la</strong>tory system (Hull 1973, Leon 1986). We therefore expected<br />

juvenile porcupines to show re<strong>du</strong>ced summer <strong>sur</strong>vivorship in years of low spring<br />

temperature.<br />

2) Low spring temperatures and high snowfall/winter precipitation increase winter<br />

starvation probability and then <strong>de</strong>crease winter <strong>sur</strong>vival. Low spring temperatures can<br />

<strong>de</strong>crease primary pro<strong>du</strong>ctivity (Langvatn <strong>et</strong> al. 1996), which could in turn re<strong>du</strong>ce rail body<br />

condition and <strong>influence</strong> winter <strong>sur</strong>vival of herbivores (Loison & Langvatn 1998, Portier <strong>et</strong> al.<br />

1998). ln winter, the presence of snow covering the ground impe<strong>de</strong>s movements of<br />

porcupines and <strong>de</strong>creases their access to food resources (Roze 1984). We therefore predicted<br />

low spring temperatures and high snowfall/winter precipitation to negatively <strong>influence</strong> winter<br />

<strong>sur</strong>vival rates ofporcupines through increased starvation rates.<br />

3) High snowfall and/or high winter precipitation increase winter predation probability<br />

and then <strong>de</strong>crease winter <strong>sur</strong>vival. ln presence of snow, predators can modify their hunting<br />

behaviour so as to increase hunting efficiency on some prey (Post <strong>et</strong> al. 1999b, Jedrzejewski<br />

<strong>et</strong> al. 2002, Hebblewhite 2005) and to relieve hunting pres<strong>sur</strong>e on others (Lindstrom &


36<br />

Hornfeldt 1994, Gese <strong>et</strong> al. 1996a, Se<strong>la</strong>s & Vik 2006). Prey living above the snow <strong>sur</strong>face<br />

usually suffer higher predation risk as snow <strong>de</strong>epens. We therefore expected winter predation<br />

rates on porcupines to increase in years of high snowfall/winter precipitation.<br />

3.3. Material and m<strong>et</strong>hods<br />

Study popu<strong>la</strong>tion<br />

We worked from May 2000 to May 2006 in a ca. 2 km 2 area of Parc National <strong>du</strong> Bic<br />

(48°20'N, 68°46'W, elevation 0-150m), Québec, Canada. The study area is fragmented by<br />

abandoned and cultivated fields and characterized by a rugged topography, abundance of<br />

natural rock <strong>de</strong>ns, and a mixed boreal forest. We captured porcupines in open fields <strong>du</strong>ring<br />

intensive capture sessions in May and August every year from 2000 to 2004 and in May only<br />

in 2005 and 2006 (Table 3.1). Each night of<strong>sur</strong>vey involved one to six observers (usually<br />

two) who patrolled the study area on foot or bicycle for one to nine hours (usually five). We<br />

sexed, weighed, aged (as juvenile, suba<strong>du</strong>lt, or a<strong>du</strong>lt using body mass in May, Berteaux <strong>et</strong> al.<br />

2005), and permanently marked porcupines upon capture with m<strong>et</strong>al ear tags (Be11eaux <strong>et</strong> al.<br />

•<br />

2005, Morin <strong>et</strong> al. 2005). We also used telem<strong>et</strong>ry to monitor indivi<strong>du</strong>als and fitted radio<br />

col<strong>la</strong>rs (Lotek SMRC-5RB VHF transmitters, Lotek Wireless Inc. , Newmark<strong>et</strong>, ON, Canada,<br />

L3Y 7B5) on 97 indivi<strong>du</strong>als for 23576 porcupine-days (Table 3.1).<br />

Parturition period is mid-May to <strong>la</strong>te June so we consi<strong>de</strong>red a popu<strong>la</strong>tion-year to start in<br />

May (e.g. year 2000 extends from May 2000 to April 2001). We estimated minimum<br />

popu<strong>la</strong>tion size for a given year as the number of different indivi<strong>du</strong>als observed b<strong>et</strong>ween May<br />

and April of the following year. Open fields are very attractive to porcupines for feeding in<br />

summer and porcupines were easily observed when using fields. We are therefore confi<strong>de</strong>nt<br />

that vi11ually ail porcupines present in the study area were captured or observed at least once<br />

each year. As a confirmation, we rarely found marked animais not observed one year and<br />

<strong>la</strong>ter relocated (only three and four animais, respectively in 2001 and 2002, which we ad<strong>de</strong>d<br />

to the popu<strong>la</strong>tion size for the year that they had not been observed).


37<br />

Table 3.1 : Monitoring effort according to season and year in a North American porcupine popu<strong>la</strong>tion in Parc National <strong>du</strong> Bic,<br />

Québec, May 2000-May 2006. Survey con esponds to the number of ni ghts and person-hours spent searching for porcupines<br />

randomly in the study area. Radio-tracking conesponds to the effo11 ma<strong>de</strong> following porcupines by telem<strong>et</strong>ry (number of indivi<strong>du</strong>als<br />

followed, proportion of the total popu<strong>la</strong>tion, and mean number of days bearing a col<strong>la</strong>r)<br />

Survey<br />

May<br />

2000 2001 2002 2003 2004 2005 2006<br />

nights 20* 20* 26 20 22 18 10<br />

person-hours 150* 150* 481 .3 195.2 319.1 224.7 88.0<br />

August<br />

nights 15 * 14 14 5 12 0 0<br />

person-hours 100* 151.8 152.5 69.0 140.1 0 0<br />

Radio-tracking<br />

Summert<br />

n (proportion of males) 12 (8.3) 51 (52.9) 13 (46.2) 38 (47.4) 23(39.1) 0 0<br />

% ofmarked indivi<strong>du</strong>als 10.3 60.7 19.7 86.4 100 0 0<br />

days per indivi<strong>du</strong>al 29 ± 6 62 ± 5 62 ± 10 91 ± 7 79 ± 10 0 0<br />

Wintert<br />

n (propo11ion of males) 21 (61.9) 0(0) 19(57.9) 38 (47.4) 15 (33.3) 0 0<br />

% ofmarked indivi<strong>du</strong>als 18.0 0 28.8 86.4 65 .2 0 0<br />

days per indivi<strong>du</strong>al 54 ± 6 0 147 ± 15 186 ± 10 162 ± 13 0 0<br />

tSummer, May to August; Winter, September to April. *estimated minimum numbers (precise record of searching effût1 started in<br />

August 2001 only)


38<br />

Study <strong>de</strong>sign<br />

We first tested if changes in abundance of porcupines cone<strong>la</strong>ted with so<strong>la</strong>r irradiance<br />

<strong>du</strong>ring the study period. Second, we tested if so<strong>la</strong>r irradiance cone<strong>la</strong>ted with local weather<br />

variables. Then, we estimated winter and summer <strong>sur</strong>vival of porcupines from May 2000 to<br />

May 2005 in or<strong>de</strong>r to test for an effect of local weather on <strong>sur</strong>vival. Because time-<strong>la</strong>g effects<br />

of weather on phenotypic and <strong>de</strong>mographic traits can be important (Post & Stens<strong>et</strong>h 1999,<br />

Post 2005), we investigated for a direct and for a <strong>de</strong><strong>la</strong>yed <strong>influence</strong> of environmental<br />

covariates on <strong>sur</strong>vival (<strong>la</strong>gs 1-2 years). Finally, to d<strong>et</strong>ermine which age-c<strong>la</strong>ss was the most<br />

sensitive to changes in local weather, and wh<strong>et</strong>her changes in <strong>sur</strong>vival were mainly <strong>du</strong>e to<br />

changes in predation or starvation rates, we examined causes of mortality according to year,<br />

season and age c<strong>la</strong>sses.<br />

Re<strong>la</strong>tionship b<strong>et</strong>ween abundance of porcupines and so<strong>la</strong>r irradiance<br />

We used estimates of popu<strong>la</strong>tion size to calcu<strong>la</strong>te popu<strong>la</strong>tion growth rate as:<br />

r f = N f + 1 /N f<br />

(1)<br />

in which r f is popu<strong>la</strong>tion growth rate for year t, Nf is popu<strong>la</strong>tion size in year t and N f + / is<br />

popu<strong>la</strong>tion size in the following year. We used a Pearson corre<strong>la</strong>tion to test for an association<br />

b<strong>et</strong>ween popu<strong>la</strong>tion growth rate and total so<strong>la</strong>r irradiance monitored with absolute<br />

radiom<strong>et</strong>ers p<strong>la</strong>ced onboard satellites (daily irradiance in W/m 2 as calcu<strong>la</strong>ted by Frohlich<br />

(2000), averaged over a year). We obtained so<strong>la</strong>r irradiance data from the World Radiation<br />

Center (Physicalisch-M<strong>et</strong>eorologisches Observatorium Davos, PMOD/WRC, Switzer<strong>la</strong>nd,<br />

unpublished data from the VIRGO Experiment on the cooperative ESA/NASA Mission<br />

SoHO) and standardized it ((value - mean)/SD) before analyses. So<strong>la</strong>r irradiance is more<br />

likely to be a biologically and <strong>climat</strong>ically explicative mea<strong>sur</strong>e of the so<strong>la</strong>r activity than the<br />

traditionally used sunspot number (Klvana <strong>et</strong> al. 2004). However, we also perfonned analyses<br />

using the sunspot number (obtained from the World Data Center for the Sunspot In<strong>de</strong>x),<br />

given its wi<strong>de</strong>spread lise in the ecological literature. We found simi<strong>la</strong>r results using either<br />

mea<strong>sur</strong>e so results using sunspot numbers are not shown. Below we use so<strong>la</strong>r activity and<br />

so<strong>la</strong>r inadiance as synonyms.<br />

Re<strong>la</strong>tionships b<strong>et</strong>ween so<strong>la</strong>r irradiance and local weather variables<br />

We used Pearson corre<strong>la</strong>tions to test for a corre<strong>la</strong>tion b<strong>et</strong>ween so<strong>la</strong>r irradiance and<br />

weather variables. Based on Klvana <strong>et</strong> al. (2004), we consi<strong>de</strong>red three weather variables:


39<br />

winter precipitation (total precipitation in mm, b<strong>et</strong>ween November and April), snowfall (in<br />

cm, b<strong>et</strong>ween November and April) and spring temperature (mean monthly temperature in oC,<br />

averaged over May and June). We obtained weather records from the Environment Canada<br />

weather station at Rimouski, about 20 km from our study site (48°27'N, 68°31 'W). We<br />

examined re<strong>la</strong>tionships b<strong>et</strong>ween so<strong>la</strong>r irradiance and weather param<strong>et</strong>ers for years 1998 to<br />

2004 because we tested for effects of environmental covariates on <strong>sur</strong>vival with <strong>la</strong>gs of up to<br />

two years (i.e. stalting in 1998) and because 2004 was the <strong>la</strong>st popu<strong>la</strong>tion year we used in<br />

<strong>sur</strong>vival analyses (see below). We standardized weather data before analyses.<br />

Seasona! <strong>sur</strong>vival rates<br />

We d<strong>et</strong>ennined fates of porcupines through capture, visual and radio-telem<strong>et</strong>ry<br />

observations (hereafter called porcupine observations). Survival analyses inclu<strong>de</strong>d only<br />

porcupines that died naturally (i .e. not from research re<strong>la</strong>ted reasons, see below). Our datas<strong>et</strong><br />

consisted in 82 females (12 captured for the first time as juveniles, 16 as suba<strong>du</strong>lts, and 54 as<br />

a<strong>du</strong>lts) and 77 males (16 captured for the first time as juveniles, seven as suba<strong>du</strong>lts, and 54 as<br />

a<strong>du</strong>lts). Preliminary analyses indicated that <strong>sur</strong>vival was simi<strong>la</strong>r for suba<strong>du</strong>lts and a<strong>du</strong>lts so<br />

that we only consi<strong>de</strong>red two age c<strong>la</strong>sses: juveniles and indivi<strong>du</strong>als 2: l-yr-old. We used<br />

m<strong>et</strong>hods d<strong>et</strong>ailed in Loison <strong>et</strong> al. (1994) to inclu<strong>de</strong> different ages at capture in the estimation<br />

proce<strong>du</strong>res. We estimated seasonal <strong>sur</strong>vival rates of porcupines from May 2000 to May 2005<br />

(k = Il occasions of captures). We <strong>de</strong>fined as "summer <strong>sur</strong>vival" the <strong>sur</strong>vival from May-June<br />

to August and as "winter <strong>sur</strong>vival" the <strong>sur</strong>vival from August to May-June. The lengths of our<br />

"summer" and "winter" periods were thus four and eight months, respectively. We used<br />

observations from May and June to d<strong>et</strong>ermine presence at the beginning of summer because<br />

using only May would have re<strong>du</strong>ced our sample size (n = 139 instead of 159), especially for<br />

juveniles (n = 18 instead of 28). ln<strong>de</strong>ed, juveniles are born at the end of Mayor beginning of<br />

June so that many of them were observed for the first time in June and died <strong>du</strong>ring their first<br />

summer (i.e. were not observed in August).<br />

We performed <strong>sur</strong>vival analyses using capture-mark-recapture m<strong>et</strong>hods (Lebr<strong>et</strong>on <strong>et</strong> al.<br />

1992), using the program M-SURGE 1.7.1 (Choqu<strong>et</strong> <strong>et</strong> al. 2004, 2005) which can take into<br />

account unequal interval lengths b<strong>et</strong>ween capture occasions. The fit of our data to the<br />

Cormack-Jolly-Seber mo<strong>de</strong>l was acceptable (Goodness of fit test using U-CARE 2.02<br />

(Choqu<strong>et</strong> <strong>et</strong> al. 2003, Pra<strong>de</strong>l <strong>et</strong> al. 2003): Chi 2 = 39.620, df= 29, P = 0.090) so that we used


40<br />

this mo<strong>de</strong>l as a starting point for mo<strong>de</strong>! selection (Lebr<strong>et</strong>on <strong>et</strong> al. 1992). As <strong>sur</strong>vival rates<br />

were the param<strong>et</strong>ers of interest in our study, we first mo<strong>de</strong> lied sighting probabilities to have<br />

more statistical power when mo<strong>de</strong>ling <strong>sur</strong>vival (Lebr<strong>et</strong>on <strong>et</strong> al. 1992). We carried out mo<strong>de</strong>l<br />

selection following the parsimony principle based on Akaike infonnation criterion corrected<br />

for small sample sizes (AI Cc, Burnham & An<strong>de</strong>rson 2002). We consi<strong>de</strong>red mo<strong>de</strong>ls that were<br />

different by less th an two units of AICc to be comp<strong>et</strong>itive to exp<strong>la</strong>in the data (Burnham &<br />

An<strong>de</strong>rson 2002). As it was impossible to distinguish mortality from pennanent emigration,<br />

we refer to apparent rather th an absolute <strong>sur</strong>vival. However, we believe apparent <strong>sur</strong>vival is<br />

close to absolute <strong>sur</strong>vival in our popu<strong>la</strong>tion because we only observed five marked<br />

indivi<strong>du</strong>als in the regu<strong>la</strong>rly <strong>sur</strong>veyed areas adjacent to our study site.<br />

We first tested for the effects of sex and age on <strong>sur</strong>vival. ln<strong>de</strong>ed, North American<br />

porcupines are sexually dimorphic (male/female mass ratio in <strong>la</strong>te summer = 1.22) and<br />

mammalian popu<strong>la</strong>tions are commonly age-structured (Charlesworth 1994), so that we<br />

expected age and sex-differences in <strong>sur</strong>vival. Following Klvana <strong>et</strong> al. (2004), we then tested<br />

for an effect of winter precipitation, snowfall, and spring temperature on <strong>sur</strong>vival rates. We<br />

used standardized weather data and tested for direct and <strong>de</strong><strong>la</strong>yed (<strong>la</strong>gs: 1-2 years) effects on<br />

<strong>sur</strong>vival.<br />

The percentage ofyearly variations in <strong>sur</strong>vival that is exp<strong>la</strong>ined by an environmental<br />

covariate was calcu<strong>la</strong>ted following Schemper (1990):<br />

2 Deviance(covariate) - Deviance(constant)<br />

r =--------~------~--------~------~<br />

Deviance(year) - Deviance(constant)<br />

(2)<br />

where covariate, year and constant refer to the mo<strong>de</strong>ls with covariate-<strong>de</strong>pen<strong>de</strong>nt, time<strong>de</strong>pen<strong>de</strong>nt<br />

and constant <strong>sur</strong>vival rates.<br />

Causes of mortality<br />

We located <strong>de</strong>ad porcupines <strong>du</strong>ring <strong>sur</strong>veys (n = 13) or using radio-telem<strong>et</strong>ry (n = 47).<br />

Since we did not perfonn telem<strong>et</strong>ry in winter 2001 and years 2005 and 2006 (Table 3.1), we<br />

consi<strong>de</strong>red that sem"ching effOlt was insufficient those years (n = 4 carcasses found) and<br />

exclu<strong>de</strong>d these periods from analyses. Three porcupines died <strong>du</strong>ring anaesthesia and three<br />

died when they got hung by their col<strong>la</strong>r in a tree. We exclu<strong>de</strong>d these unnatural <strong>de</strong>aths from<br />

analyses. We therefore d<strong>et</strong>ermined probable cause of mortality for 50 animais that died in<br />

2000, 2002, 2003 and 2004. We c<strong>la</strong>ssified carcasses as <strong>de</strong>ad from starvation (not injured and


41<br />

emaciated), road kills, <strong>de</strong>ad from tree fall (injured and found un<strong>de</strong>r a tree) or predator killed.<br />

We consi<strong>de</strong>red a porcupine as killed by predators either when its radio-col<strong>la</strong>r was r<strong>et</strong>rieved<br />

bearing visible traces of blood and its carcass could not be fo und (n = 8 porcupines) or when<br />

remains of skin, intestines or stomach (Sweitzer 1996) were found, along with predator signs<br />

(tracks, scats) or not (n = 20). Sweitzer (1996) used the presence of intestines or stomach on<br />

carcasses to discriminate <strong>de</strong>predated porcupines from scvavenged carcasses. ln addition, we<br />

found most carcasses shortly (i.e. 1-2 days) after we d<strong>et</strong>ennined mortality from the audible<br />

change in the telem<strong>et</strong>ry signal. We are therefore confi<strong>de</strong>nt that porcupines that we consi<strong>de</strong>red<br />

as killed from predators were actually <strong>de</strong>predated animais and not porcupines <strong>de</strong>ad from<br />

other causes and <strong>la</strong>ter scavenged. Potential predators in our study site inclu<strong>de</strong>d fishers<br />

(Martes pennanti), coyotes (Canis <strong>la</strong>trans) and great horned owls (Bubo virginianus). We<br />

recor<strong>de</strong>d predator i<strong>de</strong>ntity when possible. We used G-tests (Sokal & Rohlf 1981) to compare<br />

the causes of mortality across years, and b<strong>et</strong>ween age c<strong>la</strong>sses (two age c<strong>la</strong>sses were<br />

consi<strong>de</strong>red: juveniles and indivi<strong>du</strong>als 2: 1-yr-old).<br />

Predation and starvation were the two main mortality causes in our popu<strong>la</strong>tion (see<br />

Results), so we also used G-tests to examine wh<strong>et</strong>her proportions of juveniles and ind ivi<strong>du</strong>als<br />

2: l-yr-old dying from predation and starvation were different b<strong>et</strong>ween seasons (summer vs<br />

winter). Because we hypothesized that the presence of snow on the ground could affect<br />

predation and starvation rates, we further separated the winter season in two periods for<br />

analyses of causes of mortality: winter but no snow (from September to approximately mid-<br />

November), and winter with snow covering the ground (approximately from mid-November<br />

to end of April).<br />

3.4. Results<br />

Re<strong>la</strong>tionship b<strong>et</strong>ween abundance of porcupines and so/ar irradiance<br />

We observed a strong <strong>de</strong>cline in abundance of ail age c<strong>la</strong>sses in our study popu<strong>la</strong>tion,<br />

from a total of 117 indivi<strong>du</strong>als captured in 2000 to only one indivi<strong>du</strong>al in 2006 (Table 3.2).<br />

Consistently, overall popu<strong>la</strong>tion growth rate was < 1 in ail years (i.e. the popu<strong>la</strong>tion size was<br />

<strong>de</strong>creasing) and varied from 0.72 in 2000 to 0.25 in 2005 (Table 3.2). Popu<strong>la</strong>tion growth rate<br />

was positively corre<strong>la</strong>ted to so<strong>la</strong>r Ï1Tadiance (r = 0.94, P = 0.006, n = 6).


42<br />

Table 3.2 : Structure and size of a NOith American porcupine popu<strong>la</strong>tion followed in Parc<br />

National <strong>du</strong> Bic, Québec, May 2000-May 2006. Popu<strong>la</strong>tion growth rate was calcu<strong>la</strong>ted as<br />

j2oj2u<strong>la</strong>tion size in ;iear t+ 1 divi<strong>de</strong>d b;i j2oj2u<strong>la</strong>tion size in ;iear t<br />

2000 2001 2002 2003 2004 2005 2006<br />

Juvenile males 7 1 4 3 2 0 0<br />

Juvenile females 2 3 1 3 3 0 0<br />

Suba<strong>du</strong>lt males 6 2 2 0 0 0 0<br />

Suba<strong>du</strong>lt females 10 3 2 0 2 0 0<br />

A<strong>du</strong>lt males 47 38 27 17 7 1 0<br />

A<strong>du</strong>lt females 45 37 30 21 9 3<br />

Total 117 84 66 44 23 4<br />

Growth rate 0.72 0.79 0.67 0.52 0. 17 0.25<br />

Re<strong>la</strong>tionships b<strong>et</strong>ween so<strong>la</strong>r irradiance and local weather variables<br />

The so<strong>la</strong>r irradiance was negatively corre<strong>la</strong>ted with winter precipitation (r = -0. 81, P =<br />

0.027, n = 7) but only marginally with snowfall (r = -0.71, P = 0.076, n = 7) and not at ail<br />

with spring temperature (r = 0.18, P = 0.700, n = 7) (see Fig. 3.1).<br />

2,0 - . - So<strong>la</strong>r Irradiance 1<br />

1,5<br />

2<br />

(Il<br />

" 1,0<br />

2<br />

s:::<br />

QI<br />

E 0,5<br />

s:::<br />

0<br />

...<br />

tJ,<br />

--Winter precipitation<br />

··0· · Snowfall 1<br />

tJ,<br />

Spring Temperature<br />

><br />

s:::<br />

0,0<br />

QI<br />

199 2001 .>1002<br />

"<br />

" ...<br />

(Il<br />

"<br />

. ~ ·0,5<br />

s::: ·10<br />

2 ' o.<br />

Cf)<br />

·1 ,5<br />

\ 2003<br />

\<br />

\<br />

\<br />

\<br />

\<br />

.,<br />

2004<br />

, , ,<br />

. 0<br />

, , , , , ,<br />

'.<br />

·2,0<br />

Figure 3.1 : Standardized yearly so<strong>la</strong>r irradiance, winter precipitation, snowfall and spring<br />

temperature b<strong>et</strong>ween 1998 and 2004. So<strong>la</strong>r irradiance was obtained from the PMOD/WRC<br />

(Davos, Switzer<strong>la</strong>nd), and weather records from the Environment Canada weather station at<br />

Rimouski, about 20 km from Parc National <strong>du</strong> Bic, Québec.


43<br />

Seasonal <strong>sur</strong>vival rates<br />

The selected mo<strong>de</strong>! inclu<strong>de</strong>d capture rates that were a function of age and season, with<br />

summer capture rates <strong>de</strong>pen<strong>de</strong>nt on telem<strong>et</strong>ry effort (Table 3.3). Juveniles were less likely to<br />

be recaptured th an indivi<strong>du</strong>als ~ 1 - yr - old; recapture probability in May was higher than in<br />

August (0.95 and 0.92 in May vs 0.70 and 0.63 in August for juveniles and indivi<strong>du</strong>als ~ I-yrold,<br />

respectively) and recapture probability in August was higher when >50% of marked<br />

animais were followed by telem<strong>et</strong>ry (i.e. in 2001, 2003 and 2004, see Table 3.1).<br />

Table 3.3 : Mo<strong>de</strong>l selection for sighting probabilities (P) in a popu<strong>la</strong>tion of North American<br />

porcupines, Parc National <strong>du</strong> Bic, Québec, May 2000-May 2005. We used data on 159<br />

indi vi<strong>du</strong>als. We consi<strong>de</strong>red <strong>sur</strong>vival rate to be time-<strong>de</strong>pen<strong>de</strong>nt (


44<br />

Survival was a function of age and season, with time-<strong>de</strong>pen<strong>de</strong>nt w inter <strong>sur</strong>vival (Table<br />

3.4). Juveniles exhibited lower <strong>sur</strong>vival than indivi<strong>du</strong>als 2: 1-yr-old, whatever the season<br />

consi<strong>de</strong>red. Summer <strong>sur</strong>vival was hi gh and constant over the study period (mean monthly<br />

<strong>sur</strong>vival ± SE: 0.86 ± 0.06 for juveniles and 0.97 ± 0.01 for indivi<strong>du</strong>als 2: 1-yr-old) while<br />

winter <strong>sur</strong>vival was lower and variable from year to year (mean monthly <strong>sur</strong>vival: 0.53-0.83<br />

fOl·j uveniies and 0.84-0.96 for indivi<strong>du</strong>als 2:1-yr-old, Fig. 3.2). Winter precipitation<br />

eXp <strong>la</strong>ined a <strong>la</strong>rge pa11 (r 2 = 0. 87, Tabl e 3.5) of the yearly variations in winter <strong>sur</strong>vival (i.e. to<br />

inclu<strong>de</strong> this covariate <strong>de</strong>creased Alec by 5 units, Table 3.5). Snowfall al one eXp<strong>la</strong>ined a<br />

mo<strong>de</strong>rate amount of variation in winter <strong>sur</strong>vival whereas spring temperature exp<strong>la</strong>ined little<br />

variati on (Table 3.5). Winter <strong>sur</strong>vival was inversely re<strong>la</strong>ted to winter precipitation (Fig. 3.2)<br />

and, because of the in verse re<strong>la</strong>tionship b<strong>et</strong>ween winter precipitati on and so<strong>la</strong>r ilTadiance,<br />

positively re<strong>la</strong>ted to so<strong>la</strong>r irradiance (Fig. 3.2). We found no evi<strong>de</strong>nce ofa <strong>la</strong>gged effect (one<br />

and two years) of winter precipitation, snowfall, or spring temperature on winter <strong>sur</strong>vival<br />

(Table 3.6).<br />

Table 3.4 : Tests of the effects of sex, age (a, consi<strong>de</strong>ring two age c<strong>la</strong>sses: juveni les and 2: 1-<br />

yr-old), season (s) and year (y) on seasonal <strong>sur</strong>vival rates (~) in a popul ation of North<br />

American porcupines, Parc National <strong>du</strong> Bic, Québec, May 2000-May 2005. We Llsed data on<br />

159 indivi<strong>du</strong>als and mo<strong>de</strong>led sighting probabilities following mo<strong>de</strong>l selected in Table 3.3.<br />

Mo<strong>de</strong>l in bold represents the selected mo<strong>de</strong>l<br />

Biological meaning Notationt Deviance np* L'.A ICc**<br />

Constant <strong>sur</strong>vival


45<br />

>.<br />

1.0<br />

0.9<br />

.....<br />

0.8<br />

.c<br />

ta<br />

.c 0.7<br />

0<br />

~<br />

C.<br />

ta 0.6<br />

><br />

o~<br />

0.5<br />

::J<br />

en<br />

......:=-:>..........:....................<br />

·5 ~ ..........<br />

.,/<br />

.,/<br />

.,/<br />

1367.0<br />

1366.5<br />

1366.0<br />

1365.5<br />

1365.0<br />

600.0<br />

500 .0<br />

0.4<br />

------<br />

400.0<br />

--------------<br />

------<br />

------<br />

300.0<br />

0.3<br />

2000 2001 2002 2003 2004<br />

Year<br />

Figure 3.2 : Mean monthly sUl·vival probability b<strong>et</strong>ween August in year t and May in year t<br />

+ 1 according to age (white symbols: juveniles; b<strong>la</strong>ck symbols: indivi<strong>du</strong>als :::: l-yr-old) in a<br />

North American porcupine popu<strong>la</strong>tion, Parc National <strong>du</strong> Bic, Québec, August 2000-May<br />

2005. Results correspond to estimated values (mean ± SE) from mo<strong>de</strong>l selected in table 3.4.<br />

Secondary axis shows environmental covariates re<strong>la</strong>ted to winter <strong>sur</strong>vival: dotted line<br />

corresponds to mean so<strong>la</strong>r irradiance (for year t, in W/m 2 ) , long-dashed line corresponds to<br />

winter precipitation recor<strong>de</strong>d at Rimouski (from November, year t to April, year t + l , in<br />

mm).<br />

1/)<br />

Q)<br />

.....<br />

ta<br />

~<br />

ta<br />

><br />

0<br />

u<br />

.....<br />

ta<br />

t:<br />

Q)<br />

E<br />

t:<br />

0<br />

~<br />

oS;<br />

t:<br />

W


46<br />

Table 3.5: Tests of the effects oflocal weather vari abl es on wi nter <strong>sur</strong>vival rates (w) in a popu<strong>la</strong>ti on of North American porcupines,<br />

Parc National <strong>du</strong> Bic, Québec, May 2000-May 2005. We used data on 159 indi vi<strong>du</strong>als. Mo<strong>de</strong>l in bold represents the selected mo<strong>de</strong>!.<br />

We show the percentage ofyearl y variati on in sUl'v ival that is exp<strong>la</strong>i ned by each environmental covari ate (r 2 )<br />

Biological meaning<br />

Year effect in winter only + age effect,F om Tab le 3.4<br />

Winter <strong>sur</strong>vival <strong>de</strong>pen<strong>de</strong>nt on win ter precipitation + age effect<br />

Winter <strong>sur</strong>v ival <strong>de</strong> pen<strong>de</strong> nt on snowfall + age effect<br />

Winter <strong>sur</strong>vival <strong>de</strong>pen<strong>de</strong>nt on spring temperature + age effect<br />

No yearly variation in winter <strong>sur</strong>vival + age effect<br />

Notationî Deviance np* t.AICc**<br />

U a<br />

w a<br />

810.049 7 10.389<br />

Ua w y + a<br />

795 .637 Il 5.041<br />

U a W Precipitations + a 797.442 8 0.000<br />

U a W Snowfall + a 802.543 8 5.10 1<br />

U a W Spring + a 808 .327 8 10.885<br />

r 2<br />

0.87<br />

0.52<br />

0.12<br />

0<br />

î U, summer; W, winter; y, year; a, age mo<strong>de</strong>lled as two age cl asses (juveniles, 2: 1-yr-old); *np, number of estimated param<strong>et</strong>ers; ** t.AICc,<br />

di fference in AICc with the selected mo<strong>de</strong>l<br />

Table 3.6: Tests of<strong>la</strong>gged (one year: y-l ; two years: y-2) effects ofwinter precipitation on winter <strong>sur</strong>vival rates (w) in a popu<strong>la</strong>tion<br />

of North American porcupines, Parc National <strong>du</strong> Bic, Québec, May 2000-May 2005. We used data on 159 indivi<strong>du</strong>als. Mo<strong>de</strong>l in bold<br />

represents the selected mo<strong>de</strong>!. We also performed tests of <strong>la</strong>gged effects of snowfa ll and spring temperature on <strong>sur</strong>viva! but don't<br />

show resu!ts here since no mo<strong>de</strong>l was b<strong>et</strong>ter than the se!ected mo<strong>de</strong>l<br />

Biological meaning Notati onî Deviance np* t.AICc* *<br />

Direct effect of precipitations + age effect,Fom Table 3.5<br />

U W<br />

a Precipitations + a<br />

797.442 8 0.000<br />

Lagged effect of precipitations (y-I ) + age effect ua W Precipi ta tions (y_l) + a 809.678 8 12.236<br />

Lagged effect of precipitations (y-2) + age effect U a W Precipitations (y-2) + a<br />

805 .747 8 8.305<br />

îU, summer; W, winter; y, year; a, age mo<strong>de</strong>lled as two age c<strong>la</strong>sses (j uven il es, 2: 1-yr-old); *np, number of estimated param<strong>et</strong>ers; ** t.AICc,<br />

di fference in AICc with the selected mo<strong>de</strong>l


47<br />

Causes of mortality<br />

We assigned a probable cause of mOltality to 46 of the 50 porcupines examined.<br />

Predation (n = 28 [60.9%]) and starvation (n = 13 [28.3%]) were the main causes of<br />

mortality. Tree fal! (n = 3) and road kil! (n = 2) tog<strong>et</strong>her represented 10.8% of the mortalities.<br />

We d<strong>et</strong>em1ined predator i<strong>de</strong>ntity for 14 of the 28 predation events observed. Fishers were<br />

responsible for 86% (n = 12) and coyotes for 14% (n = 2) of these predations. The proportion<br />

of mottalities <strong>du</strong>e to predation vs. other causes (starvation, tree fall and road kill combined)<br />

was not constant through time (G = 8.640, df = 3, p = 0.034) and increased from 40% in 2000<br />

and 2002 to 91.7% in 2004 (Fig. 3.3). Causes ofmortality did not differ b<strong>et</strong>ween age c<strong>la</strong>sses<br />

(G = 1.399, df = 3, p = 0.706, Fig. 3.4).<br />

100.0<br />

10 5 19 12<br />

90.0<br />

80.0<br />

~<br />

~ 70.0<br />

1/)<br />

Cl)<br />

:e 60.0<br />

Iii<br />

1::<br />

0 50.0<br />

:::iE<br />

40.0<br />

30.0<br />

20.0<br />

10.0<br />

0.0<br />

2000 2002 2003 2004<br />

Figure 3.3 : Causes of mortality d<strong>et</strong>ermined for carcasses found <strong>du</strong>ring monitoring of a<br />

NOIth American porcupine popu<strong>la</strong>tion in Parc National <strong>du</strong> Bic, Québec, May 2000-May<br />

2006. Percentage of carcasses <strong>de</strong>ad by starvation, road ki ll, tree fal! and predation are shown<br />

respectively in white, Iight grey, dark grey and b<strong>la</strong>ck. Sample sizes for each year are<br />

indicated at the top of each bar.


48<br />

100<br />

90<br />

80<br />

(/)<br />

Q)<br />

~ 70<br />

iij<br />

t::<br />

0<br />

E 60<br />

"0<br />

Q)<br />

~<br />

Q)<br />

(/)<br />

.0<br />

0<br />

'+-<br />

0<br />

~<br />

0<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0 ,- --- ,--~- ,-<br />

Starvation Road Kill Tree Fall Predation<br />

- ,<br />

Figure 3.4 : Causes of mortality for <strong>de</strong>ad juveniles (in white, n = 9) and indivi<strong>du</strong>als 2 1-yrold<br />

(in b<strong>la</strong>ck, n = 37) in NOith American porcupines, Parc National <strong>du</strong> Bic, Québec, May<br />

2000-May 2006.<br />

Among <strong>de</strong>predated animais (six j uveniles, 22 indivi<strong>du</strong>als 2 1-yr-old), timing of <strong>de</strong>ath<br />

differed b<strong>et</strong>ween age c<strong>la</strong>sses (G = 26.324, df= 2, p


49<br />

100 -<br />

90<br />

a)<br />

80<br />

1/)<br />

c:<br />

.2<br />

iii<br />

...<br />

"0<br />

CIl<br />

Cl.<br />

"0<br />

CIl<br />

~<br />

CIl<br />

1/)<br />

.!J<br />

0<br />

....<br />

0<br />

Q ~<br />

70 ~<br />

60 J<br />

50 1<br />

40 ~<br />

30 1<br />

1<br />

20 "<br />

10 "<br />

0<br />

1<br />

Summer Winter- No snow Winter- Snow<br />

1/)<br />

c:<br />

.2<br />

iii<br />

~<br />

co<br />

100<br />

b)<br />

90 1<br />

80 -;<br />

70 ~<br />

60 l<br />

-1/)<br />

"0 50 -j<br />

CIl<br />

~<br />

CIl<br />

1/)<br />

.!J<br />

0<br />

40 -<br />

....<br />

30 -<br />

0<br />

Q ~<br />

20 -1<br />

10 l<br />

O T~----<br />

Summer Winter- No snow Winter- Snow<br />

Figure 3.5 : Season of mortality for the: a) <strong>de</strong>predated juvenil es (in whi te, n = 6) and<br />

indivi<strong>du</strong>als ::=: l-yr-old (in b<strong>la</strong>ck, n = 22), and b) starvedjuveniles (in white, n = 2) and<br />

indivi<strong>du</strong>als ::=: l-yr-o ld (in b<strong>la</strong>ck, n = II ), in North American porcupines, Parc National <strong>du</strong> Bic,<br />

Québec, May 2000-May 2006. Seasons were <strong>de</strong>fined as: summer (from May to August),<br />

winter but no snow (from September to approximately mid-November), and winter with<br />

snow covering the ground (approximately from mid-November to end of April).


50<br />

3.5. Discussion<br />

Re<strong>la</strong>tionship b<strong>et</strong>ween abundance of porcupines and so<strong>la</strong>r irradiance<br />

We observed a strong <strong>de</strong>cline in abundance of porcupines from 2000 ongoing. Density of<br />

porcupines concomitantly dropped (from ca. 40 to ca. three animaIs per km 2 b<strong>et</strong>ween 2000<br />

and 2006, Y. Lemay UQAR, unpublished data) in other areas of the Parc National <strong>du</strong> Bic<br />

where no captures were performed so that we are confi<strong>de</strong>nt that our study <strong>de</strong>sign is not<br />

responsible for the observed <strong>de</strong>c\ine. As it was hypothesized from Klvana <strong>et</strong> al. (2004),<br />

changes in abundance of porcupines were corre<strong>la</strong>ted to so<strong>la</strong>r irradiance at our study site. Our<br />

first prediction was therefore supported. We now discuss how so<strong>la</strong>r activity could <strong>influence</strong><br />

abundance of porcupines in eastern Québec through cascading effects on winter precipitation,<br />

win ter <strong>sur</strong>vival rates, and predation rates on porcupines.<br />

Re<strong>la</strong>tionship b<strong>et</strong>ween so<strong>la</strong>r irradiance and winter precipitation<br />

We found that high so<strong>la</strong>r activity was associated with low levels of winter precipitation.<br />

Klvana <strong>et</strong> al. (2004) also found a link b<strong>et</strong>ween so<strong>la</strong>r activity and winter precipitation when<br />

analysing weather records for the same area for the 1877-2000 time period. In their study,<br />

both time series showed regu<strong>la</strong>r periodicities, with a <strong>la</strong>g of four to five years b<strong>et</strong>ween the two<br />

cycles. A significant number of studies have found corre<strong>la</strong>tions b<strong>et</strong>ween so<strong>la</strong>r activity and<br />

different m<strong>et</strong>eorological param<strong>et</strong>ers (reviews in Tsiropou<strong>la</strong> 2003, Versteegh 2005). Positive,<br />

negative or non-existent corre<strong>la</strong>tions have been reported b<strong>et</strong>ween local weather and so<strong>la</strong>r<br />

activity. Sorne were direct (e.g. Currie 1993, Lean <strong>et</strong> al. 1995) white others were <strong>de</strong><strong>la</strong>yed<br />

corre<strong>la</strong>tions (e.g. Perry 1994, 2006). Such conflicting evi<strong>de</strong>nce gives a confusing and<br />

contradictory picture of so<strong>la</strong>r <strong>influence</strong>s on the earth 's <strong>climat</strong>e. One reason for this confusion<br />

may be that so<strong>la</strong>r effects on m<strong>et</strong>eorological param<strong>et</strong>ers differ in various geographical regions<br />

and at different time periods. In<strong>de</strong>ed, sorne reversaIs b<strong>et</strong>ween so<strong>la</strong>r activity and weather<br />

variables have been reported in the literature. We found no significant corre<strong>la</strong>tion b<strong>et</strong>ween<br />

so<strong>la</strong>r irradiance, snowfall and spring tempe rature b<strong>et</strong>ween 1998 and 2004 white Klvana <strong>et</strong> al.<br />

(2004) found those series to remain in phase b<strong>et</strong>ween 1877 and 2000. One exp<strong>la</strong>nation may<br />

be that we were faced with a breakdown of the link b<strong>et</strong>ween so<strong>la</strong>r irradiance and sorne local<br />

param<strong>et</strong>ers. Alternatively, the statistical tool we used (i .e. direct corre<strong>la</strong>tions) may have been


51<br />

too simplistic to d<strong>et</strong>ect complex re<strong>la</strong>tionships such as those that can be inferred using wavel<strong>et</strong><br />

analyses (Tsiropou<strong>la</strong> 2003, Klvana <strong>et</strong> al. 2004). ln any case, our second prediction was at<br />

least partly supported in that we found a direct negative re<strong>la</strong>tionship b<strong>et</strong>ween so<strong>la</strong>r activity<br />

and winter precipitation. More generally, the impact of so<strong>la</strong>r variability to our local<br />

environment will be certainly discussed for many more years until a linking mechanism is<br />

i<strong>de</strong>ntified. However, we believe that reporting observed corre<strong>la</strong>tions may help un<strong>de</strong>rstanding<br />

the existing re<strong>la</strong>tionships b<strong>et</strong>ween sun and c1imate.<br />

Seasonal <strong>sur</strong>vival rates<br />

In long-lived veliebrate species such as porcupines, popu<strong>la</strong>tion growth rates are sensitive<br />

to <strong>sur</strong>vival, and especially to a<strong>du</strong>lt <strong>sur</strong>vival (Gail<strong>la</strong>rd <strong>et</strong> al. 2000, Sa<strong>et</strong>her & Bakke 2000,<br />

Eberhardt 2002). Demographie param<strong>et</strong>ers with high e<strong>la</strong>sticities are expected to be canalized<br />

against environmental variations and to exhibit Iimited temporal variability (Gail<strong>la</strong>rd &<br />

Yoccoz 2003). ln popu<strong>la</strong>tions of porcupines, a<strong>du</strong>lt <strong>sur</strong>vival is thus expected to be the life<br />

history trait least affected by local weather. On the other hand, juvenile sllrvival has often a<br />

low e<strong>la</strong>sticity but exhibits <strong>la</strong>rge variability, and thus can greatly affect popu<strong>la</strong>tion growth rate<br />

(Gail<strong>la</strong>rd <strong>et</strong> al. 1998, Gail<strong>la</strong>rd <strong>et</strong> al. 2000). Conseqllently, juvenile <strong>sur</strong>vi val is expected to be a<br />

life hi story trait greatly affected by weather variability. We found both juvenile and ad ult<br />

<strong>sur</strong>vival rates to be variable in our popu<strong>la</strong>tion. The <strong>de</strong>cline in winter a<strong>du</strong>lt <strong>sur</strong>vival over time<br />

is likely a major cause of the <strong>de</strong>cline in the size of our popu<strong>la</strong>tion and our study gave us the<br />

rare oppOliunity to witness a popu<strong>la</strong>tion crash while documenting variations in a<br />

<strong>de</strong>mographic param<strong>et</strong>er with high e<strong>la</strong>sticity.<br />

Winter is often pointed out as a critical period for herbivorous mammals because the<br />

energy <strong>de</strong>mand is high while the avai<strong>la</strong>ble food is of low quality (Halfpenny & Ozanne 1989,<br />

Robbins 1993). However, reliable estimates of seasonal <strong>sur</strong>vival rates are rare (but see Lima<br />

<strong>et</strong> al. 200 l , Crespin <strong>et</strong> al. 2002, Lima <strong>et</strong> al. 2002a, Sendor & Simon 2003) and factors<br />

affecting <strong>sur</strong>vival on a seasonal basis have been poorly explored. Calcu<strong>la</strong>ting seasonal<br />

<strong>sur</strong>vival rates allowed us to i<strong>de</strong>ntify winter as the most critical period of the annual cycle for<br />

the <strong>sur</strong>vival ofporcupines. We found that winter precipitation exp<strong>la</strong>ined a <strong>la</strong>rge pmi of the<br />

vari ability observed in winter <strong>sur</strong>vival, with low levels of winter precipitation being<br />

associated with high winter <strong>sur</strong>vival. Our third prediction was therefore supported in that an


52<br />

increase in winter precipitation led to a <strong>de</strong>crease in <strong>sur</strong>vival of porcupines. How winter<br />

precipitation <strong>influence</strong>d winter <strong>sur</strong>vival of porcupines is examined below.<br />

Mechanism linking winter precipitation to win ter <strong>sur</strong>vival<br />

North American porcupines are short-limbed animais and presence of snow covering the<br />

ground greatly re<strong>du</strong>ces their mobility (Roze 1984, 1987). Snow increases probability of<br />

starvation of porcupines (Sweitzer <strong>et</strong> al. 1997), possibly by increasing energy expenditure<br />

(through elevated locomotion costs) and/or <strong>de</strong>creasing energy acquisition (through a limited<br />

access to food resources). Snow may also increase porcupines' probability of <strong>de</strong>ath by<br />

predation either directly by re<strong>du</strong>cing their escape ability (Huggard 1993) or indirectly<br />

because starved animais may be more susceptible to predators (Sweitzer 1996). Furthennore,<br />

predators may show variable hunting efficiency (Gese <strong>et</strong> al. 1996b, Thibault & Ouell<strong>et</strong> 2005)<br />

and/or may shift to more vulnerable prey (Patterson <strong>et</strong> al. 1998, Patterson & Messier 2000)<br />

according to snow conditions.<br />

We observed higher predation rates in years with high levels ofwinter precipitation. We<br />

also found that predators killed a<strong>du</strong>lt porcupines almost exclusively when snow was covering<br />

the ground. Either because a<strong>du</strong>lt porcupines were more vulnerable in presence of snow coyer,<br />

because predators were more efficient, or because they shifted to hunt porcupines when snow<br />

<strong>de</strong>epened, predation rates appeared strongly re<strong>la</strong>ted to snow conditions in our system.<br />

Fishers were the main predators of porcupines in our study area. Fishers are efficient<br />

predators of the NOith American porcupine (Earle & Kramm 1982, Powell 1993) and their<br />

number has been rapidly increasing in eastern Québec since the middle of the 1990s (Poulin<br />

<strong>et</strong> al. 2006). They feed primarily on snowshoe hares wh en avai<strong>la</strong>ble (Powell 1993, Maltin<br />

1994), but may weil switch to porcupines when snow <strong>de</strong>epens. ln<strong>de</strong>ed, snowshoe hares are<br />

light animais that are characterized by a low foot-load (Murray & Boutin 1991) so their<br />

sinking <strong>de</strong>pth in fresh snow should increase more slowly compared to fishers' and<br />

porcupines'. ln <strong>de</strong>ep snow, fishers may then be unable to chase hares and therefore switch to<br />

preying on porcupines, which are a more risky (because of quills) but less energ<strong>et</strong>ically costly<br />

prey to run after.<br />

Because we did not monitor predator <strong>de</strong>nsity, we are not <strong>sur</strong>e wh <strong>et</strong>her higher predation<br />

rates were <strong>du</strong>e to an increase in predator <strong>de</strong>nsity, to a functional response of predators to<br />

increasing snow coyer, or both. However, because we found that winter precipitation was


53<br />

corre<strong>la</strong>ted with winter <strong>sur</strong>vival in our popu<strong>la</strong>tion, and because a<strong>du</strong>lt predation occurred only<br />

in the presence of snow), we believe that changes in predator efficiency, predator behaviour,<br />

or prey susceptibility are the factors most likely eXp<strong>la</strong>ining why variations in winter<br />

precipitation <strong>influence</strong>d <strong>sur</strong>vival.<br />

lnterestingly, we found that winter precipitation exp<strong>la</strong>ined more variability in porcupine<br />

<strong>sur</strong>vival than snowfall. We hypothesize that this occured because winter precipitation is a<br />

b<strong>et</strong>ter indicator of snow conditions th an snowfall. Winter precipitation inclu<strong>de</strong>d precipitations<br />

that occurred <strong>du</strong>ring winter both as rain and snow, so they may b<strong>et</strong>ter reflect conditions of<br />

snow pen<strong>et</strong>rability th an snowfall alone. Snow pen<strong>et</strong>rability is more likely th an snowfall to<br />

<strong>influence</strong> vulnerability of porcupines to predation because it directly <strong>influence</strong>s mobility of<br />

animais, and therefore escape ability (Huggard 1993). In<strong>de</strong>ed, behaviour of porcupines<br />

<strong>du</strong>ring winter is affected to a greater extent by variations in snow pen<strong>et</strong>rability th an in<br />

snowfall (G.Mabille, unpublished data). For ex ample, animais become more diurnal wh en<br />

snow pen<strong>et</strong>rability increases (chap. 4) while variations in snowfall have no effect on timing<br />

of activity. Simi<strong>la</strong>rly, hunting behaviour of fishers may also vary with snow pen<strong>et</strong>rability.<br />

3.6. Conclusion<br />

We confirmed the hypothesis ofa link b<strong>et</strong>ween winter precipitation and abundance in a<br />

porcupine popu<strong>la</strong>tion and i<strong>de</strong>ntified variations in predation rates as a possible mechanism<br />

re<strong>la</strong>ting winter weather to abundance, through effects on winter <strong>sur</strong>vival rates. Even though<br />

our study was not experimental, using the "strategic cyclical scaling" approach <strong>de</strong>scribed by<br />

Root and Schnei<strong>de</strong>r (1995) allowed us to i<strong>de</strong>ntify the link b<strong>et</strong>ween weather conditions and<br />

<strong>sur</strong>vival, and therefore to go one step further than traditional studies of <strong>climat</strong>e <strong>influence</strong>s on<br />

popu<strong>la</strong>tion dynamics. Our study also adds to the existing body of evi<strong>de</strong>nce in support of an<br />

effect of c1imate on predator-prey processes and strongly emphasizes that un<strong>de</strong>rstanding how<br />

species interactions vary according to weather conditions is crucial to properly mo<strong>de</strong>l how<br />

communities will respond to <strong>climat</strong>e change (Schmitz 2003, Wilmers & G<strong>et</strong>z 2005, Sa<strong>la</strong><br />

2006, Suttle <strong>et</strong> al. 2007).


Chapitre 4<br />

N avigating the thermal map : porcupines eat<br />

in the cold but rest in the warm<br />

Mabille G., Berteaux D., Thomas D. W., Fortin D.<br />

(à soum<strong>et</strong>tre, Oec%gia)<br />

Les variations temporelles <strong>et</strong> spatiales <strong>de</strong>s conditions météorologiques <strong>et</strong> <strong>du</strong> risque <strong>de</strong><br />

prédation <strong>influence</strong>nt le patron d'activité <strong>et</strong> <strong>l'utilisation</strong> <strong>de</strong> <strong>l'habitat</strong> <strong>de</strong>s animaux. Le risque<br />

<strong>de</strong> prédation était re<strong>la</strong>tivement élevé pendant notre étu<strong>de</strong> <strong>et</strong> apparemment lié aux conditions<br />

<strong>de</strong> neige pendant l'hiver (chap. 3). D ' autre part, les conditions thermiques constituent une<br />

contrainte potentielle pour les porcs-épics pendant l'hiver quand les températures sont plus<br />

basses que leur température critique inférieure. Les contraintes <strong>du</strong>es à l'environnement<br />

thermique <strong>et</strong> à <strong>la</strong> prédation étaient donc substantielles pendant l'hiver, <strong>et</strong> nous avons examiné<br />

l'<strong>influence</strong> <strong>de</strong> ces contraintes <strong>sur</strong> le patron d' activité <strong>et</strong> <strong>l'utilisation</strong> <strong>de</strong> <strong>l'habitat</strong> par les<br />

animaux. Les résultats montrent que les porcs-épics modifient leur patron d'utilisation <strong>de</strong> <strong>la</strong><br />

tanière en fonction <strong>de</strong>s conditions <strong>de</strong> température. L ' enfoncement dans <strong>la</strong> neige, qui est<br />

possiblement lié au risque <strong>de</strong> prédation, <strong>influence</strong> également le patron d ' utilisation <strong>de</strong> <strong>la</strong><br />

tanière. Les animaux semblent utiliser leur tanière comme un refuge contre le froid <strong>et</strong> les<br />

prédateurs. Néanmoins, puisqu'ils doivent sOliir pour s 'alimenter, les porcs-épics font face à<br />

un compromis entre recherche <strong>de</strong> nourriture <strong>et</strong> protection contre le froid <strong>et</strong> les prédateurs. On<br />

montre qu'ils y répon<strong>de</strong>nt en modifiant l'intensité <strong>de</strong> l'alimentation en fonction <strong>de</strong>s<br />

conditions <strong>de</strong> température. Par contre, ils ne modifient pas leur utilisation <strong>de</strong>s microhabitats à<br />

l'extérieur <strong>de</strong> <strong>la</strong> tanière en fonction <strong>de</strong> <strong>la</strong> température. Ceci suggère qu'ils choisissent les<br />

microhabitats extérieurs en fonction <strong>de</strong> <strong>la</strong> qualité <strong>de</strong> <strong>la</strong> nourriture qui s'y trouve plutôt qu' en<br />

fonction <strong>de</strong>s conditions thenniques. Le compoliement <strong>de</strong>s animaux pendant l' hiver semble<br />

donc être influencé à <strong>la</strong> fois par <strong>de</strong>s contraintes li ées aux conditions thenniques, au risque <strong>de</strong><br />

prédation, <strong>et</strong> à l'acquisition <strong>de</strong> nourriture. Les différences indivi<strong>du</strong>elles dans l' utilisation <strong>de</strong><br />

l ' habitat sont li ées à <strong>de</strong>s différences <strong>de</strong> <strong>sur</strong>vie. Les animaux faisant le plus <strong>de</strong> sorties par jour<br />

<strong>sur</strong>vivent moins bien. On interprète ces différences dans <strong>la</strong> <strong>sur</strong>vie comme <strong>de</strong>s différences<br />

dans l'expositi on à <strong>la</strong> prédation, principale cause <strong>de</strong> mOlialité <strong>de</strong>s a<strong>du</strong>ltes pendant l' hi ver.


55<br />

4.1. A bstract<br />

Because the <strong>climat</strong>e is changing, there are now additional incentives to un<strong>de</strong>rstand the<br />

strategies that organisms use to cope with thennal h<strong>et</strong>erogeneity. The thermal environment<br />

experi enced by an animal is d<strong>et</strong>ermined by conditions of air temperature, wind, and radi ation,<br />

and habitat can also medi ate the thermal environment. We mapped micro<strong>climat</strong>es by<br />

estimating energy expenditure in mi crohabitats avai<strong>la</strong>ble to North American porcupines<br />

(Er<strong>et</strong>hizon dorsatum) in the cold Canadi an winter. We th en examined acti vity patterns and<br />

microhabitat use of free-Iiving indivi<strong>du</strong>als to d<strong>et</strong>ermine wh<strong>et</strong>her porcupines respon<strong>de</strong>d<br />

behaviourally to thennal constraints. The lower critical temperature (Tic) of winter<br />

ac<strong>climat</strong>i zed porcupines in southern Québec lies around -2°C and indivi<strong>du</strong>als are exposed,<br />

<strong>du</strong> ring winter, to operative temperatures (Tc) th at are weil below Tic' According to our<br />

thennal map, porcupines re<strong>du</strong>ced m<strong>et</strong>abolic rate by about 25% when moving from a tree to<br />

their <strong>de</strong>n in cold conditions (Tc


56<br />

4.2. Intro<strong>du</strong>ction<br />

ln a context of <strong>climat</strong>e change, un<strong>de</strong>rstanding the way that variability in th e thennal<br />

environment <strong>influence</strong>s animal ecology becomes crucial. Thermal conditions can shape<br />

patterns of activity and habitat selection which, in turn can have fitness consequences for<br />

animais (Sea<strong>la</strong>n<strong>de</strong>r 1952, Bult & Lynch 1997, Dawson <strong>et</strong> al. 2005). How temperature<br />

<strong>influence</strong>s activity has been mu ch studied for ectothermic reptiles and amphibians (e.g.<br />

Chri sti an <strong>et</strong> al. 1983, Grant & Dunham 1988, Niewiarowski 2001) but comparatively less is<br />

known about the way thennal conditions affect the activity of endothermic animais.<br />

Moreover, most studies on endotherms focused on small mammals living in hot environments<br />

(see Chappel! & Bartholomew 1981 , Benn<strong>et</strong>t <strong>et</strong> al. 1984, vispo & Bakken 1993, Sharpe &<br />

Van Horne 1999). However, severa! authors have stressed the impo11ance of collecting data<br />

in cold environments to fully un<strong>de</strong>rstand genera1 eco10gica1 processes (Campbell <strong>et</strong> al. 2005)<br />

and specifically the effects of tempe rature on activity (Sears <strong>et</strong> al. 2006). Humphries <strong>et</strong> al.<br />

(2005) recently <strong>de</strong>monstrated that behavioural thermoregu<strong>la</strong>tion allows huge energy savings<br />

for red squirrels (Tamiasciurus hudsonicus) exposed to cold temperatures and emphasized th e<br />

need for fU11her work on the impacts of cold temperatures on mammal behaviour and<br />

energ<strong>et</strong>ics.<br />

ln co Id environments, animais can use behavioural thel1noregu1ation to create a more<br />

favourable thel1nal environ ment. For example, they may exploit a ne st or <strong>de</strong>n to re<strong>du</strong>ce heat<br />

10ss (Prestrud 1991 , C<strong>la</strong>rk <strong>et</strong> al. 1997, Zimmerling 2005), show activity patterns that vary<br />

with temperature (Chappell 1981 , K011ner & Geiser 2000, Humphries <strong>et</strong> al. 2005), choose<br />

specific fo raging microhabitats (Wiersma & Piersma 1994, Brotons <strong>et</strong> al. 2000), and use<br />

postures promoting heat conservation (Hayes <strong>et</strong> al. 1992, Fortin & Gauthier 2000,<br />

Scantlebury <strong>et</strong> al. 2006). A significant number of studies have <strong>de</strong>alt with behavioural<br />

thermoregul ation, but comprehensive studies examining several aspects of thermoregu<strong>la</strong>tory<br />

behaviour in the co!d are rare (but see Guthery <strong>et</strong> al. 2005). Furthennore, the existing<br />

literature often <strong>de</strong>scribes the thermal conditions using a general mea<strong>sur</strong>e of air temperature<br />

(Ta) ma<strong>de</strong> within or close to the study site. However, the thermal environment experienced by<br />

an anima! in its natural habitat may differ greatly from the overall conditions mea<strong>sur</strong>ed with


57<br />

Ta, first because of the effects of wind and so<strong>la</strong>r radiation on heat load (Lustick <strong>et</strong> al. 1978,<br />

Bakken 1991), and second becallse micro<strong>climat</strong>es can be highly h<strong>et</strong>erogeneolls in space<br />

(Chappe Il <strong>et</strong> al. 1978, Sharpe & Van Horne 1999). An accurate thennal map of an animal's<br />

environment is therefore necessary to evalliate the ecological effectiveness of its<br />

thennoregli<strong>la</strong>tory behaviollr. Comprehensive and d<strong>et</strong>ailed stlldies are nee<strong>de</strong>d to lIn<strong>de</strong>rstand<br />

the complex interactions existing b<strong>et</strong>ween thermal conditions and behaviour, especially in<br />

cold environments.<br />

The North American porcllpme (Er<strong>et</strong>hizon dorsatum) is the only arboreal folivorous<br />

mammal of the boreal forest. Porcupines stay active year round and rely on low quality food<br />

(mainly bark and leaves of conifers) dllring winter. The lower critical temperatllre (Tic,<br />

temperature below which an organism increases basal m<strong>et</strong>abolic rate) of winter ac<strong>climat</strong>ized<br />

porcupines can vary b<strong>et</strong>ween + 1 aoc and -12°C, <strong>de</strong>pending on the size and origin of the study<br />

animal (Irving <strong>et</strong> al. 1955, DeMatteo & Harlow 1997, Fournier & Thomas 1999). ln southern<br />

Canada, Tic of porcupines lie around -2°C (Fournier & Thomas 1999) and indivi<strong>du</strong>als are<br />

exposed, <strong>du</strong>ring winter, to temperatures that are well below Tic. Porcllpines can <strong>de</strong>n to avoid<br />

the col<strong>de</strong>st temperatures, but must exit the <strong>de</strong>n daily to feed. Wind speed increases with<br />

height above ground (Rosenberg 1974, Byman <strong>et</strong> al. 1988) so feeding in trees sholild be<br />

energy <strong>de</strong>manding. However, the tree canopy is also highly h<strong>et</strong>erogeneous in terms of<br />

microhabitats avai<strong>la</strong>ble to a mid-sized mammal. How porcupines use their <strong>de</strong>n and select<br />

feeding microhabitats could greatly affect their thermoregu<strong>la</strong>tory costs. We used one<br />

popu<strong>la</strong>tion of free-ranging porcupines in southern Canada to investigate how thennal<br />

conditions affected their habitat use and activity patterns <strong>du</strong>ring winter.<br />

Our objectives were 1) to establish a d<strong>et</strong>ailed map of micro<strong>climat</strong>es avai<strong>la</strong>ble to<br />

porcupines, 2) to characterize activity patterns of porcupines according to the thermal<br />

environment, 3) to evaluate wh<strong>et</strong>her microhabitat use of porcupines was d<strong>et</strong>ennined by<br />

thermal constraints. What makes the cUITent report significant is that we mo<strong>de</strong>lled the<br />

thermal environ ment at a very fine scale and compared the resulting thennal map with<br />

d<strong>et</strong>ailed behavioural data from indivi<strong>du</strong>ally-marked, wild animais.


58<br />

4.3. Material and m<strong>et</strong>hods<br />

Study area and study popu<strong>la</strong>tion<br />

We worked from 12 January to 16 April 2004 and 13 December 2004 to 19 March 2005<br />

in a ca. 2 km 2 area of Parc National <strong>du</strong> Bic (48°20'N, 68°46' W, elevation 0-150m), Québec,<br />

Canada. The study area is fragmented by abandoned and cultivated fields, and characterized<br />

by a rugged topography, abundance of natural rock <strong>de</strong>ns, and a mixed-boreal forest (see<br />

Berteaux <strong>et</strong> al. 2005, Morin <strong>et</strong> al. 2005 for d<strong>et</strong>ails). We worked on a popu<strong>la</strong>tion of<br />

indivi<strong>du</strong>ally-marked porcupines monitored each summer since 2000. The popu<strong>la</strong>tion<br />

som<strong>et</strong>imes reached a high <strong>de</strong>nsity (ca. 40 indivi<strong>du</strong>als/km 2 ; D. Belieaux, unpublished data),<br />

and regu<strong>la</strong>rly fluctuated in abundance (Klvana <strong>et</strong> al. 2004). Porcupines were at medium to<br />

low <strong>de</strong>nsities (ca. 15 to 2 indivi<strong>du</strong>als/km 2 ) <strong>du</strong>ring this study.<br />

Study <strong>de</strong>sign<br />

We procee<strong>de</strong>d in three steps. First, we mea<strong>sur</strong>ed air temperature insi<strong>de</strong> <strong>de</strong>ns, and air<br />

temperature (Ta), wind speed, and n<strong>et</strong> radiation at an automated weather station located in the<br />

study area. We did not mea<strong>sur</strong>e wind and so<strong>la</strong>r radiation insi<strong>de</strong> <strong>de</strong>ns as they were negligible.<br />

Second, we characterized the "thennal quality" of microhabitats avai<strong>la</strong>ble to porcupines<br />

using heated taxi<strong>de</strong>rmic mounts. Use of heated mounts to estimate the m<strong>et</strong>abolic heat<br />

pro<strong>du</strong>ction of free-living animaIs has been much <strong>de</strong>bated (Walsberg & Wolf 1996, Larochelle<br />

1998, Fortin 2001, Dzialowski 2005) but they remain a useful tool to compare thennal effects<br />

across a range of complex natural environments. We mea<strong>sur</strong>ed operative temperature (Tc) 0.3<br />

m above ground (i.e. at porcupine's height) as a general mea<strong>sur</strong>e of the thermal environ ment<br />

prevailing in the stand. Tc incorporates the effects of Ta, convection, con<strong>du</strong>ction, and<br />

radiation into a single variable (Winslow <strong>et</strong> al. 1937, Bakken & Gates 1975). We then p<strong>la</strong>ced<br />

mounts in different microhabitats and compared power consumption b<strong>et</strong>ween microhabitats<br />

for a range of Tc mea<strong>sur</strong>ed in the stand. We consi<strong>de</strong>red one microhabitat to be of good<br />

"thennal qua lit y" (i.e. to offer a favourable micro<strong>climat</strong>e) when the power consumed in that<br />

microhabitat was lower than in other microhabitats, for a given Tc mea<strong>sur</strong>ed in the stand . One<br />

thing we wanted to establish was wh<strong>et</strong>her ranking of microhabitats (from best to worst<br />

microhabitat) was the same at cold and warm Tc.


59<br />

Third, we evaluated the behavioural response of porcupines to variations In Tc. We<br />

recor<strong>de</strong>d time spent outsi<strong>de</strong> of the <strong>de</strong>n, number of activity bouts, and a nocturnality in<strong>de</strong>x<br />

(equation 2 below) for each day (from 00:00 am to 24:00 pm) and compared them to the<br />

mean Tc of the day (recalcu<strong>la</strong>ted from continuous mea<strong>sur</strong>es of Ta, wind speed and n<strong>et</strong><br />

radiation ma<strong>de</strong> at our weather station, equation 3 below). We also compared the <strong>du</strong>ration of<br />

activity bouts to the mean Tc <strong>du</strong>ring the activity bout. Finally, we d<strong>et</strong>ermined which<br />

microhabitats were used when porcupines were outsi<strong>de</strong> of their <strong>de</strong>n, according to Tc<br />

mea<strong>sur</strong>ed in the stand at the time of observation. Because porcupines are sexually dimorphic,<br />

we tested for sexual differences in behaviour.<br />

M<strong>et</strong>eorological conditions<br />

Our automated weather station mea<strong>sur</strong>ed mr temperature In the sha<strong>de</strong> (Ta) using a<br />

temperature sensor (8-bit Temperature Smart Sensor, Hobo, Ons<strong>et</strong>) p<strong>la</strong>ced 1 m above ground,<br />

wind speed using a wind and direction sensor (Wind speed/Direction Smart Sensor, Hobo)<br />

p<strong>la</strong>ced 2 m above ground, and n<strong>et</strong> radiation (0-100 !lm) using a n<strong>et</strong> radiom<strong>et</strong>er sensor (mo<strong>de</strong>l<br />

NR-Lite N<strong>et</strong> Radiom<strong>et</strong>er, Kipp & Zonen) p<strong>la</strong>ced 1.5 m above ground. Ail sensors were<br />

connected to a datalogger (four channels Micro-station, Hobo) that collected data every<br />

minute.<br />

We p<strong>la</strong>ced temperature loggers (SmartButton Temperature Loggers, ACR systems lnc.)<br />

insi<strong>de</strong> nine <strong>de</strong>ns that were regu<strong>la</strong>rly used by porcupines <strong>du</strong>ring our long-term study, but that<br />

were not occupied <strong>du</strong>ring the sampling period. Loggers were p<strong>la</strong>ced on the ground as far as<br />

possible from the entrance of the <strong>de</strong>n (0.5 to 6.5 m <strong>de</strong>ep, <strong>de</strong>pending on <strong>de</strong>n structure).<br />

Loggers recor<strong>de</strong>d temperature every 15 minutes.<br />

Thermal mapping<br />

We worked <strong>du</strong>ring two winters to establish the thermal map: 29 January to 30 March<br />

2004 and 13 December 2004 to 8 February 2005. Following Bakken <strong>et</strong> al.(1983), we built<br />

two heated taxi<strong>de</strong>nnic mounts in the fonn of North American porcupines. To coyer the<br />

copper core we used pelts from animaIs that died naturally in our study area <strong>du</strong>ring winter<br />

2003. We built the mounts in a standing posture with the head facing down. We lined the<br />

insi<strong>de</strong> <strong>sur</strong>face of the hollow copper mould with 24 gauge Teflon-coated iron wire that was<br />

connected to an external control circuit and to a Campbell CR-21X data logger (Campbell<br />

Scientific). Electrical power was provi<strong>de</strong>d by four 6 V <strong>de</strong>ep discharge batteries in series.


60<br />

Body temperature (Tb) of the mounts was regul ated at 37.5 ± 0.3°C, whi ch is the core<br />

body temperature of winter ac<strong>climat</strong>ized free-ranging porcupines (D.W. Thomas,<br />

unpublished data). We moni tored temperature insi<strong>de</strong> the copper mounts usmg a copperconstantan<br />

thermocouple p<strong>la</strong>ced in the centre of the mount. We w rote a program for the<br />

Campbell CR-2 1 X to regul ate Tb' Power was applied automatically as 24V pulse to maintain<br />

body temperature. The datalogger mea<strong>sur</strong>ed voltage (Vm) every fi ve seconds, calcul ated the<br />

power consumption (see below), and stored the me an power over fi ve minute intervals. We<br />

calcul ated the power drawn by each mount (Pm) from Vm and the resistance of the heater wire<br />

circuit (R) fo llowing equati on 1:<br />

2<br />

P _ v'n m- R (1)<br />

with Pm expressed in Watts, Vm in Volts and R in Ohms.<br />

We recor<strong>de</strong>d m<strong>et</strong>eorological conditions in the stand while mounts were functioning by<br />

mea<strong>sur</strong>ing Tc w ith a copper-constantan thelmocouple p<strong>la</strong>ced insi<strong>de</strong> an anodi zed aluminium<br />

sphere, Ta w ith a copper-constantan thenTIocouple p<strong>la</strong>ced in the sha<strong>de</strong>, and wind speed with a<br />

portable hot-wire anemom<strong>et</strong>er (Seri es 440 Portable Air Velocity M<strong>et</strong>ers, Kurz Instruments).<br />

Mea<strong>sur</strong>ements were ma<strong>de</strong> 0.3 m above ground, averaged over fi ve minute intervals, and<br />

stored in the data logger. We obtained mea<strong>sur</strong>es of n<strong>et</strong> radiation from our automated weather<br />

stati on. We used synchronous mea<strong>sur</strong>ements of Tc, Ta, wind speed and n<strong>et</strong> radi ation to<br />

establish an equati on re<strong>la</strong>ting Tc to the other m<strong>et</strong>eorological param <strong>et</strong>ers (see below).<br />

We p<strong>la</strong>ced mounts in six microhabitats: "<strong>de</strong>n", "ground open", "ground covered,"<br />

"conifer open", "conifer covered', and "<strong>de</strong>ci<strong>du</strong>ous"(see Appendix J fo r a d<strong>et</strong>ail ed <strong>de</strong>scription<br />

of the mi crohabitats). We p<strong>la</strong>ced each mount fo r about 24 hours in one geographical site<br />

corresponding to one of the six microhabitats, and subsequently moved it to a new site. Since<br />

easily accessible sites were scarce in the study area, we used some sites on several occasions<br />

but took this into account in our analyses (see data analyses).<br />

Activity patterns<br />

We captured 26 a<strong>du</strong>lt porcupines (10 males, 16 females) in summer and fall 2003 and<br />

2004 . Indivi<strong>du</strong>als were immobilized fo llowing Morin & Bel1eaux (2003) and equipped with<br />

radio tra nsmitters (Lotek SMRC-5RB VHF transmitter, Lotek W ireless Inc.) (see chap. 2 fo r<br />

d<strong>et</strong>ails). ln January 2004 and 2005, we recaptured radi ocol<strong>la</strong>red porcupines to mea<strong>sur</strong>e their


61<br />

pattern of <strong>de</strong>n use over one or two winter seasons (n = 14 indivi<strong>du</strong>a1s followed from 23<br />

January to 14 April 2004; n = 6 indivi<strong>du</strong>als followed from 05 January to 19 March 2005;<br />

among which three indivi<strong>du</strong>als were followed both years). For that, we attached temperature<br />

loggers (SmartButton Temperature Loggers, ACR systems Inc.) to their radio col<strong>la</strong>r (total<br />

weight of col<strong>la</strong>r with temperature recor<strong>de</strong>rs = 74 g). We used abrupt changes in temperature<br />

readings to estimate the timing of movements in and out of the <strong>de</strong>ns. To complement data<br />

from temperature loggers, we p<strong>la</strong>ced movement d<strong>et</strong>ectors (Vigil 650X, Circuitronique Estrie<br />

Inc.) at the entrances of ail <strong>de</strong>ns used. Combining information from temperature loggers and<br />

movement d<strong>et</strong>ectors allowed us to d<strong>et</strong>ermine wh en animais were insi<strong>de</strong> or outsi<strong>de</strong> of a <strong>de</strong>n<br />

and therefore to ca\cu<strong>la</strong>te the time spent outsi<strong>de</strong> of the <strong>de</strong>n, the number and <strong>du</strong>ration of<br />

activity bouts, and the nocturnality in<strong>de</strong>x. The nocturnality in<strong>de</strong>x ln (after Zalewski 2000)<br />

reflects the re<strong>la</strong>tive distribution of activity b<strong>et</strong>ween day and night, and is calcu<strong>la</strong>ted as:<br />

2Nal<br />

1 = I N<br />

Il (Nal +(Dal<br />

I N) I D)<br />

(2)<br />

where Na and Da are total <strong>du</strong>ration of porcupine activity <strong>du</strong>ring night and day, respectively,<br />

and N and D are night and day lengths. Night started 30 min after sun s<strong>et</strong> and en<strong>de</strong>d 30 min<br />

before sunrise. In varies from 0 (diurnal activity) to 2 (nocturnal activity).<br />

Microhabitats used outsi<strong>de</strong> of the <strong>de</strong>n<br />

We mea<strong>sur</strong>ed habitat use by porcupines from 12 January to 16 April 2004 and Il January<br />

to 12 March 2005. Twice a week, we precisely located the 26 radiocol<strong>la</strong>red porcupines. For<br />

that, we followed the telem<strong>et</strong>ry signal to the animal (homing) instead of using triangu<strong>la</strong>tion.<br />

Each time we located an indivi<strong>du</strong>al, we assigned its position to one of the six microhabitats<br />

(i.e. "<strong>de</strong>n", "ground open", "ground covered" , "conifer open", "conifer covered" , or<br />

"<strong>de</strong>ci<strong>du</strong>ous"). If the animal was in a tree, we recor<strong>de</strong>d its position according to one of tluee<br />

c<strong>la</strong>sses of height (Iower third, middle, higher third of the canopy) and to one of two c<strong>la</strong>sses of<br />

distance to the trunk (base, tip of the branch). We also noted wh<strong>et</strong>her the porcupine was<br />

feeding or resting. We characterized thermal conditions in the stand by mea<strong>sur</strong>ing Tc using a<br />

hand held thermocouple (HH Il with type K thermocouple input, Omega Engineering Inc.,<br />

Stamford, Connecticut) inserted in a b<strong>la</strong>ck bowl and p<strong>la</strong>ced 0.3 m ab ove ground.


62<br />

Data analyses<br />

Thermal mapping<br />

We mea<strong>sur</strong>ed power consumption 46 times in 38 sites (4 "<strong>de</strong>n", 6 "ground open", 12<br />

"ground covered" , 3 "<strong>de</strong>ci<strong>du</strong>ous", 5 "conifer open", 8 "conifer covered"), and col!ected 1012<br />

hours of data with both mounts. We averaged power consumed by the mounts over one-hour<br />

periods to match mea<strong>sur</strong>es of Tc that were averaged over the same period. To in<strong>sur</strong>e that the<br />

mean power consumed referred to re<strong>la</strong>tively stable m<strong>et</strong>eorological conditions, we exclu<strong>de</strong>d<br />

one-ho ur periods <strong>du</strong>ring which Tc variation was > 3°C. This 3°C threshold allowed us to<br />

remove most directional changes in Tc. Following this sampling strategy, we calcu<strong>la</strong>ted me an<br />

power consumption <strong>du</strong>ring 886 one-hour periods (mount 1: 494 h, mount 2: 392 h) . We<br />

tested <strong>du</strong>ring calibration periods wh<strong>et</strong>her mounts had simi<strong>la</strong>r power consumption when<br />

exposed to simi<strong>la</strong>r thermal conditions. We p<strong>la</strong>ced the two mounts 2 m apart (simi<strong>la</strong>r position)<br />

in a "ground open" microhabitat and continuously recor<strong>de</strong>d power consumed by the mounts.<br />

We ran four calibration trials and calcu<strong>la</strong>ted power consumption <strong>du</strong>ring 46 one-hour periods<br />

covering a wi<strong>de</strong> range of Tc (from -I8.2°C to +4.2°C). We tested for differences b<strong>et</strong>ween the<br />

two mounts using a paired t-test.<br />

Our sampling <strong>de</strong>sign inclu<strong>de</strong>d repeated mea<strong>sur</strong>ements of power consumption ma<strong>de</strong> on<br />

the same site on different occasions and for a given site and occasion, repeated mea<strong>sur</strong>ements<br />

ma<strong>de</strong> at different hours. Therefore, we used general linear mixed mo<strong>de</strong>ls with normal<br />

distributions (proc MIXED, SAS software version 9.1, SAS 2002), including occasion of<br />

mea<strong>sur</strong>ement as a random effect for a given site (because we used some sites on several<br />

occasions), and hour of mea<strong>sur</strong>ement as a repeated effect for a given site and occasion<br />

(bec au se mea<strong>sur</strong>ements closer in time are more corre<strong>la</strong>ted th an mea<strong>sur</strong>ements further apart).<br />

We fitted Tc, microhabitat as fixed effects to test wh<strong>et</strong>her the power consumed by mounts<br />

was different b<strong>et</strong>ween microhabitats (our variable of interest) when adjusting for Tc. We also<br />

fitted Tcx microhabitat as a fixed effect to test wh<strong>et</strong>her the re<strong>la</strong>tionship b<strong>et</strong>ween power<br />

consumed and microhabitat differed according to Tc (e.g. to test wh<strong>et</strong>her the microhabitat<br />

offering the best micro<strong>climat</strong>e was the same at cold and wann Tc). When testing the effect of<br />

microhabitat (as a main effect or in interaction with Tc), we first consi<strong>de</strong>red ail microhabitats<br />

sampled (i.e. microhabitat had six modalities, Table 4.1, mo<strong>de</strong>l 1) and then consi<strong>de</strong>red groups<br />

of microhabitats that we expected to offer simi<strong>la</strong>r thermal conditions (i.e. microhabitat had


63<br />

two modali ties, Table 4.1, mo<strong>de</strong>ls 2 to 4). We first compared "<strong>de</strong>n" to other microhabitats<br />

merged into a single category (Table 4.1, mo<strong>de</strong>l 2). Among the non-<strong>de</strong>n microhabitats, we<br />

then compared arboreal ("<strong>de</strong>ci<strong>du</strong>ous", "conifer open", "conifer covered") to terrestri al<br />

("ground open", "ground covered") microhabitats (Table 4.1 , mo<strong>de</strong>l 3); and fi nall y open<br />

("ground open", "<strong>de</strong>ci<strong>du</strong>ous", "conifer open") to covered ("ground covered" , "conifer<br />

covered") microhabitats (Table 4.1 , mo<strong>de</strong>l 4).<br />

Calcul ating T ~ from other m<strong>et</strong>eorologica1 variables<br />

Because we did not mea<strong>sur</strong>e Tc continuously <strong>du</strong>ring the study peri od, we used<br />

synchronous mea<strong>sur</strong>ements of Tc, Ta, wind speed and n<strong>et</strong> radi ati on to re<strong>la</strong>te Tc to other<br />

m<strong>et</strong>eorological vari ables. We consi<strong>de</strong>red only mea<strong>sur</strong>es ma<strong>de</strong> <strong>du</strong>ring daytime (i.e. 30 min<br />

before sunrise to 30 min after suns<strong>et</strong>) because Tc mea<strong>sur</strong>ed with a b<strong>la</strong>ck bowl integrates the<br />

effects of wi nd only when so<strong>la</strong>r radiation occurs. We averaged mea<strong>sur</strong>ements over one-ho ur<br />

periods and consi<strong>de</strong>red only periods when Tc varied by ~ 3°C. We obtained 160 one-hour<br />

peri ods from 37 occasions of mea<strong>sur</strong>ements. We used general linear mixed mo<strong>de</strong>ls with<br />

normal distributions (proc MIXED) and inclu<strong>de</strong>d hour of mea<strong>sur</strong>ement as a repeated effect in<br />

our analyses. We fitted air temperature, the square root ofwind speed (Kreith & B<strong>la</strong>ck 1980),<br />

n<strong>et</strong> radi ati on and their fi rst or<strong>de</strong>r interacti ons as fixed effects to test how these vari ables<br />

<strong>influence</strong>d Tc.<br />

Activity patterns<br />

We wanted to test for an effect of Tc on acti vity patterns. Our data s<strong>et</strong> incl u<strong>de</strong>d repeated<br />

mea<strong>sur</strong>ements ma<strong>de</strong> on the same indivi<strong>du</strong>al at different dates so we fiUed general linear<br />

mixed mo<strong>de</strong>ls with porcupine i<strong>de</strong>ntity as a repeated factor. We used mi xed mo<strong>de</strong>ls with<br />

normal di stributions (SAS software, proc MIXED, SAS 2002) to analyse the effects of Tc on<br />

time spent outsi<strong>de</strong> of the <strong>de</strong>n, <strong>du</strong>rati on of activity bouts, and nocturnality in<strong>de</strong>x (i.e.<br />

continuo us vari ables) and mi xed mo<strong>de</strong>ls with binomi al di stributions (proc G LlMM 1X) to<br />

analyse the effects of Tc on the number of activity bouts per day. This <strong>la</strong>st variable had two<br />

categori es (l acti vity bout; > 1 acti vity bout, range: 2 to 4) in or<strong>de</strong>r to test if changes in Tc<br />

<strong>influence</strong>d porcupines to shi ft from unimodal to plurimodal patterns of acti vi ty. Because<br />

sampling peri ods were different b<strong>et</strong>ween 2004 and 2005, we tested the effect of year (fixed<br />

factor) before fi tting other vari ables. We removed the effects of confo unding va ri ables on<br />

acti vity pattern by including as fixed factors Julian date, snow pen<strong>et</strong>rability (dail y mea<strong>sur</strong>e in


64<br />

cm, ma<strong>de</strong> in the study area using a specially adapted Verme sinking-<strong>de</strong>pth gauge, which was<br />

calibrated at the start of the study using fresh porcupine tracks) and their first-or<strong>de</strong>r<br />

interactions with sex. We chose Julian date because it can <strong>influence</strong> activity (Santee &<br />

Bakken 1987, Vispo & Bakken 1993) and was not in<strong>de</strong>pen<strong>de</strong>nt from Tc (Pearson corre<strong>la</strong>tion:<br />

r = 0.65, p


65<br />

feeding behaviour for the popu<strong>la</strong>tion (obtained from Fig. 4.3). Means were computed over six<br />

c<strong>la</strong>sses of Te «-19.9°e, -19.9 to -15°C, -14.9 to -10°C, -9.9 to -5°C, -4.9 to ooe and >O°C).<br />

We therefore obtained a time spent feeding for each indivi<strong>du</strong>al and for each c<strong>la</strong>ss of Tc. We<br />

tested wh<strong>et</strong>her time spent feeding differed b<strong>et</strong>ween sexes and b<strong>et</strong>ween c<strong>la</strong>sses of Tc using<br />

ANOY As. We perfonned multiple comparisons b<strong>et</strong>ween c<strong>la</strong>sses of Tc using post hoc tests.<br />

4.4. Results<br />

M<strong>et</strong>eorological conditions<br />

The mean Ta (± SE) mea<strong>sur</strong>ed outsi<strong>de</strong> <strong>de</strong>ns b<strong>et</strong>ween 15 December and 15 April was -7.1 ±<br />

0.7°e in 2004 and -7.3 ± 0.6°e in 2005. The mean wind speed (± SE) was 2.35 ± 0.09 mis<br />

and 2.42 ± 0.09 mis respectively in 2004 and 2005. We did not ca\cu<strong>la</strong>te the mean n<strong>et</strong><br />

radiation b<strong>et</strong>ween 15 December and 15 April because of sampling interruptions both in 2004<br />

and 2005. The mean Ta (± SE) insi<strong>de</strong> the nine <strong>de</strong>ns sampled was --4.6 ± 0.3°e in 2005 (not<br />

mea<strong>sur</strong>ed in 2004). Air temperature remained higher insi<strong>de</strong> th an outsi<strong>de</strong> <strong>de</strong>ns as long as the<br />

outsi<strong>de</strong> Ta was below -2.4 oC (Fig. 4.\), a condition encountered <strong>du</strong>ring most of the winter.<br />

10<br />

5<br />

~ : ..:......._-,.._<br />

..<br />

.a v; 1\ " 1 /V<br />

CIl<br />

...<br />

CI><br />

a.<br />

E -10<br />

CI><br />

-...<br />

Ci: -15<br />

..... _~ .. _._ .... _<br />

.._.._<br />

_.~~~<br />

.:._......._...._... \ ~ /<br />

-20<br />

-25<br />

15-Dec 30-Dec 14-Jan 29-Jan 13-Feb 28-Feb 15-Mar 30-Mar 14-Apr<br />

ine) and insi<strong>de</strong><br />

Figure 4.1 : Mean daily air temperature (oC) mea<strong>sur</strong>ed outsi<strong>de</strong> (b<strong>la</strong>ck solid 1<br />

(grey solid line) nine porcupine <strong>de</strong>ns, Parc National <strong>du</strong> Bic, Québec, 15 December 2004-14<br />

April 2005. B<strong>la</strong>ck dashed line indicates the mean outsi<strong>de</strong> temperature (-2.4°C) above which<br />

temperature insi<strong>de</strong> the <strong>de</strong>n became lower than outsi<strong>de</strong> temperature.


66<br />

Thermalmapping<br />

We found no difference in the power necessary to maintain the inner temperature of the<br />

two taxi<strong>de</strong>nnic mounts exposed to simi <strong>la</strong>r thennal environments (Appendix 2, paired t-test, t<br />

= -0.80, df = 45, P = 0.426) so data from both mounts were pooled in analyses. Operative<br />

temperature had a general negative effect on the power consumed by mounts (Appendix 3,<br />

Table 4 .1). ln the full mo<strong>de</strong>l including the six initial microhabitats, we found that Tc<br />

interacted with the microhabitat to <strong>influence</strong> the power consumed by the mounts (Table 4 .1<br />

mo<strong>de</strong>l 1). This means that ranking of microhabitats (from microhabitat of best "thennal<br />

quality" to microhabitat ofworst "thermal quality") was not the same at cold and warm Tc.<br />

Table 4. 1 : Linear mixed effect mo<strong>de</strong>ls for the power consumed by porcupine mounts<br />

exposed to avai<strong>la</strong>ble conditions of operative tel11perature (Tc), Parc National <strong>du</strong> Bic, Québec,<br />

December to March 2004-2005. We first tested fo r an effect of Tc, microhabitat, and<br />

Tcx microhabitat. We removed non-significant (NS) interactions b<strong>et</strong>ween Tcx microhabitat<br />

from final mo<strong>de</strong>ls. When testing the effect of microhabitat, we first consi<strong>de</strong>red aIl<br />

l11icrohabitats sampled (i .e. "<strong>de</strong>n", "ground open", "ground co vered" , "<strong>de</strong>ci<strong>du</strong>ous", "conifer<br />

open", "conifer coverecf': mo<strong>de</strong>l 1). Then we grouped certain microhabitats and compared<br />

effects of groups of microhabitats ("<strong>de</strong>n" vs non-<strong>de</strong>n microhabitats: mo<strong>de</strong>l 2; arboreal vs<br />

terrestrial: mo<strong>de</strong>l 3; open vs covered: mo<strong>de</strong>I 4). The type and number (n) ofmea<strong>sur</strong>es<br />

consi<strong>de</strong>red for analysis are specified<br />

Mo<strong>de</strong>l Categories of Mea<strong>sur</strong>es Tc Microhabitat Tcx microhabitat<br />

microhabitat consi<strong>de</strong>red<br />

6 : initial Ali F {I,808) = 48.75 F (5,808) = 1.75 F (5 ,808) = 4.29<br />

categories n = 883 p


67<br />

of Tc we consi<strong>de</strong>red. However, we did not mea<strong>sur</strong>e power consumption insi<strong>de</strong> <strong>de</strong>ns when<br />

Tc>O°C (Table 4.2). When comparing arboreal to terrestrial microhabitats, power consumed<br />

by mOllnts was generally 10wer in terrestrial than in arboreal microhabitats (Fig. 4.2a)<br />

although the difference was non significant (Table 4.l mo<strong>de</strong>l 3). Also, Tc interacted with the<br />

microhabitat to <strong>influence</strong> the power consllmed by the mOllnts, with the result that the power<br />

consumption increased more slowly in terrestrial than in arboreal microhabitats (Table 4.1<br />

mo<strong>de</strong>l 3) when Tc <strong>de</strong>creased. Finally, when comparing open and covered microhabitats, the<br />

power consllmed by mOllnts was generally 10wer in covered than in open microhabitats<br />

(Table 4.1 mo<strong>de</strong>l 4, Fig. 4.2b). However, Tc interacted with the microhabitat to <strong>influence</strong> the<br />

power consumed by the mounts so that the power consumption increased more slowly in<br />

open than in covered microhabitats (Table 4.1 mo<strong>de</strong>l 4) when Tc <strong>de</strong>creased. At cold<br />

temperatures (TcO°C, we used this value as an<br />

approximation for calcu<strong>la</strong>ting power consumed in non-<strong>de</strong>n microhabitats as a percentage<br />

of power consumed in "<strong>de</strong>n"


68<br />

140 a)<br />

Cl) 120<br />

"C<br />

c:<br />

2, 6<br />

8, 31<br />

19, 111<br />

8, 41<br />

4, 28<br />

5,35<br />

L.<br />

~ 100<br />

o<br />

a.<br />

-o 80<br />

~<br />

"C<br />

Cl)<br />

E 60<br />

:::l<br />

VI<br />

c:<br />

o<br />

~ 40<br />

Cl)<br />

~<br />

o<br />

a. 20<br />

o<br />

O' C<br />

140 b)<br />

? 120 J<br />

Cl)<br />

"C<br />

c:<br />

L. no -<br />

Cl)<br />

~ 1<br />

~ 80 j<br />

o<br />

~ 60 j<br />

Cl)<br />

E<br />

:::l<br />

~ 40 1<br />

o<br />

(.)<br />

L.<br />

~ 20 -<br />

o<br />

a.<br />

o -<br />

3, 18<br />

0'C<br />

Operative temperature (OC)<br />

Figure 4.2 : Power consumed by porcupine mounts exposed to avai<strong>la</strong>ble conditions of<br />

operative tel11perature and p<strong>la</strong>ced in non-<strong>de</strong>n l11icrohabitats, Parc National <strong>du</strong> Bic, Québec,<br />

December to March, 2004-2005. Means for non-<strong>de</strong>n microhabitats are shown as a percentage<br />

of power consumed in "<strong>de</strong>n" (from Table 4.2). Sal11ple sizes are specified above the bars as:<br />

number of days for which data was obtained, total nUl11ber of mea<strong>sur</strong>ements on those days.<br />

a) In arboreal ("conifer open", "conifer covered" and "<strong>de</strong>ci<strong>du</strong>ous" pooled, white bars) and<br />

terrestrial microhabitats ("ground open" and "ground covered" pooled, b<strong>la</strong>ck bars).<br />

b) ln open ("conifer open", "<strong>de</strong>ci<strong>du</strong>ous" and "ground open" pooled, white bars) and covered<br />

l11 icrohabitats ("ground covered" and "coniferous covered" pooled, b<strong>la</strong>ck bars).


69<br />

Calcu<strong>la</strong>ting TefrOIn Ta, wind speed and n<strong>et</strong> radiation<br />

The final mo<strong>de</strong>l exp<strong>la</strong>ining variations in Tc inclu<strong>de</strong>d effects of Ta (F(1,12 0) = 700.4,<br />

p


70<br />

-..c<br />

-~20 .-<br />

nl<br />

'"C<br />

nl<br />

c:<br />

~ 15<br />

.<br />

Ū)<br />

-<br />

-~<br />

o<br />

ai 10<br />

a.<br />

U)<br />

Q)<br />

E<br />

-c:<br />

nl<br />

Q)<br />

~<br />

5<br />

o +-1- -<br />

2, 2<br />

7,44<br />

7,33<br />

0<br />

~ 80<br />

1<br />

- 60<br />

- 40<br />

- 20<br />

o<br />

~<br />

~<br />

o<br />

><br />

nl<br />

..c<br />

Q)<br />

.c<br />

0)<br />

c:<br />

'"C<br />

Q)<br />

Q)<br />

-o<br />

Q)<br />

o<br />

c:<br />

Q)<br />

~<br />

~<br />

~<br />

o<br />

o<br />

s::::<br />

nl<br />

Q)<br />

~<br />

Operative tel1lJerature (OC)<br />

Figure 4.3 : Time spent outsi<strong>de</strong> of a <strong>de</strong>n (mean ± SE) in a day for male (open circles) and female (fi lied circles) North Ameri can<br />

porcupines and OCCU1Tence offeeding behaviour (mean ± SE) when in a coniferous tree (fi lled squares: males and females pooled since<br />

difference b<strong>et</strong>ween sexes was not significant) as a function of operative temperature, Parc National <strong>du</strong> Bic, Québec, January to April,<br />

2004-2005. Sample sizes are specified near each symbol as: number of indivi<strong>du</strong>als, number of observations on those indivi<strong>du</strong>als.


71<br />

Number and <strong>du</strong>ration of activity bouts<br />

Mean number of activity bouts was lAO ± 0.07 (range: 1.07 to 1.91 , n = 14 indivi<strong>du</strong>als<br />

and 679 observations) and the me an <strong>du</strong>ration of activity bouts was 5.0 ± OA h (range: 2.8 to<br />

7.3 h, n = 14 indivi<strong>du</strong>als and 966 observations). Number ofactivity bouts increased wh en Tc<br />

<strong>de</strong>creased (F(I,664) = 20.59, p


72<br />

Microhabitats used outsi<strong>de</strong> of the <strong>de</strong>n<br />

Effects of T ~<br />

Within coniferous trees, Tc had no effect on the microhabitat used by porcupines (F(I,230)<br />

= 0.05, P = 0.818), on their height in tree (F(I,230) = 0.10, P = 0.749), or on their distance to the<br />

trunk (F( I,230) = 2.93, P = 0.088). However, Tc had an effect on the foraging behaviour of<br />

porcupines (F(I ,230) = 10.66, P = 0.001), with occurrence of feeding increasing at low<br />

temperatures (Fig. 4.3).<br />

Factors exp<strong>la</strong>ining feeding behaviour<br />

Mean occurrence of feeding in coniferous trees was 39.3 ± 5.0% (range: 0.0 to 80.0%,<br />

n=26 indivi<strong>du</strong>als and 257 observations). Occurrence of feeding was best exp<strong>la</strong>ined by a<br />

mo<strong>de</strong>l including Te, microhabitat used, and height of the porcupine in the tree. As <strong>de</strong>scribed<br />

above, occurrence of feeding increased wh en Tc <strong>de</strong>creased (F(I ,228) = 11.37, p


73<br />

8<br />

o _<br />

--L-_<br />

0<br />

Operative temperature (OC)<br />

Figure 4.4 : Estimated time spent feed ing (mean ± SE) in a day for male (white bars) and<br />

female (dark bars) NOlih American porcupines, Parc National <strong>du</strong> Bic, Québec, January to<br />

Apri l, 2004-2005. Time spent feeding was estimated for each indivi<strong>du</strong>al and c<strong>la</strong>ss of<br />

operative temperature (Tc) and then averaged for males and females for each c\ass of Tc.<br />

4.5. Discussion<br />

Estimated energy expenditure differed across microhabitats for a given Tc and the<br />

re <strong>la</strong>tionship b<strong>et</strong>ween energy expenditure and microhabitat varied with Tc. ln other words,<br />

ranking of microhabitats from microhabitat offering the best, to microhabitat offering the<br />

worst thermal environment was not the same at co Id and warm Tc. Dens offered the best<br />

protection against cold temperatures. Porcupines altered their patterns of <strong>de</strong>n use and<br />

foraging behaviour according to Te. When Tc <strong>de</strong>creased, they re<strong>du</strong>ced the time spent outsi<strong>de</strong><br />

of the <strong>de</strong>n, increased the number of activity bouts per day, re<strong>du</strong>ced the <strong>du</strong>ration of activity<br />

bouts, became more diurnal, and increased feeding intensity. Activity patterns also varied<br />

with snow conditions. Olltsi<strong>de</strong> of the <strong>de</strong>n, porcupines did not modify their microhabitat lise<br />

according to Te. Rather, they llsed microhabitats according to their activities: they exploited<br />

open microhabitats and top of trees for feeding and covered microhabitats and bottom of trees<br />

for resting. Porcupines also showed sex differences in their patterns of habitat use.


74<br />

Thermal mapping<br />

When studying the physiological consequences of habitat selection, the first step is to<br />

establish a map of the micro<strong>climat</strong>es avai<strong>la</strong>ble in a habitat (Huey 1991). Our thermal<br />

mapping showed that for a given Tc mea<strong>sur</strong>ed in the stand, different microhabitats resulted in<br />

di fferent micro<strong>climat</strong>es. Furthermore, the quality of one microhabitat re<strong>la</strong>tive to the others<br />

was not the same at cold and warm Tc, so that the thennal map was variable both in space and<br />

time. ln such an h<strong>et</strong>erogeneous environment, porcupines should constantly adjust behaviour<br />

to minimize energy expenditure. The main contrast we observed was b<strong>et</strong>ween <strong>de</strong>n and non<strong>de</strong>n<br />

microhabitats. The difference was mainly <strong>du</strong>e to the higher and less variable Ta observed<br />

insi<strong>de</strong> than outsi<strong>de</strong> <strong>de</strong>ns for most of the winter. According to our mea<strong>sur</strong>es of power<br />

consumption, porcupines should re<strong>du</strong>ce m<strong>et</strong>abolic rate by about 25% when moving from a<br />

tree to their <strong>de</strong>n at T e =-20°C. Den use is known as an energy-saving strategy for species<br />

exposed to cold conditions (Prestrud 1991, C<strong>la</strong>rk <strong>et</strong> al. 1997, Zimmerling 2005) but we are<br />

not aware of previous studies estimating energy saved wh en using a <strong>de</strong>n in field conditions<br />

(but see Scantlebury <strong>et</strong> al. 2006). Re<strong>du</strong>cing energy expenditure by using a <strong>de</strong>n in cold<br />

conditions celtainly helps porcupines to maintain their energy ba<strong>la</strong>nce <strong>du</strong> ring the winter and<br />

this may be why pattern of <strong>de</strong>n use is at the centre of their behavioural thermoregu<strong>la</strong>tion<br />

strategy (see below). Outsi<strong>de</strong> of the <strong>de</strong>n, energy expenditure was overall higher in open<br />

compared to covered microhabitats and in arboreal compared to terrestrial microhabitats.<br />

Porcupines should therefore use terrestrial and covered microhabitats when feeding outsi<strong>de</strong> of<br />

their <strong>de</strong>n if they were to minimize thermoregu<strong>la</strong>tory costs.<br />

Activity patterns<br />

Thermal conditions <strong>influence</strong>d activity patterns of porcupines. The time spent outsi<strong>de</strong> of<br />

the <strong>de</strong>n <strong>de</strong>creased as the operative temperature got col<strong>de</strong>r, and porcupines ten<strong>de</strong>d to exit their<br />

<strong>de</strong>n for several short rather than one long time period when the cold stress increased. Several<br />

species have been shown to use plurimodal activity patterns to avoid temperature extremes<br />

(Turk & Arnold 1988, Sharpe & Van Horne 1999, Jedrzejewski <strong>et</strong> al. 2000), with subsequent<br />

<strong>de</strong>creases in activity time. Thennal constraints appear to limit the time avai<strong>la</strong>ble for above<br />

ground activity and porcupines compensated this re<strong>du</strong>ction in time spent outsi<strong>de</strong> by<br />

increasing feeding rate when Tc <strong>de</strong>creased. Another constraint that leads animais to re<strong>du</strong>ce<br />

the time spent in activity is predator avoidance (Lima & Dili 1990, Kie 1999, Ripple &


75<br />

Beschta 2004). Predation rates were high on porcupines <strong>du</strong> ring the two years of study and<br />

predation on a<strong>du</strong>lts was linked to the presence of snow covering the ground (chap. 3). We<br />

observed porcupines re<strong>du</strong>cing the time spent outsi<strong>de</strong> of the <strong>de</strong>n and the <strong>du</strong>ration of activity<br />

bouts when snow pen<strong>et</strong>rability increased. We suggest porcupines lowered expo<strong>sur</strong>e to<br />

predators by re<strong>du</strong>cing the time spent outsi<strong>de</strong> of the <strong>de</strong>n when snow pen<strong>et</strong>rability, and<br />

therefore predation risk, was high.<br />

Besi<strong>de</strong>s re<strong>du</strong>cing the time spent outsi<strong>de</strong> of the <strong>de</strong>n, porcupines also became more diurnal<br />

with <strong>de</strong>creasing Tc. North American porcupines and ro<strong>de</strong>nts from the Hystricidae family are<br />

known to be essentially nocturnal (Roze 1989, Roll <strong>et</strong> al. 2006). However, only 47% of<br />

porcupines' active time was <strong>du</strong>ring the night and porcupines were more diurnal at cold<br />

temperatures. Ro<strong>de</strong>nts living in cold environments are more 1ikely to be diurnal, possibly<br />

because they exploit the walmer hours of the diel cycle (Roll <strong>et</strong> al. 2006). Still, diel activity<br />

patterns are phylogen<strong>et</strong>ically constrained (Roll <strong>et</strong> al. 2006). Hence, being cathemeral (i .e.<br />

being active <strong>du</strong>ring both day and night, Tattersall 1987, Tattersall 2006) may represent the<br />

best compromise nocturnal animais like porcupines can make to avoid expo<strong>sur</strong>e to cold night<br />

temperatures. Porcupines also became more diurnal when snow pen<strong>et</strong>rability increased and<br />

one hypothesis is that being active <strong>du</strong>ring the daytime re<strong>du</strong>ced the likelihood of encountering<br />

predators (Bakker <strong>et</strong> al. 2005).<br />

As we could expect from our thermal map, using a <strong>de</strong>n was at the basis of porcupines'<br />

behavioural thermoregu<strong>la</strong>tory strategy. Porcupines modified the time spent outsi<strong>de</strong> of the <strong>de</strong>n<br />

and the timing of activity according to Tc, and this may allow huge energy savings (this<br />

study, Humphries <strong>et</strong> al. 2005).<br />

Microhabitats used outsi<strong>de</strong> of the <strong>de</strong>n<br />

Outsi<strong>de</strong> their <strong>de</strong>ns, porcupines mainly used coniferous trees. Operative temperature did<br />

not <strong>influence</strong> microhabitat use once porcupines were insi<strong>de</strong> coniferous trees. Rather, the<br />

microhabitat choice varied with the behaviour of the animal: porcupines preferentially<br />

exploited open microhabitats and tops of trees for feeding and covered microhabitats and<br />

bottoms of trees for resting. According to our thennal map, energy expenditure was generally<br />

higher in open and arboreal than in other microhabitats. Feeding sites therefore did not appear<br />

to be chosen based on the protection they offered against the thennal environment. We<br />

generate the testable hypothesis that porcupines fed on tops of trees because they offered the


76<br />

most beneficial food. Leaf chemistry varies with light expo<strong>sur</strong>e in the tree canopy (Hirose <strong>et</strong><br />

a l. 1989, Close <strong>et</strong> al. 2005) and open habitats and tops of trees receive more light than other<br />

habitats. By feeding there, porcupines may access needles with higher nitrogen or energy<br />

content, and therefore make the best of a bad job to acquire profitable food ev en if this<br />

implies trading off nutrition against thermoregu<strong>la</strong>tion (Torres-Contreras & Bozinovic 1997).<br />

Alternatively, but not exclusively, porcupines may forage on tops of trees because it lowers<br />

probability of d<strong>et</strong>ection by predators.<br />

Time spenl f eeding<br />

Feeding time generally increased with <strong>de</strong>creasing Tc, probably because energy<br />

requirements increased with thennal stress (Systad & Bustnes 2001). A non exclusive<br />

hypothesis would be that porcupines' foraging abilities were lower at extreme temperatures<br />

(Bozinovic & Vasquez 1999) which increased the time spent sem'ching or handling food. As<br />

discussed above, porcupines increased feeding time at low Tc by intensifying feeding rate<br />

rather than by spending more time outsi<strong>de</strong>. We therefore believe that cold temperatures did<br />

not limit foraging abilities of porcupines, contrary to what Bozinovic and Vasquez (1999)<br />

showed for <strong>de</strong>gus (Oelodon <strong>de</strong>gus) exposed to hot temperatures.<br />

Sex differenees<br />

At cold temperatures (Tc-5°C (i .e. Tc :::::;<br />

estimated Tic for porcupines in southern Québec). Why males started to increase time spent<br />

outsi<strong>de</strong> before females was unclear. Males, having a higher body size, may be b<strong>et</strong>ter<br />

protected than females against cold temperatures (Scho<strong>la</strong>n<strong>de</strong>r <strong>et</strong> al. 1950a, McNab 1970) and<br />

may therefore have lower Tic than females. At Tc>-5°C, females stmted increasing time spent<br />

outsi<strong>de</strong> but males still spent 49 to 84% more time outsi<strong>de</strong> compared to females. This<br />

difference in time spent outsi<strong>de</strong> may create sex differences in predation risk. ln<strong>de</strong>ed, if being<br />

outsi<strong>de</strong> increases probabil ity of being d<strong>et</strong>ected and/or killed by a predator (Lima & Dili 1990,<br />

Blumstein 1998), then males were exposed to higher predation risk than females. We found<br />

that an increase in snow pen<strong>et</strong>rability had a more negative effect on the time spent outsi<strong>de</strong> by<br />

males than by females. As said before, predation risk appears to be linked to snow conditions


77<br />

in our popu<strong>la</strong>tion (chap. 3). Males may then lower expo<strong>sur</strong>e to predation by re<strong>du</strong>cing the time<br />

spent outsi<strong>de</strong> of the <strong>de</strong>n wh en snow pen<strong>et</strong>rability, and hence predation risk, is high.<br />

Male and female porcupines showed differences in their patterns of activity and this<br />

may reflect the different constraints that they are faced with. Females being of smaller size<br />

appear to minimize the time spent outsi<strong>de</strong> because of thennal constraints while males seem<br />

more constrained by predation risk. Our study therefore illustrates that behaviour of<br />

generalist herbivores <strong>du</strong> ring winter may be constrained not only by thennal conditions, but<br />

also by constraints on food acquisition and predation risk. We also <strong>de</strong>monstrate that<br />

micro<strong>climat</strong>es vary greatly from one microhabitat to another and that porcupines appear to<br />

use microhabitats to both re<strong>du</strong>ce energy expenditure while resting and maximize energy<br />

intake while feeding.<br />

4.6. Complément d'information<br />

L'un <strong>de</strong>s objectifs <strong>de</strong> ce doctorat était d' examiner si le patron d ' activité <strong>de</strong>s animaux <strong>et</strong><br />

leur utilisation <strong>de</strong> 1 'habitat avaient un impact <strong>sur</strong> leur <strong>sur</strong>vie. Pour ce<strong>la</strong>, nous avons calculé les<br />

valeurs moyennes d'utilisation <strong>de</strong> <strong>l'habitat</strong> pour chaque indi vi<strong>du</strong> <strong>et</strong> avons utilisé ces va leurs<br />

indivi<strong>du</strong>elles pour tenter d'expliquer <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s animaux au cours <strong>de</strong> 1 'hiver.<br />

Indicateurs indivi<strong>du</strong>els d'utilisation <strong>de</strong> <strong>l'habitat</strong><br />

D ' abord, nous avons calculé pour chaque indivi<strong>du</strong> le temps moyen passé <strong>de</strong>hors en 24 h,<br />

<strong>la</strong> <strong>du</strong>rée moyenne <strong>de</strong>s sOlties, le nombre moyen <strong>de</strong> sOlties en 24 h, l'indice <strong>de</strong> nocturnalité<br />

moyen (Tableau 4.4) au mois <strong>de</strong> février 2004 (n = Il indivi<strong>du</strong>s) <strong>et</strong> au mois <strong>de</strong> février 2005 (n<br />

= 6 indivi<strong>du</strong>s). Ensuite, nous avons calculé les pourcentages moyens <strong>de</strong> fois où chaque<br />

indivi<strong>du</strong> était observé: en train <strong>de</strong> s'alimenter, en haut d'un arbre, en milieu ouvert (Tableau<br />

4.5) au mois <strong>de</strong> février 2004 (n = 21 indivi<strong>du</strong>s) <strong>et</strong> au mois <strong>de</strong> février 2005 (n = 5 indivi<strong>du</strong>s).<br />

Nous avons calculé les moyennes pour le mois <strong>de</strong> février car c'est un mois où nous avions<br />

<strong>de</strong>s données <strong>sur</strong> tout le mois pour <strong>la</strong> plupart <strong>de</strong>s indivi<strong>du</strong>s (<strong>de</strong>ux indivi<strong>du</strong>s sont morts au cours<br />

<strong>du</strong> mois, respectivement le 10 <strong>et</strong> le 27 février).<br />

Ensuite, nous avons testé si les indivi<strong>du</strong>s différaient dans leur patron d'activité <strong>et</strong><br />

utilisation <strong>de</strong> <strong>l'habitat</strong> (Tableau 4.4, Tableau 4.5). Pour ça, nous avons utilisé <strong>de</strong>s modèles<br />

linéaires généralisés dans SAS version 9.l. (SAS 2002) avec l'i<strong>de</strong>ntité <strong>de</strong>s animaux en


78<br />

vari able explicati ve <strong>et</strong> les variables décrivant le patron d'activité <strong>et</strong> l' utilisation <strong>de</strong> <strong>l'habitat</strong><br />

(e.g. temps <strong>de</strong>hors, occurrence d'un animal en milieu ouvert) comme variabl es dépendantes<br />

(dans <strong>de</strong>s analyses séparées). Finalement, nous avons utilisé les variables où les animaux<br />

présentaient <strong>de</strong>s différences indivi<strong>du</strong>elles significatives comme variables expliquant <strong>la</strong> <strong>sur</strong>vie,<br />

en se servant <strong>de</strong>s moyennes indivi<strong>du</strong>elles dans les analyses <strong>de</strong> <strong>sur</strong>vie.<br />

Tableau 4.4 : Temps moyen passé <strong>de</strong>hors en 24 h (h), <strong>du</strong>rée moyenne <strong>de</strong>s sorties (mi n),<br />

nombre moyen <strong>de</strong> sorties en 24 h <strong>et</strong> indice <strong>de</strong> nocturnalité moyen (0 : activité totalement<br />

diurne, 2 : activité totalement nocturne) pour les porcs-épies d'Amérique sui vis en février<br />

2004 <strong>et</strong> février 2005 au Parc National <strong>du</strong> Bic, Québec, Canada. Les seuils <strong>de</strong> signifi cation<br />

pour les di fférences entre indivi<strong>du</strong>s dans l' utilisation <strong>de</strong> l' habitat sont indiqués par<br />

* (p


79<br />

Tableau 4.5 : Pourcentage d'observations où l'animal est en train <strong>de</strong> s'alimenter (%), où<br />

l'animal est au somm<strong>et</strong> d' un arbre (%), où l'animal est en milieu ouvert (%) lorsqu ' il se<br />

trouve à l'extérieur <strong>de</strong> sa tanière, <strong>et</strong> temps <strong>de</strong> <strong>sur</strong>vie (jours) à paltir <strong>du</strong> 1 cr janvier pour les<br />

porcs-épies d'Amérique suivis en février 2004 <strong>et</strong> février 2005 au Parc National <strong>du</strong> Bic,<br />

Québec, Canada. Les différences entre indivi<strong>du</strong>s dans <strong>l'utilisation</strong> <strong>de</strong> 1 'habitat n'étaient pas<br />

statistiquement significatives<br />

Alimentation Somm<strong>et</strong> d' arbre Milieu ouvelt Survie<br />

Février 2004<br />

A 37.5 12.5 12.5 106t<br />

B 44.4 66.7 0.0 106t<br />

C 40.0 0.0 0.0 106t<br />

D 33.3 66.7 0.0 106t<br />

E 100.0 50.0 0.0 106t<br />

F 0.0 0.0 0.0 83<br />

G 0.0 100.0 0.0 82<br />

H 66.7 50.0 0.0 106t<br />

100.0 50.0 0.0 106 "1<br />

J 75 .0 37.5 12.5 103<br />

K 0.0 100.0 0.0 106 "1<br />

0 0.0 100.0 0.0 71<br />

P 0.0 100.0 0.0 76<br />

Q 50.0 50.0 0.0 69<br />

R 50.0 75 .0 0.0 106"1<br />

S 100.0 100.0 0.0 106t<br />

T 0.0 100.0 0.0 40<br />

U 0.0 66.7 0.0 106"1<br />

V 33.3 66.7 0.0 106t<br />

w 100.0 100.0 0.0 106t<br />

X 50.0 50.0 0.0 106t<br />

Fév rier 2005<br />

A 85.7 100.0 42.9 57<br />

B 100.0 100.0 0.0 73<br />

C 100.0 100.0 0.0 62<br />

L 10.0 90.0 30.0 77t<br />

M 40.0 80.0 60.0 68<br />

N ND ND ND 77t<br />

t Temps <strong>de</strong> <strong>sur</strong>vie cen<strong>sur</strong>é (i.e. l'animal était encore vivant à <strong>la</strong> fin <strong>de</strong> <strong>la</strong> pério<strong>de</strong> <strong>de</strong> suivi)


80<br />

Survie<br />

Nous avons calcul é le temps <strong>de</strong> <strong>sur</strong>vie <strong>de</strong>s animaux comme le temps entre le 1 cr janvier <strong>et</strong><br />

<strong>la</strong> mort (temps <strong>de</strong> <strong>sur</strong>v ie exact) ou entre le 1 cr j anvier <strong>et</strong> <strong>la</strong> fin <strong>de</strong> <strong>la</strong> pério<strong>de</strong> d 'étu<strong>de</strong> (15 avril<br />

en 2004, 18 mars en 2005, temps <strong>de</strong> <strong>sur</strong>vie cen<strong>sur</strong>é). E n 2004, nous connaissions <strong>la</strong> date <strong>de</strong><br />

mort pour sept <strong>de</strong>s 2 1 indivi<strong>du</strong>s sui vis <strong>et</strong> en 2005 pour quatre <strong>de</strong>s six indivi<strong>du</strong>s sui vis (i.e. les<br />

autres indi vi<strong>du</strong>s ont <strong>sur</strong>vécu). Quand nous trouvions un animal mort nous déterminions <strong>la</strong><br />

cause <strong>de</strong> mortalité comme inanition (animal non blessé <strong>et</strong> maigre), mort par acci<strong>de</strong>nt routier,<br />

mort d ' une chute d 'arbre (blessé <strong>et</strong> trouvé sous un arbre), mort par prédati on (traces <strong>de</strong> sang,<br />

restes <strong>de</strong> peau, intestins ou estomac avec ou sans traces <strong>de</strong> prédateurs) ou mort non naturelle<br />

(mort à l'anesthésie ou pen<strong>du</strong> par son collier dans un arbre). Sur les Il animaux morts<br />

pendant <strong>la</strong> péri o<strong>de</strong> d 'étu<strong>de</strong>, tro is sont morts par inanition, 0 par acci<strong>de</strong>nt routier, un par chute<br />

d'arbre, six par prédation <strong>et</strong> un <strong>de</strong> mOl1 non naturell e.<br />

Nous avons analysé <strong>la</strong> <strong>sur</strong>vie en utilisant le modèle <strong>de</strong> régression à eff<strong>et</strong> proportionnel <strong>de</strong><br />

Cox (1972). Dans ce modèle <strong>la</strong> fonction <strong>de</strong> <strong>sur</strong>v ie cumu<strong>la</strong>ti ve S<strong>et</strong>), qui définit <strong>la</strong> probabilité<br />

<strong>de</strong> <strong>sur</strong>vivre plus longtemps que le temps t (ici en j ours), est exprimée comme foncti on <strong>du</strong><br />

ri sque, qui est <strong>la</strong> dérivée <strong>de</strong> <strong>la</strong> fo nction <strong>de</strong> <strong>sur</strong>vie au cours <strong>du</strong> temps (i.e. <strong>la</strong> probabilité <strong>de</strong> mort<br />

instantanée ).<br />

h(t) = dS(t)/dt (5)<br />

Le modèle <strong>de</strong> régression à eff<strong>et</strong> p roportionnel est:<br />

(6)<br />

o ù ho(t) est <strong>la</strong> foncti on <strong>de</strong> ri sque <strong>de</strong> base, ~ i sont les coefficients <strong>de</strong> régression, <strong>et</strong> X i sont<br />

les vari ables explicati ves. Chaque coeffi cient <strong>de</strong> régression est interprété comme pour une<br />

régression logistique c<strong>la</strong>ssique: une augmentation d ' une unité dans <strong>la</strong> variable explicati ve<br />

entraîne une augmentati on <strong>de</strong> e Pi dans le rappOl1 <strong>de</strong> risque (hazard ratio). Un rapport <strong>de</strong><br />

ri sque > 1 indique une augmentation <strong>de</strong> <strong>la</strong> probabilité <strong>de</strong> mort instantanée quand <strong>la</strong> valeur <strong>de</strong><br />

<strong>la</strong> variable explicati ve augmente. Un rapport <strong>de</strong> ri sque


81<br />

associées avec le temps <strong>de</strong> <strong>sur</strong>vie (procé<strong>du</strong>re PHREG). On ne trouve pas d'eff<strong>et</strong> <strong>du</strong> temps<br />

passé <strong>de</strong>hors en 24 h CX 2 , = 0.59, p = 0.443), <strong>de</strong> <strong>la</strong> <strong>du</strong>rée <strong>de</strong>s sOlties cl, = 1.52, p = 0.217) ou<br />

<strong>de</strong> l' indice <strong>de</strong> nocturnalité cl, = 0.90, p = 0.343) <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie. Par contre, on trouve que le<br />

nombre <strong>de</strong> sOlties par 24 h <strong>influence</strong> <strong>la</strong> <strong>sur</strong>vie <strong>de</strong> façon très marquée <strong>et</strong> que c<strong>et</strong> eff<strong>et</strong> est<br />

presque significatif au seuil 0.05. En eff<strong>et</strong>, l'examen <strong>du</strong> rapport <strong>de</strong> risque montre que sottir<br />

une fois <strong>de</strong> plus chaque jour multiplie par sept <strong>la</strong> probabilité <strong>de</strong> mort instantanée (l, = 3.80,<br />

p = 0.051 , hazard ratio = 8.58).<br />

La principale cause <strong>de</strong> mortalité <strong>de</strong>s a<strong>du</strong>ltes au cours <strong>de</strong> l' hiver est <strong>la</strong> prédation <strong>et</strong> ce<br />

résultat suggère que <strong>la</strong> probabilité <strong>de</strong> prédation augmente quand les animaux augmentent le<br />

nombre <strong>de</strong> sorties par 24 h. Les porcs-épies passent plus <strong>de</strong> temps au sol lorsqu' ils font<br />

plusieurs sotties dans une journée au lieu d' une <strong>et</strong> sont probablement plus facilement<br />

détectables pour un prédateur lorsqu' ils marchent dans <strong>la</strong> neige que lorsqu' ils se trouvent au<br />

somm<strong>et</strong> d'un arbre (observations personnelles). Une augmentation <strong>du</strong> nombre <strong>de</strong> sorties<br />

moyen par 24 h a un eff<strong>et</strong> négatif très important <strong>sur</strong> <strong>la</strong> probabilité <strong>de</strong> <strong>sur</strong>vie <strong>et</strong> c'est sans<br />

doute pourquoi les animaux augmentent le nombre <strong>de</strong> sotties par 24 h quand le stress<br />

thermique augmente (i .e. quand <strong>la</strong> température diminue) mais pas quand le risque <strong>de</strong><br />

prédation augmente (i.e. quand l'enfoncement dans <strong>la</strong> neige augmente). On n'observe pas <strong>de</strong><br />

diminution <strong>du</strong> nombre <strong>de</strong> sorties quand le risque <strong>de</strong> prédation augmente, sans doute parce que<br />

les animaux doivent sortir chaque jour au moins une foi s pour s'alimenter.


Chapitre 5<br />

Are juvenile porcupines maximizing <strong>sur</strong>vival<br />

by selecting their micro habitat?<br />

Mabille G. , Berteaux D.<br />

(à soum<strong>et</strong>tre, Écoscience)<br />

Les patrons d'activité <strong>de</strong>s porcs-épics a<strong>du</strong>ltes pendant l' hi ver semblent varier à <strong>la</strong> foi s en<br />

fonction <strong>de</strong>s conditions <strong>climat</strong>iques <strong>et</strong> <strong>du</strong> risque <strong>de</strong> prédation (chap. 4). Nous examinons ici<br />

l' utilisation <strong>de</strong> l 'habitat par les porcs-épics juvéniles pendant l'été afin <strong>de</strong> déterminer si les<br />

animaux utilisent leur habitat <strong>de</strong> manière à minimiser l'exposition au froid <strong>et</strong>/ou à <strong>la</strong><br />

prédation. Comme déjà discuté, le risque <strong>de</strong> prédation était élevé pendant notre étu<strong>de</strong> (chap.<br />

3) <strong>et</strong> les juvéniles sont palticuliènnent vulnérables à <strong>la</strong> prédation à cause <strong>de</strong> leur mobilité<br />

restreinte <strong>et</strong> <strong>de</strong> leur manque d'expérience. Par ai lleurs, les juvéniles ont un système <strong>de</strong><br />

thermorégu<strong>la</strong>tion immature <strong>et</strong> sont sensibles à l'hypothennie. Comme pour les porcs-épics<br />

a<strong>du</strong>ltes en hi ver, les contraintes <strong>du</strong>es à l'environnement thermique <strong>et</strong> à <strong>la</strong> prédation sont donc<br />

substantielles pour les juvéniles au cours <strong>du</strong> premier été. L'utilisation <strong>de</strong> couvert végétal est<br />

réputée fournir une certaine protection contre <strong>la</strong> prédation. Cependant, <strong>la</strong> température<br />

ambiante est plus basse dans les habitats avec plus <strong>de</strong> couvelt. On montre que les juvéniles<br />

utilisent <strong>de</strong>s microhabitats offrant un fort couvelt protecteur, <strong>et</strong> que les juvéniles utili sant les<br />

habitats les plus couverts <strong>sur</strong>vivent le mieux. Ici encore, on interprète ces différences dans <strong>la</strong><br />

<strong>sur</strong>vie comme <strong>de</strong>s différences dans l'exposition à <strong>la</strong> prédation, principale cause <strong>de</strong> mOitalité<br />

<strong>de</strong>s juvéni les. L'utilisation <strong>du</strong> couvert à l'extérieur <strong>de</strong>s tanières n'est pas dépendante <strong>de</strong>s<br />

conditions <strong>de</strong> température. Néanmoins, <strong>l'utilisation</strong> <strong>de</strong>s tanières augmente quand il fait froid<br />

<strong>et</strong> quand il pleut. Comme en hiver, les tanières semblent donc offrir un refuge à <strong>la</strong> foi s contre<br />

les prédateurs <strong>et</strong> contre les conditions thermiques défavorables. L'utilisation <strong>de</strong> <strong>l'habitat</strong><br />

pelm<strong>et</strong> donc <strong>de</strong> mo<strong>du</strong>ler l'exposition au froid <strong>et</strong> à <strong>la</strong> prédation, avec <strong>de</strong>s conséquences<br />

positives <strong>de</strong> l'évitement <strong>de</strong> <strong>la</strong> prédation pour <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s indivi<strong>du</strong>s.


83<br />

5.1. Abstract<br />

ln many mammals, juveniles are highly vulnerable to predators because of their low<br />

mobility and small body size. Use of <strong>de</strong>nse ground co ver by juveniles has been assumed to<br />

lower predati on risk. On the other hand, use of coyer <strong>du</strong>ring sunny summer days <strong>de</strong>creases<br />

access to radiative heat gain and may be d<strong>et</strong>rimental fo r juveniles that are sensitive to<br />

hypoth ennia. Studies re<strong>la</strong>ting use of coyer to <strong>sur</strong>vival of juveniles remain infrequent and<br />

have been essentiall y performed on ungul ates. We mea<strong>sur</strong>ed habitat selecti on and monitored<br />

<strong>sur</strong>v ival of 14 North American juvenile porcupines. We tested 1) wh<strong>et</strong>her juveniles selected<br />

for coyer at the microhabitat scale (within 1 m of the animal) and at the local scale (within 15<br />

m), 2) wh<strong>et</strong>her use of coyer <strong>de</strong>pen<strong>de</strong>d on m<strong>et</strong>eorological conditions, and 3) wh<strong>et</strong>her use of<br />

coyer <strong>influence</strong>d <strong>sur</strong>vival. We also examined how sex, body mass, mobility of the juvenile,<br />

and di stance b<strong>et</strong>ween juvenile and mother affected <strong>sur</strong>viva l. Our results indicate th at j uvenile<br />

porcupines selected microhabitats providing high protective coyer (microhabitat scale) within<br />

areas showing low herb co ver (l ocal scale). Use of coyer <strong>de</strong>pen<strong>de</strong>d on weather, with juveniles<br />

using <strong>de</strong>ns to avoid low air temperature and rain. Ten out of 14 juveniles di ed before the end<br />

of the summer and nine out of 10 <strong>de</strong>aths were <strong>du</strong>e to predati on. Habitat use (at both the<br />

microhabitat and local scales) <strong>influence</strong>d <strong>sur</strong>vival. At the microhabitat scale, use of protective<br />

coyer and use of trees enhanced <strong>sur</strong>vival compared to use of ground locations. At the local<br />

scale, use of sites with high shrub coyer enhanced <strong>sur</strong>vival. We fo und no effect of sex, body<br />

mass, mobility, and di stance to the mother on <strong>sur</strong>viva l. These results supp0l1 the hypothesis<br />

that predation was the main fa ctor limiting <strong>sur</strong>vival of juveniles in our popu<strong>la</strong>ti on and that<br />

predati on ri sk was mo<strong>du</strong><strong>la</strong>ted by habitat use of juveniles.<br />

Key-words : <strong>climat</strong>e, conditionallogistic regression, Er<strong>et</strong>hizon dorsatum, hi<strong>de</strong>r-fo llower<br />

behaviour, Québec, <strong>sur</strong>vival analysis<br />

5.2. Intro<strong>du</strong>ction<br />

ln <strong>la</strong>rge herbivores, juvenile <strong>sur</strong>vival is more sensitive to environmental variati on than is<br />

a<strong>du</strong>lt <strong>sur</strong>vival (Gaill ard <strong>et</strong> al. 2000, Eberhardt 2002, Gail<strong>la</strong>rd & Yoccoz 2003), and has been<br />

reported to p<strong>la</strong>y a fundamental role in driving the dynami cs of several popu<strong>la</strong>tions (Coul son<br />

<strong>et</strong> al. 1997, Gail<strong>la</strong>rd <strong>et</strong> al. 2000). Therefore, i<strong>de</strong>ntifying the causes of vari ati on in earl y


84<br />

<strong>sur</strong>vival of <strong>la</strong>rge herbivores constitutes an important issue in evolutionary ecology,<br />

popu<strong>la</strong>tion management, and conservation (Linnell <strong>et</strong> al. 1995, Gail<strong>la</strong>rd <strong>et</strong> al. 1998, Gail<strong>la</strong>rd<br />

<strong>et</strong> al. 2000 for reviews). One reason why juvenile <strong>sur</strong>vival is highly variable may have to do<br />

with predation. Juveniles are highly vulnerable to predation because of their small size, low<br />

mobility, and <strong>la</strong>ck of experience (Molinari-Jobin <strong>et</strong> al. 2004, Hoog<strong>la</strong>nd <strong>et</strong> al. 2006). Newborn<br />

mammals are often categorised as followers or hi<strong>de</strong>rs <strong>de</strong>pending on their anti-predatory<br />

strategy (Lent 1974). In species where juveniles follow their mother, mothers minimize<br />

predation risk to their offspring by using habitats with fewer predators or greater<br />

opportunities to eva<strong>de</strong> predation (Bleich <strong>et</strong> al. 1997, Rachlow & Bowyer 1998). For species<br />

relying on a hiding behaviour, characteristics of the hiding site may be important in<br />

d<strong>et</strong>ermining protection from predators. For example, it is weil documented that ungu<strong>la</strong>te<br />

fawns select hiding sites providing <strong>la</strong>rge amounts of cover (see review in Mysterud & Ostbye<br />

1999), and presence of cover is believed to lower the risk of predation, either through<br />

re<strong>du</strong>ction of the d<strong>et</strong>ection probability, or through obstruction from attacks. However, even if<br />

it is generally assumed that such habitat selection has important sUl"vival consequences,<br />

studies re<strong>la</strong>ting use of cover to <strong>sur</strong>vival of juveniles are rare (but see Linnell <strong>et</strong> al. 1995 ,<br />

Aanes & An<strong>de</strong>rsen 1996, Canon & Bryant 1997, Fanner <strong>et</strong> al. 2006).<br />

On the other hand, presence of cover <strong>de</strong>creases expo<strong>sur</strong>e to so<strong>la</strong>r radiation (Demarchi &<br />

Bunnell 1993) and some <strong>la</strong>rge mammals have been shown to use cover <strong>du</strong>ring summer to<br />

re<strong>du</strong>ce heat stress (Demarchi & Bunnell 1995, Dussault <strong>et</strong> al. 2004). For neonates that are<br />

sensitive to hypothennia (Doo<strong>la</strong>n & Macdonald 1997, An<strong>de</strong>rsen & Linnell 1998, Gilbert &<br />

Rae<strong>de</strong>ke 2004, Oison <strong>et</strong> al. 2005), use of cover <strong>du</strong>ring sunny summer days may be<br />

d<strong>et</strong>rimental because it may <strong>de</strong>crease access to radiative heat gain (Bowyer <strong>et</strong> al. 1998). ln<br />

particu<strong>la</strong>r, risk ofhypothennia increases with <strong>de</strong>creasing body size because animais with a<br />

small body size have a high <strong>sur</strong>face area to volume ratio, which means that they have a high<br />

rate of heat loss to the environment (Scho<strong>la</strong>n<strong>de</strong>r <strong>et</strong> al. 1950b, Kreith & B<strong>la</strong>ck 1980).<br />

Although ungu<strong>la</strong>te hiding fawns select for cover, with possible positive effects on <strong>sur</strong>vival, it<br />

is therefore unclear wh<strong>et</strong>her selection for cover should be beneficial to hiding neonates of<br />

smaller body size, that are re<strong>la</strong>tively more susceptible to hypothennia.<br />

ln this study, we used North American porcupines (Er<strong>et</strong>hizon dorsatum), a medium-sized<br />

mammal that relies on a hiding anti-predatory strategy (Roze 1989), to investigate how the


85<br />

use of coyer <strong>influence</strong>d summer <strong>sur</strong>vival of juveniles. Juvenile porcupines weigh about 400g<br />

at bilth and are potentially exposed to both predation and hypothermia. Potential predators of<br />

juvenile porcupines inc\u<strong>de</strong> the great horned owl (Bubo virginianus), the lynx (Lynx<br />

cana<strong>de</strong>nsis), the bobcat (Lynx rufils), the coyote (Canis <strong>la</strong>trans), the wolf (Canis lupus), the<br />

wolverine (Gulo luscus), the mountain lion (Fe lis concolor) and the fisher (Martes pennanti)<br />

(Roze 1989). Fishers, coyotes, and great horned owls were ail regu<strong>la</strong>rly observed in our study<br />

area, therefore exposing juveniles to a significant predation risk. Y<strong>et</strong>, juvenile porcupines are<br />

born in mid-May when air tempe rature in our study site may still be as low as O°e. We thus<br />

expected juvenile porcupines to face a clear tra<strong>de</strong>-off b<strong>et</strong>ween using coyer to <strong>de</strong>crease<br />

predation risk and avoiding co ver to increase so<strong>la</strong>r heat gain. ln such a situation, two<br />

scenarios can be proposed. First, if predation is the main factor limiting <strong>sur</strong>vival in our<br />

popu<strong>la</strong>tion we would expect juveniles to select for coyer, and juveniles using the more<br />

protective coyer to <strong>sur</strong>vive b<strong>et</strong>ter. Second, if hypothermia is the main limiting factor, we<br />

would expect juveniles to select areas offering the best thennal environment (i .e. in the<br />

daytime, open areas), and juveniles using the more open areas to <strong>sur</strong>vive b<strong>et</strong>ter. We expected<br />

predation to be the main factor limiting <strong>sur</strong>vival in our popu<strong>la</strong>tion because predation rates on<br />

porcupines of ail age c<strong>la</strong>sses were substantial <strong>du</strong>ring the study period, leading to a <strong>la</strong>rge<br />

<strong>de</strong>cline in the size of our popu<strong>la</strong>tion (chap. 3).<br />

The main goal of our study was to d<strong>et</strong>ermine wh<strong>et</strong>her juvenile porcupines selected for<br />

coyer (consi<strong>de</strong>red at two spatial scales) to avoid predators, and wh<strong>et</strong>her use of cover at one or<br />

the other scale enhanced <strong>sur</strong>vival. We tested the following predictions:<br />

1) selection for cover occurs at both spatial scales because juvenile porcupines are<br />

highly vulnerable to predation (Sweitzer & Berger 1992).<br />

2) juveniles are more likely to use open areas un<strong>de</strong>r cold conditions. Even though we<br />

predicted avoidance of predators to be the main factor driving habitat selection by juveniles,<br />

we expected risk of hypothermia to be high on cold days and therefore to <strong>influence</strong> habitat<br />

use on those days. Juvenile porcupines are poorly insu<strong>la</strong>ted (Haim <strong>et</strong> al. 1992) and may be<br />

faced with re<strong>la</strong>tively low tempe ratures <strong>du</strong>ring their first weeks of life. We therefore expected<br />

them to tra<strong>de</strong> off protection from predators with access to radiative heat gain by using open<br />

habitats wh en sun was shining (i.e. <strong>du</strong>ring the daytime) but air temperature was low.


86<br />

3) indivi<strong>du</strong>al differences exist in the use of coyer and trans<strong>la</strong>te into variations in<br />

<strong>sur</strong>vival probability. As we predicted that predation is the main factor limiting <strong>sur</strong>vival and<br />

driving habitat use by juvenile porcupines, we expected indivi<strong>du</strong>als using re<strong>la</strong>tively covered<br />

habitats to <strong>sur</strong>vive b<strong>et</strong>ter than those using more open habitats.<br />

ln addition, because factors other than habitat use are known to affect <strong>sur</strong>vival either<br />

directly or through an increased vulnerability to predation, we tested wh <strong>et</strong>her sex (Webb<br />

1993, Aanes & An<strong>de</strong>rsen 1996), body mass (Keech <strong>et</strong> al. 2000, Côté & Festa-Bianch<strong>et</strong> 2001 ),<br />

mobility (Daly <strong>et</strong> aL 1990, NOlTdahl & Korpimaki 1998, Yo<strong>de</strong>r <strong>et</strong> aL 2004) and distance<br />

b<strong>et</strong>ween a juvenile and its mother (Mathisen <strong>et</strong> al. 2003) <strong>influence</strong>d summer <strong>sur</strong>vival of<br />

juveniles.<br />

5.3. Material and m<strong>et</strong>hods<br />

Study area and study popu<strong>la</strong>tion<br />

We worked from 1 May to 15 August for two consecutive years (2003-2004) in the Parc<br />

National <strong>du</strong> Bic (48°20'N, 68°46'W, elevation 0-150m), Québec, Canada. The study area is<br />

characterized by a rugged topography, abundance of natural rock <strong>de</strong>ns, and a mixed-boreal<br />

forest dominated (in or<strong>de</strong>r of importance) by quaking aspen (Populus tremuloi<strong>de</strong>s), eastern<br />

white cedar (Thuja occi<strong>de</strong>ntalis), white spruce (Picea g<strong>la</strong>uca) and balsam fir (Abies<br />

balsamea). The area is fragmented by abandoned and cultivated fields where porcupines feed<br />

in summer and where they are easily captured. We worked on a popu<strong>la</strong>tion of indivi<strong>du</strong>allymarked<br />

porcupines monitored each summer since 2000. We fitted a<strong>du</strong>lt females with radio<br />

transmitters (Lotek SMRC-5RB VHF transmitter, Lotek Wireless Inc., Newmark<strong>et</strong>, Ontario)<br />

at the beginning of spring and searched fOl· juveniles around <strong>la</strong>ctating females (chap. 2). We<br />

performed searches in 2003 and 2004 and totalized >240 hours of search. We found 14<br />

juveniles (2003: 10; 2004: 4), fitted them with Holohil VHF transmitters (mo<strong>de</strong>l RI-2DM 7.5<br />

g, Holohil Systems Ud., Carp, Ontario) and subsequently followed their habitat use until 15<br />

August. We locatedjuveniles five days a week by following the signal to the animal (homing,<br />

see Morin <strong>et</strong> aL 2005 for d<strong>et</strong>ails), and recor<strong>de</strong>d their location using UTM coordinates (handheld<br />

Global Positioning System). When approaching juveniles, we carefully listened for any<br />

changes in signal regu<strong>la</strong>rity and for noises in the woods to d<strong>et</strong>ermine wh<strong>et</strong>her the approached


87<br />

juvenile was moving to escape from us. Juveniles usually didn't move when approached but<br />

we removed al! observations of disturbed or moving juveniles from analyses (n = 8<br />

observations). Our telem<strong>et</strong>ry effort was concentrated in the daytime (90% of locations were<br />

obtained b<strong>et</strong>ween 9 am and 5 pm). We paid special attention to distribute sampling along the<br />

diurnal cycle evenly across indivi<strong>du</strong>als.<br />

Study <strong>de</strong>sign<br />

Each time we located an animal, we characterized the habitat where the animal was<br />

hiding and at a paired random location. For both the animal and the random location, we<br />

ma<strong>de</strong> one s<strong>et</strong> of mea<strong>sur</strong>es at the microhabitat scale (within 1 m of the animal or random<br />

location) and one at the local scale (within 15 m of the animal or random location). We first<br />

d<strong>et</strong>ennined wh<strong>et</strong>her selection for coyer occurred at one or both scales to verify our prediction<br />

1. Because the number of observations was low for some animaIs (mean ± SE: 21 ± 4<br />

observations, range: 2- 47, Table 5.3), we could not d<strong>et</strong>ermine habitat selection for each<br />

indivi<strong>du</strong>al. Rather, we d<strong>et</strong>ermined habitat selection for the popu<strong>la</strong>tion, taking into account the<br />

pseudo-replication in our analyses (following Fortin <strong>et</strong> al. 2005, see statistical analyses). To<br />

verify our prediction 2, we tested wh<strong>et</strong>her the use of coyer <strong>de</strong>pen<strong>de</strong>d on m<strong>et</strong>eorological<br />

conditions using data for the popu<strong>la</strong>tion and again taking pseudo-replication into account (see<br />

statistical analyses). Finally, we used mean coyer used by indivi<strong>du</strong>al juveniles (at both<br />

scales), sex, body mass on 10 June, mean daily movements, and mean distance to the mother<br />

as covariates in <strong>sur</strong>vival analyses in or<strong>de</strong>r to verify our prediction 3 and test for the effects of<br />

sex, body mass, mobility, and distance to the mother on <strong>sur</strong>vival time. Below we d<strong>et</strong>ail how<br />

we implemented this study <strong>de</strong>sign.<br />

Habitat selection<br />

When we located a juvenile, we first noted wh<strong>et</strong>her it was in a <strong>de</strong>n (usually rock <strong>de</strong>ns),<br />

on the ground, or in a tree (at least 30 cm above ground). ]f the juvenile was in a tree, we<br />

recor<strong>de</strong>d the species of the tree and mea<strong>sur</strong>ed its circumference at breast height. Then, we<br />

visually estimated «5%, 5-25%, 25-50%, 50-75%, >75%) the protective coyer (veg<strong>et</strong>ation or<br />

rock, Mysterud & Ostbye 1999) present within 1 m of the porcupine. Finally, we mea<strong>sur</strong>ed<br />

air temperature and wind speed at the animal location using a handheld thermom<strong>et</strong>erwindm<strong>et</strong>er<br />

(TF A 42.6000.06, TF A Dostmann Ltd Co., Germany). At the local scale (15 m-<br />

radius), we visually estimated «5%, 5-25%, 25-50%, 50-75%, >75%) tree, shrub (any


88<br />

woody veg<strong>et</strong>ation b<strong>et</strong>ween 50 and 150 cm tall), and herb coyer (any non-woody veg<strong>et</strong>ation)<br />

as weil as the species of the dominant tree.<br />

Finally, we sampled in the same manner a random location, located 20 m away from the<br />

animal location, in a random direction. We d<strong>et</strong>ermined the 20 rn-distance according to<br />

preliminary observations indicating that juveniles ma<strong>de</strong> daily movements generally


89<br />

indivi<strong>du</strong>al (using approximations <strong>de</strong>scribed above) and the percentage of times the dominant<br />

tree within 15 m was an aspen, fruit-bearing, <strong>de</strong>ci<strong>du</strong>ous, cedar or coni ferous tree.<br />

Second, we tested wh<strong>et</strong>her juveniles differed in their use of coyer (at both scales) as weil<br />

as in th eir use of <strong>de</strong>n, ground and tree locations. F inally, when j uveniles showed significant<br />

indivi<strong>du</strong>al di fferences in use for a given variable, we utilized this variable of habi tat use in<br />

<strong>sur</strong>vival analyses.<br />

Sex, body mass, mobility and distance ta the mother<br />

We sexedjuveniles by palpating the genital area (Dodge 1982) and weighted them once a<br />

week from the date they were found to 15 August. We used body mass as a proxy fo r age of<br />

the indi vi<strong>du</strong>als as we expected earli er born indivi<strong>du</strong>als to be heavier than <strong>la</strong>ter born<br />

indi vi<strong>du</strong>als. We chose body mass on 10 June because ail j uveniles were born on or before<br />

that date (range of birth date : 6 May-I 0 June), and because we mea<strong>sur</strong>ed body mass fo r 10 of<br />

14 j uveniles on that date. For the remaining four indivi<strong>du</strong>als, we estimated body mass on 10<br />

June by adding or removing 30 g/day (average dail y weight gain in June calcu<strong>la</strong>ted over ail<br />

indivi<strong>du</strong>als) from the body mass mea<strong>sur</strong>ed on the day closest to 10 June (27 May, 01 June, 0 1<br />

July, 06 July for these four juveniles). We characterized the mobility ofjuveniles using the<br />

mean di stance the y moved in a day. We calcul ated thi s distance by di viding the total di stance<br />

(straight line) moved from one locati on to the next by the number of days e<strong>la</strong>psed b<strong>et</strong>ween<br />

successive locations. Finall y, when we kn ew the i<strong>de</strong>ntity of the mother (n = Il ), we located it<br />

twice a week, just before or after locating its juvenile, in or<strong>de</strong>r to calcu<strong>la</strong>te the di stance<br />

b<strong>et</strong>ween mother and juvenile (m).<br />

Survival<br />

We calcu<strong>la</strong>ted <strong>sur</strong>vival time as the time from birth to <strong>de</strong>ath (exact time) or to the end of<br />

the study period (1 5 August, censored time). We estimated date ofbirth from weight on first<br />

capture consi<strong>de</strong>ring a mean weight gain of30 g /day. Over 14 juvenil es, we knew the exact<br />

<strong>de</strong>ath time fo r 10 indi vi<strong>du</strong>als and <strong>de</strong>ath time was censored fo r the remaining fo ur indi vi<strong>du</strong>als<br />

(i .e. these indi vi<strong>du</strong>als were still ali ve at the end of the study peri od). W hen we fo und a <strong>de</strong>ad<br />

j uvenile, we d<strong>et</strong>ermined cause of mortality as starvation (not injured, intact carcass), predator<br />

killed (traces of blood on radio co l<strong>la</strong>r or wounds on the carcass), or unknown.


90<br />

Statistical analyses<br />

Habitat selecti on<br />

We built mo<strong>de</strong>ls of habitat selection by comparing used and random locati ons to obtain<br />

Resource Selection Functions (RSF, Manly <strong>et</strong> al. 2002). RSFs are equati ons that predi ct the<br />

re<strong>la</strong>ti ve probabil ity of use, taking the form:<br />

(1)<br />

where w(x) is the RSF value, e is the base of the naturallogarithm, ~ i are the estimated<br />

coeffi cients, and Xi are habitat variables. We used matched case-control or conditional<br />

logisti c regression (Hosmer & Lemeshow 1989) to estimate coeffi cients. Each pair of usedrandom<br />

points was <strong>de</strong>fined as a stratum in analyses so that conditional logisti c regression<br />

compared use with avai<strong>la</strong>bility in a given pair, whi ch is parti cu<strong>la</strong>rly adapted to studies of<br />

microhabi tat and/or micro<strong>climat</strong>e selecti on (Compton <strong>et</strong> al. 2002). Because we had repeated<br />

mea<strong>sur</strong>ements of habitat use on the same indivi<strong>du</strong>als, mea<strong>sur</strong>ements were not in<strong>de</strong>pen<strong>de</strong>nt.<br />

Such corre<strong>la</strong>ti on does not <strong>influence</strong> coefficient estimates (~ values), but biases their standard<br />

errors (Nielson <strong>et</strong> al. 2002). We used a robust sandwich estimate of the covariance matrix<br />

(Lin & Wei 1989, Wei <strong>et</strong> al. 1989) to obtain robust standard en-ors of coefficients. For that<br />

we <strong>de</strong>fined ail observati ons coming fro m a given indivi<strong>du</strong>al as a cluster, pairs of used-random<br />

points as a stratum, and analysed our data using SAS software, proc PHREG, vers ion 9.1<br />

(SAS 2002) fo llowing Fortin <strong>et</strong> al. (2005). Each estimated coeffi cient is interpr<strong>et</strong>ed as usual<br />

fo r logisti c regression: a one unit increase in an exp<strong>la</strong>natory variable results in a e Pi increase<br />

in the odds ratio. For low-probability events (such as the presence of a juvenile porcupine),<br />

the odds rati o approximates the re<strong>la</strong>tive ri sk, i.e. the ratio of the probability of event x (e.g. a<br />

porcupine being present) given A to the probability of x given B (Hosmer & Lemeshow<br />

1989, Compton <strong>et</strong> al. 2002). Because we used a Cox proporti onal hazards mo<strong>de</strong>l fo r<br />

regression analyses (also used fo r <strong>sur</strong>vival analyses, see below), we show hazard rati os<br />

instead of typical odds ratios. However, interpr<strong>et</strong>ati on of hazard ratios is simi<strong>la</strong>r to<br />

in te rpr<strong>et</strong>ation of odds ratio.<br />

Effects of m<strong>et</strong>eorological conditions on the use of coyer<br />

Our data s<strong>et</strong> inclu<strong>de</strong>d repeated mea<strong>sur</strong>ements ma<strong>de</strong> on the same indivi<strong>du</strong>als at di fferent<br />

dates so we fi tted mixed effect mo<strong>de</strong>ls with porcupine i<strong>de</strong>ntity as a repeated factor. We used<br />

SAS software, version 9. 1 (SAS 2002) to analyse the effects of m<strong>et</strong>eorological covari ates on


91<br />

<strong>de</strong>n use (treated as a binary variable: insi<strong>de</strong>-outsi<strong>de</strong> <strong>de</strong>n; proc GLlMMIX) and on the<br />

percentage of protective coyer used (treated as a continuous variable: 0 to 100% of coyer;<br />

proc MIXED).<br />

lndivi<strong>du</strong>al indicators of habitat use<br />

We tested for indivi<strong>du</strong>al differences in habitat use using ail observations (n = 299 for<br />

each variable) and generallinear mo<strong>de</strong>ls in SAS software version 9.l. (SAS 2002). We used<br />

i<strong>de</strong>ntity of juveniles as the exp<strong>la</strong>natory variable in ail analyses and amount of protective<br />

coyer, amount of tree, shrub, and herb coyer (continuous variables; proc GLM), or use of a<br />

<strong>de</strong>n, ground, and tree location (binary variables; proc LOGISTlC) as <strong>de</strong>pen<strong>de</strong>nt variables.<br />

Sex, body mass, mobility, and distance to the mother<br />

We calcu<strong>la</strong>ted me an daily movements of juveniles and me an distance to the mother for<br />

May, June, July and August but used overall mean daily movements and overallmean<br />

distance to the mother as covariates in <strong>sur</strong>vival analyses.<br />

Survival<br />

We analysed juvenile <strong>sur</strong>vival using a Cox proportional hazards mo<strong>de</strong>l (Cox 1972). In<br />

the proportional hazards mo<strong>de</strong>l, the cumu<strong>la</strong>tive <strong>sur</strong>vival function S<strong>et</strong>) , which <strong>de</strong>fines the<br />

probability of <strong>sur</strong>viving longer th an time t (here expressed in days), is expressed as a hazard<br />

function, which is the <strong>de</strong>rivative of the <strong>sur</strong>vivor function over time (i .e. instantaneous<br />

probability of <strong>de</strong>ath):<br />

h(t) = dS(t)/dt (2)<br />

The proportional hazards mo<strong>de</strong>l is:<br />

h(t) = h o ( t)e[~lxl + ~ 2 X2+ .. . + ~pxp] (3)<br />

where ho(t) is the baseline hazard function, e is the base of the natural logarithm, ~ i are<br />

regression coefficients, and Xi are mo<strong>de</strong>l covariates. We wanted our covariates to <strong>de</strong>scribe the<br />

habitat use of each juvenile porcupine as well as its sex, mass on 10 June, mobility, and mean<br />

distance to the mother. We used proc PHREG in SAS software version 9.1 (SAS 2002) to<br />

examine how these different covariates were associated with <strong>sur</strong>vival time. We ran separate<br />

analyses for three combinations of response variables: 1) coyer used at the microhabitat scale:<br />

percentage of protective coyer, percent use of <strong>de</strong>n, ground, and tree locations; 2) coyer used<br />

at the local scale: percentage of tree, shrub and herb coyer in sites used; 3) sex, body mass,<br />

mobility of the juvenile, and distance to the mother.


92<br />

5.4. Results<br />

Habitat selection<br />

At the microhabitat scale, selecti on fo r <strong>de</strong>ns was obvious because juveniles were using<br />

<strong>de</strong>ns in 47% of observati ons while we never fo und <strong>de</strong>ns in the random locati ons we sampled<br />

(Fig. 5.1 a) . Juveniles also selected sites characteri zed by a hi gh protecti ve cover, low air<br />

temperature, and low wind speed (Fig. 5. l a, Table 5.1). The hazard rati os allowed us to<br />

quantify this selecti on and indicate that a 10% increase in protecti ve cover was associated<br />

with a 69% increase in selection, that a 1°C increase in temperature was associated with a<br />

2 1 % <strong>de</strong>crease in selecti on and that a 0.1 mis increase in wind speed was associated with a<br />

20% <strong>de</strong>crease in selection (Table 5.1). Wh en using a tree, juveniles selected <strong>la</strong>rge trees but<br />

did not signi ficantly use any tree species compared to aspens (Fig. 5. J b, Table 5. J).<br />

According to the hazard rati o, a 10 cm increase in the circumfe rence of the tree was<br />

associated with a 72% increase in selecti on (Table 5.1).<br />

At the local scale, juveniles selected areas with low herb cover and wi th cedar trees as<br />

dominant tree species (Fig. 5.2, Table 5.1). The hazard ratios indicate that a 10% increase in<br />

herb cover was associated with a 14% <strong>de</strong>crease in selecti on and that the presence of cedar as<br />

dominant tree species was associated with a J 36% increase in selection compared to when<br />

aspen was dominant (Table 5.1).


1<br />

93<br />

20 -<br />

18 ~<br />

a) DAvai<strong>la</strong>ble<br />

.Used<br />

16<br />

1<br />

14 "<br />

12 '<br />

10<br />

8 l<br />

6 l<br />

4 "<br />

0 +----<br />

Location in <strong>de</strong>n (/10) Protective cover (/10) Air temperature (oC) Wind (cm/s)<br />

b)<br />

o Avai <strong>la</strong>ble<br />

.Used<br />

30 1<br />

20 '<br />

1<br />

10 ,<br />

o +---L.-_<br />

,-Aspen Fruit Deci<strong>du</strong>ous Cedar<br />

---v-<br />

Tree used (%)<br />

Coniferous<br />

--'" Circumference<br />

(cm)<br />

Figure 5.1 : Characteristics of microhabitats mea<strong>sur</strong>ed within 1 m of hiding sites used by 14<br />

juvenile North American porcupines, and at random locations in Parc National <strong>du</strong> Bic,<br />

Québec, May to August, 2003-2004. Results shown are means (± SE) for the popu<strong>la</strong>tion<br />

(calcu<strong>la</strong>ted from indivi<strong>du</strong>al means). a) Proportion ofhiding sites that were in a <strong>de</strong>n (/1 0),<br />

proportion of protective cover (/1 0) around hiding sites, air temperature (oC), and wind speed<br />

(cm/s) in the microhabitat (n = 14 indivi<strong>du</strong>als and 299 observations for ail variables). b)<br />

Percentage of times the tree used was an aspen, fruit-bearing, other <strong>de</strong>ci<strong>du</strong>ous, cedar, or other<br />

coniferous tree Bars to the right show mean circumference (cm) of the tree (n = 10<br />

indivi<strong>du</strong>als and 73 observations for ail variables).


94<br />

Table 5.1 : Coefficients for the resource selection functions at the microhabitat (1 m) and<br />

local (15 m) scales for hiding sites used by 14 juvenile North American porcupines in Parc<br />

National <strong>du</strong> Bic, Québec, May to August, 2003-2004<br />

?<br />

Variable ~ value Robust X- P Hazard ratio<br />

SE<br />

Microhabitat scale<br />

Percentage cover 0.522 0.042 151.72


95<br />

80 -,<br />

70 l<br />

DAvai<strong>la</strong>ble<br />

.Used<br />

60 -1<br />

50<br />

40<br />

30 ~<br />

20 J<br />

10 J<br />

o +1--'---<br />

Tœe Shrub He~<br />

'--- ------v---- ~<br />

Mean cover (%)<br />

Aspen Fruit Deci<strong>du</strong>ous Cedar Coniferous<br />

'-- ~<br />

----v-<br />

Dominant tree (%)<br />

Figure 5.2: Characteristi cs of veg<strong>et</strong>ative co ver within 15 m ofhiding sites used by 14 juvenile North American porcupines compared<br />

to veg<strong>et</strong>ative co ver avai<strong>la</strong>ble at random locations, in Parc Nati onal <strong>du</strong> Bic, Québec, May to August, 2003-2004. From left to right:<br />

percentage of tree, shrub and herb cover present on the site, and mean percentage of times the dominant tree species was an aspen,<br />

fruit-bearing, other <strong>de</strong>ci<strong>du</strong>ous, cedar, or other coni fe rous tree (n = 14 indivi<strong>du</strong>als and 299 observations for al! vari ables). Results<br />

shown are means (± SE) for the popu <strong>la</strong>tion (calcul ated from indi vi<strong>du</strong>al means).


96<br />

<strong>de</strong>n also increased with wind intensity (Table 5.2, F (I ,284) = 5.11 , P = 0.025), and with<br />

<strong>de</strong>creasing rain intensity in the <strong>la</strong>st 12 hours (Table 5.2, F ( I,284) = 4.21, P = 0.041).<br />

Outsi<strong>de</strong> of the <strong>de</strong>n, juveniles <strong>de</strong>creased the amount of coyer used as Julian date increased<br />

(F(J ,135) = 9.79, P = 0.002) and with increasing rain intensity in the <strong>la</strong>st 12 hours (Table 5.2,<br />

F (J ,135 ) = 5.35, P = 0.022). There was no effect oftemperature (F(I , 134) = 1.23, P = 0.270) or of<br />

wind intensity (F(J ,135) = 0.20, P = 0.653) on the amount of co ver used (Table 5.2).<br />

Table 5.2 : Use of <strong>de</strong>n (% of locations in <strong>de</strong>n) and use of co ver wh en outsi<strong>de</strong> of the <strong>de</strong>n<br />

(mean % of protective coyer) as a function of m<strong>et</strong>eorological conditions for 14 juvenile North<br />

American porcupines in Parc National <strong>du</strong> Bic, Québec, May to August, 2003-2004. We<br />

consi<strong>de</strong>red wind to be present when tree leaves were agitated and rain to be present wh en at<br />

least a light rain was fa lling (see m<strong>et</strong>hods). Sample sizes (N) represent number of indivi<strong>du</strong>als<br />

and number of observations<br />

Use of <strong>de</strong>n<br />

Use ofcover<br />

Mean ± SE N Mean ± SE N<br />

Air temperature<br />

> 15°C 61 ± 10 12, 65 68 ± 7 9, 21<br />

15-19°C 54 ± 7 13 , 106 55 ± 6 12, 50<br />

20-24°C 42 ± 12 10, 105 63 ± 4 9, 63<br />

2:25 °C 27 ± Il 8, 23 70 ± 9 8, 16<br />

Wind<br />

No wind 61 ± 8 13, 112 63 ± 4 11 , 47<br />

Wind 45 ± 6 13, 187 61 ± 5 13 , 103<br />

Rain in the <strong>la</strong>st 12 h<br />

No rain 50 ± 8 13, 192 68 ± 5 12, 103<br />

Rain 55 ± 9 14, 107 56 ± 6 12, 47<br />

Indivi<strong>du</strong>a/ indicators of habitat use<br />

We foundjuveniles insi<strong>de</strong> <strong>de</strong>ns, on the ground, and in a tree 47%, 26% and 27% of the<br />

times we located them, respectively. lndivi<strong>du</strong>als significantly differed in their use of <strong>de</strong>n,<br />

tree, and ground locations (Table 5.3). On average, juveniles used microhabitats providing<br />

77% of protective coyer but indivi<strong>du</strong>als significantly differed in the me an protective coyer<br />

they used (Table 5.3). The amount of protective coyer was negatively corre<strong>la</strong>ted to the air


97<br />

Table 5.3: Use of coyer by juvenile NOlth American porcupines at the microhabitat (1 m) and local (15 m) scales in Parc National <strong>du</strong><br />

B ic, Québec, May to August, 2003-2004. Results are reported as the mean for each indivi<strong>du</strong>al (A to N) and for the popu<strong>la</strong>tion (mean<br />

ca\cul ated from indivi<strong>du</strong>al means). Levels of significance for b<strong>et</strong>ween-indivi<strong>du</strong>al differences in habitat use are indicated as * (p


98<br />

temperature (Speannan rank con'e<strong>la</strong>tion, r = -0.258, p


99<br />

juveniles. At the microhabitat scale, the type ofhiding site (<strong>de</strong>n, ground, or tree) and the<br />

amount of protective coyer significantly <strong>influence</strong>d sUl·vival (Table 5.5). For a given location,<br />

use of si tes with high protective coyer enhanced <strong>sur</strong>vival (a 10% increase in the mean<br />

protective coyer used was associated with a 66% <strong>de</strong>crease in <strong>de</strong>ath probability, Table 5.5).<br />

Also, when taking into account the protective coyer used, use of trees enhanced <strong>sur</strong>vival<br />

compared to use of ground locations (8% <strong>de</strong>crease in <strong>de</strong>ath probability, Table 5.5).<br />

At the local scale, use of sites with higher shmb coyer significantly increased <strong>sur</strong>vival<br />

(Table 5.5) when percentages oftree and herb coyer were taken into account. According to<br />

the hazard ratio, a 10% increase in mean shrub coyer used was associated with a 74%<br />

<strong>de</strong>crease in <strong>de</strong>ath probability. Also, when taking tree and shrub coyer into account, use of<br />

sites with higher herb coyer <strong>de</strong>creased <strong>sur</strong>vival (78% increase in <strong>de</strong>ath probability, Table 5.5)<br />

although this effect was not statistically significant. Finally we found no effect ofsex (X 2 1 =<br />

0.30, P = 0.586), mass on 10 June (li = 0.01, P = 0.915), mobility (X21 = 1.94, P = 0.163), or<br />

distance to the mother (li = 0.32, P = 0.570) on <strong>sur</strong>vival.<br />

Table 5.5 : Coefficients for the <strong>sur</strong>vival analyses for 14 juvenile North American porcupines<br />

studied in Parc National <strong>du</strong> Bic, Québec, May to August, 2003-2004<br />

Variable ê value SE<br />

j<br />

"t,.-<br />

P<br />

Hazard ratio<br />

M icrohabitat scale<br />

Protecti ve coyer - 1.072 0.478 5.03 0.025 0.34 ( 10%)<br />

Location<br />

Ground 0 ND ND ND reference category<br />

Den -0.026 0.030 0.75 0.388 0.97<br />

Tree -0.089 0.037 5.89 0.015 0.92<br />

Local scale<br />

Tree coyer -0.2 13 0.272 0.61 0.433 0.81 (10%)<br />

Shrub coyer -1.338 0.534 6.29 0.012 0.26 (10% )<br />

Herb coyer 0.579 0.312 3.44 0.064 1.78 (10%)<br />

5.5. Discussion<br />

Juvenile porcupines showed selection for high protective coyer at the microhabitat (1m)<br />

scale only. At the local (15 m) scale, juveniles selected sites characterized by a low herb<br />

coyer and with cedar as dominant tree species. The use of coyer <strong>de</strong>creased as juveniles grew


100<br />

ol<strong>de</strong>r and was <strong>de</strong>pen<strong>de</strong>nt on m<strong>et</strong>eorological conditions. PaIiicu<strong>la</strong>rly, juveniles used <strong>de</strong>ns to<br />

avoid low air tempe rature and rain. Outsi<strong>de</strong> of the <strong>de</strong>n, juveniles used more open habitats<br />

after it had rained. The main cause of mOliality was predation and habitat use, both at the<br />

microhabitat and at the local scales, <strong>influence</strong>d <strong>sur</strong>vival. At the microhabitat scale, use of<br />

protective coyer and use of trees compared to use of the ground enhanced <strong>sur</strong>vival, whereas<br />

at the local scale, use of sites with high shrub coyer enhanced <strong>sur</strong>vival. We did not d<strong>et</strong>ect any<br />

effect ofsex, body mass, mobility, and distance to the mother on <strong>sur</strong>vival ofjuveniles. We<br />

now discuss these findings in or<strong>de</strong>r to evaluate our three original predictions.<br />

Habitat selection<br />

We predicted selection for coyer to occur at both the microhabitat and local scales<br />

(prediction 1) because juvenile porcupines were found by Sweitzer and Berger (1992) to<br />

avoid open areas in presence of predators, and because predation risk was high in our system<br />

(chap. 3). Our study animais selected microhabitats with high protective coyer within habitat<br />

patches showing low herb coyer and dominated by cedar trees. We could not d<strong>et</strong>ect selection<br />

for high tree or shrub coyer (at the local scale), even though stands with low herb coyer were<br />

typically <strong>de</strong>nse in our study area, as illustrated by the negative re<strong>la</strong>tionship we found b<strong>et</strong>ween<br />

tree and herb coyer. We suggest some selection for coyer occurred at the scale of the stand<br />

(not investigated in this study) because we always located juveniles in forested environments,<br />

while our study area was fragmented by open fields that were used by a<strong>du</strong>lt porcupines for<br />

feeding (Morin <strong>et</strong> al. 2005). Open areas therefore constituted exploitable areas for a<strong>du</strong>lts but<br />

were not used by juveniles.<br />

Our results support the hypothesis that predator avoidance was the main factor driving<br />

habitat selection at the two scales studied. In<strong>de</strong>ed, use of covered microhabitats is likely to<br />

<strong>de</strong>crease probability of d<strong>et</strong>ection by predators (Mysterud & Ostbye 1999) while use of areas<br />

with low herb coyer should re<strong>du</strong>ce likelihood of encountering predators since herb coyer in<br />

forested environments is mainly associated with open or edge habitats, that are easily<br />

accessible to predators (Bi<strong>de</strong>r 1968, Andren & Angelstam 1988). We found no evi<strong>de</strong>nce that<br />

juveniles selected their microhabitat so as to increase access to radiative gain (i.e. they did<br />

not select open microhabitats). Covered microhabitats that were selected by juveniles were<br />

characterized by low air temperatures and low wind speeds. Besi<strong>de</strong>s providing protection<br />

from predators, covered microhabitats therefore provi<strong>de</strong>d protection against high winds.


101<br />

However, we think protection from wind was not the main factor driving selection of covered<br />

microhabitats by juveniles because selection for coyer did not vary according to wind<br />

conditions (see below).<br />

Effects ofm<strong>et</strong>eorological conditions on the use of cover<br />

ln summer, use of co ver by animais usually results in a lower access to incoming<br />

radiation and thus to expo<strong>sur</strong>e to lower temperatures (Cook <strong>et</strong> al. 1998). Our results<br />

confirmed this pattern since air temperature was negatively corre<strong>la</strong>ted with protective cover<br />

at a given site. As predation was expected to drive habitat selection by juvenile porcupines,<br />

we predictedjuvenile porcupines would use open environments only un<strong>de</strong>r cold conditions<br />

(prediction 2). We found that animais increased their use of <strong>de</strong>ns when temperature <strong>de</strong>creased<br />

and when rain intensity increased. It was not <strong>sur</strong>prising that juveniles used their <strong>de</strong>n when<br />

rain intensity increased because a w<strong>et</strong> coat provi<strong>de</strong>s a poor insu<strong>la</strong>tion against cold<br />

temperatures (Kreith & B<strong>la</strong>ck 1980) so porcupines used <strong>de</strong>ns to avoid w<strong>et</strong>ting their coat.<br />

However, the fact that juveniles used <strong>de</strong>ns un<strong>de</strong>r co Id tempe rature conditions does not<br />

support our prediction that juveniles should use open areas on co Id days to maximize<br />

radiative heat gain. We trust juveniles were able to warm up their <strong>de</strong>ns when using them so<br />

that <strong>de</strong>ns constituted unique covered microhabitats that provi<strong>de</strong>d shelter against co Id<br />

temperatures, rain, and predators. Juveniles therefore did not face a tra<strong>de</strong>-off b<strong>et</strong>ween use of<br />

coyer and thennal expo<strong>sur</strong>e, but rather faced a tra<strong>de</strong>-off b<strong>et</strong>ween use of <strong>de</strong>n and non-<strong>de</strong>n<br />

microhabitats. Dens provi<strong>de</strong>d hiding coyer and protection against harsh weather conditions<br />

but no foraging Oppo11unities. As energy needs of juveniles increased (i.e. as their body mass<br />

increased with Julian date), porcupines <strong>de</strong>creased their use of <strong>de</strong>ns, possibly to increase the<br />

time spent foraging. An alternate (non-exclusive) hypothesis would be that juveniles<br />

<strong>de</strong>creased use oftheir <strong>de</strong>ns because the thermal environment became more favourable or<br />

because animais were able to thennoregu<strong>la</strong>te b<strong>et</strong>ter as the season advanced.<br />

Wind also <strong>influence</strong>d the use of <strong>de</strong>ns with juveniles being increasingly outsi<strong>de</strong> of their<br />

<strong>de</strong>n as wind speed increased. Biting insects are less abundant insi<strong>de</strong> than outsi<strong>de</strong> <strong>de</strong>ns<br />

(Comtois & Berteaux 2005) so that juveniles may weil use <strong>de</strong>ns on calm (i.e. non windy)<br />

days to avoid biting flies when insect harassment is high (i .e. when there is no wind). Outsi<strong>de</strong><br />

of the <strong>de</strong>n, we found no effect of air temperature on the use of coyer (at the microhabitat<br />

scale). However, juveniles used open microhabitats more often with increasing past rain


102<br />

intensity, potentially to avoid w<strong>et</strong>ting their coat with raindrops left on veg<strong>et</strong>ation by the rain.<br />

The fact that juveniles didn't modify the use of coyer outsi<strong>de</strong> of the <strong>de</strong>n with changing<br />

temperature conditions suggests that coyer outsi<strong>de</strong> of the <strong>de</strong>n was rather used as a hiding<br />

co ver, with juveniles r<strong>et</strong>reating to <strong>de</strong>ns wh en temperature <strong>de</strong>creased.<br />

Habitat use and <strong>sur</strong>vival<br />

Predation was the main cause of mortality in juvenile porcupines. Several predators hunt<br />

and kill porcupines more effectively in open habitats (coyotes: Keller 1935, mountain lions:<br />

Robin<strong>et</strong>te <strong>et</strong> al. 1959, fishers: Powell & Bran<strong>de</strong>r 1977) and porcupines perceive open habitats<br />

as risky habitats (Sweitzer & Berger 1992). Consistent with the hypothesis that open habitats<br />

are more risky, we found that use of coyer (both at the microhabitat and local scales)<br />

enhanced <strong>sur</strong>vival. There were indivi<strong>du</strong>al differences in the use of coyer and juveniles<br />

<strong>sur</strong>vived b<strong>et</strong>ter when using habitat patches with high shrub coyer and, within those patch es,<br />

when using microhabitats with high protective coyer. Numerous studies have reported that<br />

ungu<strong>la</strong>te fawns bed down in <strong>de</strong>nse ground coyer (review in Mysterud & Ostbye 1999) but<br />

only a few studies have re<strong>la</strong>ted habitat use to <strong>sur</strong>vival (Linnell <strong>et</strong> al. 1995, Aanes & An<strong>de</strong>rsen<br />

1996, Canon & Bryant 1997, Farrner <strong>et</strong> al. 2006). ln addition, studies on ro<strong>de</strong>nts (Moreno <strong>et</strong><br />

al. 1996, Schooley <strong>et</strong> al. 1996, Ebensperger & Hurtado 2005) suggested that coyer may be<br />

obstructive rather than protective for small mammals. Here we exploited a multivariate and<br />

hierarchical analysis of habitat use by juvenile porcupines to show that use of coyer at both<br />

scales studied enhanced <strong>sur</strong>vival of one small-bodied animal. Use of coyer in<strong>de</strong>ed has diverse<br />

ecological consequences <strong>de</strong>pending probably partly on the size of the study animal, and on<br />

the limiting factors with which it is faced (Mysterud & Ostbye 1999).<br />

Besi<strong>de</strong>s indivi<strong>du</strong>al differences in the use of coyer, we also found indivi<strong>du</strong>al differences in<br />

the use of <strong>de</strong>ns, ground and trees. Juveniles <strong>sur</strong>vived b<strong>et</strong>ter when using trees than when using<br />

ground. We suggest that juveniles were more vulnerable to predators when they were on the<br />

ground th an when they were in trees. Use oftrees prevents attack by sorne predators (e.g.<br />

coyotes) but not from others (e.g. fishers, Powell & Bran<strong>de</strong>r 1977). According to the few<br />

signs of presence we found, fishers appeared to be the main predators of juvenile porcupines<br />

<strong>du</strong>ring the study period (results not shown) and the use of trees is therefore not expected to<br />

<strong>de</strong>crease risk of attack. However, use of trees may have <strong>de</strong>creased d<strong>et</strong>ectability by fishers,<br />

therefore leading to higher <strong>sur</strong>vival of juveniles. Our third prediction was suppOlted because


103<br />

we found that most mortalities were <strong>du</strong>e to predation and that use of coyer enhanced <strong>sur</strong>vival.<br />

Predation was therefore the main factor limiting <strong>sur</strong>vival of juveniles in our popu<strong>la</strong>tion, as<br />

supported by the evi<strong>de</strong>nce that habitat selection hea<strong>de</strong>d towards predator avoidance, even at<br />

fine scales of selection.<br />

Sex, body mass, mobility, distance ta the mother, and <strong>sur</strong>vival<br />

Juveniles were not sexually dimorphic and we found no effect ofsex or body mass on<br />

<strong>sur</strong>vival. Because predation was the main limiting factor in our popu<strong>la</strong>tion, we would expect<br />

increased body mass to enhance <strong>sur</strong>vival if <strong>la</strong>rger (i.e. ol<strong>de</strong>r) animaIs were less vulnerable to<br />

predators as in several other mammal species (white-tailed <strong>de</strong>er: Nelson & Woolf 1987,<br />

pronghorns: Fairbanks 1993). Even though males were not heavier than females, sex could<br />

also have intluenced <strong>sur</strong>vival because of sex-differences in behaviour (Webb 1993). We<br />

observed juvenile porcupines to stay still when approached, whatever their size and sex.<br />

Males and heavier (ol<strong>de</strong>r) juveniles did not show higher escape speed or aggressiveness<br />

compared to other juveniles (G.M. personal observation). Therefore, it is not <strong>sur</strong>prising they<br />

did not <strong>sur</strong>vive b<strong>et</strong>ter.<br />

We also found no effect of mobility on <strong>sur</strong>vival of juveniles. Juveniles are often argued<br />

to suffer high predation risk <strong>du</strong>ring dispersal because of greater activity rates, lower<br />

familiarity with new habitats, or use of lower-quality habitats (Gaines & McClenaghan 1980,<br />

Yo<strong>de</strong>r <strong>et</strong> al. 2004). We expected more active indivi<strong>du</strong>als to show <strong>de</strong>creased <strong>sur</strong>vival because<br />

of higher expo<strong>sur</strong>e to predation risk. As stated before, juvenile porcupines perfonned mainly<br />

small movements «20 m) on a daily basis. However, porcupines were som<strong>et</strong>imes observed<br />

to move longer distances (up to 500 m) that could have exposed them to the same risks as<br />

dispersing animaIs. However, in "hi<strong>de</strong>r" species, mothers initiate the changes in location and<br />

accompany their young <strong>du</strong>ring long moves (Lent 1974). They also ce11ainly intluenced the<br />

choice of the immigration area, even though the exact location of the new hiding site <strong>de</strong>pends<br />

upon the infant (Lent 1974). One previous study (Stuart-Smith & Boutin 1995) investigated<br />

wh<strong>et</strong>her movements ma<strong>de</strong> by juvenile red squirrels (Tamiasciurus hudsonicus) before<br />

weaning (i.e. wh en they were still <strong>de</strong>pen<strong>de</strong>nt on mother for food) intluenced <strong>sur</strong>vival. This<br />

work found no effect of total movements on <strong>sur</strong>vival but found that indivi<strong>du</strong>als that spend<br />

re<strong>la</strong>tively more time offtheir natal territory were more likely to be <strong>de</strong>predated. We suggest<br />

that the presence of the mother in the vicinity of the juvenile and, for porcupines, the


104<br />

possibility that mothers were choosing the stand to leave their young, <strong>la</strong>rgely re<strong>du</strong>ced most of<br />

the risks usually associated with movements in dispersingjuveniles.<br />

Finally, we found no effect of the distance b<strong>et</strong>weenjuvenile and mother on <strong>sur</strong>vival of<br />

the juvenile. Females from several hiding species have been shown to re<strong>du</strong>ce their home<br />

range <strong>du</strong>ring rearing of their young (Fisher & Goldizen 200 l , Ciuti <strong>et</strong> al. 2006). This may<br />

allow females to feed their young more regu<strong>la</strong>rly and, in some species, to alert the young of<br />

approaching danger (gazelles: Fitzgibbon 1993, roe <strong>de</strong>er: Aanes & An<strong>de</strong>rsen 1996). We<br />

never observed mothers to wam their young or to protect them in any manner when we<br />

approached or captured juvenile porcupines. Still, females remained fairly close to their<br />

young, especially in their first weeks of life and we trust this could have enhanced juveniles<br />

<strong>sur</strong>vival if predation pres<strong>sur</strong>e had not been so hi gh (chap. 3).<br />

The fact that we found no effect of sex, body mass, mobility, or distance to the mother on<br />

<strong>sur</strong>vival ofjuveniles may altematively be <strong>du</strong>e to a <strong>la</strong>ck ofstatistical power in our analyses.<br />

Because hidingjuveniles are hard to find, we collected data on 14 juveniles only. However,<br />

we found clear effects of indivi<strong>du</strong>al differences in habitat use on <strong>sur</strong>vival. This suggests that<br />

fitness consequences of habitat use were strong in our popu<strong>la</strong>tion and <strong>de</strong>monstrates the<br />

importance of comparing habitat use with mea<strong>sur</strong>es of fitness to evaluate habitat suitability<br />

for a given species.


Chapitre 6<br />

Conclusion<br />

Dans le cadre <strong>de</strong> ma thèse, j 'ai abordé différents aspects associés aux eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> <strong>et</strong><br />

<strong>de</strong> <strong>la</strong> prédation <strong>sur</strong> le comportement <strong>et</strong> <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s indi vi<strong>du</strong>s (Fig. 6.1), dans le but <strong>de</strong><br />

comprendre les mécanismes par lesquels le <strong>climat</strong> <strong>et</strong> les prédateurs <strong>influence</strong>nt <strong>la</strong> taille <strong>de</strong>s<br />

popu<strong>la</strong>tions. Je me suis d'abord intéressée aux variations <strong>de</strong> <strong>sur</strong>vie observées au cours <strong>du</strong><br />

temps, <strong>et</strong> ai tenté <strong>de</strong> m<strong>et</strong>tre en évi<strong>de</strong>nce les facteurs à l'origine <strong>de</strong> ces variations (chap. 3, Fig.<br />

6.1). Ensuite, l'étu<strong>de</strong> détaillée <strong>du</strong> comportement <strong>de</strong>s indivi<strong>du</strong>s m'a permis <strong>de</strong> démontrer<br />

l' eff<strong>et</strong> <strong>de</strong> certaines variables environnementales (i.e. conditions météorologiques, risque <strong>de</strong><br />

prédation) <strong>sur</strong> l' utilisation <strong>de</strong> <strong>l'habitat</strong> <strong>et</strong> les patrons d'activité <strong>de</strong>s animaux (chap. 4 <strong>et</strong> 5, Fig.<br />

6.1). J'ai finalement examiné les eff<strong>et</strong>s <strong>de</strong> l' utilisation <strong>de</strong> <strong>l'habitat</strong> <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie afin d'évaluer<br />

comment les différences indivi<strong>du</strong>elles d'utilisation <strong>de</strong> <strong>l'habitat</strong> peuvent mo<strong>du</strong>ler les eff<strong>et</strong>s <strong>de</strong>s<br />

facteurs <strong>climat</strong>iques <strong>et</strong> <strong>de</strong>s prédateurs <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie (chap. 4 <strong>et</strong> 5, Fig. 6.1). Ce travail repose<br />

<strong>sur</strong> un suivi fin <strong>de</strong> <strong>la</strong> <strong>sur</strong>vie <strong>et</strong> <strong>du</strong> comportement <strong>de</strong>s indivi<strong>du</strong>s, <strong>et</strong> j 'ai également détaillé les<br />

métho<strong>de</strong>s nécessaires à un tel suivi (chap. 2).<br />

Climat<br />

Survie<br />

Figure 6.1 : Schéma récapitu<strong>la</strong>tif <strong>de</strong>s principaux suj<strong>et</strong>s traités dans <strong>la</strong> thèse. On s'est<br />

intéressé aux eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> <strong>et</strong> <strong>de</strong> <strong>la</strong> prédation <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie, aux eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> <strong>et</strong> <strong>de</strong> <strong>la</strong><br />

prédation <strong>sur</strong> [' utilisation <strong>de</strong> <strong>l'habitat</strong>, <strong>et</strong> aux conséquences <strong>de</strong>s différences indivi<strong>du</strong>elles<br />

d'utilisation <strong>de</strong> ['habitat <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie.


106<br />

Métho<strong>de</strong>s mises en p <strong>la</strong>ce pour le suivi indivi<strong>du</strong>el<br />

Le porc-épic d'Amérique est un animal essentiellement arboricole, qui est di fficile à<br />

localiser dans <strong>la</strong> canopée <strong>de</strong>nse <strong>de</strong>s forêts mixtes ou conifèriennes (Hale & Fuller 1999). Une<br />

fois localisé, le porc-épic est également difficile à capturer, notamment lorsqu' il utilise <strong>de</strong>s<br />

arbres ou <strong>de</strong>s tanières rocheuses profon<strong>de</strong>s. Sans doute à cause <strong>de</strong> ces difficultés, peu<br />

d 'étu<strong>de</strong>s se sont intéressées aux facteurs influençant <strong>la</strong> démographie <strong>de</strong> c<strong>et</strong> herbivore, qui<br />

peut pourtant atteindre <strong>de</strong> fortes abondances, <strong>et</strong> jouer un rôle important dans certains<br />

écosystèmes (Curtis 1941 , Curtis 1944). Le centre <strong>de</strong> notre aire d'étu<strong>de</strong> est occupé par <strong>de</strong>s<br />

champs que les porcs-épics utilisent pour se nourrir au cours <strong>de</strong> l'été, <strong>et</strong> où ils sont facilement<br />

capturables. C<strong>et</strong>te particu<strong>la</strong>rité a permis <strong>de</strong> m<strong>et</strong>tre en p<strong>la</strong>ce un suivi détaillé <strong>de</strong> <strong>la</strong> popu<strong>la</strong>tion<br />

basé <strong>sur</strong> <strong>la</strong> recherche systématique <strong>de</strong> porcs-épies autour <strong>de</strong>s champs pendant l'été.<br />

Au cours <strong>de</strong>s sept années <strong>de</strong> sui vi, nous avons amélioré les métho<strong>de</strong>s <strong>de</strong> captu re<br />

existantes pour les rendre plus efficaces (e.g. capture par épuis<strong>et</strong>te), <strong>et</strong> développé <strong>de</strong><br />

nouve lles métho<strong>de</strong>s <strong>de</strong> capture qui s'adaptent à toutes les situations (e.g. pose <strong>de</strong> trappes <strong>sur</strong><br />

le tronc <strong>de</strong>s arbres). Nous avons d'autre palt raffiné le système <strong>de</strong> marquage <strong>de</strong>s indi vi<strong>du</strong>s par<br />

boucles d'oreilles afin <strong>de</strong> le rendre plus <strong>du</strong>rable, <strong>et</strong> donc <strong>de</strong> limiter les pertes d ' i<strong>de</strong>ntité<br />

(Griesemer <strong>et</strong> al. 1999). Aucune métho<strong>de</strong> n'ayant été décrite pour chercher les j eun es porcsépics<br />

<strong>et</strong> les éq uiper <strong>de</strong> colliers ém<strong>et</strong>teurs, nous avons mis au point <strong>de</strong>s techniques pour<br />

trouver les jeunes <strong>et</strong> détenniner leur taux <strong>de</strong> <strong>sur</strong>vie, élément nécessaire à toute étu<strong>de</strong><br />

démographique. Finalement, nous avons développé une métho<strong>de</strong> pour poser <strong>de</strong>s colli ers<br />

ém<strong>et</strong>teurs en minimisant les bles<strong>sur</strong>es au cou <strong>de</strong>s indivi<strong>du</strong>s, bles<strong>sur</strong>es qui peuvent être<br />

parti culièrement sévères si les colliers sont posés <strong>sur</strong> le long tenne, ou en hi ver (à eause <strong>du</strong><br />

fro id qui rend le p<strong>la</strong>stique <strong>du</strong> collier très rigi<strong>de</strong> <strong>et</strong> donc blessant).<br />

Grâce aux techniques développées, nous avons pu récolter <strong>de</strong>s données indivi <strong>du</strong>elles<br />

précises que je m<strong>et</strong>s à contribution dans le reste <strong>de</strong> mon doctorat. Notamment, nous décrivons<br />

le déclin d' abondance <strong>de</strong> <strong>la</strong> popu<strong>la</strong>tion d'étu<strong>de</strong> au cours <strong>du</strong> temps. Le sui vi mis en p<strong>la</strong>ce étant<br />

assez intensif (en moyenne, chaque animal était recapturé une fois tous les <strong>de</strong>ux mois) on<br />

peut se <strong>de</strong>man<strong>de</strong>r si le déclin d'abondance observé pourrait être dû à un dérangement <strong>de</strong>s<br />

animaux. La plupalt <strong>de</strong>s captures avaient lieu au cours <strong>de</strong> l'été (entre Mai <strong>et</strong> Août) lorsque les


107<br />

porcs-épics fréquentent les champs pour s'y alimenter. Or, nous montrons au chapitre 3 que<br />

l ' hiver constitue <strong>la</strong> pério<strong>de</strong> <strong>la</strong> plus critique pour <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s pors-épics <strong>et</strong> que <strong>la</strong> diminution<br />

<strong>de</strong> <strong>la</strong> <strong>sur</strong>vie en hi ver paraît liée à une augmentation <strong>de</strong> <strong>la</strong> prédati on les années <strong>de</strong> fOltes<br />

précipitations hi vernales. Le déclin d'abondance observé ne semble donc pas dû à un<br />

dérangement occasionné par les captures estivales. Le fa it que <strong>la</strong> <strong>de</strong>nsité <strong>de</strong> porcs-épics ait<br />

également gran<strong>de</strong>ment diminué dans les autres secteurs <strong>du</strong> Parc Nati onal <strong>du</strong> B ic (o ù aucun<br />

sui vi n'était effectué), confirme que le sui vi mis en p<strong>la</strong>ce n'avait pas d 'eff<strong>et</strong> important <strong>sur</strong> <strong>la</strong><br />

dynamique <strong>de</strong> <strong>la</strong> popu<strong>la</strong>ti on d'étu<strong>de</strong>. Nous espérons que les métho<strong>de</strong>s que nous décri vons<br />

pourront être mises à profit par d'autres chercheurs qui étudient les porcs-épics ou d'autres<br />

animaux à piquants.<br />

Abondance, <strong>sur</strong>vie, <strong>et</strong>facteurs influençant <strong>la</strong> <strong>sur</strong>vie<br />

Le <strong>climat</strong> <strong>influence</strong> <strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>ti ons <strong>de</strong> mammifères (Krebs & Berteaux<br />

2006). Il peut avoir <strong>de</strong>s eff<strong>et</strong>s directs <strong>sur</strong> les espèces mais aussi modifier <strong>la</strong> nature <strong>de</strong>s<br />

interactions entre espèces (Davis <strong>et</strong> al. 1998, Post <strong>et</strong> al. 1999b, Wilmers & Post 2006).<br />

Klvana <strong>et</strong> al. (2004) génèrent l' hypothèse que l ' a b o ~d a n ce <strong>de</strong>s popu<strong>la</strong>ti ons <strong>de</strong> porcs-épics<br />

dans <strong>la</strong> région <strong>du</strong> Bas-St-Laurent est influencée par les variations d'acti vité so<strong>la</strong>ire, via un<br />

impact <strong>sur</strong> certaines vari ables météorologiques locales.<br />

Dans le cadre <strong>de</strong> mon doctorat, j 'ai uti lisé une popu<strong>la</strong>ti on <strong>de</strong> porcs-épics <strong>de</strong> <strong>la</strong> région <strong>du</strong><br />

Bas-St-Laurent pour m<strong>et</strong>tre à l'épreuve l' hypothèse générée par l' étu<strong>de</strong> <strong>de</strong> Kl vana <strong>et</strong> al.<br />

(2004) <strong>et</strong> i<strong>de</strong>ntifier le(s) mécanisme(s) par lesquel(s) l'acti vité so<strong>la</strong>ire <strong>influence</strong> l' abondance<br />

<strong>de</strong> porcs-épics. Notre étu<strong>de</strong> confinne l'existence d' un lien entre les vari ations d 'activité<br />

so<strong>la</strong>ire <strong>et</strong> le taux d'accroissement <strong>de</strong> <strong>la</strong> popu<strong>la</strong>ti on. D 'après nos résultats, <strong>la</strong> radi ation so<strong>la</strong>ire<br />

pourrait affecter l'abondance <strong>de</strong> porcs-épics par <strong>de</strong>s eff<strong>et</strong>s en casca<strong>de</strong>s <strong>sur</strong> les précipitati ons<br />

hivernales, les taux <strong>de</strong> <strong>sur</strong>vie <strong>de</strong>s porcs-épics en hiver, <strong>et</strong> le ni veau <strong>de</strong> prédati on par le pékan.<br />

On i<strong>de</strong>ntifie en eff<strong>et</strong> une corré<strong>la</strong>ti on négative entre <strong>la</strong> radi ati on so<strong>la</strong>ire <strong>et</strong> le ni veau <strong>de</strong><br />

précipitations hivernales, qui sont elles-mêmes reliées aux variati ons <strong>de</strong> <strong>la</strong> <strong>sur</strong>vie hi vernale.<br />

Chez les espèces longévives, le taux <strong>de</strong> <strong>sur</strong>vie <strong>de</strong>s a<strong>du</strong>ltes est en général le paramètre<br />

démographi que qui <strong>influence</strong> le plus fO ltement le taux d 'accroissement <strong>de</strong> <strong>la</strong> popul ation<br />

(Gai ll ard <strong>et</strong> a l. 2000, Sa<strong>et</strong>her & Bakke 2000, Eberhardt 2002). Dans notre popu<strong>la</strong>tion, <strong>la</strong>


108<br />

<strong>sur</strong>vie <strong>de</strong>s a<strong>du</strong>ltes est variable d' un hi ver à l'autre, <strong>et</strong> <strong>la</strong> diminution <strong>du</strong> taux <strong>de</strong> <strong>sur</strong>vie <strong>de</strong>s<br />

a<strong>du</strong>ltes est celtainement responsable, au moins en paltie, <strong>du</strong> déclin d'abondance observé (<strong>de</strong><br />

11 7 indivi<strong>du</strong>s en 2000 à 1 indivi<strong>du</strong> en 2006). On observe également une variati on <strong>de</strong> <strong>la</strong> <strong>sur</strong>vie<br />

<strong>de</strong>s j uvéniles d ' un hi ver à l'autre. Les taux <strong>de</strong> <strong>sur</strong>vie en hi ver sont pl us bas <strong>et</strong> plus variables<br />

que les taux <strong>de</strong> <strong>sur</strong>vie en été, pour les <strong>de</strong>ux c<strong>la</strong>sses d 'âge considérées. On i<strong>de</strong>ntifie donc<br />

l ' hiver comm e <strong>la</strong> pério<strong>de</strong> <strong>de</strong> l'année étant <strong>la</strong> plus critique pour le porc-épic, <strong>et</strong> <strong>la</strong> ré<strong>du</strong>cti on<br />

marquée <strong>de</strong> <strong>la</strong> taille <strong>de</strong> notre popu<strong>la</strong>ti on illustre les conséquences sévères que peuvent<br />

engendrer <strong>de</strong>s variati ons <strong>de</strong> <strong>la</strong> <strong>sur</strong>vie a<strong>du</strong>lte chez les espèces longévives.<br />

Concern ant les mécani smes par lesquels les précipitati ons hi vernales <strong>influence</strong>nt les taux<br />

<strong>de</strong> <strong>sur</strong>vie, on constate que <strong>la</strong> diminution <strong>de</strong> <strong>sur</strong>vie en hiver est concomitante avec une<br />

augmentation <strong>du</strong> pourcentage <strong>de</strong> mortalités <strong>du</strong>es à <strong>la</strong> prédati on. Face à ce constat, on peut<br />

envisager <strong>de</strong>ux possibilités: d ' une part, l'augmentation <strong>de</strong>s taux <strong>de</strong> prédati on les ann ées <strong>de</strong><br />

fortes précipitati ons hi vernales pourra it être un simple hasard. Le pékan est en augmentati on<br />

dans l'est <strong>du</strong> Québec <strong>de</strong>pui s le milieu <strong>de</strong>s années 1990 (Poulin <strong>et</strong> al. 2006) <strong>et</strong> son r<strong>et</strong>our dans<br />

le parc <strong>du</strong> Bic semble dater <strong>du</strong> début <strong>de</strong> l'année 1999 (A. Pell<strong>et</strong>ier, Mini stère <strong>de</strong>s Ressources<br />

Naturelles <strong>et</strong> <strong>de</strong> <strong>la</strong> Faun e, communication personnell e). On pourrait donc supposer que<br />

l'augmentati on <strong>de</strong>s taux <strong>de</strong> prédati on que l'on observe en 2003 <strong>et</strong> 2004 soit <strong>du</strong>e à un e simple<br />

augmentation <strong>du</strong> nombre <strong>de</strong>s prédateurs qui , par hasard, aurait eu lieu pendant les années <strong>de</strong><br />

fOltes précipitati ons hivernales (hypothèse 1). D 'autre part, <strong>la</strong> probabilité <strong>de</strong> prédation<br />

pourrait effectivement être liée au niveau <strong>de</strong> précipitations hivernales (hypothèse 2). La<br />

prédation <strong>sur</strong> les porcs-épics a<strong>du</strong>ltes semble liée à <strong>la</strong> présence <strong>de</strong> neige au sol puisq ue 95%<br />

<strong>de</strong>s a<strong>du</strong>ltes qui meurent par prédati on, meurent pendant <strong>la</strong> pério<strong>de</strong> <strong>de</strong> l'hi ver où <strong>de</strong> <strong>la</strong> neige<br />

recouvre le sol. D'après nos connaissances <strong>de</strong> <strong>la</strong> biologie <strong>du</strong> porc-épic <strong>et</strong> <strong>du</strong> pékan, les<br />

prédateurs pourraient changer leur comportement <strong>de</strong> chasse <strong>et</strong>/ou les porcs-épics pourraient<br />

<strong>de</strong>venir plus vulnérables à <strong>la</strong> prédati on en fonction <strong>de</strong>s conditions <strong>de</strong> neige. Puisque nous<br />

n'avons pas effectué <strong>de</strong> dénombrements <strong>du</strong> nombre <strong>de</strong> prédateurs, <strong>et</strong> puisque notre nombre<br />

d 'années d'étu<strong>de</strong> est assez ré<strong>du</strong>it, nous ne pouvons pas complètement écarter <strong>la</strong> premi ère<br />

hypothèse. Cependant, K lvana <strong>et</strong> al. (2004) montrent l'existence d'un lien persistant entre le<br />

niveau <strong>de</strong> précipitations hi vernales <strong>et</strong> l'abondance <strong>de</strong>s popu<strong>la</strong>tions <strong>de</strong> porcs-épics dans <strong>la</strong><br />

région. Les résultats <strong>de</strong> notre étu<strong>de</strong>, en conj onction avec les résultats <strong>de</strong> Kl vana <strong>et</strong> al. (2004),<br />

viennent donc confinner <strong>la</strong> possibilité d ' un eff<strong>et</strong> <strong>du</strong> cl imat hi vernal <strong>sur</strong> l'abondance <strong>de</strong> porcs-


109<br />

épies, via un impact <strong>de</strong>s conditions <strong>de</strong> neige <strong>sur</strong> les probabilités <strong>de</strong> prédation, <strong>et</strong> donc <strong>sur</strong> <strong>la</strong><br />

<strong>sur</strong>vie au cours <strong>de</strong> l'hiver (hypothèse 2).<br />

Si c<strong>et</strong>te <strong>de</strong>uxième hypothèse est vraie, les fluctuations d'abondance <strong>de</strong> porcs-épies<br />

seraient donc liées à <strong>la</strong> présence <strong>de</strong> prédateurs dans le système. Hors, nous avons déjà dit que<br />

l'abondance <strong>de</strong> pékans était actuellement en augmentation dans le Bas-St-Laurent après<br />

plusieurs années <strong>de</strong> faible abondance (Poulin <strong>et</strong> al. 2006). Dans ce contexte, l' hypothèse d' un<br />

eff<strong>et</strong> <strong>de</strong>s prédateurs <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie hivernale <strong>de</strong>s porcs-épies semble contradictoire avec le<br />

cycle régulier <strong>et</strong> continu trouvé par Klvana <strong>et</strong> al. (2004) dans l'abondance <strong>de</strong>s porcs-épies<br />

entre 1868 <strong>et</strong> 2000. En fait, je pense qu'il n'y a pas <strong>de</strong> contradiction entre ces <strong>de</strong>ux résultats.<br />

Mon interprétation est que <strong>la</strong> <strong>sur</strong>vie hivernale <strong>de</strong>s porcs-épies est <strong>de</strong> toutes manières liée aux<br />

conditions météorologiques hivernales, mais que les causes <strong>de</strong> mortalité changent selon que<br />

les prédateurs soient présents en quantité importante ou non. En absence <strong>de</strong> prédateurs, les<br />

animaux meurent par inanition les années <strong>de</strong> fort enneigement (à cause <strong>du</strong> coüt élevé <strong>de</strong>s<br />

dép<strong>la</strong>cements <strong>et</strong> d'une accessibilité ré<strong>du</strong>ite à <strong>la</strong> nourriture) alors que lorsque les prédateurs<br />

sont présents, les animaux meurent par inanition ou par prédation, avec <strong>de</strong>s taux <strong>de</strong> prédation<br />

plus élevés les années <strong>de</strong> fort enneigement.<br />

Ce travail <strong>de</strong> doctorat i<strong>de</strong>ntifie un mécanisme possible (i.e. variation <strong>de</strong>s probabilités <strong>de</strong><br />

prédation en fonction <strong>de</strong>s conditions <strong>de</strong> neige) par lequel les conditions météorologiques<br />

<strong>influence</strong>nt <strong>la</strong> taille <strong>de</strong>s popu<strong>la</strong>tions. On va donc une étape plus loin que <strong>la</strong> plupart <strong>de</strong>s étu<strong>de</strong>s<br />

s'intéressant aux eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> <strong>sur</strong> <strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>tions (Krebs & Berteaux 2006).<br />

Dans un contexte plus global, notre étu<strong>de</strong> vient également ajouter aux quelques travaux<br />

montrant un eff<strong>et</strong> possibl e <strong>du</strong> <strong>climat</strong> <strong>sur</strong> les re<strong>la</strong>tions prédateurs-proies. À ma connaissance,<br />

plusieurs étu<strong>de</strong>s se sont intéressées aux eff<strong>et</strong>s <strong>de</strong>s conditions <strong>de</strong> neige <strong>sur</strong> le succès <strong>de</strong><br />

prédation <strong>du</strong> loup (Canis lupus) <strong>sur</strong> <strong>de</strong>s herbivores <strong>de</strong> gran<strong>de</strong> taille (e.g. orignal (Post <strong>et</strong> al.<br />

1999b, Wilmers <strong>et</strong> al. 2006), cerf (Hebblewhite <strong>et</strong> al. 2002)) <strong>et</strong> une étu<strong>de</strong> récente montre que<br />

l' impact <strong>de</strong>s araignées <strong>sur</strong> les taux <strong>de</strong> décomposition <strong>de</strong> <strong>la</strong> litière feuillue est dépendant <strong>du</strong><br />

niveau <strong>de</strong> précipitations (Lensing & Wise 2006). Notre étu<strong>de</strong> suggère un eff<strong>et</strong> <strong>de</strong>s conditions<br />

<strong>de</strong> neige <strong>sur</strong> les interactions entre pékans <strong>et</strong> porcs-épies. C'est donc encore une fo is un eff<strong>et</strong><br />

<strong>de</strong>s précipitations qui est mis en avant, mais <strong>sur</strong> <strong>de</strong>s mammifères <strong>de</strong> taille moyenne. Notre<br />

étu<strong>de</strong> appuie donc l' hypothèse d' un eff<strong>et</strong> <strong>du</strong> <strong>climat</strong> <strong>sur</strong> les re<strong>la</strong>tions prédateurs-proies, en<br />

l'étendant à <strong>de</strong> nouvelles espèces <strong>de</strong> mammifère. Ainsi, elle souli gne l' importance <strong>de</strong>


110<br />

comprendre comment les interactions entre espèces varient en fonction <strong>de</strong>s conditions<br />

météorologiques pour modéliser <strong>et</strong> comprendre le plus rigoureusement possible <strong>la</strong> réponse<br />

<strong>de</strong>s communautés aux changements <strong>climat</strong>iques (Schmitz 2003).<br />

Pour confinner que les probabilités <strong>de</strong> prédation sont bien liées aux conditions <strong>de</strong> neige,<br />

une perspective <strong>de</strong> recherche serait <strong>de</strong> comparer nos résultats avec <strong>de</strong>s résultats obtenus dans<br />

d'autres popu<strong>la</strong>tions soumises à <strong>de</strong>s conditions <strong>climat</strong>iques différentes. Par exemple, <strong>la</strong><br />

popu<strong>la</strong>tion <strong>de</strong> porcs-épics suivie par Uldis Roze, <strong>et</strong> située au Nord-Ouest <strong>de</strong> <strong>la</strong> ville <strong>de</strong> New<br />

York, a connu une réintro<strong>du</strong>ction <strong>du</strong> pékan au début <strong>de</strong>s années 1990s après plusieurs années<br />

d 'absence. Suite au r<strong>et</strong>our <strong>du</strong> pékan, <strong>la</strong> popu<strong>la</strong>tion a subi un déclin marqué d'abondance avec<br />

une perte d'environ 90% <strong>de</strong>s indivi<strong>du</strong>s en 17 ans (Uldis Roze, New York Queens College,<br />

communication personnelle). Il serait intéressant d'évaluer si le déclin plus marqué <strong>et</strong> plus<br />

rapi<strong>de</strong> que l' on observe dans notre popu<strong>la</strong>tion pourrait être dû à <strong>de</strong>s différences <strong>de</strong> conditions<br />

<strong>de</strong> neige entre les <strong>de</strong>ux sites d'étu<strong>de</strong>s qui rendraient les porcs-épics <strong>du</strong> Bas-St-Laurent plus<br />

vulnérables à <strong>la</strong> prédation que les porcs-épics plus au sud.<br />

Eff<strong>et</strong>s <strong>de</strong>s variations environnementales <strong>sur</strong> <strong>l'utilisation</strong> <strong>de</strong> l 'habitat<br />

Les variations spatiales <strong>et</strong> temporelles <strong>de</strong>s conditions météorologiques (Wiersma &<br />

Piersma 1994, Brotons <strong>et</strong> al. 2000, Humphries <strong>et</strong> al. 2005) <strong>et</strong> <strong>du</strong> risque <strong>de</strong> prédation (Lima &<br />

Dili 1990, Brown 1999, Beaudoin <strong>et</strong> al. 2004, Creel <strong>et</strong> al. 2005) peuvent <strong>influence</strong>r<br />

l' utilisation <strong>de</strong> l ' habitat <strong>et</strong> le patron d'activité <strong>de</strong>s animaux. Les taux <strong>de</strong> prédation étaient<br />

re<strong>la</strong>tivement élevés pendant notre étu<strong>de</strong> <strong>et</strong> apparemment liés aux conditions <strong>de</strong> neige pendant<br />

l' hiver (chap. 3). D'autre part, les conditions thenniques constituent une contrainte<br />

potentielle pour les porcs-épics pendant l ' hiver (quand les températures sont beaucoup plus<br />

basses que <strong>la</strong> température critique inférieure <strong>de</strong>s porcs-épics), ainsi qu'en début d'été pour les<br />

jeunes dont le système <strong>de</strong> thennorégu<strong>la</strong>tion est encore immature (Hull 1973, Leon 1986). Les<br />

contraintes <strong>du</strong>es à l'environnement thermique <strong>et</strong> à <strong>la</strong> prédation étaient donc substantielles<br />

pendant notre étu<strong>de</strong>, <strong>et</strong> nous avons examiné l' <strong>influence</strong> <strong>de</strong> ces contraintes <strong>sur</strong> l' utilisation <strong>de</strong><br />

l' habitat par les animaux. En particulier, nous nous sommes intéressés à l' utilisation <strong>de</strong><br />

l ' habitat <strong>de</strong>s a<strong>du</strong>ltes au cours <strong>de</strong> l ' hiver <strong>et</strong> <strong>de</strong>s jeunes au cours <strong>du</strong> premier été <strong>de</strong> vie.


II I<br />

Hiver<br />

E n hi ver, on montre que <strong>la</strong> tani ère est le microhabitat offrant <strong>la</strong> me illeure p rotection<br />

contre les températures froi<strong>de</strong>s <strong>et</strong> que les animaux modifie nt leur patron d ' utilisati on <strong>de</strong> <strong>la</strong><br />

tani ère en fonction <strong>de</strong> <strong>la</strong> température. L'enfoncement dans <strong>la</strong> neige, qui est possiblement reli é<br />

au risque <strong>de</strong> prédation, <strong>influence</strong> également le patron d 'activité <strong>de</strong>s animaux. Les animaux<br />

ré<strong>du</strong>isent le temps passé <strong>de</strong>hors <strong>et</strong> augmentent leur acti vité diurne quand <strong>la</strong> température<br />

baisse <strong>et</strong> quand l'enfoncem ent dans <strong>la</strong> neige augmente. Les an imaux semblent donc utiliser<br />

leur tanière à <strong>la</strong> fo is cOlmne un refuge contre le froid mais aussi comme un refuge contre les<br />

prédateurs . Mon travail <strong>de</strong> doctorat démontre que les tanières offrent effecti vement un abri<br />

contre les températures basses, <strong>et</strong> il a été plusieurs fo is suggéré que les porcs-épi es peuvent<br />

également les util iser pour se soustraire aux prédateurs (Roze 1989, Griesemer <strong>et</strong> a l. 1996,<br />

Comto is & Bel1eaux 2005). Les porcs-épies ne semblent donc pas avoir <strong>de</strong> compromis à fa ire<br />

entre protection contre le fro id <strong>et</strong> protecti on contre les prédateurs au cours <strong>de</strong> l' hi ver. Par<br />

contre, les animaux <strong>de</strong>vant sortir pour s' alimenter, ils font face à un compromi s entre<br />

recherche <strong>de</strong> nourriture <strong>et</strong> protecti on contre le froid <strong>et</strong> les prédateurs. O n montre qu' ils y<br />

répon<strong>de</strong>nt en ré<strong>du</strong>isant le temps passé <strong>de</strong>hors <strong>et</strong> en augmentant l' intensité <strong>de</strong> l'alimentati on<br />

quand il fa it froid. On montre également que les animaux ne choisissent pas leurs sites<br />

d ' alimentati on en fonction <strong>de</strong> <strong>la</strong> température (i.e. ils n' utilisent pas les mi crohabitats offrant<br />

<strong>la</strong> meilleure protection thennique pour manger <strong>et</strong> ne modifient pas leur utilisati on <strong>de</strong>s<br />

microhabitats extéri eurs en fonction <strong>de</strong> <strong>la</strong> température). L ' hypothèse <strong>la</strong> plus probable est<br />

qu' ils choisissent les sites offrant <strong>la</strong> nourriture <strong>la</strong> plus digestible possible, quelque soient les<br />

conditions <strong>de</strong> température. Aussi, les animaux pourraient s'alimenter dans les sites où le<br />

ri sque <strong>de</strong> prédati on est le plus fa ible (par exemple si les porcs-épies sont mo ins faci lement<br />

détectables par les prédateurs si ils sont au somm<strong>et</strong> d ' un arbre). Le comportement <strong>de</strong>s<br />

animaux pendant l' hiver semble donc être influencé à <strong>la</strong> fois par les contraintes thermiques,<br />

le risque <strong>de</strong> prédation, <strong>et</strong> l'acquisition <strong>de</strong> nourriture.<br />

Nous avons montré que <strong>la</strong> tanière semble être utilisée cOlmne protection contre les<br />

prédateurs. Cependant, il n 'a jamais été prouvé que les tanières offrent effecti vement une<br />

te ll e protection. Afin d ' établir si les tani ères sont utilisées pour se soustraire aux prédateurs,<br />

une perspective <strong>de</strong> recherche serait <strong>de</strong> déterminer comment les animaux utilisent leur tanière<br />

en réponse à une augmentation expérimentale <strong>du</strong> ri sque <strong>de</strong> prédation en <strong>de</strong>hors <strong>de</strong> <strong>la</strong> péri o<strong>de</strong>


11 2<br />

hi vernale. Les tanières pouvant également constituer un refuge contre les insectes piqueurs<br />

(Comtois & Berteaux 2005), on pourrait utiliser <strong>de</strong>s urines <strong>de</strong> prédateurs pour manipuler le<br />

ri sque <strong>de</strong> prédati on perçu (Sweitzer & Berger 1992) au cours <strong>du</strong> printemps ou <strong>de</strong> l'automne<br />

quand ni l'environnement thermique ni les insectes ne constituent une contrainte pour les<br />

porcs-épies. D 'autre part, comme <strong>la</strong> tanière semble être le meilleur habitat pour se protéger à<br />

<strong>la</strong> fois <strong>du</strong> froid <strong>et</strong> <strong>de</strong>s prédateurs il nous est difficile <strong>de</strong> discerner les eff<strong>et</strong>s <strong>de</strong> l' un <strong>et</strong> l'autre<br />

facteur <strong>sur</strong> le comportement <strong>de</strong>s animaux (i.e. les hypothèses perm<strong>et</strong>tant d'expliquer le patron<br />

d' utilisati on <strong>de</strong>s tani ères ne sont pas mutuellement exclusives). Une perspecti ve dans ce<br />

domaine serait <strong>de</strong> réchauffer expéri ementalement celtaines tani ères afin d'évaluer si ces<br />

tanières sont plus utilisées (nombre <strong>de</strong> porcs-épies présents dans <strong>la</strong> tanière) ou plus longtemps<br />

utilisées (temps passé dans <strong>la</strong> tanière) que les tani ères contrôles. Finalement, pour préciser<br />

l'importance <strong>de</strong>s contraintes liées à l'acqui sition <strong>de</strong> nourriture, une perspecti ve serait <strong>de</strong><br />

déterminer si <strong>la</strong> digestibilité <strong>de</strong>s ramilles d'épin<strong>et</strong>te est liée à leur positi on dans l'arbre (e.g.<br />

les ramilles situées en haut <strong>de</strong>s arbres, c'est à dire où s'alimentent les porcs-épies, sont-elles<br />

plus di gestibles que celles situées en bas <strong>de</strong>s arbres ?). Ces recherches perm<strong>et</strong>traient <strong>de</strong><br />

préciser l' importance re<strong>la</strong>ti ve <strong>de</strong>s contraintes liées au <strong>climat</strong>, à <strong>la</strong> prédati on, <strong>et</strong> à <strong>la</strong> recherche<br />

<strong>de</strong> nourriture, <strong>sur</strong> le comportement <strong>de</strong>s animaux pendant l' hi ver.<br />

Été<br />

En été, on montre que les jeunes porcs-épies utilisent <strong>de</strong>s microhabitats offrant un fo rt<br />

couvert protecteur, même si <strong>la</strong> température ambiante y est plus basse. Les animaux<br />

augmentent leur utilisation <strong>de</strong>s tani ères quand les températures sont basses <strong>et</strong> quand il pleut<br />

mais l' utilisati on <strong>du</strong> couvert à l'extérieur <strong>de</strong>s tani ères n'est pas influencée par les condi tions<br />

thermiques. Même en été où le gain d'énergie par radiation so<strong>la</strong>ire est potentiellement<br />

important (Demarchi & Bunne ll 1993), <strong>et</strong> où l' utilisati on d' habitats ouverts peut donc être<br />

bénéfique pour <strong>de</strong>s jeunes sensibles à l ' hypothermie, <strong>la</strong> tanière semble consti tuer un habitat<br />

couvert paliiculier que les animaux util isent comme refuge contre les conditions <strong>climat</strong>iques<br />

les plus sévères. Quand les conditions sont plus clémentes, les jeunes sortent <strong>de</strong>s tani ères<br />

mais utilisent un couvert végétati f <strong>de</strong>nse, probablement pour se protéger <strong>de</strong>s prédateurs.<br />

Comme en hi ver, <strong>et</strong> en désaccord avec nos prédictions basées <strong>sur</strong> l' impOliance <strong>du</strong> gain<br />

d 'énergie par radiati on so<strong>la</strong>ire pendant l'été, les tani ères représentent donc un refuge à <strong>la</strong> fo is<br />

contre les prédateurs <strong>et</strong> contre les conditions <strong>climat</strong>iques défavorables. Là encore, le


113<br />

compromis auquel les animaux font face est <strong>de</strong> <strong>de</strong>voir quitter <strong>la</strong> tanière pour chercher <strong>de</strong> <strong>la</strong><br />

nourriture. On constate que les jeunes diminuent leur utilisation <strong>de</strong>s tanières <strong>et</strong> <strong>du</strong> couvert à<br />

l' extéri eur <strong>de</strong> <strong>la</strong> tanière au cours <strong>de</strong> <strong>la</strong> saison. Une hypothèse (pour les tanières) est qu' ils<br />

quittent davantage les tanières quand leurs besoins énergétiques augmentent <strong>et</strong> que leur<br />

capacité <strong>de</strong> thermorégu<strong>la</strong>tion s'améliore. Pour le couvert à l'extéri eur <strong>de</strong> <strong>la</strong> tani ère, on<br />

pourrait supposer que les jeunes diminuent son utilisati on lorsqu' ils <strong>de</strong>viennent, en<br />

grandi ssant, moins vulnérables aux prédateurs. Cependant, l' analyse <strong>de</strong> <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s<br />

indivi<strong>du</strong>s n' indique pas que les animaux plus âgés soient moins vulnérables à <strong>la</strong> prédati on.<br />

Une hypothèse serait que les jeunes lorsqu' ils grandissent <strong>de</strong>vi ennent plus autonomes dans le<br />

choix <strong>de</strong>s sites utilisés, <strong>et</strong> qu' ils chois issent <strong>de</strong>s sites moins couverts que ceux où leurs mères<br />

les cachaient au début <strong>de</strong> leur vie.<br />

Au cours <strong>de</strong> mon doctorat, j 'ai évalué l' utilisati on <strong>de</strong> l' habitat à <strong>de</strong>s échelles temporelles<br />

<strong>et</strong> spati ales très fines. Ceci a permis <strong>de</strong> m<strong>et</strong>tre en évi<strong>de</strong>nce <strong>de</strong>s changements subtils dans le<br />

comportement <strong>de</strong>s animaux en réponse aux variations environnementales auxquelles ils sont<br />

exposés. Pour <strong>de</strong>s animaux qui se dép<strong>la</strong>cent peu, comme les jeunes porcs-épics pendant leur<br />

premier été (chap. 5) ou les a<strong>du</strong>ltes au cours <strong>de</strong> l' hiver (Roze 1984), <strong>la</strong> sélecti on <strong>de</strong> l' habitat<br />

se fa it à une éche lle très fin e. Une étu<strong>de</strong> faite à l'échelle <strong>du</strong> domaine vital par exemple (3 ème<br />

ordre <strong>de</strong> sélecti on, Johnson 1980) <strong>de</strong> l' utilisation <strong>de</strong> l' habitat n'aurait sans doute pas permis<br />

<strong>de</strong> déceler <strong>de</strong> telles vari ati ons comportementales chez les animaux. On montre que, à <strong>la</strong> fo is<br />

les conditions météorologiques <strong>et</strong> le ri sque <strong>de</strong> prédation, semblent <strong>influence</strong>r le<br />

comportement <strong>de</strong>s animaux. Étant donné que certains habitats offrent une protection à <strong>la</strong> fo is<br />

contre le froid <strong>et</strong> les prédateurs, il nous est difficile d' interpréter <strong>de</strong> mani ère sûre le<br />

comportement <strong>de</strong>s animaux. En fait, le <strong>climat</strong> <strong>et</strong> <strong>la</strong> prédation pouvant tous <strong>de</strong>ux exercer <strong>de</strong><br />

fOlies contraintes <strong>sur</strong> le comportement <strong>de</strong>s animaux, avec <strong>de</strong>s conséquences <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie <strong>et</strong> le<br />

succès repro<strong>du</strong>cteur <strong>de</strong>s indivi<strong>du</strong>s (e.g. Sea<strong>la</strong>n<strong>de</strong>r 1952, Hik 1995, Dawson <strong>et</strong> al. 2005), il est<br />

fOli probable que les <strong>de</strong>ux facteurs interagissent pour <strong>influence</strong>r l' utilisation <strong>de</strong> l' habitat <strong>et</strong> le<br />

patron d'activité <strong>de</strong>s animaux.


114<br />

Différences indivi<strong>du</strong>elles d 'utilisation <strong>de</strong> l 'habitat <strong>et</strong> conséquences <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie<br />

La qualité <strong>de</strong> l' habitat qu' un animal utilise peut potentiellement <strong>influence</strong>r sa <strong>sur</strong>vie <strong>et</strong><br />

son succès repro<strong>du</strong>cteur (McLoughlin <strong>et</strong> al. 2005, P<strong>et</strong>torelli <strong>et</strong> al. 2005, McLoughlin <strong>et</strong> al.<br />

2006). En conséquence, <strong>de</strong>s différences indivi<strong>du</strong>elles dans l' utilisati on <strong>de</strong> l' habitat peuvent se<br />

tra<strong>du</strong>ire par <strong>de</strong>s di fférences <strong>de</strong> <strong>sur</strong>vie entre indivi<strong>du</strong>s. En i<strong>de</strong>ntifi ant les principales causes <strong>de</strong><br />

mortalité dans notre popu<strong>la</strong>tion, <strong>et</strong> en examinant quels patrons d ' utilisati on <strong>de</strong> l' habitat<br />

amélioraient <strong>la</strong> <strong>sur</strong>vie indivi<strong>du</strong>elle, on a mis en évi<strong>de</strong>nce les caractéri stiques <strong>de</strong> l' habitat qui<br />

pouvaient servir à mo<strong>du</strong>ler les eff<strong>et</strong>s négati fs <strong>de</strong>s différentes variables environnementales<br />

(prédation <strong>et</strong> exposition au froid).<br />

En hi ver, <strong>la</strong> prédation <strong>et</strong> l' inanition sont les <strong>de</strong>ux principales causes <strong>de</strong> mortali té dans<br />

notre popu<strong>la</strong>tion. On i<strong>de</strong>ntifie <strong>de</strong>s di fférences indivi<strong>du</strong>elles dans le patron d'acti vité <strong>de</strong>s<br />

animaux, avec certaines conséquences <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie. En eff<strong>et</strong>, les animaux fa isant le plus <strong>de</strong><br />

sott ies par jour sont ceux qui <strong>sur</strong>vivent le moins bien, sans doute car il s passent plus <strong>de</strong> temps<br />

au sol (l orsqu ' ils voyagent entre <strong>la</strong> tanière <strong>et</strong> les arbres d'alimentati on) où ils sont fac ilement<br />

détectables <strong>et</strong> vulnérables aux prédateurs. Ré<strong>du</strong>ire le nombre <strong>de</strong> sotties par jour semble donc<br />

un moyen efficace <strong>de</strong> limiter <strong>la</strong> probabilité <strong>de</strong> prédation. Cependant, étant donné que les<br />

porcs-épics épuisent leurs réserves <strong>de</strong> graisse tôt dans l' hi ver (Sweitzer & Berger 1993), <strong>et</strong><br />

qu' ils n'accumulent pas <strong>de</strong> réserves <strong>de</strong> nourriture dans leur tani ère, ils sortent au moins une<br />

fo is chaque jour pour s'alimenter (chap. 4). On ne trouve pas d'eff<strong>et</strong> <strong>de</strong>s autres différences<br />

indivi<strong>du</strong>elles dans les patrons d'acti vité <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie. Par exempl e, un animal qui passe plus<br />

<strong>de</strong> temps <strong>de</strong>hors ne <strong>sur</strong>vit pas nécessairement mieux qu' un autre. Il est possible que les<br />

diffé rences indivi<strong>du</strong>elles dans le temps passé <strong>de</strong>hors, par exemple, aient <strong>de</strong>s eff<strong>et</strong>s plus subtils<br />

que <strong>de</strong>s eff<strong>et</strong>s directs <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie. Ainsi, une femelle passant plus <strong>de</strong> temps <strong>de</strong>hors qu ' une<br />

autre va peut être maintenir une meilleure condition corporell e au cours <strong>de</strong> l' hi ver, ce qui<br />

pourra <strong>influence</strong>r son succès repro<strong>du</strong>cteur l'été suivant. Notre protocole <strong>de</strong> sui vi ne perm<strong>et</strong><br />

pas <strong>de</strong> m<strong>et</strong>tre en évi<strong>de</strong>nce ces possibles différences, notamment car il est difficile <strong>de</strong><br />

connaître le statut repro<strong>du</strong>cteur d' une fe melle <strong>de</strong> mani ère süre <strong>et</strong> <strong>de</strong> trouver les jeunes pour<br />

déterminer le succès repro<strong>du</strong>cteur (chap. 2). On arri ve cependant à m<strong>et</strong>tre en évi<strong>de</strong>nce les<br />

eff<strong>et</strong>s <strong>de</strong>s di fférences indivi<strong>du</strong>elles <strong>de</strong> patron d'activité <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie, <strong>et</strong> on interprète ces<br />

diffé rences <strong>de</strong> <strong>sur</strong>vie comme <strong>de</strong>s différences dans le ri sque <strong>de</strong> détecti on par les prédateurs.


11 5<br />

En été, <strong>la</strong> mortalité <strong>de</strong>s jeunes est élevée <strong>et</strong> <strong>la</strong> prédati on est <strong>la</strong> cause <strong>de</strong> presque toutes les<br />

mortalités. Là encore, les indivi<strong>du</strong>s di ffèrent dans leur utilisati on <strong>de</strong> l' habitat avec <strong>de</strong>s<br />

conséquences pour <strong>la</strong> <strong>sur</strong>vie. Les animaux utilisant le plus <strong>de</strong> couvert protecteur <strong>et</strong> utilisant le<br />

moins <strong>de</strong> localisati ons au sol <strong>sur</strong>vivent le mieux, ainsi que ceux utilisant <strong>de</strong>s zones avec le<br />

plus d'arbustes. Ici encore, on interprète ces différences <strong>de</strong> <strong>sur</strong>vie comme <strong>de</strong>s di ffé rences<br />

d 'exposition aux prédateurs. Été comme hi ver, <strong>la</strong> modification <strong>de</strong>s patrons d'activité <strong>et</strong> <strong>de</strong><br />

l' utilisati on <strong>de</strong> 1 ' habitat semblent perm<strong>et</strong>tre, dans une certaine me<strong>sur</strong>e, <strong>de</strong> mo<strong>du</strong>ler les ri sques<br />

<strong>de</strong> prédation.<br />

Un sui vi détaillé <strong>du</strong> comportement <strong>de</strong>s animaux nous a pennis <strong>de</strong> m<strong>et</strong>tre en évi<strong>de</strong>nce<br />

quelles caractéri stiques <strong>de</strong> l' habitat ou quels patrons d'acti vi té affectaient <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s porcsépics<br />

en présence <strong>de</strong> prédateurs. Un tel sui vi <strong>de</strong>man<strong>de</strong> un investi ssement en temps<br />

considérable <strong>et</strong> le nombre d' indi vi<strong>du</strong>s suivis est par conséquent re<strong>la</strong>ti vement p<strong>et</strong>it. Malgré<br />

notre p<strong>et</strong>ite taille d'échantillon, nous montrons <strong>de</strong>s eff<strong>et</strong>s importants <strong>de</strong> l' utilisation <strong>de</strong><br />

1 ' habitat <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie, particulièrement pour les jeunes qui sont les plus susceptibles à <strong>la</strong><br />

prédati on. Notre étu<strong>de</strong> m<strong>et</strong> en évi<strong>de</strong>nce l' impOliance <strong>de</strong> comparer l'utilisati on <strong>de</strong> 1 ' habitat<br />

avec <strong>de</strong>s me<strong>sur</strong>es <strong>de</strong> <strong>sur</strong>vie ou <strong>de</strong> succès repro<strong>du</strong>cteur <strong>de</strong>s indivi<strong>du</strong>s afin <strong>de</strong> définir<br />

l' importance d ' un habitat ou d' une caractéri stique d' habitat pour une espèce donnée<br />

(Garsheli s 2000).<br />

Prédation, <strong>climat</strong>, <strong>et</strong> réchauffement <strong>climat</strong>ique<br />

Mon travail <strong>de</strong> doctorat a permis <strong>de</strong> m<strong>et</strong>tre en évi<strong>de</strong>nce certains eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> <strong>et</strong> <strong>de</strong> <strong>la</strong><br />

prédati on <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s indivi<strong>du</strong>s, avec <strong>de</strong>s conséquences <strong>sur</strong> <strong>la</strong> taille <strong>de</strong>s popu<strong>la</strong>tions.<br />

Dans un contexte <strong>de</strong> réchauffement <strong>climat</strong>ique, j 'étais particulièrement intéressée à<br />

comprendre l' importance re<strong>la</strong>ti ve <strong>du</strong> <strong>climat</strong> <strong>et</strong> <strong>de</strong> <strong>la</strong> prédation <strong>sur</strong> les changements<br />

d' abondance <strong>de</strong>s popu<strong>la</strong>ti ons. Bien que le but général <strong>de</strong> mon doctorat n'était pas <strong>de</strong> prédire<br />

l'eff<strong>et</strong> <strong>du</strong> réchauffement <strong>climat</strong>ique <strong>sur</strong> les popu<strong>la</strong>tions <strong>de</strong> porcs-épics, nous pouvo ns ém<strong>et</strong>tre<br />

certaines suppositions à partir <strong>de</strong>s résultats obtenus.<br />

Mon étu<strong>de</strong> montre que <strong>la</strong> présence <strong>de</strong> prédateurs a un eff<strong>et</strong> marqué <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s<br />

indivi<strong>du</strong>s <strong>et</strong> que les conditions <strong>de</strong> neige peuvent <strong>influence</strong>r les probabilités <strong>de</strong> prédation. Les<br />

modélisati ons <strong>climat</strong>iques prévoient une augmentation <strong>du</strong> niveau <strong>de</strong> précipitati on dans <strong>la</strong>


11 6<br />

plupart <strong>de</strong>s régions <strong>du</strong> globe pour le 2 1 éme siècle (Houghton <strong>et</strong> al. 2001). Dans les régions<br />

tempérées, les précipitations sous forme <strong>de</strong> neige <strong>de</strong>vraient par ailleurs diminuer au profit <strong>de</strong><br />

précipitations sous fo rme <strong>de</strong> pluie. Ces changements dans <strong>la</strong> quantité <strong>et</strong> <strong>la</strong> fo nne <strong>de</strong>s<br />

précipitati ons hivernales ont donc le potentiel pour affecter les interacti ons prédateurs-proies,<br />

via <strong>de</strong>s eff<strong>et</strong>s <strong>sur</strong> les conditions <strong>de</strong> neige au sol.<br />

D 'autre part, mon travail montre un eff<strong>et</strong> <strong>de</strong> l'environnement thermique <strong>et</strong> <strong>de</strong>s condi tions<br />

<strong>de</strong> neige <strong>sur</strong> les patrons d'acti vité <strong>de</strong>s animaux au cours <strong>de</strong> l' hi ver. D'après nos résultats, un<br />

réchauffement <strong>de</strong>s températures hivernales <strong>de</strong>vrait favori ser les porcs-épics qui pourraient<br />

passer plus <strong>de</strong> temps <strong>de</strong>hors à s'alimenter s'il fa it plus doux. Cependant, puisque les animaux<br />

diminuent le temps passé <strong>de</strong>hors lorsque l'enfo ncement dans <strong>la</strong> neige est élevé, les eff<strong>et</strong>s<br />

bénéfiques d ' une hausse <strong>de</strong>s températures pourraient être minimisés ou annulés si<br />

l'enfoncement dans <strong>la</strong> neige augmente suite aux changements prévus dans le régime <strong>de</strong>s<br />

précipitations. En été, le pri ncipal facteur influençant le compOlt ement <strong>et</strong> <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s jeun es<br />

est <strong>la</strong> prédation. Le ri sque <strong>de</strong> prédati on ne semb<strong>la</strong>nt pas vari er en fo ncti on <strong>de</strong>s conditions<br />

météorologiques au cours <strong>de</strong> l'été, le réchauffement <strong>climat</strong>ique ne <strong>de</strong>vrait pas avoir d' impact<br />

direct marqué <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s jeunes. Par contre, <strong>de</strong>s eff<strong>et</strong>s indirects peuvent être envisagés<br />

par exemple si l'augmentati on <strong>de</strong>s précipitations modi fie <strong>la</strong> di sponibilité en nourriture<br />

pendant <strong>la</strong> croissance <strong>de</strong>s jeunes (A lbon <strong>et</strong> al. 1987, Langvatn <strong>et</strong> al. 1996, Post & Stens<strong>et</strong>h<br />

1999).<br />

Une <strong>de</strong>s étapes essentielles pour prédire les conséquences <strong>du</strong> réchauffement <strong>climat</strong>ique<br />

<strong>sur</strong> les écosystèmes est <strong>de</strong> m<strong>et</strong>tre en évi<strong>de</strong>nce <strong>de</strong>s re<strong>la</strong>tions <strong>de</strong> cause à eff<strong>et</strong> entre processus<br />

biologiques <strong>et</strong> fluctuations <strong>climat</strong>iques (Belteaux <strong>et</strong> al. 2006). Notre étu<strong>de</strong> est essenti ellement<br />

basée <strong>sur</strong> <strong>la</strong> mi se en évi<strong>de</strong>nce <strong>de</strong> corré<strong>la</strong>tions entre certaines vari ables environnementales (i .e.<br />

conditions <strong>climat</strong>iques, risque <strong>de</strong> prédation) <strong>et</strong> le comportement ou <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s porcs-épics.<br />

Nous ne pouvons donc pas effectuer <strong>de</strong> prédi ctions quant à l'eff<strong>et</strong> <strong>de</strong>s variati ons cli matiques<br />

<strong>sur</strong> les popu<strong>la</strong>tio ns <strong>de</strong> porcs-épics. Néanmoins, en i<strong>de</strong>ntifiant certains mécanismes possibles<br />

par lesquels le <strong>climat</strong> pourrait agir <strong>sur</strong> les popu<strong>la</strong>ti ons, notre étu<strong>de</strong> penn<strong>et</strong> <strong>de</strong> générer <strong>de</strong>s<br />

hypothèses qui pOUlTaient être testées dans <strong>de</strong>s conditions simi<strong>la</strong>ires ou légérement<br />

différentes <strong>de</strong> celles rencontrées pendant notre étu<strong>de</strong>.<br />

J'ai effectué mes recherches dans un contexte particulier où <strong>la</strong> pression <strong>de</strong> prédation <strong>sur</strong><br />

les porcs-épics était très importante, suite à une augmentati on récente <strong>de</strong> l'abondance <strong>du</strong>


117<br />

pékan dans <strong>la</strong> région. On montre un eff<strong>et</strong> marqué <strong>de</strong> <strong>la</strong> présence <strong>de</strong> prédateurs <strong>sur</strong> <strong>la</strong> <strong>sur</strong>vie <strong>et</strong><br />

le comportement <strong>de</strong>s animaux. On montre aussi les eff<strong>et</strong>s <strong>de</strong> celiains facteurs <strong>climat</strong>iques,<br />

mais les eff<strong>et</strong>s <strong>de</strong> <strong>la</strong> prédation semblent beaucoup plus drastiques que les eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong>.<br />

Une perspective <strong>de</strong> recherche intéressante serait <strong>de</strong> comparer l' eff<strong>et</strong> <strong>du</strong> <strong>climat</strong> mis en<br />

évi<strong>de</strong>nce dans notre popu<strong>la</strong>tion à l'eff<strong>et</strong> <strong>du</strong> <strong>climat</strong> dans d'autres popu<strong>la</strong>tions où les prédateurs<br />

seraient soit absents, soit en faible abondance. Alternativement, on pourrait effectuer <strong>de</strong>s<br />

comparaisons entre popu<strong>la</strong>tions soumises à <strong>de</strong>s niveaux <strong>de</strong> prédation simi<strong>la</strong>ires d'une<br />

popu<strong>la</strong>tion à l'autre, mais à <strong>de</strong>s conditions <strong>climat</strong>iques différentes (le long d' un gradient<br />

nord-sud par exemple). Ceci <strong>de</strong>vrait penn<strong>et</strong>tre <strong>de</strong> m<strong>et</strong>tre en perspective les résultats appol1és<br />

par notre étu<strong>de</strong> quant à l'importance re<strong>la</strong>tive <strong>de</strong>s eff<strong>et</strong>s <strong>du</strong> <strong>climat</strong> <strong>et</strong> <strong>de</strong> <strong>la</strong> prédation <strong>sur</strong> le<br />

compoliement <strong>et</strong> <strong>la</strong> <strong>sur</strong>vie <strong>de</strong>s indivi<strong>du</strong>s, <strong>et</strong> ainsi d'améliorer les connaissances <strong>de</strong>s eff<strong>et</strong>s <strong>du</strong><br />

<strong>climat</strong> <strong>sur</strong> <strong>la</strong> dynamique <strong>de</strong>s popu<strong>la</strong>tions chez <strong>de</strong>s herbivores <strong>de</strong> taille moyenne. L'impoliance<br />

re<strong>la</strong>tive <strong>de</strong>s facteurs <strong>de</strong>nsité-dépendants <strong>et</strong> <strong>de</strong>nsité-indépendants dans <strong>la</strong> détermination <strong>de</strong><br />

l'abondance <strong>de</strong>s popu<strong>la</strong>tions reste en eff<strong>et</strong> un débat d'actualité, <strong>et</strong> qui reprend toute son<br />

ampleur dans le contexte actuel <strong>de</strong> réchauffement cl imatique.<br />

" .. . the <strong>climat</strong>e change research agenda, when studied at the popu<strong>la</strong>tion level, ties back to the<br />

old <strong>de</strong>bate on the re<strong>la</strong>tive merits of <strong>de</strong>nsity-in<strong>de</strong>pen<strong>de</strong>nt and <strong>de</strong>nsity-<strong>de</strong>pen<strong>de</strong>nt pro cesses<br />

being responsible for popu<strong>la</strong>tion fluctuations." (Kaita<strong>la</strong> & Ranta 2001).


11 8<br />

Annexe 1 Description <strong>de</strong>s micro habitats - chapitre 4<br />

Categori es used when <strong>de</strong>scribing microhabitats where we p<strong>la</strong>ced North American porcupine<br />

mounts in Parc National <strong>du</strong> Bic, Québec, December to March, 2004-2005. We visually<br />

estimated the veg<strong>et</strong>ative cover present w ithin 1 m of the mount to c<strong>la</strong>ssify microhabitats as<br />

open or covered.<br />

"Den": mount p<strong>la</strong>ced in a rock <strong>de</strong>n usuall y frequented by porcupines: J to 3 m from the<br />

entrance, <strong>de</strong>pending on <strong>de</strong>n structure,<br />

" Ground open": mount p<strong>la</strong>ced on the ground, 25% of veg<strong>et</strong>ati ve cover,<br />

"Conifer open": mount p<strong>la</strong>ced 2 m above ground in a coni fe rous tree, 25% of veg<strong>et</strong>ati ve<br />

cover,<br />

"Deci<strong>du</strong>ous": mount p<strong>la</strong>ced 2 m above ground in a <strong>de</strong>ci<strong>du</strong>ous tree, veg<strong>et</strong>ati ve cover al ways<br />


119<br />

Annexe 2 Étalonnage <strong>de</strong>s modèles en cuivre - chapitre 4<br />

COlTe<strong>la</strong>tion b<strong>et</strong>ween power consumed by mounts 1 and 2 (hourly means) when exposed to<br />

avail able conditions of operati ve temperature <strong>du</strong>ring fo ur events of calibration (specifie d by<br />

fo ur di ffe rent symbols) in Parc National <strong>du</strong> Bi c, Québec, December to March, 2004-2005<br />

(Pearson cOITe<strong>la</strong>tion coeffi cient: r = 0.94, p-<br />

oC 6 •<br />

'0 40<br />

.<br />

~<br />

Q.I<br />

E<br />

:J ~.,.<br />

•<br />

VI<br />

c::: 35 -<br />

0<br />

u<br />

••••<br />

...<br />

6<br />

30 ~<br />

Q.I<br />

~ 6<br />

0<br />

Q.<br />

1<br />

25 -<br />

6<br />

20<br />

20 25 30 35 40 45 50<br />

Power consumed by mount 1 (W)<br />

55


120<br />

Annexe 3<br />

Puissance consommée par les modèles taxi<strong>de</strong>rmiques en<br />

fonction <strong>de</strong> <strong>la</strong> température opérante - chapitre 4<br />

General re<strong>la</strong>ti onship b<strong>et</strong>ween power consumed (W) by North Ameri can porcupine mounts<br />

and operati ve temperature (oC) mea<strong>sur</strong>ed in the stand (0.3 m above ground) when mounts<br />

were p<strong>la</strong>ced in "<strong>de</strong>n" (filled circles) and non-<strong>de</strong>n (open circles) microhabitats in Parc<br />

Nati onal <strong>du</strong> Bic, Québec, December to March, 2004-2005. We observed a negati ve<br />

re<strong>la</strong>ti onship fo r non-<strong>de</strong>n microhabitats (y=-0.704*x+ 36.64, F (l , 789) = 620.24, p


121<br />

Références<br />

Aanes, R. , & R. An<strong>de</strong>rsen. 1996. The effects of sex, time of birth, and habitat on the<br />

vulnerability ofroe <strong>de</strong>er fawns to red fox predation. Canadian Journal of<br />

Zoology 74: 1857-1865.<br />

Aars, 1., & R. A . Ims. 2002. Intrinsic and c\imatic d<strong>et</strong>erminants of popu<strong>la</strong>tion<br />

<strong>de</strong>mography: The winter dynamics oftundra voles. Ecology 83 :3449-3456.<br />

Albon, S. D., & T. Clutton-Brock. 1988. Climate and the popu<strong>la</strong>tion dynamics of red<br />

<strong>de</strong>er in Scot<strong>la</strong>nd. Pages 93-107 in M. B. Usher & D. B. A. Thompson, editors.<br />

Ecological change in the Up<strong>la</strong>nds. B<strong>la</strong>ckwell Scientific, Oxford, UK.<br />

Albon, S. D., T. H. Clutton-Brock, & F. E. Guinness. 1987. Early <strong>de</strong>velopment and<br />

popu<strong>la</strong>tion dynamics in red <strong>de</strong>er. II. Density-in<strong>de</strong>pen<strong>de</strong>nt effects and cohort<br />

variation. Journal of Animal Ec%gy 56:69-81.<br />

An<strong>de</strong>rsen, R. , & 1. D. C. Linnell. 1998. Ecological corre<strong>la</strong>tes ofmortality ofroe <strong>de</strong>er<br />

fawns in a predator-free environment. Canadian Journal ofZoology 76: 1217-<br />

1225.<br />

Andren, H. , & P. Angelstam. 1988. Elevated predation rates as an edge effect in<br />

habitat is<strong>la</strong>nds - Experimental evi<strong>de</strong>nce. Ecology 69:544-547.<br />

Arakaki, S., & M . Tokeshi. 2005. Microhabitat selection in intertidal gobiid fishes:<br />

species- and size-associated variation. Marine Biology Research 1 :39-47 .<br />

Baker, 1. D. , & P. M. Thompson. 2007. Temporal and spatial variation in age-specific<br />

<strong>sur</strong>vival rates of a long-Iived mammal, the Hawaiian monk seal. Proceedings<br />

of the Royal Soci<strong>et</strong>y B-Biological Sciences 274:407-415 .<br />

Bakken, G. S. 1991. Wind-speed <strong>de</strong>pen<strong>de</strong>nce of the overall thermal con<strong>du</strong>ctance of<br />

fur and feather insu<strong>la</strong>tion. Journal of Thermal Biology 16:121-126.<br />

Bakken, G. S., D. 1. Erskine, & W. R. Santee. 1983. Construction and operation of<br />

heated taxi<strong>de</strong>rmic mounts used to mea<strong>sur</strong>e standard operative temperature.<br />

Ecology 64 :1658-1662 .<br />

Bakken, G. S. , & D. M. Gates. 1975. Heat-transfer analysis of animaIs: sorne<br />

implications for field ecology, physiology, and evolution. Pages 255-290 in D.<br />

M. Gates & R. B. Schmerl, editors. Perspectives of biophysical ecology.<br />

Springer-Ver<strong>la</strong>g, New York, USA.<br />

Bakker, E. S., R. C. Reiffers, H. Olff, & 1. M. Gleichman. 2005. Experimental<br />

manipu<strong>la</strong>tion of predation risk and food quality: effect on grazing behaviour<br />

in a central-p<strong>la</strong>ce foraging herbivore. Oecologia 146: 157-167.<br />

Barbraud, c., & H. Weimerskirch. 2003 . Climate and <strong>de</strong>nsity shape popu<strong>la</strong>tion<br />

dynamics of a marine top predator. Proceedings of the Royal Soci<strong>et</strong>y of<br />

London - Series B: Biological Sciences 270:2111-2116 .


Beaudoin, c., M. Cr<strong>et</strong>e, J. Huot, P. Etcheverry, & S. D. Côté. 2004. Does predation<br />

risk affect habitat use in snowshoe hares? Ecoscience 11:370-378.<br />

Begon, M., J. L. Harper, & C. R. Townsend. 1996. Ecology: indivi<strong>du</strong>als, popu<strong>la</strong>tions<br />

and communities, 3rd edition. B<strong>la</strong>ckwell Science, Oxford, UK.<br />

Beier, P. 2005. Being <strong>et</strong>hical as conservation biologists and as a soci<strong>et</strong>y.<br />

Conservation Biology 19: 1-2.<br />

Benn<strong>et</strong>t, A. F., R . B. Huey, H. Johnal<strong>de</strong>r, & K. A. Nagy. 1984. The parasol tail and<br />

thermoregu<strong>la</strong>tory behavior of the Cape ground-squirrel, Xerus inauris.<br />

Physiological Zoology 57:57-62.<br />

Berryman, A., & M. Lima. 2006. Deciphering the effects of <strong>climat</strong>e on animal<br />

popu<strong>la</strong>tions: diagnostic analysis provi<strong>de</strong>s new interpr<strong>et</strong>ation of Soay sheep<br />

dynamics. American Naturalist 168:784-795 .<br />

Berteaux, D., 1. Klvana, & c. Tru<strong>de</strong>au. 2005. Spring-to-fall mass gain in a northern<br />

popu<strong>la</strong>tion of North American porcupines. Journal ofMammalogy 86:514-<br />

519.<br />

Berteaux, D ., M. M. Humphries, C. J. Krebs, M . Lima, A. G. McAdam, N . P<strong>et</strong>torelli,<br />

D. Réale, T. Saitoh, E. Tkadlec, R. B. We<strong>la</strong>dji, & N. Chr. Stens<strong>et</strong>h. 2006.<br />

Constraints to projecting the effects of <strong>climat</strong>e change on mammals. Climate<br />

Research 32: 151-158.<br />

Bi<strong>de</strong>r, J. R. 1968. Animal activity in uncontrolled terrestrial communities as<br />

d<strong>et</strong>ermined by a sand transect technique. Ecological Monographs 38:269-308.<br />

Bleich, V. c., R. T. Bowyer, & J. D. Wehausen. 1997. Sexual segregation in<br />

mountain sheep: resources or predation? Wildlife Monographs 134: 1-50.<br />

Blumstein, D. T. 1998. Quantifying predation risk for refuging animais: a case study<br />

with gol<strong>de</strong>n marmots. Ethology 104:501-516.<br />

Bolnick, D. L, R. Svanback, J. A. Fordyce, L. H. Yang, J. M. Davis, C. D. Hulsey, &<br />

M. L. Forister. 2003. The ecology of indivi<strong>du</strong>als: inci<strong>de</strong>nce and implications<br />

of indivi<strong>du</strong>al specialization. American NaturaUst 161: 1-28.<br />

Bonenfant, c., J. M . Gail<strong>la</strong>rd, F. Klein, & A. Loison. 2002. Sex- and age-<strong>de</strong>pen<strong>de</strong>nt<br />

effects of popu<strong>la</strong>tion <strong>de</strong>nsity on life history traits of red <strong>de</strong>er Cervus e<strong>la</strong>phus<br />

in a temperate forest. Ecography 25:446-458 .<br />

Bowers, M. A. 1995. Use of space and habitats by the eastern chipmunk, Tamias<br />

striatus. Journal ofMammalogy 76: 12-21.<br />

Bowyer, R. T., J. G. Kie, & V. Van Ballenberghe. 1998. Habitat selection by neonatal<br />

b<strong>la</strong>ck-tailed <strong>de</strong>er: <strong>climat</strong>e, forage, or risk of predation? Journal of<br />

Mammalogy 79:415-425.<br />

Bozinovic, E., & R. A. Vasquez. 1999. Patch use in a diurnal ro<strong>de</strong>nt: handling and<br />

searching un<strong>de</strong>r thermoregu<strong>la</strong>tory costs. Functional Ecology 13:602-610.<br />

Brotons, L., M. Orell, K. Lahti, & K. Koivu<strong>la</strong>. 2000. Age-re<strong>la</strong>ted microhabitat<br />

segregation in willow tit Parus montanus winter flocks. Ethology 106:993-<br />

1005.<br />

Brown, J. S. 1999. Vigi<strong>la</strong>nce, patch use and habitat selection: foraging un<strong>de</strong>r<br />

predation risk. Evolutionary Ecology Research 1 :49-71.<br />

122


Bult, A., & C. B. Lynch. 1997. Nesting and fitness : lif<strong>et</strong>ime repro<strong>du</strong>ctive success in<br />

house mice bidirectionally selected for thermoregu<strong>la</strong>tory nest-building<br />

behavior. Behavior Gen<strong>et</strong>ics 27:231-240.<br />

Burnham, K. P. , & D. R. An<strong>de</strong>rson. 2002. Mo<strong>de</strong>l selection and multimo<strong>de</strong>l inference:<br />

a practical information-theor<strong>et</strong>ic approach, 2nd edition. Springer-Ver<strong>la</strong>g, New<br />

York, USA.<br />

Buskirk, S. W ., S. C. Forrest, M. G. Raphael, & H. 1. Harlow. 1989. Winter resting<br />

site ecology of marten in the central Rocky Mountains. Journal of Wildlife<br />

Management 53 : 191-196.<br />

Bustamante, D. M ., R. F. Nespol0, E. L. Rezen<strong>de</strong>, & F. Bozinovic. 2002. Dynamic<br />

thennal ba<strong>la</strong>nce in the leaf-eared mouse: The interp<strong>la</strong>y among ambient<br />

temperature, body size, and behavior. Physiological and Biochemical Zoology<br />

75:396-404.<br />

Byman, D., D. B. Hay, & G. S. Bakken. 1988. Energ<strong>et</strong>ic costs of the winter arboreal<br />

microc\imate: the gray squirrel in a tree. International Journal of<br />

Biom<strong>et</strong>eorology 32: 112-122.<br />

Campbell, J. L., M . J. Mitchell, P. M. Groffman, L. M. Christenson, & 1. P. Hardy.<br />

2005. Winter in northeastern North America: a critical period for ecological<br />

processes. Frontiers in Ecology and the Environment 3:314-322.<br />

Canon, S. K. , & F. C. Bryant. 1997. Bed-site characteristics ofpronghorn fawns .<br />

Journal of Wildlife Management 61: 1134-114l.<br />

Caswell, H. 200l. Matrix popu<strong>la</strong>tion mo<strong>de</strong>ls: construction, analysis, and<br />

interpr<strong>et</strong>ation, 2nd edition. Sinauer Associates, Sun<strong>de</strong>r<strong>la</strong>nd, USA.<br />

Chappell , M. A. 1981. Standard operative temperatures and cost of thermoregu<strong>la</strong>tion<br />

in the Arctic ground-squirrel, Spermophilus un<strong>du</strong><strong>la</strong>tus. Oecologia 49: 397-403 .<br />

Chappell , M. A., & G. A. Bartholomew. 1981. Activity and thennoregu<strong>la</strong>tion of the<br />

antelope ground-squirrel Ammospermophilus leucurus in winter and summer.<br />

Physiological Zoology 54:215-223.<br />

Chappell, M. A., A. V . Calvo, & H. C. Helier. 1978. Hypotha<strong>la</strong>mic thennosensitivity<br />

and adaptations for heat-storage behavior in three species of chipmunks<br />

(Eutamias) from different thermal environments. Journal of Comparative<br />

Physiology B 125: 175-1 83.<br />

Charlesworth, B. 1994. Evolution in age-structured popu<strong>la</strong>tions., 2nd edition.<br />

Cambridge University Press, Cambridge, UK.<br />

Choqu<strong>et</strong>, R. , A.-M. Reboul<strong>et</strong>, R. Pra<strong>de</strong>l, O. Gimenez, & 1.-D. Lebr<strong>et</strong>on. 2003 . User's<br />

manual for U-CARE. Mimeographed document, CEFE/CNRS, Montpellier,<br />

France. (http://ftp.ccfc.cnrs.fr/biOlnlSot't-CR/).<br />

Choqu<strong>et</strong>, R., A.-M. Reboul<strong>et</strong>, R. Pra<strong>de</strong>l, o. Gimenez, & 1. D. Lebr<strong>et</strong>on. 2004. M-<br />

SURGE: new software specifically <strong>de</strong>signed for multistate capture recapture<br />

mo<strong>de</strong>ls . Animal Biodiversity and Conservation 27 :207-2 15 .<br />

Choqu<strong>et</strong>, R. , A.-M. Reboul<strong>et</strong>, R. Pra<strong>de</strong>l, o. Gimenez, & 1. D. Lebr<strong>et</strong>on. 2005. M-<br />

SURGE 1. 7 user's manual. CEFE/CNRS, Montpellier, France.<br />

(http://ftp .ccfc. cnrs. fr/b iom/Soft-CRI).<br />

123


Christian, K. , C. R. Tracy, & W. P. Porter. 1983. Seasonal shifts in body-temperature<br />

and use ofmicrohabitats by Ga<strong>la</strong>pagos <strong>la</strong>nd iguanas (Conolophus, Palli<strong>du</strong>s).<br />

Ecology 64:463-468 .<br />

Ciuti, S., P. Bongi, S. Vassale, & M. Apollonio. 2006. Influence of fawning on the<br />

spatial behaviour and habitat selection offemale fallow <strong>de</strong>er (Dama dama)<br />

<strong>du</strong>ring <strong>la</strong> te pregnancy and early <strong>la</strong>ctation. Journal ofZoology 268:97-107.<br />

C<strong>la</strong>rk, D. A. , 1. Stirling, & W. Calvert. 1997. Distribution, characteristics, and use of<br />

earth <strong>de</strong>ns and re<strong>la</strong>ted excavations by po<strong>la</strong>r bears on the Western Hudson Bay<br />

low<strong>la</strong>nds. Arctic 50: 158-166.<br />

Close, D. c., C. McArthur, A. E. Hagelman, & H. Fitzgerald. 2005. Differentiai<br />

distribution of leaf chemistry in eucalypt seedlings <strong>du</strong>e to variation in who lep<strong>la</strong>nt<br />

nutrient avai<strong>la</strong>bility. Phy tochemistry 66:215-221.<br />

Clutton-Brock, T. H., M. Major, S. D. Albon, & F. E. Guinness. 1987. Early<br />

<strong>de</strong>velopment and popu<strong>la</strong>tion dynamics in red <strong>de</strong>er. 1. Density-<strong>de</strong>pen<strong>de</strong>nt<br />

effects on juvenile <strong>sur</strong>vival. Journal of Animal Ecology 56:53-67.<br />

Compton, B. W. , J. M. Rhymer, & M . McCollough. 2002. Habitat selection by wood<br />

turtles (Clemmys insculpta): an application ofpaired logistic regression.<br />

Ecology 83:833-843.<br />

Comtois, A. , & D. Berteaux. 2005. Impacts ofmosquitoes and b<strong>la</strong>ck flies on<br />

<strong>de</strong>fensive behaviour and microhabitat use of the North American porcupine<br />

(Er<strong>et</strong>hizon dorsatum) in southern Quebec. Canadian Journal ofZoology<br />

83:754-764.<br />

Cook, J. G. , L. L. Irwin, L. D. Bryant, R. A. Riggs, & J. W. Thomas. 1998. Re<strong>la</strong>tions<br />

of fore st coyer and condition of elk: a test of the thermal coyer hypothesis in<br />

summer and winter. Wildlife Monographs:5-61.<br />

Côté, S. D. , & M . Festa-Bianch<strong>et</strong>. 2001. Birthdate, mass and <strong>sur</strong>vival in mountain<br />

goat kids: effects of maternai characteristics and forage quality. Oecologia<br />

127:230-238.<br />

Coulson, T. , S. Albon, F. Guinness, J. Pemberton, & T. CluttonBrock. 1997.<br />

Popu<strong>la</strong>tion substructure, local <strong>de</strong>nsity, and calfwinter <strong>sur</strong>vival in red <strong>de</strong>er<br />

(Cervus e<strong>la</strong>phus). Ecology 78:852-863.<br />

Coulson, T. , E. A. Catchpole, S. D. Albon, B. J. T. Morgan, J. M. Pemberton, T. H.<br />

Clutton-Brock, M. J. Crawley, & B. T. Grenfell. 2001. Age, sex, <strong>de</strong>nsity,<br />

winter weather, and popu<strong>la</strong>tion crashes in Soay sheep. Science 292: 1528-<br />

1531.<br />

Cox, D. R. 1972. Regression mo<strong>de</strong>ls and life-tables. Journal of the Royal Statistical<br />

Soci<strong>et</strong>y Series B-Statistical M<strong>et</strong>hodology 34: 187-220.<br />

Craig, E. H. , & B. L. Keller. 1986. Movements and home range ofporcupines,<br />

Er<strong>et</strong>hizon dorsatum, in Idaho shrub <strong>de</strong>sert. Canadian Field Naturalist<br />

100:167-173.<br />

Crampe, J.-P., J.-M. Gail<strong>la</strong>rd, & A. Loison. 2002. L'enneigement hivernal: un facteur<br />

<strong>de</strong> variation <strong>du</strong> recrutement chez l'isard (Rupicapra pyrenaica pyrenaica) .<br />

Canadian Journal ofZoology 80: 1306-1312.<br />

124


125<br />

Creel, S. , 1. Winnie, B . Maxwell, K . Hamlin, & M. Creel. 2005. Elk alter habitat<br />

selection as an antipredator response to wolves. Ec% gy 86:3387-3397.<br />

Crespin, L. , R. Verhagen, N. C. Stens<strong>et</strong>h, N. G. Yoccoz, A. C. Prevot-Julliard, & J.<br />

D. Lebr<strong>et</strong>on. 2002. Survival in fluctuating bank vole popu<strong>la</strong>tions: seasonal<br />

and yearly variations. Dikos 98:467-479.<br />

Currie, R. G . 1993. Luni-so<strong>la</strong>r 18.6 and 10-11 year so<strong>la</strong>r cycle signaIs in USA air<br />

temperature records. International Journal of Climatology 13:31-50.<br />

Curtis, 1. D. 1941. The silvicultural significance of the porcupine. Journal of Forestry<br />

39:583-594.<br />

Curtis, 1. D. 1944. Appraisal of porcupine damage. Journal of Wildlifè Management<br />

8:88-91.<br />

Daly, M ., M. Wilson, P. R. Behrends, & L. F. Jacobs. 1990. Characteristics of<br />

kangaroo rats, Dipodomys merriami, associated with differential predation<br />

risk. Anima/ Behaviour 40:380-389.<br />

Danchin, É. , L.-A. Giral<strong>de</strong>au, & F. Cézilly. 2005. Écologie comportementale. Dunod,<br />

Paris, France.<br />

Davidson, 1., & H. G . Andrewal1ha. 1948. The <strong>influence</strong> of rainfall, evaporation and<br />

atmospheric temperature on fluctuations in the size of a natural popu<strong>la</strong>tion of<br />

Thrips imaginis (Thysanoptera). Journal of Animal Ecology 17:200-222.<br />

Davis, A. J., L. S. Jenkinson, 1. H. Lawton, B. Shorrocks, & S. Wood. 1998. Making<br />

mistakes when predicting shifts in species range in response to global<br />

warming. Nature 391:783-786.<br />

Dawson, R. D., C. C. Lawrie, & E. L. O'Brien. 2005. The impol1ance ofmicro<strong>climat</strong>e<br />

variation in d<strong>et</strong>ermining size, growth and <strong>sur</strong>vival of avian offspring:<br />

experimental evi<strong>de</strong>nce from a cavity nesting passerine. Decologia 144:499-<br />

507.<br />

Demarchi, M. W., & F. L. Bunnell. 1993. Estimating forest canopy effects on<br />

summer thermal coyer for Cervidae (<strong>de</strong>er family). Canadian Journa/ of<br />

Forest Research 23:2419-2426.<br />

Demarchi, M . W ., & F. L. Bunnell. 1995. Forest coyer selection and activity of cow<br />

moose in summer. Acta Theriologica 40:23-36 .<br />

DeMatteo, K. E. , & H. 1. Harlow. 1997. Thermoregu<strong>la</strong>tory responses of the North<br />

American porcupine (Er<strong>et</strong>hizon dorsatum) to <strong>de</strong>creasing ambient temperature<br />

and increasing wind speed. Comparative Biochemistry and Physiology- Part<br />

B: Biochemistry & Molecu/ar Bi%gy 116B:339-346.<br />

Dodge, W. E. 1982. Porcupine. Pages 355-366 in 1. A. Chapman & G. A. Feldhamer,<br />

editors. Wild mammals of North America: biology, management, and<br />

economics. Johns Hopkins University Press, Baltimore, USA.<br />

Doo<strong>la</strong>n, S. P., & D. W . Macdonald. 1997. Breeding and juvenile <strong>sur</strong>vival among<br />

slen<strong>de</strong>r-tailed meerkats (Suricata <strong>sur</strong>icatta) in the south-western Ka<strong>la</strong>hari:<br />

ecological and social <strong>influence</strong>s. Journal of Zo%gy 242:309-327.


Doug<strong>la</strong>s, C. L. , & D. M. Leslie, Jr. 1986. Influence ofweather and <strong>de</strong>nsity of<strong>la</strong>mb<br />

<strong>sur</strong>vival of <strong>de</strong>sert mountain sheep. Journal of Wildlife Management 50: 153-<br />

156.<br />

Dussault, c., 1. P. Ouell<strong>et</strong>, R. Courtois, J. Huot, L. Br<strong>et</strong>on, & J. Larochelle. 2004.<br />

Behavioural responses of moose to thermal conditions in the boreal forest.<br />

Ecoscience 11 :321-328.<br />

Dzialowski, E. M. 2005. Use of operative temperature and standard operative<br />

temperature mo<strong>de</strong>ls in thermal biology. Journal of Thermal Biology 30:317-<br />

334.<br />

Earle, R. D. , & K. R . Kramm. 1982. Corre<strong>la</strong>tion b<strong>et</strong>ween fisher and porcupine<br />

abundance in upper Michigan. American Mid<strong>la</strong>nd Naturalist 107:244-249.<br />

Ebensperger, L. A., & M. 1. Hurtado. 2005. On the re<strong>la</strong>tionship b<strong>et</strong>ween herbaceous<br />

coyer and vigi<strong>la</strong>nce activity of<strong>de</strong>gus (Octodon <strong>de</strong>gus). Ethology 111 :593-608 .<br />

Eberhardt, L. L. 2002. A paradigm for popu<strong>la</strong>tion analysis of long-lived vertebrates.<br />

Ecology 83:2841-2854.<br />

Fairbanks, W. S. 1993. Birth-date, birth-weight, and <strong>sur</strong>vival in pronghorn fawns.<br />

Journal ofMammalogy 74 :129-135 .<br />

Farn1er, C. J., D. K. Person, & R. T. Bowyer. 2006. Risk factors and mortality of<br />

b<strong>la</strong>ck-tailed <strong>de</strong>er in a managed forest <strong>la</strong>ndscape. Journal of Wildlife<br />

Management 70: 1403 -1415 .<br />

Farnsworth, E. J., & 1. Rosovsky. 1993. The <strong>et</strong>hics of ecological field<br />

experimentation. Conservation Biology 7:463-472.<br />

Fisher, D. O ., & A. W . Goldizen. 2001. Maternai care and infant behaviour of the<br />

bridled nailtail wal<strong>la</strong>by (Onychogaleafraenata). Journal ofZoology 255:321-<br />

330.<br />

Fitzgibbon, C. D . 1993. Antipredator strategies offemale Thomson gazelles with<br />

hid<strong>de</strong>n fawns. Journal ofMammalogy 74:758-762 .<br />

Forchhammer, M. c., T. H. Clutton-Brock, 1. Lindstrom, & S. D . Albon. 2001.<br />

Climate and popu<strong>la</strong>tion <strong>de</strong>nsity in<strong>du</strong>ce long-term cohort variation in a<br />

northern ungu<strong>la</strong>te. Journal of Animal Ecology 70:721-729.<br />

Forchhammer, M. c., N . C. Stens<strong>et</strong>h, E. Post, & R. Langvatn. 1998. Popu<strong>la</strong>tion<br />

dynamics ofNorwegian red <strong>de</strong>er: <strong>de</strong>nsity-<strong>de</strong>pen<strong>de</strong>nce and <strong>climat</strong>ic variation.<br />

Proceedings of the Royal Soci<strong>et</strong>y of London Series B-B iological Sciences<br />

265:341-350.<br />

Forman, D. W., & K. Williamson. 2005. From the field: an alternative m<strong>et</strong>hod for<br />

handling and marking small carnivores without the need for sedation. Wildlife<br />

Soci<strong>et</strong>y Bull<strong>et</strong>in 33:313-316.<br />

Fortin, D. 2001. The use ofheated taxi<strong>de</strong>rmie mounts in studies ofecological<br />

energ<strong>et</strong>ics. Mammalia 65: 195-204.<br />

Fortin, D., H. L. Beyer, M. S. Boyce, D. W. Smith, T. Duchesne, & J. S. Mao. 2005.<br />

Wolves <strong>influence</strong> elk movements: behavior shapes a trophic casca<strong>de</strong> in<br />

Yellowstone National Park. Ecology 86: 1320-1330.<br />

126


127<br />

Fortin, D., & G. Gauthier. 2000. The effect of postural adjustment on the thermal<br />

environment of greater snow goose goslings. Canadian Journal ofZoology<br />

78:8 17-821.<br />

Fournier, F., & D. W. Thomas. 1999. Thermoregu<strong>la</strong>tion and repeatability ofoxygenconsumption<br />

mea<strong>sur</strong>ements in winter-ac<strong>climat</strong>ized North American<br />

porcupines (Er<strong>et</strong>hizon dorsatum). Canadian Journal ofZoology 77: 194-202.<br />

Frohlich, C. 2000. Observations of irradiance variations. Space Science Reviews<br />

94: 15-24.<br />

Gail<strong>la</strong>rd, 1. M., M. Festa-Bianch<strong>et</strong>, & N. G. Yoccoz. 1998. Popu<strong>la</strong>tion dynamics of<br />

<strong>la</strong>rge herbivores: variable recruitment with constant a<strong>du</strong>lt <strong>sur</strong>vival. Trends in<br />

Ecology & Evolution 13:58-63.<br />

Gail<strong>la</strong>rd, 1. M., M. Festa-Bianch<strong>et</strong>, N. G. Yoccoz, A. Loison, & C. Toiego. 2000.<br />

Temporal variation in fitness components and popu<strong>la</strong>tion dynamics of <strong>la</strong>rge<br />

herbivores. Annual Review of Ecology and Systematics 31 :367-393.<br />

Gail<strong>la</strong>rd, 1. M., A. Loison, & C. Toiego. 2003. Variation in life history traits and<br />

realistic popu<strong>la</strong>tion mo<strong>de</strong>ls for wildlife management: the case of ungu<strong>la</strong>tes.<br />

Pages 115-132 in M . Festa-Bianch<strong>et</strong> & M . Apollonio, editors. Animal<br />

behavior and wildlife conservation. Is<strong>la</strong>nd Press, Washington, USA.<br />

Gail<strong>la</strong>rd, J. M., D . Pontier, D. Al<strong>la</strong>ine, 1. D. Lebr<strong>et</strong>on, 1. Trouvilliez, & 1. Clobert.<br />

1989. An analysis of <strong>de</strong>mographic tactics in birds and mammals. Di/ms 56:59-<br />

76.<br />

Gail<strong>la</strong>rd, 1. M., & N. G. Yoccoz. 2003. Temporal variation in <strong>sur</strong>vival ofmammals:<br />

A case of environmental canalization? Ecology 84 :3294-3306.<br />

Gail<strong>la</strong>rd,1. M., N. G. Yoccoz, 1. D. Lebr<strong>et</strong>on, C. Bonenfant, S. Devil<strong>la</strong>rd, A. Loison,<br />

D. Pontier, & D . Al<strong>la</strong>ine. 2005. Generation time: a reliable m<strong>et</strong>ric to mea<strong>sur</strong>e<br />

life-history variation among mammalian popu<strong>la</strong>tions. American Naturalist<br />

166: 119-123.<br />

Gaines, M. S., & L. R. McClenaghan. 1980. Dispersal in small mammals. Annual<br />

Review ofEcology and Systematics 11: 163-196.<br />

Garshelis, D. L. 2000. Delusions in habitat evaluation: mea<strong>sur</strong>ing use, selection, and<br />

importance. Pages 111-164 in L. Boitani & T. K. Fuller, editors. Research<br />

techniques in animal ecology- Controversies and consequences. Columbia<br />

University Press, New York, USA.<br />

Gauthier, G., R. Pra<strong>de</strong>l, S. Menu, & 1. D. Lebr<strong>et</strong>on. 2001. Seasonal <strong>sur</strong>vival of<br />

greater snow geese and effect of hunting un<strong>de</strong>r <strong>de</strong>pen<strong>de</strong>nce in sighting<br />

probability. Ecology 82:3 105-3119.<br />

Gese, E. M., R. L. Ruff, & R. L. Crabtree. 1996a. Foraging ecology of coyotes (Canis<br />

<strong>la</strong>trans): the <strong>influence</strong> of extrinsic factors and a dominance hierarchy.<br />

Canadian Journal ofZoology 74:769-783.<br />

Gese, E. M., R. L. Ruff, & R. L. Crabtree. 1996b. Intrinsic and extrinsic factors<br />

influencing coyote predation of small mammals in Yellowstone National<br />

Park. CanadianJournal ofZoology 74:784-797 .


Gilbert, B. A., & K. J. Rae<strong>de</strong>ke. 2004. Recruitment dynamics ofb<strong>la</strong>ck-tailed <strong>de</strong>er in<br />

the western Casca<strong>de</strong>s. Journal ofWildlife Management 68:120-128.<br />

Gill<strong>et</strong>t, N. P. , H. F. Graf, & T. J. Osborn. 2003. Climate change and the North<br />

At<strong>la</strong>ntic Oscil<strong>la</strong>tion. in J. W. Hurrell, Y. Kushnir, G. Ottersen, & M. Visbeck,<br />

editors. The North At<strong>la</strong>ntic Oscil<strong>la</strong>tion: <strong>climat</strong>ic significance and<br />

environmental impact. American Geophysical Union, Washington, USA.<br />

Grant, B. W ., & A. E. Dunham. 1988. Thermally imposed time constraints on the<br />

activity of the <strong>de</strong>sert lizard Sceloporus merriami. Ecology 69: 167-176.<br />

Griesemer, S. J. , T. K. Fuller, & R. M. Degraaf. 1996. Denning patterns of<br />

porcupines, Er<strong>et</strong>hizon dorsatum. Canadian Field Naturalist 110:634-637.<br />

Griesemer, S. J. , M. O. Hale, U. Roze, & T. K. Fuller. 1999. Capturing and marking<br />

a<strong>du</strong>lt North American porcupines. Wildlife Soci<strong>et</strong>y Bull<strong>et</strong>in 27:310-313.<br />

Grondin, P., J. Blouin, & P. Racine. 1999. Rapport <strong>de</strong> c<strong>la</strong>ssification écologique <strong>de</strong><br />

sous-domaine bio<strong>climat</strong>ique <strong>de</strong> <strong>la</strong> sapinière à bouleau jaune <strong>de</strong> l'Est. Ministère<br />

<strong>de</strong>s Ressources Naturelles <strong>du</strong> Québec, Direction <strong>de</strong>s inventaires forestiers,<br />

Quebec, Canada.<br />

Guthery, F. S., A. R. Rybak, S. D. Fuhlendorf, T. L. Hiller, S. G. Smith, W. H.<br />

Puck<strong>et</strong>t, & R. A. Baker. 2005. Aspects of the thermal ecology ofbobwhites in<br />

North Texas. Wildlifè Monographs 159: 1-36.<br />

Haim, A., R. J. van Aar<strong>de</strong>, & J. D. Skinner. 1992. Burrowing and huddling in<br />

newborn porcupine: the effect on thermoregu<strong>la</strong>tion. Physiology & Behavior<br />

52:247-250.<br />

Hairston, N. G., F. E. Smith, & L. B. Slobodkin. 1960. Community structure,<br />

popu<strong>la</strong>tion control, and comp<strong>et</strong>ition. American Naturalist 94:421-425.<br />

Hale, M. B., & T. K. Fuller. 1996. Porcupine (Er<strong>et</strong>hizon dorsatum) <strong>de</strong>mography in<br />

central Massachus<strong>et</strong>ts. Canadian Journal ofZoology 74:480-484.<br />

Hale, M. O., & T. K. Fuller. 1999. Estimating porcupine (Er<strong>et</strong>hizon dorsatum<br />

Linnaeus, 1758) <strong>de</strong>nsity using radiotelem<strong>et</strong>ry and replicated mark-resight<br />

techniques. International Journal of Mammalian Biology 64:85-90.<br />

Halfpenny, J. c., & R. D. Ozanne. 1989. Winter, an ecological handbook. Johnson<br />

Books, Boul<strong>de</strong>r, USA.<br />

Harrington, R. , I. Woiwod, & T. Sparks. 1999. Climate change and trophic<br />

interactions. Trends in Ecology & Evolution 14: 146-150.<br />

Hayes, J. P. , J. R. Speakman, & P. A. Racey. 1992. The contributions of local heating<br />

and re<strong>du</strong>cing exposed <strong>sur</strong>face-area to the energ<strong>et</strong>ic benefits of huddling by<br />

short-tailed field voles (Micro tus agrestis). Physiological Zoology 65:742-<br />

762.<br />

Hebblewhite, M. 2005. Predation by wolves interacts with the North Pacific<br />

Oscil<strong>la</strong>tion (NPO) on a western North American elk popu<strong>la</strong>tion. Journal of<br />

Animal Ecology 74 :226-233 .<br />

Hebblewhite, M., D. H. Pl<strong>et</strong>scher, & P. C. Paqu<strong>et</strong>. 2002. Elk popu<strong>la</strong>tion dynamics in<br />

areas with and without predation by recolonizing wolves in Banff National<br />

Park, Alberta. Canadian Journal ofZoology 80:789-799.<br />

128


129<br />

Hik, D. S. 1995. Does risk of predation <strong>influence</strong> popu<strong>la</strong>tion-dynamics - Evi<strong>de</strong>nce<br />

from the cyclic <strong>de</strong>cline of snowshoe hares. Wildlife Research 22 : 115-129.<br />

Hirose, T. , M . J. A. Werger, & J. W . A. Vanrheenen. 1989. Canopy <strong>de</strong>velopment and<br />

leaf nitrogen distribution in a stand of Carex acutiformis. Ec%gy 70: 1610-<br />

1618.<br />

Ho<strong>de</strong>ll, D. A., M . Brenner, J. H. Curtis, & T. Guil<strong>de</strong>rson. 200l. So<strong>la</strong>r forcing of<br />

drought frequency in the Maya low<strong>la</strong>nds. Science 292:1367-1370.<br />

Holmgren, M., M . Scheffer, E. Ezcurra, J. R. Gutierrez, & G. M . J. Mohren. 2001. El<br />

Nino effects on the dynamics of terrestrial ecosystems. Trends in Ec% gy &<br />

Evolution 16:89-94.<br />

Hoog<strong>la</strong>nd, J. L. , K. E. Cannon, L. M. DeBarbieri, & T. G. Manno. 2006. Selective<br />

predation on Utah prairie dogs. American Naturalist 168:546-552.<br />

Hosmer, D. W., & S. Lemeshow. 1989. Applied logistic regression. Wiley, New<br />

York, USA.<br />

Houghton, J. T. , Y. Ding, D . J. Griggs, M. Noguer, P. J. Van <strong>de</strong>r Lin<strong>de</strong>n, X. Dai, K.<br />

Maskell, & C. A. Johnson. 2001. Climate change 2001: The scientific basis .<br />

Cambridge University Press, Cambridge, UK.<br />

Huey, R. B. 1991. Physiological consequences of habitat selection. American<br />

Naturafist 137:S91-S115.<br />

Huggard, D. J. 1993. Effect of snow <strong>de</strong>pth on predation and scavenging by grey<br />

wolves. Journa/ ofWild/ife Management 57:382-388 .<br />

Hughes, L. 2000. Biological consequences of global warming: is the signal already<br />

apparent? Trends in Ec% gy & Evolution 15:56-61.<br />

Hull, D. 1973. Thermoregu<strong>la</strong>tion in young mammals. Pages 167-200 in G. C.<br />

Whittow, editor. Comparative physi%gy oftemperature regu/ation: vof.3.<br />

Special aspects of thermoregu/ation. Aca<strong>de</strong>mic Press, New Y ork, USA.<br />

Humphries, M. M., S. Boutin, D . W. Thomas, J. D . Ryan, C. Selman, A. G.<br />

McAdam, D. Berteaux, & J. R. Speakman. 2005. Expenditure freeze: the<br />

m<strong>et</strong>abolic response of smallmammals to cold environments. Ecology L<strong>et</strong>ters<br />

8: 1326-1333.<br />

Hurrell, J. W. 1995. Decadal trends in the North At<strong>la</strong>ntic oscil<strong>la</strong>tion: regional<br />

temperatures and precipitation. Science 269:676-679.<br />

lise, L. M ., & E. C. Hellgren. 200l. Demographic and behavioral characteristics of<br />

North American porcupines (Er<strong>et</strong>hizon dorsatum) in pinyon-juniper<br />

wood<strong>la</strong>nds of Texas. American Mid<strong>la</strong>nd Naturafist 146:329-338.<br />

Irving, L., H. Krog, & M. Monson. 1955. The m<strong>et</strong>abolism of some A<strong>la</strong>skan animais<br />

in winter and summer. Physi%gical Zoology 28: 173-185.<br />

Jedrzejewski, W. , B. Jedrzejewska, K. Zub, & W. K. Nowakowski. 2000. Activity<br />

patterns of radio-tracked weasels Muste<strong>la</strong> nivalis in Bialowieza National Park<br />

(E Po<strong>la</strong>nd). Annales Zoologici Fennici 37: 161-168.<br />

Jedrzejewski, W., K. Schmidt, J. Theuerkauf, B. Jedrzejewska, N. Selva, K. Zub, &<br />

L. Szymura. 2002. Kill rates and predation by wolves on ungu<strong>la</strong>te popu<strong>la</strong>tions<br />

in Bialowieza primeval forest (Po<strong>la</strong>nd). Ec% gy 83 :1341-1356.


130<br />

Johnson, D. H. 1980. The comparison of usage and avai<strong>la</strong>bility mea<strong>sur</strong>ements for<br />

evaluating resource preference. Ecology 61 :65-71 .<br />

Jorgenson,1. T., M. FestaBianch<strong>et</strong>, 1. M . Gail<strong>la</strong>rd, & W . D. Wishart. 1997. Effects of<br />

age, sex, disease, and <strong>de</strong>nsity on <strong>sur</strong>vival ofbighorn sheep. Ecology 78:1019-<br />

1032.<br />

Kaita<strong>la</strong>, V., & E. Ranta. 2001. Is the impact of environmental noise visible in the<br />

dynamics of age-structured popu<strong>la</strong>tions? Proceedings of the Royal Soci<strong>et</strong>y of<br />

London- Series B: Biological Sciences 268: 1769-1774.<br />

Keech, M. A., R. T. Bowyer, 1. M. Ver Hoef, R. D. Boertje, B . W . Dale, & T. R.<br />

Stephenson. 2000. Life-history consequences of maternaI condition in<br />

A<strong>la</strong>skan moose. Journal of Wildlife Management 64:450-462 .<br />

Keller, F. L. 1935. Porcupines killed and eaten by a coyote. Journal of Mammalogy<br />

16:232.<br />

Kie, 1. G. 1999. Optimal foraging and risk of predation: effects on behavior and<br />

social structure in ungu<strong>la</strong>tes. Journal of Mammalogy 80: 1114-1129.<br />

Klvana, 1., D. Berteaux, & B. Cazelles. 2004. Porcupine feeding scars and <strong>climat</strong>ic<br />

data show ecosystem effects of the so<strong>la</strong>r cycle. American Naturalist 164:283-<br />

297.<br />

Korslund, L., & H. Steen. 2006. Small ro<strong>de</strong>nt winter <strong>sur</strong>vival: snow conditions limit<br />

access to food resources. Journal of Animal Ecology 75: 156-166.<br />

Kortner, G ., & F. Geiser. 2000. Torpor and activity patterns in free-ranging sugar<br />

gli<strong>de</strong>rs P<strong>et</strong>aurus breviceps (Marsupialia). Gecologia 123 :350-357.<br />

Krebs, C. 1. 1994. Ecology. Harper Collins College Publishers, New York, USA.<br />

Krebs, C. 1., & D. Berteaux. 2006. Problems and pitfalls in re<strong>la</strong>ting <strong>climat</strong>e variability<br />

to popu<strong>la</strong>tion dynamics. Climate Research 32: 143-149.<br />

Kreith, F., & W. Z. B<strong>la</strong>ck. 1980. Basic heat transfer. Harper & Row, New York,<br />

USA.<br />

Langvatn, R., S. D. Albon, T. Burkey, & T. H. Clutton-Brock. 1996. Climate, p<strong>la</strong>nt<br />

phenology and variation in age of first repro<strong>du</strong>ction in a temperate herbivore.<br />

Journal of Animal Ecology 65 :653-670.<br />

Larochelle, J. 1998. Comments on a negative appraisal of taxi<strong>de</strong>rmie mounts as tools<br />

for studies of ecological energ<strong>et</strong>ics. Physiological Zoology 71:596-598.<br />

Lean, 1., 1. Beer, & R. Bradley. 1995. Reconstruction ofso<strong>la</strong>r irradiance since 1610-<br />

Implications for <strong>climat</strong>e-change. Geophysical Research L<strong>et</strong>lers 22:3195-3198 .<br />

Lebr<strong>et</strong>on, 1.-D., K. P. Burnham, J. Clobert, & D. R. An<strong>de</strong>rson. 1992. Mo<strong>de</strong>ling<br />

<strong>sur</strong>vival and testing biological hypotheses using marked animaIs: a unified<br />

approach with case studies. Ecological Monographs 62:67-118 .<br />

Lenart, E. A ., R. T. Bowyer, 1. Ver Hoef, & R. W. Ruess. 2002. Climate change and<br />

caribou: effects of summer weather on forage. Canadian Journal of Zoology<br />

80:664-678.<br />

Lensing, 1. R. , & D . H. Wise. 2006. Predicted <strong>climat</strong>e change alters the indirect effect<br />

of predators on an ecosystem process. Proceedings of the National Aca<strong>de</strong>my<br />

of Sciences of the United States of America 103:15502-15505.


Lent, P. C. 1974. Mother-infant re<strong>la</strong>tionships in ungu<strong>la</strong>tes. Pages 14-54 in V. Geist &<br />

F. Walther, editors. The behaviour ofungu<strong>la</strong>tes and its re<strong>la</strong>tion to<br />

management. International Union for Conservation of Nature and Natural<br />

Resources, Morges, Switzer<strong>la</strong>nd.<br />

Leon, M. 1986. Development ofthermoregu<strong>la</strong>tion. Pages 297-322 in E. M . B<strong>la</strong>ss,<br />

editor. Handbook of behavioral neurobiology: vol. 8. Developmental<br />

psychobiology and <strong>de</strong>velopmental neurobiology. Plenum Press, New York,<br />

USA.<br />

Levins, R. 1968. Evolution in changing environnements. Princ<strong>et</strong>on University Press,<br />

Princ<strong>et</strong>on, USA.<br />

Lima, M. , 1. E. Keymer, & F. M. Jaksic. 1999. El nino-Southern oscil<strong>la</strong>tion-driven<br />

rainfall variability and <strong>de</strong><strong>la</strong>yed <strong>de</strong>nsity <strong>de</strong>pen<strong>de</strong>nce cause ro<strong>de</strong>nt outbreaks in<br />

Western South America: linking <strong>de</strong>mography and popu<strong>la</strong>tion dynamics.<br />

American Naturalist 5:476-491.<br />

Lima, M. , N . Stens<strong>et</strong>h, & F. M . Jaksic. 2002a. Popu<strong>la</strong>tion dynamics of a South<br />

American ro<strong>de</strong>nt: seasonal structure interacting with <strong>climat</strong>e, <strong>de</strong>nsity<br />

<strong>de</strong>pen<strong>de</strong>nce and predator effects. Proceedings of Royal Soci<strong>et</strong>y of London -<br />

Series B: Biological Sciences 269:2579-25 86.<br />

Lima, M., N. C. Stens<strong>et</strong>h, & F. M . Jaksic. 2002b. Food web structure and <strong>climat</strong>e<br />

effects on the dynamics of small mammals and owls in semi-arid Chile.<br />

Ecology L<strong>et</strong>ters 5:273-284 .<br />

Lima, M., N. C. Stens<strong>et</strong>h, N. G. Yoccoz, & F. M. Jaksic. 2001. Demography and<br />

popu<strong>la</strong>tion dynamics of the mouse opossum (Thy<strong>la</strong>mys elegans) in semi-arid<br />

Chile: seasonality, feedback structure and <strong>climat</strong>e. Proceedings of Royal<br />

Soci<strong>et</strong>y of London - Series B: Biological Sciences 268 :2053-2064 .<br />

Lima, S. L., & L. M . DilI. 1990. Behavioral <strong>de</strong>cisions ma<strong>de</strong> un<strong>de</strong>r the ri sk of<br />

predation - A review and prospectus. Canadian Journal of Zoology 68:61 9-<br />

640.<br />

Lin, D. Y., & L. 1. Wei. 1989. The robust inference for the Cox proportional hazards<br />

mo<strong>de</strong>!. Journal of the American Statistical Association 84 :1074-1078.<br />

Lindstrom, E. R., & B. Hornfeldt. 1994. Vole cycles, snow <strong>de</strong>pth and fox predation.<br />

Oikos 70: 156-160.<br />

Linnell,1. D. c., R. Aanes, & R. An<strong>de</strong>rsen. 1995. Who killed Bambi? The role of<br />

predation in the neonatal mortality oftemperate ungu<strong>la</strong>tes. Wildlifè Biology<br />

1:209-223.<br />

Loison, A., J. M . Gail<strong>la</strong>rd, & H. Houssin. 1994. New insight on <strong>sur</strong>vivorship of<br />

female chamois (Rupicapra rupicapra) from observation of marked animaIs.<br />

Canadian Journal ofZoology 72:591-597 .<br />

Loison, A., & R. Langvatn. 1998. Short- and long-term effects of winter and spring<br />

weather on growth and <strong>sur</strong>vival ofred <strong>de</strong>er in Norway. Oecologia 116:489-<br />

500.<br />

Lustick, S. , B. Battersby, & M. Kelty. 1978. Behavioral thermoregu<strong>la</strong>tion -<br />

Orientation toward sun in herring gulls. Science 200 :8 1-83 .<br />

131


Manly, B. F. 1., L. L. McDonald, D. L. Thomas, T. L. McDonald, & W. P. Erickson.<br />

2002. Resource selection by animais: statistical <strong>de</strong>sign and analysis for field<br />

studies, Second edition. Kluwer Aca<strong>de</strong>mic Publishers, Norwell, USA.<br />

Martin, S. K. 1994. Feeding ecology of American martens and fishers. in S. W.<br />

Buskirk, A. Harestad, M. Raphael, & R. A. Powell, editors. Martens, sables,<br />

andfishers: biology and conservation. Cornell University Press, Ithaca, USA.<br />

Mathisen,1. H. , A. Landa, R. An<strong>de</strong>rsen, & 1. L. Fox. 2003. Sex-specific differences<br />

in rein<strong>de</strong>er calfbehavior and predation vulnerability. Behavioral Ecology<br />

14:10-15.<br />

McLoughlin, P. D., M. S. Boyce, T. Coulson, & T. Clutton-Brock. 2006. Lif<strong>et</strong>ime<br />

repro<strong>du</strong>ctive success and <strong>de</strong>nsity-<strong>de</strong>pen<strong>de</strong>nt, multi-variable resource selection.<br />

Proceedings of the Royal Soci<strong>et</strong>y - Series B: Biological Sciences 273:1449-<br />

1454.<br />

McLoughlin, P. D. , 1. S. Dunford, & S. Boutin. 2005. Re<strong>la</strong>ting predation mortality to<br />

broad-scale habitat selection. Journal of Animal Ecology 74 :70 1-707.<br />

McNab, B. K. 1970. Body weight and energ<strong>et</strong>ics oftemperature regu<strong>la</strong>tion. Journal<br />

of Experimental Biology 53 :329-&.<br />

Merritt, J. F., M. Lima, & F. Bozinovic. 200l. Seasonal regu<strong>la</strong>tion in fluctuating<br />

small mammal popu<strong>la</strong>tions: feedback structure and <strong>climat</strong>e. Oikos 94 :505-<br />

514.<br />

Merritt,1. F., & D. A. Zegers. 2002. Maximizing <strong>sur</strong>vivorship in cold: thermogenic<br />

profiles of non-hibernating mammals. Acta Theriologica 47:221-234.<br />

Michard, D., A. Ancel, 1. P. Gen<strong>de</strong>r, J. Lage, Y. Le Maho, T. Zorn, L. Gangloff, A.<br />

Schierer, K. Stuyf, & G. Wey. 1995. Non-invasive bird tagging. Nature<br />

376:649.<br />

Milner, 1. M., D. A. Elston, & S. D. Albon. 1999. Estimating the contributions of<br />

popu<strong>la</strong>tion <strong>de</strong>nsity and <strong>climat</strong>ic fluctuations to interannual variation in<br />

<strong>sur</strong>vival of Soay sheep. Journal of Animal Ecology 68: 1235-1247.<br />

Minteer, B. A., & 1. P. Collins. 2005. Why we need an "ecological <strong>et</strong>hics". Frontiers<br />

in Ecology and the Environment 3:332-337.<br />

Molinari-Jobin, A., P. Molinari, A. Loison, 1. M. Gail<strong>la</strong>rd, & u. Breitenmoser. 2004.<br />

Life cycle period and activity of prey <strong>influence</strong> their susceptibility to<br />

predators. Ecography 27:323-329.<br />

Moreno, S., R. Vil<strong>la</strong>fuerte, & M. Delibes. 1996. Coyer is safe <strong>du</strong>ring the day but<br />

dangerous at night: the use of veg<strong>et</strong>ation by European wild rabbits. Canadian<br />

Journal ofZoology 74: 1656-1660.<br />

Morin, P., & D. Berteaux. 2003 . Immobilization of North American porcupines<br />

(Er<strong>et</strong>h izon dorsatum) using k<strong>et</strong>amine and xy<strong>la</strong>zine. Journal of Wildlife<br />

Diseases 39 :675-682.<br />

Morin, P. , D. Berteaux, & 1. Klvana. 2005. Hierarchical habitat selection by North<br />

American porcupines in southern boreal forest. Canadian Journal ofZoology<br />

83: 1333-1342.<br />

132


133<br />

Murray, D. L. , & S. Boutin. 1991. The <strong>influence</strong> ofsnow on lynx and coyote<br />

movements- Does morphology affect behavior? Oecologia 88:463-469.<br />

Mysterud, A., & E. Ostbye. 1999. Coyer as a habitat element for temperate ungu<strong>la</strong>tes:<br />

effects on habitat selection and <strong>de</strong>mography. Wildlife Soci<strong>et</strong>y Bull<strong>et</strong>in 27:385-<br />

394.<br />

Mysterud, A., N . G. Yoccoz, N. C. Stens<strong>et</strong>h, & R. Langvatn. 2000. Re<strong>la</strong>tionships<br />

b<strong>et</strong>ween sex ratio, cl imate and <strong>de</strong>nsity in red <strong>de</strong>er: the importance of spatial<br />

scale. Journal of Animal Ec%gy 69:959-974.<br />

Nelson, T. A., & A. Woolf. 1987. Mortality ofwhite-tailed <strong>de</strong>er fawns in southern<br />

Illinois. Journal of Wildlife Management 51:326-329.<br />

Nicholson, A. J. 1954. An outline of the dynamics of animal popu<strong>la</strong>tions. Australian<br />

Journal ofZoology 2:9-65 .<br />

Nielson, S. E., M. S. Boyce, G. B. Stenhouse, & R. H. M. Munro. 2002. Mo<strong>de</strong>ling<br />

grizzly bear habitats in the Yellowhead ecosystem of Alberta: taking<br />

autocorre<strong>la</strong>tion seriously. Ursus 13:45-56.<br />

Niewiarowski, P. H. 200l. Energy budg<strong>et</strong>s, growth rates, and thermal constraints:<br />

toward an integrative approach to the study of life-history variation. American<br />

Naturalist 157:421-433.<br />

Norrdahl, K. , & E. Korpimaki. 1998. Does mobility or sex of voles affect risk of<br />

predation by mammalian predators? Ecology 79 :226-232.<br />

Oison, K. A., T. K. Fuller, G. B. Schaller, B. Lhagva<strong>sur</strong>en, & D. Odonkhuu. 2005 .<br />

Repro<strong>du</strong>ction, neonatal weights, and first-year <strong>sur</strong>vival ofMongolian gazelles<br />

(Pro cap ra gutturosa). Journal ofZoology 265:227-233.<br />

Ottersen, G., B. P<strong>la</strong>nque, A. Belgrano, E. Post, P. C. Reid, & N. C. Stens<strong>et</strong>h. 200l.<br />

Ecological effects of the North At<strong>la</strong>ntic Oscil<strong>la</strong>tion. Oecologia 128: 1-14.<br />

Owen-Smith, N ., & M. G. L. Mills. 2006. Manifold interactive <strong>influence</strong>s on the<br />

popu<strong>la</strong>tion dynamics of a multispecies ungu<strong>la</strong>te assemb<strong>la</strong>ge. Ecological<br />

Monographs 76:73-92.<br />

Ozgul, A. , K. B. Armitage, D. T. Blumstein, & M. K. Oli. 2006. Spatiotemporal<br />

variation in <strong>sur</strong>vival rates: implications for popu<strong>la</strong>tion dynamics ofyellowbellied<br />

marmots. Ecology 87:1027-1037.<br />

Parmesan, c., & G. Yohe. 2003. A globally coherent fingerprint of <strong>climat</strong>e change<br />

impacts across natural systems. Nature 421:37-42 .<br />

Patten, M. A., D. H. Wolfe, E. Shochat, & S. K. Sherrod. 2005. Effects of<br />

microhabitat and micro<strong>climat</strong>e selection on a<strong>du</strong>lt <strong>sur</strong>vivorship of the lesser<br />

prairie-chicken. Journal of Wildlife Management 69: 1270-1278.<br />

Patterson, B. R., L. K. Benjamin, & F. Messier. 1998. Prey switching and feeding<br />

habits of eastern coyotes in re<strong>la</strong>tion to snowshoe hare and white-tailed <strong>de</strong>er<br />

<strong>de</strong>nsities. Canadian Journal of Zoology 76: 1885-1897.<br />

Patterson, B. R. , & F. Messier. 2000. Factors influencing killing rates ofwhite-tailed<br />

<strong>de</strong>er by coyotes in eastern Canada. Journal of Wildlife Management 64:721-<br />

732.


Perry, C. A. 1994. So<strong>la</strong>r-irradiance variations and regional precipitation fluctuations<br />

in the Western USA. International Journal ofClimatology 14 :969-983 .<br />

Perry, C. A. 2006. Midwestern streamflow, precipitation, and atmospheric vorticity<br />

<strong>influence</strong>d by Pacific sea-<strong>sur</strong>face temperatures and total so<strong>la</strong>r-irradiance<br />

variations. International Journal ofClimatology 26:207-218.<br />

P<strong>et</strong>ers, D. P . C. , & 1. E. Herrick. 2004. Strategies for ecological extrapo<strong>la</strong>tion. Oikos<br />

106:627-636.<br />

P<strong>et</strong>ersen, J. E. , & A. Hastings. 2001. Dimensional approaches to scaling experimental<br />

ecosystems: Designing mous<strong>et</strong>raps to catch elephants. American Naturalist<br />

157:324-333.<br />

P<strong>et</strong>it, 1. R. , 1. Jouzel, D. Raynaud, N. 1. Barkov, 1. M. Barno<strong>la</strong>, 1. Basile, M. Ben<strong>de</strong>r,<br />

1. Chappel<strong>la</strong>z, M. Davis, G. De<strong>la</strong>ygue, M . Delmotte, V. M . Kotlyakov, M .<br />

Legrand, V. y. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltzman, & M.<br />

Stievenard. 1999. Climate and atmospheric history ofthe pa st 420,000 years<br />

from the Vostok ice core, Antarctica. Nature 399:429-436.<br />

P<strong>et</strong>torelli, N. , 1. M . Gail<strong>la</strong>rd, N. G. Yoccoz, P . Duncan, D. Mail<strong>la</strong>rd, D. Delorme, G .<br />

Van Laere, & C. Toigo. 2005. The response of fawn <strong>sur</strong>vival to changes in<br />

habitat quality varies according to cohort quality and spatial scale. Journal of<br />

Animal Ecology 74 :972-981 .<br />

Phi<strong>la</strong>n<strong>de</strong>r, S. G . H . 1990. El Nino, <strong>la</strong> Nina and the Southern oscil<strong>la</strong>tion. Aca<strong>de</strong>mic<br />

Press, San Diego, USA.<br />

Portier, c., M. Festa-Bianch<strong>et</strong>, 1. M. Gail<strong>la</strong>rd, 1. T. Jorgenson, & N. G . Yoccoz. 1998.<br />

Effects of<strong>de</strong>nsity and weather on <strong>sur</strong>vival ofbighorn sheep <strong>la</strong>mbs (Ovis<br />

cana<strong>de</strong>nsis). Journal ofZoology 245:271-278.<br />

Post, E. 2005. Large-scale spatial gradients in herbivore popu<strong>la</strong>tion dynamics.<br />

Ecology 86:2320-2328.<br />

Post, E. , & M . C. Forchhammer. 2001. Pervasive <strong>influence</strong> of <strong>la</strong>rge-scale <strong>climat</strong>e in<br />

the dynamics of a terrestrial vertebrate community. Biomedcentral Ecology<br />

1:5.<br />

Post, E. , & M . C. Forchhammer. 2002. Synchronization of animal popu<strong>la</strong>tion<br />

dynamics by <strong>la</strong>rge-scale <strong>climat</strong>e. Nature 420: 168-171.<br />

Post, E., M. C. Forchhammer, N . C. Stens<strong>et</strong>h, & R. Langvatn. 1999a. Extrinsic<br />

Modification ofVertebrate Sex Ratios by Climatic Variation. American<br />

Naturalist [Am. Nat.}. 154: 194-204.<br />

Post, E. , R. O. P<strong>et</strong>erson, N. C. Stens<strong>et</strong>h, & B. E. McLaren. 1999b. Ecosystem<br />

consequences ofwolfbehavioural response to <strong>climat</strong>e. Nature 401:905-907 .<br />

Post, E., & N. Stens<strong>et</strong>h. 1998. Large-scale <strong>climat</strong>ic fluctuation and popu<strong>la</strong>tion<br />

dynamics ofmoose and white-tailed <strong>de</strong>er. Journal of Animal Ecology 67:537-<br />

543 .<br />

Post, E. , & N . C. Stens<strong>et</strong>h. 1999. Climatic variability, p<strong>la</strong>nt phenol ogy, and northern<br />

ungu<strong>la</strong>tes. Ecology 80:1322-1339.<br />

Poulin, 1. F., H . Jolicoeur, P. Canac-Marquis, & S. Larivière. 2006. Investigation <strong>sur</strong><br />

les facteurs à l'origine <strong>de</strong> <strong>la</strong> hausse <strong>de</strong> <strong>la</strong> récolte <strong>de</strong> pékans (Martes pennanti)<br />

134


au Québec <strong>de</strong>puis 1984. Ministère <strong>de</strong>s Ressources Naturelles <strong>et</strong> <strong>de</strong> <strong>la</strong> Faune,<br />

Direction <strong>du</strong> développement <strong>de</strong> <strong>la</strong> faune <strong>et</strong> Université <strong>du</strong> Québec à Rimouski,<br />

Département <strong>de</strong> biologie <strong>et</strong> <strong>de</strong>s sciences <strong>de</strong> <strong>la</strong> santé, Quebec, Canada.<br />

Pounds, 1. A., M . P. L. Fog<strong>de</strong>n, & 1. H. Campbell. 1999. Biological response to<br />

<strong>climat</strong>e change on a tropical mountain. Nature 398:611-615.<br />

Powell, R. A. 1993. The fisher. University of Minnesota Press, Minneapolis, USA.<br />

Powell, R. A., & R . B . Bran<strong>de</strong>r. 1977. Adaptations offishers and porcupines to their<br />

predator prey system. in R. L. Phillips & c. Jonkel, editors. Proceedings for<br />

1975 predator symposium. Montana Forest Conservation Experimental<br />

Station, University of Montana, Missou<strong>la</strong>, USA.<br />

Powell, R. A. , & G. Proulx. 2003. Trapping and marking terrestrial mammals for<br />

research: integrating <strong>et</strong>hics, performance criteria, techniques, and common<br />

sense. I1ar Journa/44:259-276.<br />

Pra<strong>de</strong>l, R. , C. M. A. Wintrebert, & O. Gimenez. 2003. A proposai for goodness-of-fit<br />

test to the Arnason-Schwarz multisite capture-recapture mo<strong>de</strong>l. Biom<strong>et</strong>rics<br />

59:43-53.<br />

Prestrud, P . 1991. Adaptations by the Arctic fox (A/apex <strong>la</strong>gopus ) to the po<strong>la</strong>r winter.<br />

Arctic 44: 132-138.<br />

Putman, R. J., 1. Langbein, A. J. M. Hewison, & S. K. Sharma. 1996. Re<strong>la</strong>tive rol es<br />

of <strong>de</strong>nsity-<strong>de</strong>pen<strong>de</strong>nt and <strong>de</strong>nsity-in<strong>de</strong>pen<strong>de</strong>nt factors in popu<strong>la</strong>tion dynamics<br />

of British <strong>de</strong>er. Mamma/ Review 26:81-10l.<br />

Rachlow, J. L. , & R. T. Bowyer. 1998. Habitat selection by Dall's sheep (Ovis dalli) :<br />

maternai tra<strong>de</strong>-offs. Journa/ of Zo%gy 245:457-465.<br />

Ripple, W. J. , & R. L. Beschta. 2004. Wolves and the ecology of fear: can predation<br />

risk structure ecosystems? Bioscience 54 :755-766.<br />

Robbins, C. T. 1993. Wildlife feeding and nutrition. Aca<strong>de</strong>mic Press, San Diego,<br />

USA.<br />

Robin<strong>et</strong>te, W . L. , J. S. Gashwiler, & O. W. Morris. 1959. Food habits of the cougar in<br />

Utah and Nevada. Journal ofWild/ife Management 23:261-273 .<br />

Roll, U. , T . Dayan, & N . Kronfeld-Schor. 2006. On the role of phylogeny in<br />

d<strong>et</strong>ermining activity patterns of ro<strong>de</strong>nts. Evo/utionary Ec%gy 20:479-490.<br />

Root, T . L. , J. T. Price, K. R. Hall, S. H. Schnei<strong>de</strong>r, C. Rosenzweig, & 1. A. Pounds.<br />

2003. Fingerprints of global warming on wild animais and p<strong>la</strong>nts. Nature<br />

421:57-60.<br />

Root, T . L. , & S. H . Schnei<strong>de</strong>r. 1995. Ecology and <strong>climat</strong>e- Research strategies and<br />

implications. Science 269:334-34l.<br />

Rosenberg, N. J. 1974. Micro<strong>climat</strong>e: the biological environment. Wiley, New York,<br />

USA.<br />

Rosenzweig, M . L. 1981. A theory ofhabitat selection. Ec%gy 62 :327-335 .<br />

Rosenzweig, M . L. 1991. Habitat selection and popu<strong>la</strong>tion interactions - The search<br />

for mechanism. American Naturalist 137:S5-S28.<br />

Roze, U. 1984. Win ter foraging by indivi<strong>du</strong>al porcupines. Canadian Journa/ of<br />

Zo% gy 62:2425-2428.<br />

135


136<br />

Roze, U. 1987. Denning and winter range of the porcupine. Canadian Journal of<br />

Zoology 65 :981-986.<br />

Roze, U. 1989. The North American porcupine. Smithsonian Institution Press,<br />

Washington, USA.<br />

Sa<strong>et</strong>her, B. E. 1997. Environmental stochasticity and popu<strong>la</strong>tion dynamics of <strong>la</strong>rge<br />

herbivores: A search for mechanisms. Trends in Ecology & Evolution 12: 143-<br />

149.<br />

Sa<strong>et</strong>her, B. E. , & O. Bakke. 2000. Avian life history variation and contribution of<br />

<strong>de</strong>mographic traits to the popu<strong>la</strong>tion growth rate. Ecology 81:642-653 .<br />

Saitoh, T. , B. Cazelles, 1. O. Vik, H. Viljugrein, & N. C. Stens<strong>et</strong>h. 2006. Effects of<br />

regime shifts on the popu<strong>la</strong>tion dynamics of the grey-si<strong>de</strong>d vole in Hokkaido,<br />

Japan. Climate Research 32: 109-118.<br />

Sa<strong>la</strong>, E. 2006. Top predators provi<strong>de</strong> in<strong>sur</strong>ance against <strong>climat</strong>e change. Trends in<br />

Ecology & Evolution 21:479-480.<br />

Santee, W. R. , & G. S. Bakken. 1987. Social disp<strong>la</strong>ys in red-winged b<strong>la</strong>ckbirds<br />

(Age<strong>la</strong>ius phoeniceus): sensitivity to thermoregu<strong>la</strong>tory costs. Auk 104:413-<br />

420.<br />

SAS. 2002. SAS statistical software. SAS Institute, Cary, USA.<br />

Scant1ebury, M. , N . C. Benn<strong>et</strong>t, 1. R. Speakman, N. Pil<strong>la</strong>y, & c. Schradin. 2006.<br />

Huddling in groups leads to daily energy savings in free-living African fourstriped<br />

grass mi ce, Rhabdomys pumilio. Functional Ecology 20:166-173.<br />

Schemper, M. 1990. The exp<strong>la</strong>ined variation in proportional hazards regression.<br />

Biom<strong>et</strong>rika 77:216-218.<br />

Schmitz, 0.2003. Ecosystem responses to global <strong>climat</strong>e change: moving beyond<br />

color mapping. Bioscience 53: 1199-1205.<br />

Scho<strong>la</strong>n<strong>de</strong>r, P. F. , R. Hock, V. Walters, & L. Irving. 1950a. Adaptation to cold in<br />

arctic and tropical mammals and birds in re<strong>la</strong>tion to body temperature,<br />

insu<strong>la</strong>tion, and basal m<strong>et</strong>abolic rate. Biological Bull<strong>et</strong>in 99:259-27l.<br />

Scho<strong>la</strong>n<strong>de</strong>r, P. F. , R. Hock, V. Walters, F. Johnson, & L. Irving. 1950b. Heat<br />

regu<strong>la</strong>tion in sorne arctic and tropical mammals and birds. Biological Bull<strong>et</strong>in<br />

99:237-258.<br />

Schooley, R. L., P. B. Sharpe, & B. VanHorne. 1996. Can shrub cover increase<br />

predation risk for a <strong>de</strong>sert ro<strong>de</strong>nt? Canadian Journal of Zo% gy 74: 157-163.<br />

Schooley, R. L., B. Vanhome, & K. P. Burnham. 1993. Passive integrated<br />

transpon<strong>de</strong>rs for marking free-ranging Townsend ground-squirrels. Journal of<br />

Mammalogy 74:480-484.<br />

Sea<strong>la</strong>n<strong>de</strong>r,1. A. 1952. The re<strong>la</strong>tionship ofnest protection and huddling to <strong>sur</strong>vival of<br />

Peromyscus at low temperature. Ecology 33 :63-71.<br />

Sears, M. W ., 1. P. Hayes, C. S. O'Connor, K. Geluso, & 1. S. Sedinger. 2006.<br />

lndivi<strong>du</strong>al variation in thermogenic capacity affects above-ground activity of<br />

hi gh-altitu<strong>de</strong> <strong>de</strong>er mice. Functional Ecology 20 :97-104.<br />

Se<strong>la</strong>s, V., A. Hogstad, S. Kobro, & T. Rafoss. 2004. Can sunspot activity and<br />

ultraviol<strong>et</strong>-B radiation exp<strong>la</strong>in cyclic outbreaks of forest moth pest species?


137<br />

Proceedings of the Royal Soci<strong>et</strong>y - Series B: Biological Sciences 271:1897-<br />

1901 .<br />

Se<strong>la</strong>s, v., & 1. O. Vik. 2006. Possible impact of snow <strong>de</strong>pth and ungu<strong>la</strong>te carcasses<br />

on red fox (Vulpes vulpes) popu<strong>la</strong>tions in Norway, 1897-1976. Journal of<br />

Zoology 269:299-308.<br />

Sendor, T., & M. Simon. 2003 . Popu<strong>la</strong>tion dynamics of the pipistrelle bat: effects of<br />

sex, age and winter weather on seasonal <strong>sur</strong>vival. Journal of Animal Ecology<br />

72:308-320.<br />

Sharpe, P. B., & B. Van Home. 1999. Re<strong>la</strong>tionships b<strong>et</strong>ween the thermal<br />

environment and activity ofPiute ground squirrels (Spermophilus mollis).<br />

Journal of Thermal Biology 24:265-278.<br />

Sinc<strong>la</strong>ir, A. R. E. , & J. M. Gosline. 1997. So<strong>la</strong>r activity and mammal cycles in the<br />

Northem hemisphere. American Naturalist 149:776-784.<br />

Sinc<strong>la</strong>ir, A. R. E. , 1. M. Gosline, G. Holdsworth, C. 1. Krebs, S. Boutin, 1. N. M.<br />

Smith, R. Boonstra, & M. Dale. 1993 . Can the so<strong>la</strong>r cycle and c1imate<br />

synchronize the snowshoe hare cycle in Canada? Evi<strong>de</strong>nce from tree rings and<br />

ice cores. American Naturalist 141 : 173-198.<br />

Sokal, R. R. , & F. 1. Rohlf. 1981. Biom<strong>et</strong>ry, 2nd edition. Freeman, W .H. , New York,<br />

USA.<br />

Soto-Gamboa, M ., M. Rosenmann, & F. Bozinovic. 1999. Thermal ecology of the<br />

Humboldt penguin (Spheniscus humboldti): effects of nest-site selection on<br />

a<strong>du</strong>lts and chicks <strong>sur</strong>vival. Revista Chilena De Historia Natural72:447-455 .<br />

Steams, S. C. 1992. The evolution oflife histories. Oxford University Press, Oxford,<br />

UK.<br />

Stefan , C. 1., & C. J. Krebs. 2001. Repro<strong>du</strong>ctive changes in a cyclic popu<strong>la</strong>tion of<br />

snowshoe hares. Canadian Journal ofZoology 79:2101-2108.<br />

Stens<strong>et</strong>h, N . c., K.-S. Chan, H. Tong, R. Boonstra, S. Boutin, C. 1. Krebs, E. Post, M.<br />

O'Donoghue, N. G. Yoccoz, M. C. Forchhammer, & J. W. Hurrell. 1999.<br />

Common dynamic structure of Canada lynx popu<strong>la</strong>tions within three c1imatic<br />

regions. Science 285 :1071-1073 .<br />

Stens<strong>et</strong>h, N . c., H. Viljugrein, W. Jedrzejewski, A. Mysterud, & Z. Pucek. 2002.<br />

Popu<strong>la</strong>tion dynamics of Cl<strong>et</strong>hrionomys g<strong>la</strong>reolus and Apo<strong>de</strong>mus j<strong>la</strong>vicollis:<br />

seasonal components of <strong>de</strong>nsity <strong>de</strong>pen<strong>de</strong>nce and <strong>de</strong>nsity in<strong>de</strong>pen<strong>de</strong>nce. Acta<br />

Theriologica 47:39-67.<br />

Stens<strong>et</strong>h, N . c., G. Ottersen, J. W. Hurrell, A. Mysterud, M. Lima, K.-S. Chan, N. G.<br />

Yoccoz, & B. Ad<strong>la</strong>ndsvik. 2003a. Studying c1imate effects on ecology<br />

through the use of c1imate indices: the North At<strong>la</strong>ntic oscil<strong>la</strong>tion, el Nino<br />

Southem oscil<strong>la</strong>tion and beyond. Proceedings of Royal Soci<strong>et</strong>y of London -<br />

Series B: Biological Sciences 270:2087-2096.<br />

Stens<strong>et</strong>h, N. C. , H. Viljugrein, T. Saitoh, T. F. Hansen, M. O. Kittilsen, E. Bolviken,<br />

& F. Glockner. 2003b. Seasonality, <strong>de</strong>nsity <strong>de</strong>pen<strong>de</strong>nce, and popu<strong>la</strong>tion<br />

cycles in Hokkaido voles. Proceedings of the National Aca<strong>de</strong>my of Sciences<br />

of the United States of America 100:11478-11483.


Stens<strong>et</strong>h, N. c., A. Shabbar, K. S. Chan, S. Boutin, E. K. Rueness, D. Ehrich, J. W.<br />

Hurrell, O. C. Lingjaer<strong>de</strong>, K. S. Jakobsen. 2004. Snow conditions may create<br />

an invisible barrier for lynx. Proceedings of the National Aca<strong>de</strong>my of Sciences<br />

of the United States of America 101: 1 0632-10634.<br />

Strick<strong>la</strong>n, D. , 1. T. Flin<strong>de</strong>rs, & R. G. Cates. 1995. Factors affecting selection of winter<br />

food and roosting resources by porcupines in Utah. Great Basin Naturalist<br />

55:29-36.<br />

Struthers, P. H. 1928. Breeding habits of the Canadian porcupine (Er<strong>et</strong>hizon<br />

dorsatum). Journal of Mammalogy 9:300-309.<br />

Stuart-Smith, A. K., & S. Boutin. 1995. Behavioral-differences b<strong>et</strong>ween <strong>sur</strong>viving<br />

and <strong>de</strong>predated juvenile red squirrels. Ecoscience 2:34-40.<br />

Suttle, K. B., M. A. Thomsen, & M . E. Power. 2007. Species interactions reverse<br />

grass<strong>la</strong>nd responses to changing <strong>climat</strong>e. Science 315:640-642.<br />

Sweitzer, R. A. 1996. Predation or starvation: consequences of foraging <strong>de</strong>cisions by<br />

porcupines (Er<strong>et</strong>hizon dorsatum) . Journal ofMammalogy 77: 1068-1077.<br />

Sweitzer, R. A. , & J. Berger. 1992. Size-re<strong>la</strong>ted effects of predation on habitat use<br />

and behavior of porcupines (Er<strong>et</strong>hizon dorsatum) . Ecology 73 :867-875 .<br />

Sweitzer, R. A., & 1. Berger. 1993. Seasonal dynamics of mass and body condition in<br />

Great Basin porcupines (Er<strong>et</strong>hizon dorsatum) . Journal of Mammalogy<br />

74: 198-203.<br />

Sweitzer, R. A. , S. H. Jenkins, & 1. Berger. 1997. Near-extinction ofporcupines by<br />

mountain lions and consequences of ecosystem change in Great Basin <strong>de</strong>sert.<br />

Conservation Biology Il: 1407 -1417.<br />

Systad, G. H., & J. O. Bustnes. 2001. Coping with darkness and low temperatures:<br />

foraging strategies in Steller's ei<strong>de</strong>rs, Polysticta stelleri, wintering at high<br />

<strong>la</strong>titu<strong>de</strong>s. Canadian Journal ofZoology 79:402-406.<br />

Tattersall , 1. 1987. Cathemeral activity in primates - A <strong>de</strong>finition. Folia<br />

Primatologica 49:200-202.<br />

Tattersall, 1. 2006. The concept of cathemerality: history and <strong>de</strong>finition. Folia<br />

Primatologica 77:7-14.<br />

Taylor, S. L. , & S. W. Buskirk. 1994. Forest microenvironments and resting<br />

energ<strong>et</strong>ics of the American marten Martes americana. Ecography 17 :249-256.<br />

Telfer, E. S., & 1. P. Kelsall. 1984. Adaptation of some <strong>la</strong>rge North American<br />

mammals for <strong>sur</strong>vival in snow. Ecology 65: 1828-1834.<br />

Thibault, L, & 1. P. Ouell<strong>et</strong>. 2005. Hunting behaviour of eastern coyotes in re<strong>la</strong>tion to<br />

veg<strong>et</strong>ation cover, snow conditions, and hare distribution. Ecoscience 12 :466-<br />

475 .<br />

Timmermann, A., 1. Oberhuber, A. Bacher, M. Esch, M. Latif, & E. Roeckner. 1999.<br />

Increased El Nino frequency in a <strong>climat</strong>e mo<strong>de</strong>l forced by future greenhouse<br />

warming. Nature 398:694-697.<br />

Torres-Contreras, H., & F. Bozinovic. 1997. Food selection in an herbivorous ro<strong>de</strong>nt:<br />

ba<strong>la</strong>ncing nutrition with thermoregu<strong>la</strong>tion. Ecology 78:2230-2237.<br />

138


139<br />

Tsiropou<strong>la</strong>, G. 2003. Signatures ofso<strong>la</strong>r activity variability in m<strong>et</strong>eorological<br />

param<strong>et</strong>ers. Jo urnal of Atmospheric and So<strong>la</strong>r-Terrestrial Physics 65:469-<br />

482.<br />

Turk, A. , & W . Arnold. 1988. Thermoregu<strong>la</strong>tion as a limit to habitat use in alpine<br />

marmots (Marmota marmota). Oecologia 76:544-548 .<br />

Turner, M. G., Y. A. Wu, L. L. Wal<strong>la</strong>ce, W. H. Romme, & A. Brenkert. 1994.<br />

Simu<strong>la</strong>ting winter interactions among ungu<strong>la</strong>tes, veg<strong>et</strong>ation, and fire in<br />

northern Yellowstone Park. Ecological Applications 4:472-486.<br />

Verschuren, D ., K. R. Laird, & B. F. Cumming. 2000. Rainfall and drought in<br />

equatorial east Africa <strong>du</strong>ring the past 1,100 years. Nature 403:410-414.<br />

Versteegh, G. 1. M. 2005. So<strong>la</strong>r forcing of<strong>climat</strong>e. 2: evi<strong>de</strong>nce from the pa st. Space<br />

Science Reviews 120:243-286.<br />

Visbeck, M., J. W. Hurrell, L. Polvani, & H. M. Cullen. 2001. The North At<strong>la</strong>ntic<br />

oscil<strong>la</strong>tion: past, present and future. Proceedings of the National Aca<strong>de</strong>my of<br />

Sciences, USA 98: 12876-12877.<br />

V ispo, C. R. , & G. S. Bakken. 1993. The <strong>influence</strong> of thermal conditions on the<br />

<strong>sur</strong>face activity ofthirteen-lined ground squirrels. Ecology 74:377-389.<br />

Walsberg, G. E., & B. O. Wolf. 1996. An appraisal of operative temperature mounts<br />

as tools for studies of ecological energ<strong>et</strong>ics. Physiological Zoology 69 :658-<br />

68 1.<br />

Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. 1. C. Beebee, 1.-M.<br />

Fromentin, O . Hoegh-Guldberg, & F. Bairlein. 2002. Ecological responses to<br />

recent <strong>climat</strong>e change. Nature 416:389-395 .<br />

Wang, G., N. T. Hobbs, F. 1. Singer, D. S. Ojima, & B. C. Lubow. 2002. Impacts of<br />

<strong>climat</strong>e change on elk popu<strong>la</strong>tion dynamics in rocky mountain national park,<br />

Colorado, U.S.A. Climatic change 54 :205-223 .<br />

Webb, N. J. 1993. Growth and mortality in juvenile European wild rabbits<br />

(Orycto<strong>la</strong>gus cuniculus). Journal ofZoology 230 :665-677.<br />

Wei, L. J., D. Y. Lin, & L. Weissfeld. 1989. Regression-analysis of multivari ate<br />

incompl<strong>et</strong>e failure time data by mo<strong>de</strong>ling marginal distributions. Journal of<br />

the American Statistical Association 84: 1 065-1073 .<br />

Wiersma, P., & T. Piersma. 1994. Effects ofmicrohabitat, flocking, <strong>climat</strong>e and<br />

migratory goal on energy-expenditure in the annual cycle of red knots.<br />

Condor 96:257-279.<br />

Wilmers, C. c., & W . M. G<strong>et</strong>z. 2005. Gray wolves as <strong>climat</strong>e change buffers in<br />

Yellowstone. PLOS Biology 3:0571-0576.<br />

Wilmers, C. c., & E. Post. 2006. Predicting the <strong>influence</strong> ofwolf-provi<strong>de</strong>d carrion on<br />

scavenger community dynamics un<strong>de</strong>r <strong>climat</strong>e change scenarios. Global<br />

Change Biology 12:403-409.<br />

Wilmers, C. c., E. Post, R. O. P<strong>et</strong>erson, & J. A. Vuc<strong>et</strong>ich. 2006. Predator disease outbreak<br />

mo<strong>du</strong><strong>la</strong>tes top-down, bottom-up and <strong>climat</strong>i c effects on herbivore<br />

popu<strong>la</strong>tion dynamics. Ecology L<strong>et</strong>ters 9:383-389.


Winslow, C. E. A. , L. P. Herrington, & A. P. Gagge. 1937. Physiological reactions of<br />

the human body to varying environmental temperatures. American Journal of<br />

Physiology 120: 1-22.<br />

Yo<strong>de</strong>r, 1. M ., E. A. Marschall, & D. A. Swanson. 2004. The co st of dispersal :<br />

predation as a function ofmovement and site familiarity in ruffed grouse.<br />

Behavioral Ecology 15:469-476.<br />

Zalewski, A. 2000. Factors affecting the <strong>du</strong>ration of activity by pine martens (Martes<br />

martes) in the Bialowieza national park, Po<strong>la</strong>nd. Journal ofZoology 251:439-<br />

447.<br />

Zimmerling, T. N . 2005. The <strong>influence</strong> of thermal protection on win ter <strong>de</strong>n selection<br />

by porcupines, Er<strong>et</strong>hizon dorsatum, in second-growth conifer forests.<br />

Canadian Field Naturalist 119: 159-163.<br />

Zimmerling, T. N. , & C. D. Croft. 2001. Resource selection by porcupines: winter<br />

<strong>de</strong>n sites and forage tree choices. Western Journal ofApplied Forestry 16:53-<br />

57.<br />

140

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!