08.09.2014 Views

Innovative Probe Needle Cleaning Techniques

Innovative Probe Needle Cleaning Techniques

Innovative Probe Needle Cleaning Techniques

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

AppliedPrecision<br />

Productivity solutions for a small world<br />

<strong>Innovative</strong> <strong>Probe</strong> Tip<br />

<strong>Cleaning</strong><br />

<strong>Techniques</strong><br />

James Andersen<br />

Applied Precision Inc.<br />

(425) 557-1000<br />

jander@api.com<br />

© 1998 Applied Precision, Inc.


Industry Survey<br />

• What are the suspected contaminants?<br />

• What is thought to cause high Contact<br />

Resistance?<br />

– Aluminum Oxide<br />

– Anti-reflectives<br />

– Tungsten Oxide<br />

– Passivation<br />

– Silicon Nitride<br />

– Tri-nitrides<br />

– Polymers & Fluorocarbons (due to over etch)<br />

– Lapping media (adhesive)<br />

– Electrically activated buildup of dielectrics<br />

– Outgassing of packing materials<br />

© 1998 Applied Precision, Inc.


Industry Survey<br />

• Compounds containing these elements<br />

were identified using SEM & Auger<br />

Analysis<br />

– Oxygen<br />

– Sulfur<br />

– Chlorine<br />

– Carbon<br />

– Nitrogen<br />

– Copper<br />

– Aluminum<br />

– Silicon<br />

© 1998 Applied Precision, Inc.


Industry Survey<br />

• How do you determine when a<br />

card is “dirty”?<br />

– It exhibits high contact resistance<br />

– Yield fallout assumed to be a result of high Cres<br />

– Reprobe failure rate doesn’t improve - assumed to be<br />

a result of high Cres<br />

– By visual inspection<br />

© 1998 Applied Precision, Inc.


Industry Survey<br />

• What methods do you use to<br />

“clean”?<br />

– Scrub on Tungsten Carbide<br />

– Scrub on Lapping films<br />

– Scrub on SandPaper<br />

– Camel Hair dry brushing - to remove particulates<br />

– IPA wet brushing<br />

– Scrub on Ceramic<br />

– Dish Soap followed by DI water<br />

• What do you think reduces Cres??<br />

– Abrasion, physically removing the “contaminants”<br />

© 1998 Applied Precision, Inc.


Scrubbing on Tungsten Carbide<br />

Effectively reduces contact resistance<br />

20.00<br />

18.00<br />

16.00<br />

14.00<br />

12.00<br />

1000 TD's<br />

W SCRUB<br />

OHMS<br />

10.00<br />

8.00<br />

6.00<br />

4.00<br />

2.00<br />

0.00<br />

49<br />

51<br />

53<br />

42<br />

39<br />

40<br />

37<br />

38<br />

35<br />

PROBE<br />

36<br />

33<br />

34<br />

31<br />

32<br />

29<br />

30<br />

27<br />

20<br />

18<br />

16<br />

1000 TD's<br />

BUT...<br />

© 1998 Applied Precision, Inc.


Abrasive <strong>Cleaning</strong><br />

• Abrasive <strong>Cleaning</strong>...<br />

– Causes deformation of the tips<br />

– Reduces <strong>Probe</strong> Card Life<br />

– Produces additional contaminants<br />

– Is incompatible with some probe card technology<br />

A non-destructive<br />

cleaning alternative<br />

is needed!<br />

© 1998 Applied Precision, Inc.


Chemicals and Solvents<br />

• Sodium Hydroxide<br />

• Potassium Hydroxide<br />

Did not pursue evaluation of wet<br />

chemicals due to restricted usage<br />

in wafer fabrication environments<br />

• Solvents<br />

Process intensive usage and appear<br />

to have little or no effect on contact<br />

resistance.<br />

© 1998 Applied Precision, Inc.


Chemicals<br />

18.0000<br />

16.0000<br />

DEOXIT<br />

5 Minute Bath in 100% Solution<br />

Cres Before<br />

14.0000<br />

12.0000<br />

10.0000<br />

8.0000<br />

6.0000<br />

4.0000<br />

2.0000<br />

Cres After<br />

0.0000<br />

162<br />

163<br />

164<br />

54<br />

60<br />

53<br />

61<br />

52<br />

62<br />

51<br />

63<br />

50<br />

64<br />

49<br />

127<br />

48<br />

125<br />

43<br />

42<br />

41<br />

© 1998 Applied Precision, Inc.


Our Mission ...<br />

To meet the industry requirement we<br />

need to find a cleaning method that<br />

is<br />

Non-abrasive<br />

Non-destructive<br />

Non-chemical<br />

Material Independent<br />

© 1998 Applied Precision, Inc.<br />

and EFFECTIVELY Reduces Contact<br />

Resistance


Acoustic Pressure Waves<br />

© 1998 Applied Precision, Inc.<br />

TIPS IN AN ACOUSTIC FOUNTAIN


Acoustic Energy<br />

High<br />

Frequency<br />

Acoustics<br />

produce a<br />

spatially<br />

defined energy<br />

field<br />

PRESSURE FIELD AS A STANDING WAVE<br />

© 1998 Applied Precision, Inc.


MegaSonic Acoustics<br />

BEFORE CLEANING<br />

AFTER CLEANING<br />

© 1998 Applied Precision, Inc.<br />

Radiation Pressure Forces and Localized<br />

Microstreaming Effectively Remove<br />

Particulates<br />

However...


MegaSonic Acoustics<br />

…Contact Resistance Increases!<br />

10.000<br />

9.000<br />

8.000<br />

AFTER<br />

7.000<br />

OHMS<br />

6.000<br />

5.000<br />

4.000<br />

3.000<br />

2.000<br />

BEFORE<br />

1.000<br />

0.000<br />

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 23 29 28 27 22 25 24<br />

S1<br />

© 1998 Applied Precision, Inc.<br />

PROBE


Carbon Dioxide “Snow”<br />

• Removes particles and organic<br />

contamination<br />

– High velocity gas<br />

– Momentum Transfer<br />

– Sublimation<br />

18.00<br />

Provides Excellent<br />

Particle Removal<br />

but Minimal<br />

Contact Resistance<br />

Improvement<br />

ohms<br />

16.00<br />

14.00<br />

12.00<br />

10.00<br />

8.00<br />

6.00<br />

4.00<br />

2.00<br />

Test 1<br />

Test 2<br />

0.00<br />

49<br />

51<br />

53<br />

42<br />

39<br />

40<br />

37<br />

38<br />

35<br />

36<br />

channel<br />

33<br />

34<br />

31<br />

32<br />

29<br />

30<br />

27<br />

20<br />

18<br />

16<br />

Test 1<br />

© 1998 Applied Precision, Inc.


What Causes Contact Resistance?<br />

This Card Has Never Touched a Wafer !<br />

16.00<br />

14.00<br />

12.00<br />

10.00<br />

OHMS<br />

8.00<br />

6.00<br />

4.00<br />

2.00<br />

0.00<br />

49 52 51 54 53 64 42 63 39 66 40 65 37 68 38 67 35 70 36 69 33 2 34 1 31 4 32 3 29 6 30 5 27 8 20 17 18 15 16<br />

CRes<br />

PROBE<br />

© 1998 Applied Precision, Inc.


<strong>Probe</strong> Card Storage<br />

OHMS<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

Test 1<br />

Test 2<br />

Nitrogen<br />

Purging/Vacuum<br />

Sealing Controls<br />

Contact Resistance<br />

0.40<br />

4.50<br />

0.20<br />

0.00<br />

43<br />

42<br />

41<br />

125<br />

48<br />

127<br />

49<br />

64<br />

50<br />

63<br />

51<br />

62<br />

52<br />

PROBE<br />

Vacuum Sealed<br />

61<br />

53<br />

60<br />

54<br />

162<br />

163<br />

164<br />

Test 1<br />

OHMS<br />

4.00<br />

3.50<br />

3.00<br />

2.50<br />

2.00<br />

Test 1<br />

Test 2<br />

1.50<br />

Test Performed at<br />

one week intervals<br />

1.00<br />

0.50<br />

0.00<br />

43<br />

42<br />

41<br />

125<br />

48<br />

127<br />

49<br />

64<br />

50<br />

63<br />

Stored in Air<br />

51<br />

62<br />

52<br />

PROBE<br />

61<br />

53<br />

60<br />

54<br />

162<br />

163<br />

164<br />

Test 1<br />

© 1998 Applied Precision, Inc.


What Causes Contact Resistance?<br />

Presence of Oxygen<br />

Suggests Existence of<br />

an Oxide Layer<br />

© 1998 Applied Precision, Inc.


MicroCluster Beam Technology<br />

© 1998 Applied Precision, Inc.


MicroCluster Beam Technology<br />

© 1998 Applied Precision, Inc.


MicroCluster Beam Technology<br />

© 1998 Applied Precision, Inc.


Rocket Science Reduces Resistance<br />

25.00<br />

20.00<br />

Test 2 Test 1<br />

15.00<br />

OHMS<br />

10.00<br />

5.00<br />

0.00<br />

© 1998 Applied Precision, Inc.


MicroCluster Beam Technology<br />

BEFORE<br />

AFTER<br />

MicroCluster Beam <strong>Cleaning</strong> Results in NO<br />

Measurable Changes to <strong>Probe</strong> Alignment,<br />

Planarity, or Tip Profile<br />

© 1998 Applied Precision, Inc.


Summary<br />

– Abrasive Scrubbing works, but is destructive.<br />

– Chemicals can work, but are destructive and face<br />

restricted usage in Fab environments.<br />

– Solvents are messy and ineffective.<br />

– High Frequency Acoustic <strong>Cleaning</strong> removes particulates<br />

but increases contact resistance.<br />

– CO 2<br />

Snow removes particulates but did not reduce contact<br />

resistance.<br />

Is MicroCluster Beam Technology<br />

the Solution?<br />

© 1998 Applied Precision, Inc.


Conclusion<br />

MicroCluster Beam Technology Exceeds Our<br />

Mission Objectives<br />

– Non-abrasive Method<br />

– No Measurable <strong>Probe</strong> Wear or Damage<br />

– Non-chemical<br />

– Dry process - No Bakeout Required<br />

– Independent of probe material, pitch, topography, type.<br />

MicroCluster Beam Technology Effectively and<br />

Consistently Reduces Contact Resistance!<br />

© 1998 Applied Precision, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!