27.09.2014 Views

Sample Lab Report - Milwaukee Area Technical College

Sample Lab Report - Milwaukee Area Technical College

Sample Lab Report - Milwaukee Area Technical College

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Experiment 15 Richard Lokken 8/21/2009<br />

<strong>Milwaukee</strong> <strong>Area</strong> <strong>Technical</strong> <strong>College</strong> ELCTEC-112<br />

BACKGROUND INFORMATION<br />

Use KVL to determine the fundamental properties of AC series circuits. Voltage and<br />

currents can be calculated for all components in the AC series circuit.<br />

THEORETICAL SOLUTION<br />

R 1<br />

1 k <br />

V S1<br />

1 V P-P<br />

R 2<br />

2.2 k <br />

R 3<br />

820 <br />

Circuit One<br />

Figure 15-1: Test circuit 1<br />

R T R 1 R 2 R 3<br />

R 1<br />

VR 1 V S <br />

R T<br />

VR 1 0.249V<br />

R 2<br />

VR 2 V S <br />

VR<br />

R 2 0.547V<br />

T<br />

R 3<br />

VR 3 V S <br />

R T<br />

VR 3 0.204V<br />

<br />

V S VR 1 VR 2 VR 3<br />

<br />

0V<br />

1


Experiment 15 Richard Lokken 8/21/2009<br />

<strong>Milwaukee</strong> <strong>Area</strong> <strong>Technical</strong> <strong>College</strong> ELCTEC-112<br />

R 1<br />

1 k <br />

V S1<br />

2 V P-P<br />

R 2<br />

2.2 k <br />

C 1<br />

0.01 F<br />

Figure 15-2: Test circuit 2<br />

jXC i<br />

Circuit Two Z R i 1 R 2<br />

R 1<br />

R XC 2<br />

i<br />

VR1 V i S VR2 V<br />

Z i S <br />

VC1 V<br />

Z i S j<br />

Z i<br />

i<br />

i<br />

<br />

5.045 10 4 0.013i<br />

0.012 0.06i<br />

VR1 i<br />

0.043 0.108i<br />

0.083 0.138i<br />

<br />

<br />

0.998 0.04i<br />

0.961 0.193i<br />

VC1 i 0.861 0.346i<br />

0.733 0.442i<br />

<br />

<br />

<br />

V<br />

<br />

<br />

V<br />

VR1 VR2 i i<br />

<br />

1.11 10 3 0.028i<br />

0.027 0.133i<br />

VR2 i<br />

0.096 0.238i<br />

0.183 0.304i<br />

<br />

VC1 i <br />

V S <br />

<br />

<br />

0<br />

0<br />

0<br />

0<br />

<br />

<br />

V<br />

<br />

<br />

V<br />

2


Experiment 15 Richard Lokken 8/21/2009<br />

<strong>Milwaukee</strong> <strong>Area</strong> <strong>Technical</strong> <strong>College</strong> ELCTEC-112<br />

VR1 i<br />

0.013<br />

0.062<br />

0.117<br />

0.161<br />

V<br />

180<br />

arg VR1 i π<br />

87.697<br />

78.632<br />

68.094<br />

58.902<br />

<br />

VR2 i<br />

0.028<br />

0.136<br />

0.256<br />

0.355<br />

V<br />

180<br />

arg VR2 i π<br />

87.697<br />

78.632<br />

68.094<br />

58.902<br />

VC1 i<br />

0.999<br />

0.98<br />

V<br />

180<br />

arg VC1 i π<br />

-2.303<br />

-11.368<br />

<br />

0.928<br />

-21.906<br />

0.856<br />

-31.098<br />

Simulations:<br />

U1<br />

+ -<br />

0.249 V<br />

AC 10M<br />

U2<br />

+ -<br />

0.547 V<br />

AC 10M<br />

3<br />

R1<br />

1 2<br />

1k<br />

R2<br />

2.2k<br />

V1<br />

1 V<br />

60 Hz<br />

0Deg<br />

R3<br />

820 <br />

0<br />

+<br />

-<br />

0.204 V<br />

U3<br />

AC 10M<br />

Figure 15.3: Simulation of test circuit one.<br />

3


Experiment 15 Richard Lokken 8/21/2009<br />

<strong>Milwaukee</strong> <strong>Area</strong> <strong>Technical</strong> <strong>College</strong> ELCTEC-112<br />

1<br />

R1<br />

1k<br />

2<br />

R2<br />

2.2k<br />

3<br />

V1<br />

1 V<br />

60 Hz<br />

0Deg<br />

0<br />

C1<br />

0.01uF<br />

Figure 15.4: Simulation of test circuit two.<br />

Procedure<br />

Figure 15.2 Simulation Results<br />

V R1 V R2 V C1<br />

Freq Mag Phase Mag Phase Mag Phase<br />

1000 0.0616 78.63 0.1355 78.63 0.9804 ‐11.37<br />

2000 0.1166 68.09 0.2565 68.09 0.9278 ‐21.91<br />

3000 0.1614 58.90 0.3551 58.90 0.8563 ‐31.10<br />

RESULTS<br />

Connect the circuit shown in Figure 15.1. Measure and record the voltage across R 1 , R 2 ,<br />

and R 3 . Next connect the circuit shown in Figure 15.2. Measure and record the voltage<br />

across all components.<br />

Data<br />

Figure 15-1<br />

Simulation Results<br />

Frequency V R3 V R2 V R1 Node 2 KVL Phase<br />

200 0.20398 0.547264 0.248756 0.751244 0 0<br />

1000 0.20398 0.547264 0.248756 0.751244 0 0<br />

2000 0.20398 0.547264 0.248756 0.751244 0 0<br />

3000 0.20398 0.547264 0.248756 0.751244 0 0<br />

Figure 15-2<br />

Theoretical Results<br />

Frequency V R3 V R2 VR1<br />

4


Experiment 15 Richard Lokken 8/21/2009<br />

<strong>Milwaukee</strong> <strong>Area</strong> <strong>Technical</strong> <strong>College</strong> ELCTEC-112<br />

200 0.204 0.547 0.249<br />

Figure 15-2<br />

Measured Results<br />

Frequency V C Phase V R2 Phase V R1 Phase<br />

2000 0.921934 -23.219 0.264667 66.325 0.118386 66.923<br />

3000 0.832818 -33.938 0.376791 55.595 0.169122 56.027<br />

Figure 15-2<br />

Theoretical Results<br />

Frequency V C Phase V R2 Phase V R1 Phase<br />

2000 0.928 -21.906 0.256 68.094 0.117 68.094<br />

3000 0.856 -31.098 0.355 58.902 0.161 58.902<br />

Figure 15.2 Simulation Results<br />

V R1 V R2 V C1<br />

Freq Mag Phase Mag Phase Mag Phase<br />

1000 0.0616 78.63 0.1355 78.63 0.9804 ‐11.37<br />

2000 0.1166 68.09 0.2565 68.09 0.9278 ‐21.91<br />

3000 0.1614 58.90 0.3551 58.90 0.8563 ‐31.10<br />

ANALYSIS OF RESULTS<br />

Since test circuit one was purely resistive, a DMM or oscilloscope could be used to<br />

measure the voltage drops across the resistors. KVL could be verified for each<br />

frequency.<br />

5


Experiment 15 Richard Lokken 8/21/2009<br />

<strong>Milwaukee</strong> <strong>Area</strong> <strong>Technical</strong> <strong>College</strong> ELCTEC-112<br />

<br />

5.045 10 4 0.013i<br />

0.012 0.06i<br />

VR1 i<br />

0.043 0.108i<br />

0.083 0.138i<br />

<br />

<br />

0.998 0.04i<br />

0.961 0.193i<br />

VC1 i 0.861 0.346i<br />

0.733 0.442i<br />

<br />

<br />

<br />

V<br />

<br />

<br />

V<br />

VR1 VR2 i i<br />

<br />

1.11 10 3 0.028i<br />

0.027 0.133i<br />

VR2 i<br />

0.096 0.238i<br />

0.183 0.304i<br />

<br />

VC1 i <br />

V S <br />

<br />

<br />

0<br />

0<br />

0<br />

0<br />

<br />

<br />

V<br />

<br />

<br />

V<br />

Since in test circuit two R 3 was replace with a capacitor. A capacitor is a reactive<br />

component. The impedance of the capacitor changes inversely with the frequency.<br />

Therefore a DMM can not be used to verify KVL. The DMM only provides magnitude<br />

information. An oscilloscope was needed to obtain the phasor voltage associated with the<br />

reactive circuit.<br />

There were no significant errors in measurement during this experiment.<br />

EXECUTIVE SUMMARY<br />

This experiment verified KVL for a series AC circuit. A purely resistive circuit and a<br />

reactive circuit were examined. It was found that a DMM or oscilloscope could be<br />

utilized to verify KVL for a purely resistive circuit. A DMM could not be utilized for<br />

verify KVL in a reactive circuit. A DMM only provides magnitude information. A<br />

reactive circuit is complex and both magnitude and phase data are required. An<br />

oscilloscope is needed to obtain the required data for the reactive circuit. The addition of<br />

the capacitor is reflected in the phase angle information obtain. Recall that the current in<br />

6


Experiment 15 Richard Lokken 8/21/2009<br />

<strong>Milwaukee</strong> <strong>Area</strong> <strong>Technical</strong> <strong>College</strong> ELCTEC-112<br />

a capacitor leads the voltage by 90 o . This is because the plates require time to charge to<br />

the full voltage. Once fully charge the capacitor resembles an open circuit. This stored<br />

voltage is then available for use in the circuit.<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!