28.09.2014 Views

Topological basis of signal integration in the transcriptional ...

Topological basis of signal integration in the transcriptional ...

Topological basis of signal integration in the transcriptional ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

BMC Bio<strong>in</strong>formatics<br />

BioMed Central<br />

Research article<br />

<strong>Topological</strong> <strong>basis</strong> <strong>of</strong> <strong>signal</strong> <strong><strong>in</strong>tegration</strong> <strong>in</strong> <strong>the</strong><br />

<strong>transcriptional</strong>-regulatory network <strong>of</strong> <strong>the</strong> yeast, Saccharomyces<br />

cerevisiae<br />

Illés J Farkas †1,2 , Chuang Wu †3 , Chakra Chennubhotla 3 , Ivet Bahar 3 and<br />

Zoltán N Oltvai* 1<br />

Open Access<br />

Address: 1 Department <strong>of</strong> Pathology, University <strong>of</strong> Pittsburgh, Pittsburgh, PA, 15261, USA, 2 Department <strong>of</strong> Biological Physics and HAS Group,<br />

Eötvös University, Budapest, 1117, Hungary and 3 Department <strong>of</strong> Computational Biology, University <strong>of</strong> Pittsburgh, Pittsburgh, PA, 15261, USA<br />

Email: Illés J Farkas - illes.farkas@gmail.com; Chuang Wu - chuangwoo@gmail.com; Chakra Chennubhotla - chakra@ccbb.pitt.edu;<br />

Ivet Bahar - bahar@ccbb.pitt.edu; Zoltán N Oltvai* - oltvai@pitt.edu<br />

* Correspond<strong>in</strong>g author †Equal contributors<br />

Published: 28 October 2006<br />

BMC Bio<strong>in</strong>formatics 2006, 7:478 doi:10.1186/1471-2105-7-478<br />

Received: 23 July 2006<br />

Accepted: 28 October 2006<br />

This article is available from: http://www.biomedcentral.com/1471-2105/7/478<br />

© 2006 Farkas et al; licensee BioMed Central Ltd.<br />

This is an Open Access article distributed under <strong>the</strong> terms <strong>of</strong> <strong>the</strong> Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),<br />

which permits unrestricted use, distribution, and reproduction <strong>in</strong> any medium, provided <strong>the</strong> orig<strong>in</strong>al work is properly cited.<br />

Abstract<br />

Background: Signal recognition and <strong>in</strong>formation process<strong>in</strong>g is a fundamental cellular function,<br />

which <strong>in</strong> part <strong>in</strong>volves comprehensive <strong>transcriptional</strong> regulatory (TR) mechanisms carried out <strong>in</strong><br />

response to complex environmental <strong>signal</strong>s <strong>in</strong> <strong>the</strong> context <strong>of</strong> <strong>the</strong> cell's own <strong>in</strong>ternal state. However,<br />

<strong>the</strong> network topological <strong>basis</strong> <strong>of</strong> develop<strong>in</strong>g such <strong>in</strong>tegrated responses rema<strong>in</strong>s poorly understood.<br />

Results: By study<strong>in</strong>g <strong>the</strong> TR network <strong>of</strong> <strong>the</strong> yeast Saccharomyces cerevisiae we show that an<br />

<strong>in</strong>termediate layer <strong>of</strong> transcription factors naturally segregates <strong>in</strong>to dist<strong>in</strong>ct subnetworks. In <strong>the</strong>se<br />

topological units transcription factors are densely <strong>in</strong>terl<strong>in</strong>ked <strong>in</strong> a largely hierarchical manner and<br />

respond to external <strong>signal</strong>s by utiliz<strong>in</strong>g a fraction <strong>of</strong> <strong>the</strong>se subnets.<br />

Conclusion: As <strong>transcriptional</strong> regulation represents <strong>the</strong> 'slow' component <strong>of</strong> overall <strong>in</strong>formation<br />

process<strong>in</strong>g, <strong>the</strong> identified topology suggests a model <strong>in</strong> which successive waves <strong>of</strong> <strong>transcriptional</strong><br />

regulation orig<strong>in</strong>at<strong>in</strong>g from dist<strong>in</strong>ct fractions <strong>of</strong> <strong>the</strong> TR network control robust <strong>in</strong>tegrated<br />

responses to complex stimuli.<br />

Background<br />

Liv<strong>in</strong>g cells cont<strong>in</strong>uously process <strong>in</strong>formation about <strong>the</strong>ir<br />

environment, and based on this <strong>in</strong>formation and <strong>the</strong>ir<br />

own <strong>in</strong>ternal state mount appropriate responses to <strong>the</strong>se<br />

<strong>signal</strong>s. This <strong>in</strong>formation process<strong>in</strong>g is carried out by various<br />

regulatory networks function<strong>in</strong>g <strong>in</strong> a highly crowded,<br />

viscous cellular <strong>in</strong>terior, with characteristic times spann<strong>in</strong>g<br />

several orders <strong>of</strong> magnitude. The fastest among <strong>the</strong>se<br />

are <strong>signal</strong> transduction networks: <strong>the</strong>y range from simple<br />

two-component pathways <strong>in</strong> prokaryotes to <strong>the</strong> highly<br />

complex <strong>signal</strong> transduction networks <strong>of</strong> mammalian<br />

cells. Fast <strong>signal</strong><strong>in</strong>g, however, is frequently followed by<br />

slower <strong>transcriptional</strong> regulatory (TR) events, dur<strong>in</strong>g<br />

which regulatory gene products, such as transcription factors<br />

(TFs) and regulatory RNAs, alter <strong>the</strong> rate <strong>of</strong> transcription<br />

<strong>of</strong> o<strong>the</strong>r genes, reorganiz<strong>in</strong>g gene expression to<br />

achieve new metabolic states, or <strong>in</strong>itiate cellular programs,<br />

such as <strong>the</strong> cell cycle, sporulation, or differentiation<br />

[1-3].<br />

Understand<strong>in</strong>g <strong>the</strong> system-level properties <strong>of</strong> <strong>the</strong>se networks<br />

requires both experimental and computational<br />

Page 1 <strong>of</strong> 12<br />

(page number not for citation purposes)


BMC Bio<strong>in</strong>formatics 2006, 7:478<br />

http://www.biomedcentral.com/1471-2105/7/478<br />

efforts that start with mapp<strong>in</strong>g out potential regulatory<br />

<strong>in</strong>teractions that exist <strong>in</strong> a given cell type. In <strong>the</strong> yeast Saccharomyces<br />

cerevisiae and <strong>in</strong> <strong>the</strong> bacterium Escherichia coli,<br />

<strong>the</strong> static 'wir<strong>in</strong>g diagrams' <strong>of</strong> potential TF-mediated <strong>in</strong>teractions<br />

have been mapped out to such a degree [4-7] that<br />

<strong>the</strong>ir system-level characteristics and function can be<br />

<strong>in</strong>vestigated. Subsequent computational analyses have<br />

shown that <strong>in</strong> both TR networks <strong>the</strong> regulatory <strong>in</strong>teractions<br />

between TFs and <strong>the</strong> regulated genes are <strong>of</strong>ten organized<br />

<strong>in</strong>to basic <strong>in</strong>formation process<strong>in</strong>g subgraphs, called<br />

motifs [8] that can form even larger potential <strong>in</strong>formation<br />

process<strong>in</strong>g units, such as motif clusters [9], <strong>the</strong>mes and<br />

<strong>the</strong>matic maps [10], and <strong>transcriptional</strong> modules [11]. It<br />

is also evident that <strong>the</strong> TR network is utilized <strong>in</strong> a condition-specific<br />

manner [12], perhaps through <strong>the</strong> activation<br />

<strong>of</strong> dist<strong>in</strong>ct, <strong>signal</strong>-specific subnetworks [13]. In spite <strong>of</strong><br />

<strong>the</strong>se advances <strong>the</strong> pr<strong>in</strong>ciples along which regulatory networks<br />

process <strong>signal</strong>s, encode <strong>the</strong> relevant <strong>signal</strong>s at different<br />

layers <strong>of</strong> <strong>the</strong> network, and <strong>in</strong>tegrate <strong>the</strong>m with o<strong>the</strong>r<br />

<strong>signal</strong>s rema<strong>in</strong> poorly understood.<br />

Here we show that regulatory <strong>in</strong>teractions among an <strong>in</strong>termediate<br />

layer <strong>of</strong> transcription factors is a key determ<strong>in</strong>ant<br />

<strong>of</strong> <strong>in</strong>formation transfer with<strong>in</strong> <strong>the</strong> S. cerevisiae TR network,<br />

and that this layer naturally segregates <strong>in</strong>to dist<strong>in</strong>ct,<br />

sparsely communicat<strong>in</strong>g subnets <strong>in</strong> which TFs are densely<br />

<strong>in</strong>terl<strong>in</strong>ked <strong>in</strong> a hierarchical manner. We also show that<br />

TFs and <strong>the</strong> genes regulated by <strong>the</strong>m respond to external<br />

<strong>signal</strong>s by utiliz<strong>in</strong>g various fractions <strong>of</strong> <strong>the</strong>se subnetworks.<br />

The identified features suggest a model <strong>in</strong> which successive<br />

waves <strong>of</strong> <strong>transcriptional</strong> regulation <strong>of</strong> gene expression<br />

via multiple <strong>in</strong>terferences at various levels <strong>of</strong> TF <strong>in</strong>teraction<br />

hierarchy constitute a key feature <strong>of</strong> develop<strong>in</strong>g<br />

robust <strong>in</strong>tegrated responses to complex stimuli.<br />

Results<br />

Hierarchies and <strong>signal</strong>-specific subnets <strong>in</strong> <strong>the</strong> S. cerevisiae<br />

TR network<br />

With <strong>the</strong> exception <strong>of</strong> a few mutually regulat<strong>in</strong>g pairs, <strong>the</strong><br />

l<strong>in</strong>ks <strong>of</strong> <strong>the</strong> S. cerevisiae TR network are unidirectional, and<br />

its nodes can be arranged <strong>in</strong>to three ma<strong>in</strong> layers based on<br />

<strong>the</strong>ir position, regulation, and function. The layers reflect<br />

<strong>the</strong> flow <strong>of</strong> <strong>in</strong>formation from <strong>the</strong> <strong>in</strong>put nodes (TFs not<br />

regulated <strong>transcriptional</strong>ly by o<strong>the</strong>r TFs), through <strong>in</strong>termediate<br />

TFs to <strong>the</strong> output nodes (non-TF prote<strong>in</strong>s) (Fig. 1A);<br />

a path from an <strong>in</strong>put to an output node conta<strong>in</strong>s usually<br />

1 to 3 steps, and <strong>the</strong> maximum length is 8 steps.<br />

In <strong>the</strong> S. cerevisiae TR network each TF regulates a limited<br />

number <strong>of</strong> target genes (<strong>in</strong>termediate layer TFs and/or<br />

output prote<strong>in</strong>s), with an average number <strong>of</strong> 34.3. As<br />

described recently for <strong>the</strong> TR network <strong>of</strong> E. coli [13], <strong>the</strong><br />

genes directly or <strong>in</strong>directly regulated by a given <strong>in</strong>put TF<br />

form a <strong>signal</strong>-specific subnet, or origon, and <strong>the</strong> nodes at<br />

<strong>the</strong> <strong>in</strong>termediate and output layers <strong>of</strong> <strong>the</strong> origons are <strong>of</strong>ten<br />

shared by two or more origons. Figure 1A illustrates two<br />

overlapp<strong>in</strong>g origons, orig<strong>in</strong>at<strong>in</strong>g from <strong>the</strong> <strong>in</strong>put TFs Yap1<br />

and Skn7. S<strong>in</strong>ce <strong>the</strong> network conta<strong>in</strong>s 54 <strong>in</strong>put TFs, <strong>the</strong>re<br />

is a total <strong>of</strong> 54 origons <strong>in</strong> <strong>the</strong> S. cerevisiae TR network, <strong>of</strong><br />

which only two are isolated from <strong>the</strong> rest <strong>of</strong> <strong>the</strong> network<br />

(<strong>the</strong> origons <strong>of</strong> Pdr3 and Zap1) (Fig. 1B).<br />

Classification <strong>of</strong> <strong>the</strong> yeast TR network based on its global<br />

topological properties<br />

To ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> overall yeast TR network organization<br />

we first assessed <strong>the</strong> connectivity distribution <strong>of</strong> all<br />

nodes (each represent<strong>in</strong>g a gene and its product), and separately<br />

those <strong>of</strong> <strong>in</strong>put TFs, <strong>in</strong>termediate TFs, and output<br />

genes, us<strong>in</strong>g cumulated distributions that are equivalent<br />

to rank-degree (or Zipf-) plots. Due to <strong>the</strong> <strong>in</strong>herent directionality<br />

<strong>of</strong> <strong>the</strong> l<strong>in</strong>ks, we separately analyzed <strong>the</strong> number<br />

<strong>of</strong> regulat<strong>in</strong>g TFs per regulated gene (<strong>in</strong>com<strong>in</strong>g l<strong>in</strong>ks, k <strong>in</strong> )<br />

and <strong>the</strong> number <strong>of</strong> regulated genes per TF (outgo<strong>in</strong>g l<strong>in</strong>ks,<br />

k out ), to determ<strong>in</strong>e if <strong>the</strong>ir distributions are best approximated<br />

by exponential-like [14] or power-law [15] models.<br />

(Hubs, i.e., TFs with large numbers <strong>of</strong> l<strong>in</strong>ks, are absent<br />

from exponential-like models, while <strong>the</strong>y are present and<br />

ra<strong>the</strong>r significant <strong>in</strong> <strong>the</strong> power-law model.) We f<strong>in</strong>d that<br />

<strong>the</strong> distribution <strong>of</strong> <strong>the</strong> number <strong>of</strong> <strong>in</strong>com<strong>in</strong>g l<strong>in</strong>ks per<br />

node, k <strong>in</strong> , displays an exponential decay (see <strong>in</strong>set <strong>of</strong> Fig.<br />

1C), as previously described [16], while that <strong>of</strong> outgo<strong>in</strong>g<br />

l<strong>in</strong>ks shows an <strong>in</strong>termediate behavior between exponential-like-<br />

and power-law decay models (Fig. 1C).<br />

Interest<strong>in</strong>gly, <strong>the</strong> outgo<strong>in</strong>g l<strong>in</strong>ks for <strong>in</strong>put TFs closely<br />

approximate an exponentially decay<strong>in</strong>g degree distribution,<br />

(i.e., hub sizes are limited), while a few <strong>of</strong> <strong>the</strong> <strong>in</strong>termediate<br />

TFs are unexpectedly large hubs resembl<strong>in</strong>g more<br />

closely <strong>the</strong> power-law models. Also, <strong>the</strong> outdegrees <strong>of</strong><br />

<strong>in</strong>termediate TFs tend to be larger than those <strong>of</strong> <strong>in</strong>put<br />

nodes (Supplementary Fig. S1). Taken toge<strong>the</strong>r, <strong>the</strong> cumulative<br />

<strong>in</strong>- and outdegree distributions suggest that <strong>the</strong><br />

yeast TR network belongs to a mixed class <strong>of</strong> networks<br />

(between exponential and power-law [17]), where <strong>the</strong><br />

number <strong>of</strong> connections per node is likely to be constra<strong>in</strong>ed<br />

both by <strong>the</strong> limited size <strong>of</strong> a target gene's promoter<br />

region [16], and perhaps by <strong>the</strong> biosyn<strong>the</strong>tic costs<br />

<strong>of</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g regulatory <strong>in</strong>teractions [17].<br />

Distribution <strong>of</strong> graph motifs <strong>in</strong> <strong>the</strong> yeast TR network<br />

The effects <strong>of</strong> many external and <strong>in</strong>ternal <strong>signal</strong>s are manifested<br />

by altered TF activity, followed by <strong>the</strong> propagation<br />

<strong>of</strong> <strong>the</strong> perturbation to nodes <strong>of</strong> lower layers. Small circuits<br />

(or subgraphs) play a key role <strong>in</strong> this propagation; <strong>the</strong>y<br />

<strong>of</strong>ten connect nodes <strong>of</strong> different regulatory layers to each<br />

o<strong>the</strong>r. Of <strong>the</strong>se, overrepresented subgraphs (motifs) are<br />

likely to enhance <strong>the</strong> versatility <strong>of</strong> <strong>in</strong>formation process<strong>in</strong>g<br />

<strong>in</strong> a TR network [8,18], and may have become abundant<br />

due to <strong>the</strong> overall functional robustness <strong>the</strong>y provide dur-<br />

Page 2 <strong>of</strong> 12<br />

(page number not for citation purposes)


BMC Bio<strong>in</strong>formatics 2006, 7:478<br />

http://www.biomedcentral.com/1471-2105/7/478<br />

(A)<br />

Signals<br />

Output Intermediate Input<br />

Aft2<br />

Yap1<br />

CNV<br />

Rcs1<br />

Sok2<br />

CMR<br />

Skn7<br />

Phd1<br />

Common Outputs<br />

FFL<br />

Rox1<br />

Outputs <strong>of</strong> Origon Skn7<br />

Outputs <strong>of</strong> Origon Yap1<br />

(B)<br />

Gal4<br />

Met31<br />

Met32<br />

Dal80<br />

Rph1<br />

Smp1<br />

Xbp1<br />

Bas1<br />

Ydr026c<br />

Stp1<br />

Stb5<br />

Pho4 Rap1 Hsf1<br />

Hac1<br />

Rlr1<br />

Gcn4 Mac1<br />

Spt2<br />

Cbf1<br />

Skn7<br />

Snt2<br />

Tye7<br />

Rim101<br />

Rds1<br />

Sfp1<br />

Fkh2<br />

Ume6<br />

Mbp1<br />

Rlm1<br />

Sut1 Cad1<br />

Ace2<br />

Swi6<br />

Hap3<br />

Ino2<br />

Yap1 Mcm1<br />

Gat1<br />

Msn2<br />

Stb1<br />

Hap1<br />

Dal82<br />

Ume1<br />

Ino4<br />

Hap5<br />

Zap1<br />

Thi2<br />

Sko1<br />

Mot3 Adr1 Azf1<br />

Pdr3<br />

Stb4<br />

FFL<br />

CMR<br />

SMR<br />

(C)<br />

1<br />

0.1<br />

0.01<br />

Prob( k out > k )<br />

1<br />

0.1<br />

0.01<br />

Prob( k <strong>in</strong> > k )<br />

all nodes<br />

<strong>in</strong>put TF nodes<br />

<strong>in</strong>termediate TF<br />

exponential fit to all<br />

power−law fit to all<br />

0 3 6 9<br />

0 50 100 150 200 250<br />

k<br />

none<br />

Figure Global organization 1 <strong>of</strong> <strong>the</strong> yeast <strong>transcriptional</strong>-regulatory network<br />

Global organization <strong>of</strong> <strong>the</strong> yeast <strong>transcriptional</strong>-regulatory network. (A) The hierarchical arrangement <strong>of</strong> <strong>the</strong> TR<br />

network <strong>in</strong>to <strong>in</strong>put, <strong>in</strong>termediate and output layers (rectangles, ellipses, and small circles, separated by dashed l<strong>in</strong>es, respectively)<br />

is illustrated for two partially overlapp<strong>in</strong>g origons, Yap1 and Skn7. The boxes illustrate 3-node subgraphs, CNV, CMR,<br />

and FFL dist<strong>in</strong>guished by <strong>the</strong>ir high frequency <strong>of</strong> occurrence <strong>in</strong> <strong>the</strong> yeast TR network (Table 1). (B) The network <strong>of</strong> origons<br />

[13] <strong>in</strong> <strong>the</strong> S. cerevisiae TR network. Each circle represents an origon labeled by its <strong>in</strong>put TF. The size <strong>of</strong> each circle is proportional<br />

to <strong>the</strong> number <strong>of</strong> genes <strong>in</strong> that origon. Two origons are connected if <strong>the</strong>y share at least one gene and <strong>the</strong> width <strong>of</strong> a l<strong>in</strong>k<br />

is proportional to <strong>the</strong> number <strong>of</strong> genes that <strong>the</strong> two connected origons share. Three different types <strong>of</strong> subgraphs, <strong>in</strong>dicated by<br />

<strong>the</strong> colored labels are dist<strong>in</strong>guished <strong>in</strong> <strong>the</strong> origons (see Table 1). The fractional area <strong>of</strong> each color on <strong>the</strong> origon circle is proportional<br />

to <strong>the</strong> number <strong>of</strong> occurrences <strong>of</strong> <strong>the</strong> correspond<strong>in</strong>g subgraph among <strong>the</strong> members <strong>of</strong> <strong>the</strong> origon. If an origon conta<strong>in</strong>s<br />

none <strong>of</strong> <strong>the</strong> listed subgraphs, it is shown <strong>in</strong> grey color. (C) Ma<strong>in</strong> panel: <strong>the</strong> distribution <strong>of</strong> outdegrees (number <strong>of</strong> outgo<strong>in</strong>g<br />

connections <strong>of</strong> a node, k out ) shows that this network falls between models with an exponential or faster degree distribution<br />

cut<strong>of</strong>f [14,17] and <strong>the</strong> scale-free model [15] (with some difference for <strong>in</strong>put and <strong>in</strong>termediate TF nodes), though nei<strong>the</strong>r <strong>of</strong> <strong>the</strong><br />

two types <strong>of</strong> models is significantly closer than <strong>the</strong> o<strong>the</strong>r.<br />

Page 3 <strong>of</strong> 12<br />

(page number not for citation purposes)


BMC Bio<strong>in</strong>formatics 2006, 7:478<br />

http://www.biomedcentral.com/1471-2105/7/478<br />

<strong>in</strong>g evolutionary adaptation to chang<strong>in</strong>g environmental<br />

conditions (see, e.g., Refs. [19-21]).<br />

To elucidate <strong>the</strong> type and <strong>in</strong>formation process<strong>in</strong>g role <strong>of</strong><br />

such overrepresented subgraphs, we exam<strong>in</strong>ed <strong>the</strong> abundance<br />

<strong>of</strong> three-node subgraphs <strong>in</strong> <strong>the</strong> S. cerevisiae TR network.<br />

Us<strong>in</strong>g a standard l<strong>in</strong>k-randomization algorithm<br />

(see Methods) we found that <strong>the</strong> feed-forward loop (FFL),<br />

<strong>the</strong> s<strong>in</strong>gle regulatory <strong>in</strong>teraction with mutual regulation<br />

(SMR) and <strong>the</strong> convergence with mutual regulation (CMR)<br />

are overrepresented, i.e., <strong>the</strong>y are motifs (Fig. 1A), while<br />

<strong>the</strong> divergence (DIV), cascade (CAS) and convergence (CNV)<br />

subgraphs are underrepresented, i.e., <strong>the</strong>y are anti-motifs<br />

[18] (Table 1). We also exam<strong>in</strong>ed <strong>the</strong> position <strong>of</strong> <strong>the</strong>se 3-<br />

node subgraphs with respect to <strong>in</strong>dividual origons, and<br />

found that (i) similarly to <strong>the</strong> E. coli TR network [13], only<br />

a subset <strong>of</strong> origons conta<strong>in</strong>s FFL, SMR, and CMR motifs<br />

(Fig. 1B), and (ii) <strong>the</strong> majority (83%) <strong>of</strong> CNV subgraphs<br />

perform <strong>signal</strong> <strong><strong>in</strong>tegration</strong>: <strong>the</strong>y receive regulatory <strong>signal</strong>s<br />

(directly or <strong>in</strong>directly) from two different sources (<strong>in</strong>put<br />

TFs) and transmit <strong>the</strong> jo<strong>in</strong>t <strong>signal</strong> to a s<strong>in</strong>gle node (Fig.<br />

1A).<br />

Functional cartography <strong>of</strong> <strong>the</strong> yeast TR network<br />

External <strong>signal</strong>s, conveyed by various <strong>signal</strong><strong>in</strong>g mechanisms,<br />

may be perceived by <strong>signal</strong>-specific TFs or relatively<br />

non-specific TFs. To understand how <strong>the</strong> responses to<br />

<strong>the</strong>se <strong>signal</strong>s are encoded <strong>in</strong>to <strong>the</strong> topology <strong>of</strong> <strong>the</strong> TR network<br />

we first exam<strong>in</strong>ed <strong>the</strong> degree <strong>of</strong> overlap among <strong>the</strong><br />

genes regulated by <strong>in</strong>put- and <strong>in</strong>termediate TFs. As shown<br />

<strong>in</strong> Figure 2A – where <strong>the</strong> width <strong>of</strong> a l<strong>in</strong>k between two TFs<br />

is proportional to <strong>the</strong> number <strong>of</strong> outputs (targets) <strong>the</strong>y<br />

both regulate – <strong>the</strong> targets <strong>of</strong> different TFs extensively<br />

overlap (only 3 TFs share no targets with o<strong>the</strong>r TFs), suggest<strong>in</strong>g<br />

that most genes are comb<strong>in</strong>atorially regulated by<br />

several TFs. In contrast, direct regulatory <strong>in</strong>teractions<br />

among TFs are more limited (Fig. 2B): <strong>the</strong> largest connected<br />

component <strong>of</strong> <strong>the</strong> network <strong>of</strong> direct regulatory<br />

<strong>in</strong>teractions among TFs (conta<strong>in</strong><strong>in</strong>g 62 nodes) is sparse,<br />

and 30 <strong>of</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g 37 TFs have no regulatory <strong>in</strong>teractions<br />

with o<strong>the</strong>r TFs at all, i.e., <strong>the</strong>y act <strong>in</strong> isolation.<br />

To characterize <strong>the</strong> type <strong>of</strong> comb<strong>in</strong>atorial regulation performed<br />

by each TF, we color coded each <strong>of</strong> <strong>the</strong> 99 TFs<br />

accord<strong>in</strong>g to <strong>the</strong> function(s) <strong>of</strong> <strong>the</strong> genes <strong>the</strong>y regulate. To<br />

this end, we resorted to <strong>the</strong> 33 GO Slim biological process<br />

terms [22], which we grouped <strong>in</strong>to eight GO Slim categories<br />

described <strong>in</strong> <strong>the</strong> Methods. It is evident, that all TFs regulate<br />

genes with various functions (Fig. 2B). For example,<br />

genes with<strong>in</strong> two overlapp<strong>in</strong>g origons – def<strong>in</strong>ed by <strong>the</strong><br />

<strong>in</strong>put TFs Ino4 and Stb1 – display a multitude <strong>of</strong> functions<br />

(Fig. 2C). Stb1 takes part <strong>in</strong> <strong>the</strong> regulation <strong>of</strong> transcription<br />

at <strong>the</strong> G1/S transition [23], while Ino4 is a<br />

positive regulator <strong>of</strong> phospholipid biosyn<strong>the</strong>sis [24].<br />

Similarly to Stb1, <strong>the</strong> two <strong>in</strong>termediate TFs, Swi5 and<br />

Ndd1, regulate temporal expression patterns: Ndd1 is<br />

essential for <strong>the</strong> activation <strong>of</strong> many late S-phase specific<br />

genes [25], while Swi5 activates genes <strong>in</strong> <strong>the</strong> G1 phase and<br />

at <strong>the</strong> M/G1 boundary [26]. Notably, <strong>in</strong> <strong>the</strong> overlap <strong>of</strong> <strong>the</strong><br />

origons Ino4 and Stb1 two major regulatory tasks are <strong>in</strong>tegrated<br />

(Fig. 2C). Among <strong>the</strong> genes conta<strong>in</strong>ed exclusively<br />

by <strong>the</strong> Ino4 origon participation <strong>in</strong> metabolism is very<br />

common, while only one gene is known to perform a cellcycle<br />

related function. For genes conta<strong>in</strong>ed exclusively by<br />

origon Stb1 this relation is reversed, while <strong>in</strong> <strong>the</strong> overlap<br />

<strong>of</strong> <strong>the</strong> two origons both functions are common. Thus, <strong>the</strong><br />

overlap <strong>of</strong> <strong>the</strong>se two origons illustrates <strong>the</strong> coord<strong>in</strong>ation<br />

<strong>of</strong> a temporally regulated event (cell cycle) with ano<strong>the</strong>r<br />

general task (phospholipid metabolism).<br />

For a concise analysis <strong>of</strong> regulatory task <strong><strong>in</strong>tegration</strong> by<br />

overlapp<strong>in</strong>g origons, <strong>in</strong> each <strong>of</strong> <strong>the</strong> 418 overlapp<strong>in</strong>g<br />

origon pairs (A, B), we listed <strong>the</strong> GO Slim biological process<br />

terms for <strong>the</strong> regions A^B (overlap), A\B and B\A<br />

(genes conta<strong>in</strong>ed exclusively by origon A or B). We found<br />

that <strong>the</strong> distribution <strong>of</strong> GO Slim biological processes <strong>in</strong><br />

<strong>the</strong> set A^B is <strong>in</strong> general significantly similar (average Z<br />

Table 1: Number distributions and statistical significance <strong>of</strong> 3-node subgraphs <strong>in</strong> yeast TR network<br />

Subgraph<br />

DIV<br />

(divergence)<br />

CAS<br />

(cascade)<br />

CNV<br />

(convergence)<br />

FFL<br />

(feed-fwd<br />

loop)<br />

SMR CMR<br />

(s<strong>in</strong>gle l<strong>in</strong>k with (convergence with<br />

mutual regulation) mutual regulation)<br />

Number <strong>in</strong> <strong>the</strong> orig<strong>in</strong>al network 150 845 2 898 2 655 392 307 118<br />

After l<strong>in</strong>k randomization 151 477 ± 152 3 543 ± 156 2 996 ± 23 176 ± 22 126 ± 148 2.6 ± 3.9<br />

Significance <strong>of</strong> orig<strong>in</strong>al (Z score) -4.2 -4.1 -15 9.7 1.2 30<br />

Subgraph type Anti-motif Anti-motif Anti-motif Motif Motif Motif<br />

Motifs are marked, and only subgraphs with at least 100 occurrences <strong>in</strong> <strong>the</strong> orig<strong>in</strong>al network are listed. After l<strong>in</strong>k randomization <strong>the</strong> numbers <strong>of</strong><br />

FFL, SMR and CMR subgraphs decrease, while those <strong>of</strong> DIV, CAS, and CNV subgraphs are ma<strong>in</strong>ta<strong>in</strong>ed with slight <strong>in</strong>creases, <strong>in</strong>dicat<strong>in</strong>g that FFL, SMR<br />

and CMR are motifs <strong>in</strong> <strong>the</strong> TR network, while DIV, CAS and CNV are anti-motifs [8,18].<br />

Page 4 <strong>of</strong> 12<br />

(page number not for citation purposes)


BMC Bio<strong>in</strong>formatics 2006, 7:478<br />

http://www.biomedcentral.com/1471-2105/7/478<br />

Hac1 Put3<br />

Uga3 Ydr026c<br />

Ume1<br />

Rph1 Rds1<br />

Msn4<br />

Yap1<br />

Sfp1<br />

Sum1<br />

Fhl1<br />

Pho4<br />

Met4 Met32<br />

Bas1<br />

Met31<br />

Dal81<br />

Leu3 Stb4<br />

Yap7<br />

Rpn4<br />

Yap5<br />

Ino2<br />

Gcn4<br />

Cad1 Pho2<br />

Rap1<br />

Ume6<br />

Abf1<br />

Hap2 Yap6<br />

Stp1<br />

Ino4<br />

Reb1<br />

Cbf1<br />

Gcr1<br />

Hsf1<br />

Hap1<br />

Rtg3<br />

Ash1<br />

Skn7<br />

Tye7<br />

Nrg1<br />

Aft2<br />

Phd1<br />

Msn2<br />

Mbp1<br />

Hap3<br />

Dal80<br />

Mcm1<br />

Gln3<br />

Rox1<br />

Swi4<br />

Hap5 Adr1<br />

Sip4<br />

Ste12<br />

C<strong>in</strong>5<br />

Yox1<br />

Gal80<br />

Swi6<br />

Hap4<br />

Fkh1<br />

Rim101<br />

Fkh2<br />

Dal82 Rcs1<br />

Gal4<br />

Ndd1<br />

Sut1<br />

Tec1<br />

Mot3<br />

Spt23<br />

Sok2<br />

Sko1<br />

Thi2<br />

Dig1<br />

Snt2<br />

Rfx1<br />

Xbp1<br />

Azf1<br />

Spt2 Rlm1<br />

Stb1<br />

Swi5<br />

Mac1<br />

Smp1<br />

Pdr1<br />

Ace2<br />

Pdr3<br />

Yhp1<br />

Stb5 Gat1 Rgt1<br />

Zap1<br />

Rlr1<br />

Mot2<br />

Gzf3<br />

Rim101<br />

Bas1 Rds1 Spt2<br />

Rph1<br />

Spt23 Rgt1 Gal80<br />

Thi2<br />

Smp1<br />

Hac1 Pdr3<br />

Hap1<br />

Hap5 Gal4<br />

Ume1 Ash1<br />

Rfx1<br />

Stb5<br />

Ino4<br />

Ino2<br />

Stb1<br />

Snt2<br />

Zap1<br />

Met31<br />

Pho4<br />

Swi5<br />

Ndd1<br />

Abf1<br />

Rlm1<br />

Fhl1<br />

Ydr026c<br />

Fkh2<br />

Mcm1<br />

Sko1<br />

Mbp1<br />

Sip4<br />

Pho2<br />

Rlr1<br />

Yox1<br />

Mot3<br />

Rap1<br />

Fkh1<br />

Dal81<br />

Swi6<br />

Yhp1<br />

Azf1<br />

Stb4<br />

Ume6<br />

Yap6<br />

Swi4<br />

Phd1<br />

Dig1<br />

C<strong>in</strong>5<br />

Aft2<br />

Gat1<br />

Gzf3<br />

Rox1<br />

Mac1<br />

Skn7<br />

Sok2<br />

Yap1<br />

Adr1<br />

Ste12<br />

Rcs1<br />

Xbp1<br />

Msn4<br />

Cbf1<br />

Put3<br />

Msn2<br />

Tye7 Stp1<br />

Leu3<br />

Sut1<br />

Tec1<br />

Ace2<br />

Sum1<br />

Met4<br />

Hap4<br />

Gcn4<br />

Yap5<br />

Dal80<br />

Nrg1 Yap7<br />

Gln3<br />

Gcr1<br />

Reb1<br />

Rtg3<br />

Cad1<br />

Pdr1<br />

Hap3<br />

Mot2<br />

Sfp1<br />

Hsf1<br />

Rpn4<br />

Hap2<br />

Uga3<br />

Dal82 Met32<br />

(A)<br />

origon Ino4<br />

(B)<br />

origon Stb1<br />

<strong>in</strong>put TFs<br />

<strong>in</strong>termediate TFs<br />

cell cycle<br />

metabolism<br />

morphogenesis<br />

transcription, prote<strong>in</strong> syn<strong>the</strong>sis<br />

transport<br />

stress and homeostasis<br />

unknown<br />

Acc1<br />

Ypr013c<br />

Utr2<br />

Set2<br />

Yor316c−a<br />

Fas2<br />

Ado1<br />

Faa1<br />

Sod1<br />

Fas1 Ubx6<br />

Cot1 Tpi1<br />

Sro77<br />

Mas6<br />

Psd1<br />

Ept1<br />

Cds1<br />

Sah1<br />

Eki1<br />

Itr1 Erg20 Ybr030w Atg26<br />

Cho2 Snr79<br />

Alk1<br />

Sen2<br />

Cho1<br />

Rax2<br />

Sur7<br />

Clb2<br />

Ypl024w<br />

Sks1<br />

Nis1<br />

Amn1<br />

Egt2 Cts1 Ash1<br />

Bud9<br />

Scw11<br />

Cyk3<br />

Chs1<br />

Pcl2<br />

Erg25<br />

Prp9<br />

Tgs1<br />

Dld1<br />

Lsm3<br />

Utp5<br />

Ino4<br />

Ncb2<br />

Mrpl4<br />

Hsp150<br />

Swi5<br />

Tps3<br />

Pil1<br />

Cln2<br />

Pcl1<br />

Gic1 Hcm1<br />

Tos2<br />

Nud1<br />

Clb6 Gas1<br />

Cwp2<br />

Ndd1<br />

Bbp1<br />

Age1<br />

K<strong>in</strong>3<br />

Yfr017c<br />

Ylr194c<br />

Ypl158c Crh1<br />

Ics2<br />

Mtr2 Ymr262w<br />

Mdj2 Yjl160c<br />

Ydl173w<br />

Ydl119c<br />

Tpm1<br />

Ydr524c−b<br />

Ydr524w−c<br />

Yol007c<br />

Ykl096c−b<br />

Sna2<br />

Yjl051w Srl1<br />

Yhr151c Ppn1<br />

Nce102 Yor246c<br />

Ymr002w Yml053c<br />

Tk(uuu)p<br />

Yhl029c Ygl006w−a<br />

Tra1<br />

Ymr001c−a<br />

Cdc5<br />

Ypr148c<br />

Dbf2 Ynl056w<br />

Smi1 Pma1<br />

Ygl007c−a<br />

Mmr1 Skn1 Pmc1<br />

Sfb3<br />

Ynl058c<br />

Uth1<br />

Wsc4<br />

Coy1<br />

Yhp1<br />

Bns1<br />

Cln1<br />

Spo12<br />

Cdc20<br />

Stb1<br />

Signal Figure <strong><strong>in</strong>tegration</strong> 2 <strong>in</strong> <strong>the</strong> yeast TR network<br />

Signal <strong><strong>in</strong>tegration</strong> <strong>in</strong> <strong>the</strong> yeast TR network. (A) The network <strong>of</strong> <strong>in</strong>put (brown) and <strong>in</strong>termediate (purple) TFs is shown.<br />

The size <strong>of</strong> a node is proportional to <strong>the</strong> number <strong>of</strong> genes it regulates, while <strong>the</strong> width <strong>of</strong> a l<strong>in</strong>e connect<strong>in</strong>g two nodes is proportional<br />

to <strong>the</strong> number <strong>of</strong> target genes jo<strong>in</strong>tly regulated by <strong>the</strong> two TFs. Except for Pdr3, Zap1 (<strong>in</strong>put TFs) and Mot2 (<strong>in</strong>termediate<br />

TF), TFs are strongly connected to each o<strong>the</strong>r (i.e., share many <strong>of</strong> <strong>the</strong>ir target genes), <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong> functions <strong>of</strong><br />

<strong>the</strong> TFs are widely <strong>in</strong>tegrated, and that most genes are jo<strong>in</strong>tly or comb<strong>in</strong>atorially regulated by groups <strong>of</strong> regulators, ra<strong>the</strong>r than<br />

<strong>in</strong>dividual ones. (B) Functional cartography <strong>in</strong> <strong>the</strong> network <strong>of</strong> TFs. Each node represents one TF and each l<strong>in</strong>k represents a regulatory<br />

<strong>in</strong>teraction. The area <strong>of</strong> a TF node is proportional to <strong>the</strong> number <strong>of</strong> genes it regulates, and colors refer to <strong>the</strong> GO Slim<br />

annotation distributions <strong>of</strong> its target genes (see Methods for details). Input nodes are encircled by thick black l<strong>in</strong>es. Regulatory<br />

l<strong>in</strong>ks from <strong>in</strong>put to <strong>in</strong>termediate TFs are shown <strong>in</strong> black, while l<strong>in</strong>ks among <strong>in</strong>termediate TFs are colored red. The s<strong>in</strong>gle unidirectional<br />

cycle connect<strong>in</strong>g Dig1, Tec1 and Ste12 is shown by thick red edges. The portion enclosed <strong>in</strong> <strong>the</strong> dashed box is<br />

enlarged <strong>in</strong> panel C. (C) The overlapp<strong>in</strong>g origons Ino4 and Stb1 <strong>in</strong>tegrate cellular functions (see text for detailed analysis).<br />

Enlarged versions <strong>of</strong> panels A-C are provided as Supplementary Figure S2A-C.<br />

(C)<br />

Page 5 <strong>of</strong> 12<br />

(page number not for citation purposes)


BMC Bio<strong>in</strong>formatics 2006, 7:478<br />

http://www.biomedcentral.com/1471-2105/7/478<br />

score: 2.2) to <strong>the</strong> distribution deduced from <strong>the</strong> sets A\B<br />

and B\A summed toge<strong>the</strong>r (see Methods for details). Thus,<br />

we <strong>in</strong>fer that <strong>in</strong> <strong>the</strong> TR network <strong>of</strong> S. cerevisiae overlapp<strong>in</strong>g<br />

pairs <strong>of</strong> origons significantly <strong>in</strong>tegrate regulatory tasks.<br />

<strong>Topological</strong> organization <strong>of</strong> <strong>signal</strong> <strong><strong>in</strong>tegration</strong> <strong>in</strong> <strong>the</strong> yeast<br />

TR network<br />

Complex environmental <strong>signal</strong>s are decomposed <strong>in</strong>to<br />

more elementary <strong>signal</strong>s that eventually elicit an <strong>in</strong>tegrated<br />

<strong>transcriptional</strong> response <strong>in</strong> <strong>the</strong> context <strong>of</strong> <strong>the</strong> cell's<br />

own <strong>in</strong>ternal state. S<strong>in</strong>ce <strong>in</strong>termediate TFs (by def<strong>in</strong>ition)<br />

transmit <strong>signal</strong>s from <strong>in</strong>put to output nodes and provide<br />

connections among all TFs (Fig. 1A), <strong>the</strong> topological<br />

organization <strong>of</strong> <strong>the</strong>ir <strong>in</strong>teractions is likely to play a key<br />

role <strong>in</strong> develop<strong>in</strong>g such <strong>in</strong>tegrated responses. To exam<strong>in</strong>e<br />

<strong>the</strong>ir relationships, we decomposed <strong>the</strong> TR network by an<br />

iterative peel<strong>in</strong>g algorithm (see Methods), where <strong>the</strong> top<br />

and bottom layers <strong>of</strong> <strong>the</strong> network have been successively<br />

removed until only 3 small isolated graph components<br />

('cores') rema<strong>in</strong>ed. Then <strong>the</strong>se cores were consolidated by<br />

add<strong>in</strong>g back <strong>the</strong>ir nearest up- and downstream <strong>in</strong>termediate<br />

regulators (Fig. 3A). After this decomposition procedure<br />

we found that <strong>the</strong> 45-node <strong>in</strong>termediate TF<br />

subnetwork naturally segregated <strong>in</strong>to three <strong>in</strong>ternally<br />

densely-connected groups <strong>of</strong> TFs (referred to as 'organizer'<br />

O1, O2, and O3 hereafter), as well as several isolated TF<br />

nodes (Figs. 3A,B). In contrast, <strong>the</strong> connections between<br />

organizers are sparse (Fig. 3B): organizers O1 and O2 are<br />

connected by one <strong>in</strong>teraction (between Nrg1 and Hap4),<br />

and O2 and O3 have only two connections (Fkh1-Yhp1<br />

and Abf1-Put3). Of note, all three <strong>in</strong>ter-organizer connections<br />

transfer a <strong>signal</strong> from <strong>the</strong> 'top' (as def<strong>in</strong>ed by <strong>the</strong><br />

flow <strong>of</strong> <strong>in</strong>formation) <strong>of</strong> one organizer to <strong>the</strong> 'bottom' <strong>of</strong><br />

<strong>the</strong> o<strong>the</strong>r. We also f<strong>in</strong>d that <strong>in</strong>put TFs <strong>of</strong>ten co-regulate<br />

<strong>in</strong>termediate TFs located <strong>in</strong> one or two organizers, but<br />

never <strong>in</strong> all three <strong>of</strong> <strong>the</strong>m. Note, that as an alternative<br />

approach we also performed computational search for<br />

partially overlapp<strong>in</strong>g communities [27] <strong>in</strong> <strong>the</strong> TR network.<br />

This analysis yielded highly similar results (Supplementary<br />

Fig. S3), suggest<strong>in</strong>g that <strong>the</strong> concept <strong>of</strong> organizers<br />

is valid irrespective <strong>of</strong> data str<strong>in</strong>gency (Supplementary Fig.<br />

S4), or <strong>the</strong> analytical technique used for <strong>the</strong>ir identification.<br />

Currently, on <strong>the</strong> global scale <strong>the</strong> dynamical utilization <strong>of</strong><br />

<strong>signal</strong>-specific transcription regulatory subnets can be best<br />

tested with microarray expression data [12,13]. To analyze<br />

<strong>the</strong> dynamical role <strong>of</strong> organizers, for each <strong>of</strong> <strong>the</strong> 45 <strong>in</strong>termediate<br />

TFs we have def<strong>in</strong>ed <strong>the</strong> TF and <strong>the</strong> list <strong>of</strong> its targets<br />

as a group <strong>of</strong> genes, and computed <strong>the</strong> <strong>transcriptional</strong><br />

response <strong>of</strong> this group to a given external or <strong>in</strong>ternal <strong>signal</strong><br />

(see Methods). Under hyperosmotic shock (Fig. 3C), <strong>the</strong><br />

TFs (and <strong>the</strong>ir target genes) <strong>in</strong> organizer O2 displayed by<br />

far <strong>the</strong> strongest average response, as measured by <strong>the</strong><br />

double Z score [13] (see Methods): 0.8, compared to -0.13<br />

and -0.14 <strong>in</strong> organizers O1 and O3, respectively. With<strong>in</strong><br />

this group <strong>the</strong> set <strong>of</strong> genes regulated by <strong>in</strong>termediate TFs<br />

Hap4, Sok2, Phd1, and Rox 1 show <strong>the</strong> strongest<br />

response. All <strong>the</strong>se TFs are regulated by <strong>in</strong>put TF, Skn7,<br />

suggest<strong>in</strong>g that this <strong>in</strong>put TF is one <strong>of</strong> <strong>the</strong> ma<strong>in</strong> sensors <strong>of</strong><br />

hyperosmotic shock <strong>in</strong> S. cerevisiae, <strong>in</strong> agreement with previous<br />

results [28]. A similar conclusion can be drawn for<br />

all o<strong>the</strong>r environmental stimuli tested (Supplementary<br />

Fig. S5), suggest<strong>in</strong>g that only a subnet <strong>of</strong> organizer(s) are<br />

activated upon simple or complex environmental stimuli.<br />

Discussion<br />

The multitude <strong>of</strong> cellular tasks makes it necessary for cellular<br />

components to be hierarchically organized <strong>in</strong>to<br />

modules based on functional association [29]. One wellstudied<br />

aspect <strong>of</strong> this functional organization is <strong>the</strong> 'static<br />

map' <strong>of</strong> a TR network, i.e., <strong>the</strong> list <strong>of</strong> all possible transcription<br />

regulatory (TR) <strong>in</strong>teractions with<strong>in</strong> a cell. Small numbers<br />

<strong>of</strong> <strong>in</strong>dividual TR nodes (TFs and <strong>the</strong>ir regulated<br />

genes) are known to be arranged <strong>in</strong>to overrepresented,<br />

specifically wired <strong>in</strong>formation process<strong>in</strong>g units (motifs)<br />

[8], which <strong>in</strong> turn participate <strong>in</strong> a series <strong>of</strong> sequentially<br />

embedded higher order structures [9,10]. In an actual<br />

response, however, from all topological (static) possibilities<br />

<strong>in</strong> <strong>the</strong> TR network <strong>the</strong> cell utilizes only limited sets <strong>of</strong><br />

<strong>the</strong>se <strong>in</strong>teractions [12]. These <strong>in</strong>teractions are <strong>of</strong>ten <strong>signal</strong>specific<br />

[13], though <strong>the</strong>re are also many TR nodes that are<br />

known to be generic responders [12].<br />

However, TR <strong>in</strong>teractions represent only a subset <strong>of</strong> regulatory<br />

<strong>in</strong>teractions. In fact, prote<strong>in</strong>-prote<strong>in</strong>- and prote<strong>in</strong>metabolite<br />

<strong>in</strong>teractions represent <strong>the</strong> majority <strong>of</strong> <strong>in</strong>formation<br />

process<strong>in</strong>g <strong>in</strong>teractions <strong>of</strong> a cell (Fig. 4). When tak<strong>in</strong>g<br />

this <strong>in</strong>to account, additional heterogeneous <strong>in</strong>teraction<br />

patterns can be uncovered at various hierarchical scales<br />

[10,30]. Never<strong>the</strong>less, TR <strong>in</strong>teractions represent <strong>the</strong> 'slow<br />

component' <strong>of</strong> <strong>the</strong> overall network, whose behavior determ<strong>in</strong>es<br />

long-range response [1-3]. Thus, it is <strong>of</strong> great<br />

importance to understand how <strong>the</strong> large-scale structure <strong>of</strong><br />

a TR network reflects <strong>the</strong> <strong><strong>in</strong>tegration</strong> <strong>of</strong> <strong>the</strong> vast variety <strong>of</strong><br />

<strong>in</strong>dividual external <strong>signal</strong>s with each o<strong>the</strong>r and with <strong>the</strong><br />

cell's <strong>in</strong>ternal state.<br />

Detailed methods, a supplementary table and supplementary<br />

figures are also available [see Additional file 1].<br />

Conclusion<br />

From <strong>the</strong> analyses presented here <strong>the</strong> system-level picture<br />

aris<strong>in</strong>g for <strong>the</strong> <strong><strong>in</strong>tegration</strong> <strong>of</strong> TR <strong>signal</strong>s suggests <strong>the</strong> presence<br />

<strong>of</strong> a small number <strong>of</strong> large-scale <strong>signal</strong> <strong><strong>in</strong>tegration</strong><br />

'pools' (organizers) <strong>in</strong> <strong>the</strong> yeast TR network, along which<br />

<strong>signal</strong>s are processed and transmitted towards all target<br />

genes (Fig. 4). Regulatory connections <strong>in</strong>side organizers<br />

are dense, while <strong>in</strong>ter-organizer connections are sparse. In<br />

addition to this topological separation, <strong>the</strong> target genes <strong>of</strong><br />

Page 6 <strong>of</strong> 12<br />

(page number not for citation purposes)


REB1<br />

YAP7<br />

RPN4<br />

NRG1<br />

PDR1<br />

MOT2 GLN3 HAP2<br />

CIN5 MSN4 YHP1 ASH1 GCR1<br />

UGA3<br />

YAP6<br />

HAP4<br />

AFT2<br />

RCS1<br />

SOK2<br />

PHD1<br />

ROX1<br />

SWI4<br />

YOX1<br />

NDD1<br />

SWI5<br />

PUT3<br />

SUM1<br />

FKH1<br />

STE12<br />

DIG1<br />

TEC1<br />

FHL1<br />

ABF1<br />

DAL81<br />

PHO2<br />

LEU3<br />

MET4<br />

SPT23 RFX1 GAL80<br />

SIP4<br />

RTG3<br />

BMC Bio<strong>in</strong>formatics 2006, 7:478<br />

http://www.biomedcentral.com/1471-2105/7/478<br />

(A)<br />

decompose<br />

RGT1 GZF3 YAP5<br />

1905 nodes<br />

45 nodes<br />

(B)<br />

Organizer 1 Organizer 2<br />

Hsf1<br />

Organizer 3<br />

Nrg1<br />

(1)<br />

@<br />

Yap7<br />

@<br />

Rpn4<br />

(2)<br />

Cbf1<br />

@<br />

Yap1<br />

Ino4 Ino2 Mbp1 Ume6 Stb1<br />

Aft2<br />

(1)<br />

Rcs1<br />

@ Swi4<br />

(4)<br />

@<br />

Fkh2<br />

Swi6<br />

Fkh1<br />

(1)<br />

Abf1<br />

(1)<br />

+ +<br />

Pho2<br />

Dal81<br />

Ste12 Fhl1<br />

@ (1)<br />

Snt2<br />

Leu3<br />

Dal82<br />

Hap3<br />

Mot2<br />

Pdr1<br />

Reb1<br />

(1)<br />

+<br />

Skn7<br />

Hap2<br />

Gln3<br />

(1)<br />

Gcn4<br />

Uga3<br />

(3)<br />

Yap6<br />

(1)<br />

Sok2<br />

Yox1<br />

(2)<br />

Ndd1<br />

(2) (1)<br />

@<br />

+<br />

Phd1 Swi5<br />

(4)<br />

Ash1 Yhp1<br />

C<strong>in</strong>5 Msn4<br />

(3)<br />

@<br />

(3)<br />

Dig1<br />

Tec1<br />

(1)<br />

@<br />

Sum1<br />

@<br />

Gcr1<br />

Met4<br />

Spt23<br />

Gal80 Rtg3<br />

Yap5<br />

Sip4<br />

Rfx1<br />

Rgt1<br />

Gzf3<br />

Hap4 Rox1<br />

(2) (1)<br />

Put3(4)<br />

Sut1 Adr1 Tye7<br />

Msn2<br />

Mcm1<br />

(C)<br />

Organizer 1<br />

Organizer 2<br />

Organizer 3<br />

12<br />

10<br />

Nrg1<br />

Yap7<br />

Hap2<br />

Pdr1<br />

Reb1<br />

Uga3<br />

Gln3<br />

Rpn4<br />

Mot2<br />

12<br />

10<br />

Hap4<br />

Sok2<br />

Phd1<br />

Rox1<br />

Yap6<br />

C<strong>in</strong>5<br />

Ndd1<br />

Msn4<br />

Yox1<br />

Aft2<br />

Yhp1<br />

Put3<br />

Ash1<br />

Rcs1<br />

Swi4<br />

Swi5<br />

12<br />

10<br />

Fhl1<br />

Pho2<br />

Abf1<br />

Dal81<br />

Tec1<br />

Dig1<br />

Fkh1<br />

Ste12<br />

Sum1<br />

Gcr1<br />

-2 02468<br />

-4<br />

-6<br />

-0.14 ± 1.02<br />

0 2 4 6 8<br />

-2 02468<br />

-4<br />

0.80 ± 2.12<br />

-6<br />

0 2 4 6 8 10 12 14 16<br />

hyper−osmotic vs. stationary state<br />

<strong>Topological</strong> Figure 3 organization <strong>of</strong> <strong>signal</strong> <strong><strong>in</strong>tegration</strong><br />

<strong>Topological</strong> organization <strong>of</strong> <strong>signal</strong> <strong><strong>in</strong>tegration</strong>. (A) Decomposition <strong>of</strong> <strong>the</strong> TR network by remov<strong>in</strong>g its top- (<strong>in</strong>put TFs)<br />

and bottom layers (output nodes) identifies <strong>the</strong> <strong>in</strong>termediate TF layer, which, based on <strong>the</strong> high local density and distribution <strong>of</strong><br />

connections, is naturally subdivided <strong>in</strong>to three major groups (organizers), as well as a number <strong>of</strong> isolated TFs. The connections<br />

between organizers are sparse. Nodes are arranged hierarchically based on <strong>the</strong> direction <strong>of</strong> <strong>in</strong>formation flow. The cha<strong>in</strong> <strong>of</strong> l<strong>in</strong>ks<br />

colored red shows <strong>the</strong> longest path through <strong>the</strong> network. Regulatory <strong>signal</strong>s flow from darker nodes towards lighter ones. (B)<br />

The three emerg<strong>in</strong>g organizers <strong>of</strong> <strong>the</strong> yeast TR network are enclosed by blue, red, and green rectangles, respectively, while isolated<br />

<strong>in</strong>termediate TFs are on <strong>the</strong> right. The relative size and color code <strong>of</strong> each node conform to <strong>the</strong> descriptions given <strong>in</strong> Fig.<br />

2B. With<strong>in</strong> organizers <strong>the</strong> density <strong>of</strong> l<strong>in</strong>ks is more than 10 times higher than that between <strong>the</strong> organizers. Input TF nodes regulat<strong>in</strong>g<br />

<strong>the</strong> <strong>in</strong>termediate TFs <strong>in</strong> <strong>the</strong> organizers are shown by rectangles. The blue nodes on <strong>the</strong> left side <strong>of</strong> O1, <strong>the</strong> green ones on<br />

<strong>the</strong> right <strong>of</strong> O3, and <strong>the</strong> red ones above/below O2 are <strong>the</strong> <strong>in</strong>puts that regulate each one organizer. The magenta, cyan and yellow<br />

nodes regulate pairs <strong>of</strong> organizers, as <strong>in</strong>dicated by <strong>the</strong> l<strong>in</strong>ks. Note that <strong>the</strong>re is no <strong>in</strong>put TF regulat<strong>in</strong>g all <strong>the</strong> three organizers.<br />

The number <strong>of</strong> <strong>transcriptional</strong> <strong>in</strong>puts for each <strong>of</strong> <strong>the</strong> <strong>in</strong>termediate TFs is shown <strong>in</strong> paren<strong>the</strong>ses. Essential TFs (+) and those<br />

with autoregulatory loops (@) are <strong>in</strong>dicated. (C) Transcriptional response <strong>of</strong> organizers to hyperosmotic shock. The double Z<br />

scores (ord<strong>in</strong>ate) [13] measure <strong>the</strong> significance <strong>of</strong> <strong>the</strong> response <strong>of</strong> each organizer node plus its target genes to <strong>the</strong> external<br />

condition as compared to <strong>the</strong> control condition (a strong up- and downregulation both give a high Z score). The numbers <strong>in</strong><br />

<strong>the</strong> bottom part <strong>of</strong> each graph denote <strong>the</strong> average double Z scores for O1 (blue) O2 (red) and O3 (green), respectively, while<br />

<strong>the</strong> colored dots represent <strong>the</strong> average double Z-score <strong>of</strong> genes regulated by <strong>the</strong> <strong>in</strong>dicated <strong>in</strong>termediate TF. Black dots represent<br />

<strong>the</strong> same for <strong>the</strong> <strong>in</strong>put TF(s) directly regulat<strong>in</strong>g <strong>the</strong> <strong>in</strong>dicated <strong>in</strong>termediate TF.<br />

-2 02468<br />

-4<br />

-6<br />

-0.13 ± 1.55<br />

0 2 4 6 8 10<br />

Page 7 <strong>of</strong> 12<br />

(page number not for citation purposes)


BMC Bio<strong>in</strong>formatics 2006, 7:478<br />

http://www.biomedcentral.com/1471-2105/7/478<br />

time:<br />

t = 1<br />

t = 2<br />

t = 3<br />

t = 4<br />

Signal X<br />

<strong>in</strong>put<br />

TF nodes<br />

<strong>in</strong>termediate<br />

TF nodes<br />

output nodes<br />

(TF regulated genes)<br />

organizer A<br />

organizer B<br />

organizer C<br />

Pajek<br />

Schematic Figure 4 representation <strong>of</strong> <strong>in</strong>tracellular <strong>in</strong>formation process<strong>in</strong>g<br />

Schematic representation <strong>of</strong> <strong>in</strong>tracellular <strong>in</strong>formation process<strong>in</strong>g. The <strong>transcriptional</strong>-regulatory (TR) network is<br />

composed <strong>of</strong> <strong>in</strong>put TFs (not regulated by o<strong>the</strong>r TFs) (squares), <strong>in</strong>termediate TFs (regulated by at least one o<strong>the</strong>r TF) (circles)<br />

and output nodes (regulated effector genes) (triangles). Signals external to <strong>the</strong> cell can affect <strong>the</strong> <strong>in</strong>put- and at least some <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>termediate TFs directly or <strong>in</strong>directly through <strong>signal</strong><strong>in</strong>g cascades. Internal <strong>signal</strong>s, through <strong>the</strong> activity <strong>of</strong> <strong>the</strong> overall molecular<br />

<strong>in</strong>teraction network <strong>of</strong> <strong>the</strong> cell (shaded <strong>in</strong> grey) can potentially affect all nodes <strong>of</strong> <strong>the</strong> TR network through allosteric regulation,<br />

posttranslational modification, etc. With<strong>in</strong> <strong>the</strong> TR network <strong>the</strong> various <strong>signal</strong>s are <strong>in</strong>tegrated with<strong>in</strong> relatively dist<strong>in</strong>ct subnetworks,<br />

or organizers (brown-shaded boxes) composed <strong>of</strong> <strong>in</strong>termediate TFs. The TFs with<strong>in</strong> organizers are densely l<strong>in</strong>ked but<br />

<strong>the</strong>re are only sparse l<strong>in</strong>ks with TFs <strong>in</strong> o<strong>the</strong>r organizers. A given elementary <strong>signal</strong> (e.g., Signal X) may affect only a s<strong>in</strong>gle origon<br />

[13], depicted here as <strong>the</strong> filled symbols, but complex <strong>signal</strong>s may affect several origons simultaneously. As transcription is <strong>the</strong><br />

'slow' component <strong>of</strong> <strong>the</strong> overall regulatory network <strong>in</strong> which each l<strong>in</strong>k adds a time delay <strong>in</strong> <strong>the</strong> regulation, <strong>the</strong>re is a very rich<br />

possibility <strong>of</strong> dynamics carried out on <strong>the</strong> topology. In particular, nodes might be activated at several time steps (represented<br />

by <strong>the</strong> different fill patterns) correspond<strong>in</strong>g to <strong>the</strong> propagation <strong>of</strong> subsequent reaction waves <strong>in</strong> chemical/<strong>in</strong>teraction space<br />

[46].<br />

different organizers also elicit remarkably different <strong>transcriptional</strong><br />

responses (Fig. 3C). Moreover, due to <strong>the</strong><br />

slowness <strong>of</strong> <strong>the</strong> <strong>in</strong>teractions (m<strong>in</strong>ute-scale delays due to<br />

transcription and translation) a given <strong>signal</strong> can elicit subsequent<br />

waves <strong>of</strong> <strong>transcriptional</strong> regulatory events that are<br />

usually <strong>in</strong>tegrated through feedbacks <strong>of</strong> rapid <strong>in</strong>teractions<br />

(Fig. 4). For example, <strong>transcriptional</strong> regulation <strong>in</strong><br />

response to decreas<strong>in</strong>g concentration <strong>of</strong> oxygen (as Signal<br />

X <strong>in</strong> Fig. 4) is carried out ma<strong>in</strong>ly by two TFs, FNR and ArcA<br />

<strong>in</strong> E. coli. Although ArcA can be <strong>transcriptional</strong>ly activated<br />

by FNR (i.e., ArcA is an <strong>in</strong>termediate TF), FNR is conformationally<br />

activated at a lower oxygen level than ArcA.<br />

Thus, ArcA-specific genes are activated first, followed by a<br />

subsequent wave <strong>of</strong> activation <strong>of</strong> a second set <strong>of</strong> genes<br />

(many co-activated by FNR and ArcA) that partially overlaps<br />

with genes activated dur<strong>in</strong>g <strong>the</strong> first wave [31,32]. In<br />

turn, rapid non-<strong>transcriptional</strong> feedback, such as phosporylation<br />

<strong>of</strong> TFs, may alter <strong>the</strong> activity <strong>of</strong> o<strong>the</strong>r <strong>in</strong>termediate<br />

Page 8 <strong>of</strong> 12<br />

(page number not for citation purposes)


BMC Bio<strong>in</strong>formatics 2006, 7:478<br />

http://www.biomedcentral.com/1471-2105/7/478<br />

TFs. This may <strong>in</strong>itiate additional sets <strong>of</strong> '<strong>transcriptional</strong><br />

waves' lead<strong>in</strong>g to <strong>the</strong> comprehensive response <strong>of</strong> <strong>the</strong> cell<br />

observed upon <strong>the</strong> aerobic-anaerobic shift (Fig. 4).<br />

What expla<strong>in</strong>s <strong>the</strong> evolution <strong>of</strong> <strong>the</strong> observed topological<br />

architecture? The TR network appears to grow by node<br />

duplication [33], result<strong>in</strong>g <strong>in</strong> structurally related TF prote<strong>in</strong><br />

families, <strong>in</strong> which diversification is both a result <strong>of</strong> TF<br />

structural evolution [34] and <strong>the</strong> evolution <strong>of</strong> DNA b<strong>in</strong>d<strong>in</strong>g<br />

motifs [35]. The subsequent natural selection <strong>of</strong><br />

motifs and higher order structures might have been driven<br />

by <strong>the</strong>ir ability to provide reliable <strong>in</strong>formation process<strong>in</strong>g<br />

functions to <strong>the</strong> cell, <strong>in</strong>clud<strong>in</strong>g robustness aga<strong>in</strong>st mutations<br />

[36], noise [19,20], and oscillat<strong>in</strong>g <strong>signal</strong>s [37,38],<br />

while simultaneously allow<strong>in</strong>g rapid response to common<br />

<strong>signal</strong>s <strong>in</strong> an overall highly variable environment<br />

[21]. The future availability <strong>of</strong> additional types <strong>of</strong> <strong>in</strong>teraction<br />

maps, such as those <strong>of</strong> phosphoprote<strong>in</strong>s [39],<br />

toge<strong>the</strong>r with an improved understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> behavior<br />

<strong>of</strong> fast- (<strong>signal</strong><strong>in</strong>g), slow- (<strong>transcriptional</strong>) and comb<strong>in</strong>ed<br />

circuits [38,40-42] will probably fur<strong>the</strong>r expla<strong>in</strong> <strong>the</strong> emergence<br />

<strong>of</strong> <strong>the</strong> observed small and large-scale topological<br />

structures <strong>of</strong> <strong>the</strong> cell's <strong>in</strong>formation process<strong>in</strong>g network.<br />

Methods<br />

Databases and S<strong>of</strong>tware<br />

The publicly available dataset on <strong>the</strong> TR network <strong>of</strong> Saccharomyces<br />

cerevisiae was downloaded from <strong>the</strong> support<strong>in</strong>g<br />

website <strong>of</strong> <strong>the</strong> orig<strong>in</strong>al publication [6]. This computationally<br />

filtered dataset, orig<strong>in</strong>ally obta<strong>in</strong>ed <strong>in</strong> rich media and<br />

a few o<strong>the</strong>r growth conditions, lists directed b<strong>in</strong>ary <strong>in</strong>teractions<br />

at various confidence levels, and is fur<strong>the</strong>r<br />

improved by <strong>in</strong>clud<strong>in</strong>g additional <strong>transcriptional</strong> <strong>in</strong>teractions<br />

from <strong>the</strong> literature [6]. All computational analyses<br />

were performed with <strong>the</strong> SGD IDs <strong>of</strong> <strong>the</strong> genes that were<br />

<strong>the</strong>n transformed back to traditional gene names for easier<br />

presentation. Conversion tables were downloaded<br />

from <strong>the</strong> Saccharomyces Genome Database (SGD) and<br />

<strong>the</strong> MIPS Comprehensive Yeast Genome Database<br />

(CYGD). Of <strong>the</strong> six different datasets represent<strong>in</strong>g various<br />

confidence levels [6], we used <strong>the</strong> highest confidence data<br />

set for most <strong>of</strong> our analyses (Supplementary Table S1).<br />

Orig<strong>in</strong>ally, <strong>the</strong> network derived from this dataset conta<strong>in</strong>ed<br />

1905 nodes and 3406 regulatory <strong>in</strong>teractions,<br />

which we reduced to 1905 nodes and 3394 directed l<strong>in</strong>ks<br />

by remov<strong>in</strong>g 12 autoregulatory l<strong>in</strong>ks. The result<strong>in</strong>g network<br />

conta<strong>in</strong>ed 99 TFs (54 <strong>in</strong>put and 45 <strong>in</strong>termediate<br />

nodes) and except for two small isolated groups – with <strong>the</strong><br />

<strong>in</strong>put nodes Pdr3 (drug resistance, regulat<strong>in</strong>g itself and<br />

one o<strong>the</strong>r gene) and Zap1 (z<strong>in</strong>c-regulated, regulat<strong>in</strong>g four<br />

o<strong>the</strong>r genes) – it is comprised <strong>of</strong> one giant connected component.<br />

Most targets (<strong>in</strong>termediate and output nodes) are<br />

regulated by more than one (on <strong>the</strong> average, 1.8) TFs. We<br />

quantify <strong>the</strong> relative overlap between <strong>the</strong> target lists (A i<br />

and A j ) <strong>of</strong> two TFs (i and j) by <strong>the</strong> Jaccard correlation, |A i<br />

∩ A j |/|A i ∪ A j |, between <strong>the</strong> two sets. An alternative representation<br />

<strong>of</strong> <strong>the</strong> TR network is to consider only TFs and<br />

<strong>the</strong> regulatory <strong>in</strong>teractions between <strong>the</strong>m, <strong>in</strong> which case<br />

<strong>the</strong> network conta<strong>in</strong>s 99 nodes <strong>of</strong> which 69 are connected<br />

<strong>in</strong> a giant component.<br />

The normalized microarray expression data sets GDS18-<br />

20, GDS112-115, and GDS362 were downloaded from<br />

<strong>the</strong> FTP directory <strong>of</strong> NCBI's Gene Expression Omnibus<br />

(GEO). Our programs were written <strong>in</strong> Perl and C++, and<br />

for visualization we used <strong>the</strong> L<strong>in</strong>ux tools Xfig and Gnuplot<br />

toge<strong>the</strong>r with <strong>the</strong> network draw<strong>in</strong>g program Pajek [43].<br />

Network randomization and graph motifs<br />

To assess <strong>the</strong> enrichment <strong>of</strong> 3-node subgraphs <strong>in</strong> <strong>the</strong> regulatory<br />

network, we used l<strong>in</strong>k randomization tests [8] that<br />

preserve <strong>the</strong> number <strong>of</strong> <strong>in</strong>com<strong>in</strong>g and outgo<strong>in</strong>g l<strong>in</strong>ks<br />

around each node, but obliterate all o<strong>the</strong>r <strong>in</strong>formation<br />

about <strong>the</strong> connectivity <strong>of</strong> <strong>the</strong> network. In one step <strong>of</strong> this<br />

method two l<strong>in</strong>ks, A→B and C→D, are selected randomly<br />

and moved to <strong>the</strong> unoccupied A→D and C→B positions.<br />

We exam<strong>in</strong>ed n N = 100 randomized networks, each produced<br />

with n S = 100,000 rewir<strong>in</strong>g steps start<strong>in</strong>g from <strong>the</strong><br />

orig<strong>in</strong>al TR network, i.e., each l<strong>in</strong>k was moved approximately<br />

60 times to generate a given randomized network.<br />

Follow<strong>in</strong>g Ref. [8] a subgraph with M 0 copies <strong>in</strong> <strong>the</strong> orig<strong>in</strong>al<br />

TR network and M ± ΔM copies <strong>in</strong> <strong>the</strong> randomized versions<br />

is called a graph motif, provided that <strong>the</strong> associated<br />

Z score, Z = (M 0 - M)/ΔM, is significantly positive. We also<br />

verified that for <strong>the</strong> TR network studied here n N and n S are<br />

both sufficiently large to ensure <strong>the</strong> convergence <strong>of</strong> <strong>the</strong> Z-<br />

scores for 3-node subgraphs.<br />

Cumulative GO categories<br />

For functional characterization <strong>of</strong> yeast prote<strong>in</strong>s we<br />

grouped <strong>the</strong> 33 Gene Ontology (GO) Slim Biological<br />

Process terms [22] <strong>in</strong>to <strong>the</strong> follow<strong>in</strong>g eight categories: cell<br />

cycle-related (GO terms: cell cycle, cell budd<strong>in</strong>g, conjugation,<br />

cytok<strong>in</strong>esis, meiosis, pseudohyphal growth, sporulation),<br />

metabolism-related (GO terms: am<strong>in</strong>o acid and<br />

derivative metabolism, carbohydrate metabolism, cellular<br />

respiration, DNA metabolism, generation <strong>of</strong> precursor<br />

metabolites and energy, lipid metabolism, prote<strong>in</strong> catabolism,<br />

RNA metabolism, vitam<strong>in</strong> metabolism), morphogenesis-related<br />

(GO terms: cell wall organization and<br />

biogenesis, cytoskeleton organization and biogenesis,<br />

membrane organization and biogenesis, morphogenesis,<br />

nuclear organization and biogenesis, organelle organization<br />

and biogenesis, ribosome biogenesis and assembly),<br />

transcription and prote<strong>in</strong> syn<strong>the</strong>sis-related (GO terms: prote<strong>in</strong><br />

biosyn<strong>the</strong>sis, prote<strong>in</strong> modification, transcription),<br />

transport-related (GO terms: electron transport, transport,<br />

vesicle-mediated transport), stress and homeostasis-related<br />

(GO terms: cell homeostasis, response to stress, <strong>signal</strong><br />

transduction), cell movement-related (GO terms: substrate-<br />

Page 9 <strong>of</strong> 12<br />

(page number not for citation purposes)


BMC Bio<strong>in</strong>formatics 2006, 7:478<br />

http://www.biomedcentral.com/1471-2105/7/478<br />

bound cell migration and cell extension), unknown<br />

biological_process, biological_process unknown,<br />

unknown), respectively.<br />

Task <strong><strong>in</strong>tegration</strong> by overlapp<strong>in</strong>g origons<br />

A simplify<strong>in</strong>g view <strong>of</strong> <strong>the</strong> TR network is provided by <strong>the</strong><br />

origon representation [13], shown by color-coded circles<br />

<strong>in</strong> Figure 1B. Each origon represents a cluster <strong>of</strong> nodes<br />

orig<strong>in</strong>at<strong>in</strong>g from a common (<strong>in</strong>put) TF (54 <strong>of</strong> <strong>the</strong>m <strong>in</strong> <strong>the</strong><br />

present case), and <strong>the</strong> color code <strong>the</strong>re<strong>in</strong> describes <strong>the</strong><br />

occurrence <strong>of</strong> four types <strong>of</strong> <strong>in</strong>teraction motifs dist<strong>in</strong>guished<br />

by <strong>the</strong>ir high Z-scores (see below). Except for <strong>the</strong><br />

two <strong>in</strong>put nodes mentioned above (Prd3 and Zap1), all<br />

origons are <strong>in</strong>terconnected due to <strong>the</strong> partial overlaps<br />

between <strong>the</strong>ir members at <strong>in</strong>termediate and output layers.<br />

The number <strong>of</strong> shared members is reflected by <strong>the</strong> thickness<br />

<strong>of</strong> <strong>the</strong> l<strong>in</strong>ks between <strong>the</strong> origons. The exam<strong>in</strong>ed yeast<br />

TR network has 418 such overlapp<strong>in</strong>g pairs <strong>of</strong> origons.<br />

Of <strong>in</strong>terest is to characterize <strong>the</strong> degree <strong>of</strong> <strong><strong>in</strong>tegration</strong> <strong>of</strong><br />

functional tasks between overlapp<strong>in</strong>g pairs <strong>of</strong> origons. To<br />

this aim, we first removed from <strong>the</strong> TR network all gene<br />

(products) with GO Slim annotation "unknown", and<br />

counted <strong>the</strong> number <strong>of</strong> genes annotated by a given GO<br />

Slim term, with<strong>in</strong> <strong>the</strong> subsets A^B (overlap), A\B and B\A<br />

(genes conta<strong>in</strong>ed only by A or B) for each pair <strong>of</strong> overlapp<strong>in</strong>g<br />

origons (A. B). Three vectors, def<strong>in</strong>ed by <strong>the</strong> fractions/probabilities<br />

<strong>of</strong> GO Slim terms were thus generated<br />

for each pair, denoted as a (for A\B), b (for B\A), or c (for<br />

A^B). The overlap (A^B) <strong>in</strong>tegrates tasks from <strong>the</strong> o<strong>the</strong>r<br />

two regions, if c is sufficiently similar to both a and b. The<br />

extent <strong>of</strong> similarity between <strong>the</strong> three probability distributions<br />

was <strong>the</strong>n assessed by <strong>the</strong> correlation cos<strong>in</strong>es (c·a)<br />

and (c·b), expressed by <strong>the</strong> sum K = c·(a+b), where <strong>the</strong><br />

dot designates <strong>the</strong> scalar product. We found that <strong>the</strong> K values<br />

for pairs <strong>of</strong> origons <strong>in</strong> <strong>the</strong> yeast TR network were significantly<br />

higher than those calculated for 100<br />

randomized test cases. The correspond<strong>in</strong>g Z score – i.e.<br />

(-)/ - averaged over all pairs<br />

was = 2.2.<br />

Locat<strong>in</strong>g densely connected subnetworks (organizers) <strong>of</strong><br />

Transcription Factors<br />

In <strong>the</strong> network <strong>of</strong> TFs (nodes: Transcription Factors, l<strong>in</strong>ks:<br />

regulatory <strong>in</strong>teractions) we identified subnetworks dist<strong>in</strong>guished<br />

by <strong>the</strong>ir dense <strong>in</strong>terconnection and central role<br />

(i.e., organizers) by us<strong>in</strong>g an iterative layer-peel<strong>in</strong>g algorithm<br />

[44], as follows. After first remov<strong>in</strong>g all autoregulatory<br />

loops, we repeatedly removed <strong>the</strong> nodes <strong>in</strong> <strong>the</strong> top<br />

and bottom layers <strong>of</strong> <strong>the</strong> network until only three small<br />

isolated (graph) components ('cores') rema<strong>in</strong>ed. To <strong>the</strong>se<br />

cores we <strong>the</strong>n added <strong>in</strong> 3 subsequent steps <strong>the</strong>ir up- and<br />

downstream <strong>in</strong>termediate regulators to obta<strong>in</strong> three<br />

major organizers (see Results). Alternatively, to locate<br />

overlapp<strong>in</strong>g, densely connected groups <strong>of</strong> nodes among<br />

<strong>the</strong> 69 non-isolated TFs we applied CF<strong>in</strong>der [45] to <strong>the</strong><br />

underly<strong>in</strong>g undirected network and identified <strong>the</strong> k-clique<br />

communities (groups <strong>of</strong> densely <strong>in</strong>terconnected nodes) at<br />

k = 3 correspond<strong>in</strong>g to 'roll<strong>in</strong>g' a triangle by mov<strong>in</strong>g one<br />

<strong>of</strong> its nodes at each step.. Note that any TF (node) was<br />

allowed to belong to more than one community. Next, we<br />

added to each community, C A , all nodes reachable from a<br />

node <strong>of</strong> C A via regulatory <strong>in</strong>teractions, but not yet conta<strong>in</strong>ed<br />

by any <strong>of</strong> <strong>the</strong> communities. Last, we merged communities<br />

C A and C B , if all exclusively conta<strong>in</strong>ed nodes <strong>of</strong><br />

C A were directly regulated by an exclusively conta<strong>in</strong>ed<br />

node <strong>of</strong> C B .<br />

Significance <strong>of</strong> <strong>the</strong> <strong>transcriptional</strong> response <strong>of</strong> a group <strong>of</strong><br />

genes<br />

Our goal was to quantify <strong>the</strong> effect <strong>of</strong> particular (environmental<br />

or <strong>in</strong>ternal) conditions (or <strong>signal</strong>s) S on <strong>the</strong> transcript<br />

levels <strong>of</strong> a selected group <strong>of</strong> genes. First, we grouped<br />

experiments (GSMs, Geo SaMples) accord<strong>in</strong>g to <strong>the</strong>ir platforms<br />

(GPLs). Then to each experiment obta<strong>in</strong>ed under a<br />

'normal' condition (e.g., stationary state) we assigned <strong>the</strong><br />

<strong>signal</strong> S = -1 and to all o<strong>the</strong>rs (e.g., hyper-osmotic shock,<br />

N depletion, or DNA damage with MMS) we assigned <strong>the</strong><br />

<strong>signal</strong> S = +1. Next, we computed <strong>the</strong> Pearson correlation,<br />

C i , between <strong>the</strong> ith gene's expression E ij and <strong>the</strong> jth experimental<br />

condition S j. us<strong>in</strong>g<br />

( ) =<br />

C E , S<br />

i ij j<br />

⎡<br />

⎣⎢<br />

where <strong>the</strong> subscript j <strong>in</strong>cludes both those experiments<br />

under <strong>the</strong> condition <strong>of</strong> <strong>in</strong>terest (i.e. experiments a 1 , a 2 , ...,<br />

a n , <strong>signal</strong> value: S j = +1) and those under 'normal' conditions<br />

(j = b 1 , b 2 , ..., b m , and S j = -1). The ith gene's response<br />

to <strong>signal</strong> S is significant, i.e., it is strongly activated<br />

(repressed), if its C i value is higher (lower) than <strong>the</strong> majority<br />

<strong>of</strong> <strong>the</strong> correlation values calculated for all yeast genes.<br />

This can be measured with <strong>the</strong> Z score, Z i = |C i - C|/ΔC, <strong>of</strong><br />

<strong>the</strong> ith gene's response, where C and ΔC are <strong>the</strong> average<br />

and standard deviation <strong>of</strong> <strong>the</strong> correlation values <strong>of</strong> all<br />

yeast genes. Here we use <strong>the</strong> absolute value, because a<br />

strong activation and a strong repression are equally<br />

important responses and should both give a high Z score.<br />

The significance <strong>of</strong> <strong>the</strong> response <strong>of</strong> <strong>the</strong> entire group G to<br />

condition S can be assessed by compar<strong>in</strong>g <strong>the</strong> average Z<br />

score <strong>in</strong> G, Z G = i∈G , to <strong>the</strong> similarly computed averages<br />

(Z H1 , Z H2 ,...) <strong>in</strong> o<strong>the</strong>r, randomly selected groups <strong>of</strong><br />

genes <strong>of</strong> <strong>the</strong> same size (H1, H2, ...). We used 1,000 such<br />

control groups. Denot<strong>in</strong>g by and ΔZ H <strong>the</strong> average<br />

and standard deviation <strong>of</strong> Z H values, <strong>the</strong> double Z score <strong>of</strong><br />

<strong>the</strong> response <strong>of</strong> group G is Y G = (Z G - )/ΔZ H .<br />

E<br />

⎤<br />

Eij<br />

− E ⎡ S<br />

j<br />

ij 1 −<br />

j ⎦⎥ ⎣⎢<br />

−<br />

ES ij j<br />

j<br />

ij<br />

j<br />

j<br />

/ /<br />

2 2 1 2 2 ⎤<br />

1 2<br />

j<br />

S<br />

⎦⎥<br />

,<br />

Page 10 <strong>of</strong> 12<br />

(page number not for citation purposes)


BMC Bio<strong>in</strong>formatics 2006, 7:478<br />

http://www.biomedcentral.com/1471-2105/7/478<br />

Authors' contributions<br />

Computational analyses were carried out by IJF, CW and<br />

CC, figures were produced by IJF and CW, with direction<br />

from ZNO, IB and CC. The manuscript was written by IJF,<br />

CW, IB and ZNO and edited by all authors.<br />

Additional material<br />

Additional file 1<br />

Supplementary Material. Detailed Methods, Supplementary Table, Supplementary<br />

Figures.<br />

Click here for file<br />

[http://www.biomedcentral.com/content/supplementary/1471-<br />

2105-7-478-S1.pdf]<br />

Acknowledgements<br />

We thank G. Balázsi and T. Vicsek for discussion and comments on <strong>the</strong><br />

manuscript. IB gratefully acknowledges support from NIH Award # P20<br />

GM065805-02. Research by IJF at Eötvös University was supported by <strong>the</strong><br />

Hungarian Scientific Research Fund (OTKA, Grants No. D048422 and<br />

F047203).<br />

References<br />

1. Babu MM, Luscombe NM, Arav<strong>in</strong>d L, Gerste<strong>in</strong> M, Teichmann SA:<br />

Structure and evolution <strong>of</strong> <strong>transcriptional</strong> regulatory networks.<br />

Curr Op<strong>in</strong> Struct Biol 2004, 14:283-291.<br />

2. Blais A, Dynlacht BD: Construct<strong>in</strong>g <strong>transcriptional</strong> regulatory<br />

networks. Genes Dev 2005, 19:1499-1511.<br />

3. Davidson EH, Erw<strong>in</strong> DH: Gene regulatory networks and <strong>the</strong><br />

evolution <strong>of</strong> animal body plans. Science 2006, 311:796-800.<br />

4. Svetlov VV, Cooper TG: Review: compilation and characteristics<br />

<strong>of</strong> dedicated transcription factors <strong>in</strong> Saccharomyces cerevisiae.<br />

Yeast 1995, 11:1439-1484.<br />

5. Lee TI, R<strong>in</strong>aldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK,<br />

Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitl<strong>in</strong>ger J, Jenn<strong>in</strong>gs<br />

EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert<br />

TL, Fraenkel E, Gifford DK, Young RA: Transcriptional regulatory<br />

networks <strong>in</strong> Saccharomyces cerevisiae. Science 2002,<br />

298:799-804.<br />

6. Harbison CT, Gordon DB, Lee TI, R<strong>in</strong>aldi NJ, Macisaac KD, Danford<br />

TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jenn<strong>in</strong>gs EG, Zeitl<strong>in</strong>ger<br />

J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES,<br />

Gifford DK, Fraenkel E, Young RA: Transcriptional regulatory<br />

code <strong>of</strong> a eukaryotic genome. Nature 2004, 431:99-104.<br />

7. Salgado H, Santos-Zavaleta A, Gama-Castro S, Peralta-Gil M,<br />

Penaloza-Sp<strong>in</strong>ola MI, Mart<strong>in</strong>ez-Antonio A, Karp PD, Collado-Vides J:<br />

The comprehensive updated regulatory network <strong>of</strong><br />

Escherichia coli K-12. BMC Bio<strong>in</strong>formatics 2006, 7:5.<br />

8. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U:<br />

Network motifs: simple build<strong>in</strong>g blocks <strong>of</strong> complex networks.<br />

Science 2002, 298:824-827.<br />

9. Dobr<strong>in</strong> R, Beg QK, Barabasi AL, Oltvai ZN: Aggregation <strong>of</strong> topological<br />

motifs <strong>in</strong> <strong>the</strong> Escherichia coli <strong>transcriptional</strong> regulatory<br />

network. BMC Bio<strong>in</strong>formatics 2004, 5:10.<br />

10. Zhang LV, K<strong>in</strong>g OD, Wong SL, Goldberg DS, Tong AH, Lesage G,<br />

Andrews B, Bussey H, Boone C, Roth FP: Motifs, <strong>the</strong>mes and <strong>the</strong>matic<br />

maps <strong>of</strong> an <strong>in</strong>tegrated Saccharomyces cerevisiae<br />

<strong>in</strong>teraction network. J Biol 2005, 4:6.<br />

11. Resendis-Antonio O, Freyre-Gonzalez JA, Menchaca-Mendez R, Gutierrez-Rios<br />

RM, Mart<strong>in</strong>ez-Antonio A, Avila-Sanchez C, Collado-Vides<br />

J: Modular analysis <strong>of</strong> <strong>the</strong> <strong>transcriptional</strong> regulatory network<br />

<strong>of</strong> E. coli. Trends Genet 2005, 21:16-20.<br />

12. Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerste<strong>in</strong><br />

M: Genomic analysis <strong>of</strong> regulatory network dynamics reveals<br />

large topological changes. Nature 2004, 431:308-312.<br />

13. Balazsi G, Barabasi AL, Oltvai ZN: <strong>Topological</strong> units <strong>of</strong> environmental<br />

<strong>signal</strong> process<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>transcriptional</strong> regulatory<br />

network <strong>of</strong> Escherichia coli. Proc Natl Acad Sci USA 2005,<br />

102:7841-7846.<br />

14. Erdős P, Rényi A: On <strong>the</strong> evolution <strong>of</strong> random graphs. Publ Math<br />

Inst Hung Acad Sci 1960, 5:17-61.<br />

15. Barabasi AL, Albert R: Emergence <strong>of</strong> scal<strong>in</strong>g <strong>in</strong> random networks.<br />

Science 1999, 286:509-512.<br />

16. Guelzim N, Bottani S, Bourg<strong>in</strong>e P, Kepes F: <strong>Topological</strong> and causal<br />

structure <strong>of</strong> <strong>the</strong> yeast <strong>transcriptional</strong> regulatory network.<br />

Nat Genet 2002, 31:60-63.<br />

17. Amaral LA, Scala A, Bar<strong>the</strong>lemy M, Stanley HE: Classes <strong>of</strong> smallworld<br />

networks. Proc Natl Acad Sci USA 2000, 97:11149-11152.<br />

18. Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I,<br />

Sheffer M, Alon U: Superfamilies <strong>of</strong> evolved and designed networks.<br />

Science 2004, 303:1538-1542.<br />

19. Klemm K, Bornholdt S: Topology <strong>of</strong> biological networks and<br />

reliability <strong>of</strong> <strong>in</strong>formation process<strong>in</strong>g. Proc Natl Acad Sci USA<br />

2005, 102:18414-18419.<br />

20. Prill RJ, Iglesias PA, Levchenko A: Dynamic properties <strong>of</strong> network<br />

motifs contribute to biological network organization. PLoS<br />

Biol 2005, 3:e343.<br />

21. Kashtan N, Alon U: Spontaneous evolution <strong>of</strong> modularity and<br />

network motifs. Proc Natl Acad Sci USA 2005, 102:13773-13778.<br />

22. Mart<strong>in</strong> D, Brun C, Remy E, Mouren P, Thieffry D, Jacq B: GOTool-<br />

Box: functional analysis <strong>of</strong> gene datasets based on Gene<br />

Ontology. Genome Biol 2004, 5:R101.<br />

23. Ho Y, Costanzo M, Moore L, Kobayashi R, Andrews BJ: Regulation<br />

<strong>of</strong> transcription at <strong>the</strong> Saccharomyces cerevisiae start transition<br />

by Stb1, a Swi6-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>. Mol Cell Biol 1999,<br />

19:5267-5278.<br />

24. Ambroziak J, Henry SA: INO2 and INO4 gene products, positive<br />

regulators <strong>of</strong> phospholipid biosyn<strong>the</strong>sis <strong>in</strong> Saccharomyces<br />

cerevisiae, form a complex that b<strong>in</strong>ds to <strong>the</strong> INO1 promoter.<br />

J Biol Chem 1994, 269:15344-15349.<br />

25. Loy CJ, Lydall D, Surana U: NDD1, a high-dosage suppressor <strong>of</strong><br />

cdc28-1N, is essential for expression <strong>of</strong> a subset <strong>of</strong> late-Sphase-specific<br />

genes <strong>in</strong> Saccharomyces cerevisiae. Mol Cell Biol<br />

1999, 19:3312-3327.<br />

26. McBride HJ, Yu Y, Stillman DJ: Dist<strong>in</strong>ct regions <strong>of</strong> <strong>the</strong> Swi5 and<br />

Ace2 transcription factors are required for specific gene activation.<br />

J Biol Chem 1999, 274:21029-21036.<br />

27. Palla G, Derenyi I, Farkas I, Vicsek T: Uncover<strong>in</strong>g <strong>the</strong> overlapp<strong>in</strong>g<br />

community structure <strong>of</strong> complex networks <strong>in</strong> nature and<br />

society. Nature 2005, 435:814-818.<br />

28. Garay-Arroyo A, Lledias F, Hansberg W, Covarrubias AA: Cu,Znsuperoxide<br />

dismutase <strong>of</strong> Saccharomyces cerevisiae is<br />

required for resistance to hyperosmosis. FEBS Lett 2003,<br />

539:68-72.<br />

29. Pap<strong>in</strong> JA, Reed JL, Palsson BO: Hierarchical th<strong>in</strong>k<strong>in</strong>g <strong>in</strong> network<br />

biology: <strong>the</strong> unbiased modularization <strong>of</strong> biochemical networks.<br />

Trends Biochem Sci 2004, 29:641-647.<br />

30. Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, P<strong>in</strong>ter RY,<br />

Alon U, Margalit H: Network motifs <strong>in</strong> <strong>in</strong>tegrated cellular networks<br />

<strong>of</strong> transcription-regulation and prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teraction.<br />

Proc Natl Acad Sci USA 2004, 101:5934-5939.<br />

31. Kiley PJ, Be<strong>in</strong>ert H: Oxygen sens<strong>in</strong>g by <strong>the</strong> global regulator,<br />

FNR: <strong>the</strong> role <strong>of</strong> <strong>the</strong> iron-sulfur cluster. FEMS Microbiol Rev<br />

1998, 22:341-352.<br />

32. Sawers G: The aerobic/anaerobic <strong>in</strong>terface. Curr Op<strong>in</strong> Microbiol<br />

1999, 2:181-187.<br />

33. Teichmann SA, Babu MM: Gene regulatory network growth by<br />

duplication. Nat Genet 2004, 36:492-496.<br />

34. Babu MM, Teichmann SA: Evolution <strong>of</strong> transcription factors and<br />

<strong>the</strong> gene regulatory network <strong>in</strong> Escherichia coli. Nucleic Acids<br />

Research 2003, 31:1234-1244.<br />

35. Ihmels J, Bergmann S, Gerami-Nejad M, Yanai I, McClellan M, Berman<br />

J, Barkai N: Rewir<strong>in</strong>g <strong>of</strong> <strong>the</strong> yeast <strong>transcriptional</strong> network<br />

through <strong>the</strong> evolution <strong>of</strong> motif usage. Science 2005,<br />

309:938-940.<br />

36. Kafri R, Bar-Even A, Pilpel Y: Transcription control reprogramm<strong>in</strong>g<br />

<strong>in</strong> genetic backup circuits. Nat Genet 2005, 37:295-299.<br />

37. Lipan O, Wong WH: The use <strong>of</strong> oscillatory <strong>signal</strong>s <strong>in</strong> <strong>the</strong> study<br />

<strong>of</strong> genetic networks. Proc Natl Acad Sci USA 2005, 102:7063-7068.<br />

Page 11 <strong>of</strong> 12<br />

(page number not for citation purposes)


BMC Bio<strong>in</strong>formatics 2006, 7:478<br />

http://www.biomedcentral.com/1471-2105/7/478<br />

38. Pomeren<strong>in</strong>g JR, Kim SY, Ferrell JE: Systems-level dissection <strong>of</strong> <strong>the</strong><br />

cell-cycle oscillator: bypass<strong>in</strong>g positive feedback produces<br />

damped oscillations. Cell 2005, 122:565-578.<br />

39. Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona<br />

G, Breitkreutz A, Sopko R, McCartney RR, Schmidt MC, Rachidi N,<br />

Lee SJ, Mah AS, Meng L, Stark MJ, Stern DF, De Virgilio C, Tyers M,<br />

Andrews B, Gerste<strong>in</strong> M, Schweitzer B, Predki PF, Snyder M: Global<br />

analysis <strong>of</strong> prote<strong>in</strong> phosphorylation <strong>in</strong> yeast. Nature 2005,<br />

438:679-684.<br />

40. Mangan S, Zaslaver A, Alon U: The coherent feedforward loop<br />

serves as a sign-sensitive delay element <strong>in</strong> transcription networks.<br />

J Mol Biol 2003, 334:197-204.<br />

41. Brandman O, Ferrell JE Jr, Li R, Meyer T: Interl<strong>in</strong>ked fast and slow<br />

positive feedback loops drive reliable cell decisions. Science<br />

2005, 310:496-498.<br />

42. Guido NJ, Wang X, Adalste<strong>in</strong>sson D, McMillen D, Hasty J, Cantor CR,<br />

Elston TC, Coll<strong>in</strong>s JJ: A bottom-up approach to gene regulation.<br />

Nature 2006, 439:856-860.<br />

43. Batagelj V, Mrvar A: PAJEK – Program for large network analysis.<br />

Connections 1998, 21:47-57.<br />

44. Wuchty S, Almaas E: Peel<strong>in</strong>g <strong>the</strong> yeast prote<strong>in</strong> network. Proteomics<br />

2005, 5:444-449.<br />

45. Adamcsek B, Palla G, Farkas IJ, Derenyi I, Vicsek T: CF<strong>in</strong>der: locat<strong>in</strong>g<br />

cliques and overlapp<strong>in</strong>g modules <strong>in</strong> biological networks.<br />

Bio<strong>in</strong>formatics 2006, 22:1021-1023.<br />

46. Ma'ayan A, Jenk<strong>in</strong>s SL, Neves S, Hasseld<strong>in</strong>e A, Grace E, Dub<strong>in</strong>-Thaler<br />

B, Eungdamrong NJ, Weng G, Ram PT, Rice JJ, Kershenbaum A, Stolovitzky<br />

GA, Blitzer RD, Iyengar R: Formation <strong>of</strong> regulatory patterns<br />

dur<strong>in</strong>g <strong>signal</strong> propagation <strong>in</strong> a Mammalian cellular<br />

network. Science 2005, 309:1078-1083.<br />

Publish with BioMed Central and every<br />

scientist can read your work free <strong>of</strong> charge<br />

"BioMed Central will be <strong>the</strong> most significant development for<br />

dissem<strong>in</strong>at<strong>in</strong>g <strong>the</strong> results <strong>of</strong> biomedical research <strong>in</strong> our lifetime."<br />

Sir Paul Nurse, Cancer Research UK<br />

Your research papers will be:<br />

available free <strong>of</strong> charge to <strong>the</strong> entire biomedical community<br />

peer reviewed and published immediately upon acceptance<br />

cited <strong>in</strong> PubMed and archived on PubMed Central<br />

yours — you keep <strong>the</strong> copyright<br />

BioMedcentral<br />

Submit your manuscript here:<br />

http://www.biomedcentral.com/<strong>in</strong>fo/publish<strong>in</strong>g_adv.asp<br />

Page 12 <strong>of</strong> 12<br />

(page number not for citation purposes)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!