30.09.2014 Views

final report - probability.ca

final report - probability.ca

final report - probability.ca

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Proof.<br />

V (Y 1 ) − V (x 1 ) = V ′ (x 1 ) (Y 1 − x 1 ) + 1 2 V ′′ (Z 1 ) (Y 1 − x 1 ) 2 ,<br />

for some Z 1 ∈ (x 1 , Y 1 ) or (Y 1 , x 1 ). Thus,<br />

where K is an upper bound for V ′′ .<br />

dE Y1 [V (Y 1 ) − V (x 1 )] ≤ Kdl2<br />

d − 1 ,<br />

Lemma 1.12. (Lemma 2.7 in [RGG97]) Suppose V ∈ Cc<br />

∞ is a function of the first component of Z d . Then<br />

∣ ( ∣∣Gd<br />

sup V x (d)) − GV (x 1 ) ∣ −−−→ d→∞<br />

0.<br />

x (d) ∈F d<br />

Proof. After decomposing the proposal Y (d) into<br />

(<br />

Y 1 , Y (d)−) as<br />

⎡<br />

(<br />

G d V x (d)) = dE Y1<br />

⎣ ( ⎡ ⎛<br />

(<br />

V Y (d)) (<br />

− V x (d))) E Y (d)−<br />

⎣min ⎝1,<br />

(<br />

f(Y1)<br />

f(x 1)<br />

π<br />

(Y (d)) ⎞<br />

π ( x (d)) ⎠<br />

one <strong>ca</strong>n focus on the inner ) expectation of this term. Let the inner expectation be denoted by E (Y 1 ), so denoting<br />

with ε (Y 1 ) = log , we have<br />

E (Y 1 ) = E<br />

= E<br />

[<br />

[<br />

min<br />

min<br />

(<br />

(<br />

1, exp<br />

1, exp<br />

for some Z i ∈ (x i , Y i ) or (Y i , x i ). By Proposition 1.8,<br />

[ ( {<br />

d∑<br />

∣ E (Y 1) − E min 1, exp ε (Y 1 ) +<br />

{<br />

{<br />

ε (Y 1 ) +<br />

ε (Y 1 ) +<br />

})]<br />

d∑<br />

(log f (Y i ) − log f (x i )) ,<br />

i=2<br />

d∑<br />

(log f (x i )) ′ (Y i − x i )<br />

i=2<br />

+ 1 2 (log f (x i)) ′′ (Y i − x i ) 2 + 1 6 (log f (Z i)) ′′′ (Y i − x i ) 3 ]}]<br />

,<br />

i=2<br />

[<br />

(log f (x i )) ′ (Y i − x i ) −<br />

≤ E [|W d |] + sup ∣ ′′′ ∣ (log f (z)) z∈R<br />

where W d is as defined in Lemma 1.9. Furthermore, the term<br />

∣ [ ( {<br />

∣∣∣∣ d∑<br />

sup E (Y 1 ) − E min 1, exp ε (Y 1 ) +<br />

x (d) ∈F d<br />

i=2<br />

1 4l 3<br />

,<br />

6 (d − 1) 1 2<br />

(2π) 1 2<br />

[<br />

(log f (x i )) ′ (Y i − x i ) −<br />

⎤⎤<br />

⎦⎦ ,<br />

l 2 (<br />

(log f (xi )) ′) ] })]∣ ∣<br />

2 ∣∣∣<br />

2 (d − 1)<br />

Denote this term by ϕ (d), which converges to zero as d → ∞.<br />

However,<br />

d∑<br />

[<br />

ε (Y 1 ) + (log f (x i )) ′ l 2 (<br />

(Y i − x i ) − (log f (xi )) ′) ]<br />

2<br />

,<br />

2 (d − 1)<br />

i=2<br />

l 2 (<br />

(log f (xi )) ′) ] })]∣ ∣<br />

2 ∣∣∣<br />

.<br />

2 (d − 1)<br />

is distributed according N ( )<br />

ε (Y 1 ) − l 2 R d /2, l 2 R d , so that by Proposition 1.10,<br />

[ ( {<br />

d∑<br />

[<br />

∣ E − E min 1, exp ε (Y 1 ) + (log f (x i )) ′ l 2 (<br />

(Y i − x i ) − (log f (xi )) ′) ] })]∣ ∣<br />

2 ∣∣∣<br />

2 (d − 1)<br />

i=2<br />

∣<br />

≤ E [|W d |] + sup ∣(log f (z)) ′′∣ ∣<br />

z∈R<br />

12<br />

1 4l 3<br />

.<br />

6 (d − 1) 1 2<br />

(2π) 1 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!