30.09.2014 Views

final report - probability.ca

final report - probability.ca

final report - probability.ca

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Theorem A.10. There exists a unique <strong>probability</strong> measure µ on (H, B (H)) with mean a, covariance Q and Fourier<br />

transform<br />

ˆµ (h) = exp<br />

{i 〈a, h〉 − 1 }<br />

2 〈Qh, h〉 , h ∈ H. (A.3)<br />

We denote µ by N a,Q , and if a = 0 we simply write N Q .<br />

Proof. We check that the restriction of l 2 of the product measure µ, defined by (A.2) fulfills the necessary properties.<br />

First note that by (A.2) we have ˆ<br />

∣ ∣ x<br />

2 µ (dx) = traceQ + |a| 2 .<br />

(A.4)<br />

H<br />

Assume for simplicity, that Ker (Q) = {0}, and λ 1 ≥ λ 2 ≥ · · · ≥ λ n ≥ · · · . Let (P n ) be the sequence of projectors<br />

defined by (A.1), and let h ∈ H. Since |〈x, h〉| ≤ |x| |h|, and |x| µ (dx) is finite by (A.4), the dominated<br />

´H<br />

convergence theorem thus implies<br />

ˆ<br />

ˆ<br />

〈x, h〉 µ (dx) = lim 〈P n x, h〉 µ (dx) .<br />

H<br />

n→∞<br />

H<br />

However,<br />

ˆ<br />

H<br />

〈P n x, h〉 µ (dx) =<br />

=<br />

=<br />

n∑<br />

ˆ<br />

k=1<br />

H<br />

n∑<br />

ˆ<br />

h k<br />

k=1<br />

x k h k µ (dx)<br />

R<br />

x k N ak ,λ k<br />

(dx k )<br />

n∑<br />

h k a k = 〈P n a, h〉 → 〈a, h〉 ,<br />

k=1<br />

as n → ∞. Therefore, the mean of µ is a. Likewise, in order to determine the covariance of µ, we fix y, z ∈ H and<br />

write<br />

ˆ<br />

ˆ<br />

〈x − a, y〉 〈x − a, z〉 µ (dx) = lim 〈P n (x − a) , y〉 〈P n (x − a) , z〉 µ (dx) .<br />

n→∞<br />

Furthermore,<br />

ˆ<br />

H<br />

H<br />

〈P n (x − a) , y〉 〈P n (x − a) , z〉 µ (dx) =<br />

H<br />

=<br />

=<br />

n∑<br />

ˆ<br />

k=1<br />

H<br />

n∑<br />

ˆ<br />

y k z k<br />

k=1<br />

(x k − a k ) 2 y k z k µ (dx)<br />

R<br />

(x k − a k ) 2 N ak ,λ k<br />

(dx k )<br />

n∑<br />

y k z k λ k = 〈P n Qy, z〉 → 〈Qy, z〉 ,<br />

as n → ∞. Hence, the covariance of µ is indeed Q.<br />

Finally, for any h ∈ H,<br />

ˆ<br />

ˆ<br />

e i〈x,h〉 µ (dx) = lim e i〈Pnx,h〉 µ (dx)<br />

H<br />

n→∞<br />

H<br />

n∏<br />

ˆ<br />

= lim e ix kh k<br />

N ak ,λ k<br />

(dx k )<br />

n→∞<br />

k=1<br />

= lim<br />

n∏<br />

k=1<br />

R<br />

e ia kh k − 1 2 λ kh 2 k<br />

n→∞<br />

k=1<br />

= lim<br />

n→∞ ei〈Pna,h〉 e − 1 2 〈PnQh,h〉<br />

= e i〈a,h〉 e − 1 2 〈Qh,h〉 .<br />

This verifies that the Fourier transform of µ is given by (A.3).<br />

40

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!