13.10.2014 Views

Nuclear Reactions in Stars & in the Laboratory

Nuclear Reactions in Stars & in the Laboratory

Nuclear Reactions in Stars & in the Laboratory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Nuclear</strong> <strong>Reactions</strong> <strong>in</strong> <strong>Stars</strong> & <strong>in</strong> <strong>the</strong> <strong>Laboratory</strong><br />

Experimental techniques and formalism to simulate<br />

stellar burn<strong>in</strong>g processes <strong>in</strong> <strong>the</strong> laboratory and derive<br />

stellar reaction rates for nuclear reaction processes.


Reaction Rate Def<strong>in</strong>ition<br />

For a given relative velocity v with projectile number density n p<br />

λ<br />

=<br />

σ<br />

⋅<br />

n<br />

p<br />

⋅<br />

v<br />

[ ] s<br />

−1<br />

reaction/target particle<br />

energy/temperature dependent decay constant λ<br />

R<br />

=<br />

σ<br />

⋅<br />

n<br />

p<br />

⋅<br />

v<br />

⋅<br />

n<br />

T<br />

⋅V<br />

[ ] s<br />

−1<br />

reaction rate <strong>in</strong> volume V


Reaction Rate <strong>in</strong> Stellar Environment<br />

reaction rate per second and cm 3 :<br />

r<br />

= n ⋅n<br />

⋅σ<br />

⋅<br />

p<br />

T<br />

v<br />

Reaction rate for particles with velocity distribution Φ(v)<br />

r<br />

1<br />

= n ⋅ n ⋅∫σ<br />

⋅v<br />

⋅Φ(<br />

v)<br />

⋅ dv<br />

p T<br />

1+<br />

δ<br />

pT<br />

Account<strong>in</strong>g for reactions<br />

Between identical particles


Maxwell Boltzmann Distribution<br />

In stellar material of temperature T particles follow ideal gas law<br />

Φ(<br />

v)<br />

4<br />

=<br />

3/<br />

2<br />

2<br />

m v<br />

⎛ m ⎞ −<br />

2<br />

⎜ ⎟<br />

∫<br />

2kT<br />

π v e ( v dv =<br />

with<br />

4<br />

⎜<br />

2 kT<br />

⎟<br />

⎝ π ⎠<br />

Φ ) 1<br />

arbitrary units<br />

3<br />

2<br />

1<br />

max at<br />

E=kT<br />

example: <strong>in</strong> terms<br />

of energy<br />

E=1/2 m v 2<br />

0<br />

0 20 40 60 80<br />

energy (keV)


Temperature <strong>in</strong> <strong>Stars</strong>


Stellar reaction rates<br />

r<br />

1<br />

= YT<br />

Ypρ<br />

2 2<br />

NA<br />

< σv<br />

1+<br />

δ<br />

pT<br />

><br />

reactions per s and cm 3<br />

1<br />

λ = Y p<br />

ρ NA<br />

< σv<br />

1+<br />

δ<br />

pT<br />

><br />

reactions per s &<br />

Target nucleus<br />

this is usually referred to<br />

as <strong>the</strong> stellar reaction rate<br />

units of stellar reaction rate N A<br />

: usually cm 3 /s/mole<br />

n<br />

T<br />

X<br />

T<br />

= ρ ⋅ N<br />

A<br />

⋅ = ρ ⋅<br />

AT<br />

N<br />

A<br />

⋅Y<br />

T<br />

X T ; mass fraction<br />

Y T : abundance


Gamow-Range & Reaction Rate<br />

Stellar Energy Range -- Gamow W<strong>in</strong>dow<br />

-- Resonance Width<br />

∝ exp ( - E / kT )<br />

GAMOW PEAK<br />

σ ∝ exp ( - b / √E )<br />

∝ exp ( - E / kT )<br />

RESONANCE<br />

σ ∝<br />

Γ 2<br />

( E - E ) 2 + (Γ/ 2) 2<br />

Nonresonant Reaction Contributions<br />

N < σ v > ∝ T<br />

A<br />

-3/2<br />

∫<br />

σ E exp ( - E / kT ) d E<br />

σ: cross section<br />

N<br />

Resonant Reaction Rate<br />

-3/2<br />

A < σv > ∝ T ωγ<br />

exp ( - E / kT )<br />

R<br />

ωγ: res. strength<br />

E R : res. energy


The Gamow Range of Stellar Burn<strong>in</strong>g<br />

The Gamow w<strong>in</strong>dow or <strong>the</strong> range of relevant cross section<br />

for “non-resonant” processes is calculated:<br />

Check derivation <strong>in</strong> book<br />

3/ 2<br />

⎛ bkT ⎞<br />

E0 = ⎜ ⎟ = 0.122⋅<br />

1 2<br />

T<br />

⎝ 2 ⎠<br />

(<br />

2 2<br />

)<br />

1/3 2/3<br />

Z Z A MeV<br />

9<br />

ΔE<br />

=<br />

4 6<br />

E0kT<br />

= 0.2368⋅<br />

1 2<br />

T9<br />

3<br />

(<br />

2 2<br />

)<br />

1/ 6 5/<br />

Z Z A MeV<br />

with A “reduced mass number” and T 9<br />

<strong>the</strong> temperature <strong>in</strong> GK


The Gamow peak for 12 C(p,γ) 13<br />

13 N<br />

Note:<br />

kT=2.5 keV !


Examples of Gamow w<strong>in</strong>dow energies<br />

EG amow [M eV]<br />

10.00<br />

1.00<br />

0.10<br />

0.01<br />

0.0 0.1 1.0 10.0<br />

temperature [GK]<br />

p+p<br />

12C+p<br />

12C+a<br />

12C+12C<br />

strong dependence<br />

on Z & temperature


Change <strong>in</strong> Abundance<br />

A + a ⇒ B<br />

A reaction is a random process with a reaction probability<br />

(reaction rate) and follows <strong>the</strong> laws of radioactive decay:<br />

Depletion of isotope A<br />

Formation of isotope B<br />

dn<br />

dt<br />

dn<br />

dt<br />

A<br />

B<br />

= −n<br />

λ = −n<br />

Y ρ NA<br />

= + n<br />

A<br />

A<br />

λ<br />

A<br />

a<br />

< σ v<br />

><br />

consequently:<br />

n<br />

A<br />

( t)<br />

=<br />

n<br />

0 A<br />

e<br />

−λ<br />

t<br />

n<br />

B<br />

( t)<br />

=<br />

n<br />

0 A<br />

(1 −<br />

e<br />

−λ<br />

t<br />

)


0.007<br />

Stellar lifetime of nuclei<br />

abundance<br />

0.006<br />

0.005<br />

0.004<br />

0.003<br />

0.002<br />

0.001<br />

Y A (t)<br />

τ<br />

Y B<br />

(t)<br />

same<br />

abundance<br />

level Y A<br />

(t=0)<br />

0<br />

10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 5<br />

time<br />

Y<br />

Y<br />

A<br />

B<br />

( t)<br />

( t)<br />

=<br />

=<br />

Y<br />

Y<br />

0 A<br />

0 A<br />

e<br />

−λ<br />

t<br />

(1 −<br />

e<br />

−λ<br />

t<br />

)<br />

τ =<br />

1<br />

=<br />

λ<br />

1<br />

Y a<br />

ρ < σ v<br />

N A<br />

>


Energy production<br />

Reaction Q-value: Q<br />

Energy generated (if Q>0) by a s<strong>in</strong>gle reaction<br />

Q<br />

⎛<br />

2<br />

= c ⎜<br />

∑ m − ∑<br />

i<br />

m j<br />

⎝ <strong>in</strong>itial nuclei i f<strong>in</strong>al nuclei j<br />

⎞<br />

⎟<br />

⎠<br />

Difference between masses <strong>in</strong> entrance and exit channel<br />

Energy generation: Energy generated per g and sec by a reaction:<br />

ε<br />

r ⋅Q<br />

1<br />

= = Q ⋅ Y ⋅Y<br />

⋅ ρ ⋅ N<br />

2<br />

< σ v<br />

A a<br />

ρ 1+<br />

δ<br />

A<br />

aA<br />

>


Reaction Flow<br />

Reaction flow is def<strong>in</strong>ed as <strong>the</strong> net # of nuclei converted<br />

<strong>in</strong> time T from species A to B via a specific reaction<br />

F<br />

=<br />

T<br />

dY<br />

⎛ ⎞<br />

∫ ⎜<br />

A<br />

⎟ dt = ∫<br />

⎝ dt ⎠<br />

0<br />

via specific reaction<br />

T<br />

0<br />

λ( t)<br />

Y<br />

A<br />

( t)<br />

dt<br />

Reaction path is usually def<strong>in</strong>ed as <strong>the</strong> sequence of reactions<br />

with maximum reaction flow <strong>in</strong> a certa<strong>in</strong> stellar environment!


Reaction Network Simulations<br />

Reaction Network Simulations<br />

Change of istopic abundances:<br />

d Y<br />

d t i<br />

+<br />

i<br />

j,k,l<br />

of Stellar Nucleosyn<strong>the</strong>sis<br />

= Σ N λ Y + N ρ N < j,k ><br />

j<br />

2 2<br />

A j k l<br />

Σ N ρ N < j,k,l > Y Y Y<br />

j,k,l<br />

i<br />

j<br />

j<br />

(p,γ)<br />

(γ,p)<br />

j<br />

Σ j,k<br />

+<br />

(β ν)<br />

i<br />

j,k A j k<br />

(α,γ)<br />

Reaction flux = net number of reactions:<br />

Y Y +<br />

Coupled system of nonl<strong>in</strong>ear<br />

differential equations


A+p<br />

capture<br />

Resonance<br />

Cross-Section and S<br />

Cross section and reaction rate<br />

Section and S-Factor<br />

B<br />

energy<br />

cross section often expressed as S-factor<br />

A+p<br />

A+p<br />

Resonance<br />

B<br />

direct<br />

capture<br />

B<br />

cross section<br />

S(E) = σ(E) E exp(2πη)<br />

direct<br />

capture<br />

uncerta<strong>in</strong>ties at low energies<br />

due to deviations from<br />

Resonance<br />

l=0 Coulomb penetrability<br />

and due to threshold contributions<br />

energy<br />

cross section often expressed as S-factor<br />

S-factor<br />

direct<br />

capture<br />

energy<br />

Resonance<br />

S-factor to correct for Coulomb barrier: S(E) = σ(E) E e 2πη<br />

S(E) = σ(E) E exp(2πη)<br />

-factor<br />

direct<br />

capture


Example: 12 C(p,γ) cross section<br />

need cross section<br />

here !<br />

2π<br />

⋅η<br />

=<br />

2π<br />

⋅ Z<br />

h<br />

2<br />

1<br />

⋅ Z<br />

2⋅<br />

E<br />

μ<br />

2<br />

2<br />

cm<br />

⋅e<br />

2<br />

S(E) = σ ⋅E<br />

⋅e<br />

= 31.38⋅<br />

Z<br />

2<br />

1<br />

E<br />

⋅ Z<br />

cm<br />

2π<br />

⋅η<br />

2<br />

2<br />

⋅<br />

μ<br />

[ MeV ]


S-factor Conversion<br />

S≈1.3·10 -3 MeV-b<br />

From <strong>the</strong> NACRE compilation of charged particle <strong>in</strong>duced reaction rates on<br />

stable nuclei from H to Si (see C. Angulo et al. Nucl. Phys. A 656, 3 (1999);<br />

or: http://pntpm3.ulb.ac.be/Nacre/barre_database.htm)


Reaction rate from S-factorS<br />

If S-factor ~ constant over <strong>the</strong> Gamow range<br />

<strong>the</strong> rate is calculated <strong>in</strong> terms of <strong>the</strong> S-factor<br />

S(E)=S(E 0 )<br />

N<br />

A<br />

< σv<br />

>=<br />

7.83⋅10<br />

9<br />

⎛<br />

⎜<br />

⎝<br />

Z1Z<br />

μT<br />

9<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

1/3<br />

S(<br />

E<br />

0<br />

)[MeV barn]<br />

e<br />

⎛<br />

−4.2487⎜<br />

⎝<br />

2<br />

1<br />

Z Z<br />

T<br />

9<br />

2<br />

2<br />

μ ⎞<br />

⎟<br />

⎠<br />

1/ 3<br />

O<strong>the</strong>rwise energy dependence needs to be approximated!


Example: 12 C(p,γ) 13<br />

13<br />

N<br />

Calculate <strong>the</strong> reaction rate as function of temperature!


Calculate life time of 12 C<br />

Determ<strong>in</strong>e 12 C life time <strong>in</strong> <strong>the</strong> sun T=0.015 GK!<br />

τ≈6 10 13 s = 2 10 6 y


Resonant Reaction Rate<br />

N<br />

A<br />

σv<br />

=<br />

.54⋅10<br />

⋅ωγ<br />

[ MeV ]<br />

⎛ 1<br />

⋅<br />

⎜<br />

⎝ μ ⋅T<br />

⎞<br />

⎟<br />

⎠<br />

3/ 2<br />

⋅e<br />

⎛ 11.605⋅E<br />

−<br />

⎜<br />

⎝ T<br />

R<br />

1<br />

11<br />

9<br />

9<br />

[ MeV ]<br />

⎞<br />

⎟<br />

⎠<br />

ωγ =<br />

2<br />

( J + 1)<br />

Γ<br />

⋅Γ<br />

<strong>in</strong> out<br />

⋅<br />

Γ =<br />

( ) ( )<br />

∑ tot<br />

Γ<br />

i i<br />

j + 1 ⋅2<br />

j + 1 Γ<br />

p<br />

2<br />

T<br />

tot<br />

Γ<br />

<strong>in</strong><br />

Θ<br />

p,<br />

α<br />

at low energy astrophysical conditions: Γ <strong>in</strong>


12 C(<br />

13 N<br />

Example: Calculate <strong>the</strong> 12 C(p, p,γ) 13<br />

resonance rate<br />

Resonance strength:<br />

Resonance energy:<br />

ωγ= 0.65 eV= 6.5 10 -7 MeV<br />

Experimental value: E<br />

cm<br />

r =0.45 MeV<br />

Assumed value: E<br />

cm<br />

r =0.05 MeV<br />

Significantly higher<br />

impact at lower energies!


Comparison between resonant and<br />

non-resonant contributions!<br />

Low energy resonances limit <strong>the</strong><br />

impact of non-resonant components!


Impact of effective life-time of isotope<br />

Fictitious low energy resonance reduces <strong>the</strong> life-time<br />

of solar 12 C from ~2 Million years to ~1 year only !


Reaction rates for <strong>in</strong>verse Processes<br />

Detailed balance between<br />

forward & <strong>in</strong>verse reaction.<br />

A(a,b)B<br />

The reaction rate ratio<br />

between <strong>the</strong> forward &<br />

<strong>the</strong> <strong>in</strong>verse reaction<br />

depends on <strong>the</strong> Q-value<br />

and <strong>the</strong> temperature T!<br />

kT=T[GK]/11.605<br />

μ=m 1·m 2<br />

/(m 1<br />

+m 2<br />

)


Photodis<strong>in</strong>tegrations Processes<br />

Equilibrium between forward<br />

and <strong>in</strong>verse processes<br />

Saha equation<br />

In units [1/s]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!