13.10.2014 Views

10) Nucleosynthesis in Supernovae - ISNAP

10) Nucleosynthesis in Supernovae - ISNAP

10) Nucleosynthesis in Supernovae - ISNAP

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Nucleosynthesis</strong> <strong>in</strong><br />

<strong>Supernovae</strong><br />

• Weak <strong>in</strong>teraction <strong>in</strong> collapse & shock<br />

•The α-Process <strong>in</strong> Cool<strong>in</strong>g Shock<br />

• Orig<strong>in</strong> of long-lived radioactivity<br />

• The r-process nuclei <strong>in</strong> ν-W<strong>in</strong>d<br />

•The p-process <strong>in</strong> Shock Front !<br />

Isotopic abundances <strong>in</strong> meteorites<br />

r-process abundances <strong>in</strong> old stars<br />

suggest existence of 2 or more sites


Weak <strong>in</strong>teraction dur<strong>in</strong>g collapse phase


Effects of Nuclear<br />

Electron Capture<br />

dur<strong>in</strong>g Core Collapse<br />

The electron capture at high<br />

densities results <strong>in</strong> lower Y e and<br />

generates neutr<strong>in</strong>o w<strong>in</strong>d which is<br />

necessary for driv<strong>in</strong>g the shock.<br />

Hix, Messer, Mezzacappa, et al ‘03


Shock front simulations <strong>in</strong> terms of<br />

electron abundance Y e and entropy S


Emergence of shock and fallback<br />

Mass cut


Equilibrium at high T conditions<br />

A-1<br />

X+n<br />

A-4<br />

Y+ 4 He<br />

At high temperatures equilibrium<br />

between all reaction channels<br />

can occur! Moreover through<br />

these <strong>in</strong>teractions Statistical equilibrium nuclei develop<br />

equilibrium with excited abundance states ratios<br />

s<strong>in</strong>ce they are <strong>in</strong> equilibrium<br />

with all other nuclei !<br />

Y<br />

B<br />

G<br />

Z , N<br />

Z , N<br />

Z , N<br />

=<br />

G<br />

Z , N<br />

A<br />

X<br />

⋅<br />

( ρ ⋅ N )<br />

A−1<br />

≡ b<strong>in</strong>d<strong>in</strong>g energy<br />

≡ partition function<br />

A<br />

⎛<br />

⋅<br />

⎜<br />

⎝<br />

2<br />

2π<br />

⋅h<br />

m ⋅ kT<br />

u<br />

⎞<br />

⎟<br />

⎠<br />

3<br />

⋅<br />

2<br />

( A−1)<br />

⋅e<br />

−<br />

B<br />

Z , N<br />

kT<br />

⋅Y<br />

N<br />

n<br />

⋅Y<br />

Z<br />

p


Y<br />

Z , N<br />

Abundance conditions <strong>in</strong> equilibrium<br />

=<br />

G<br />

Z , N<br />

( ρ ⋅ N )<br />

High ρ: massive nuclei<br />

High T: light nuclei<br />

Intermediate T: High<br />

abundance for nuclei with<br />

high b<strong>in</strong>d<strong>in</strong>g energy.<br />

With decl<strong>in</strong>e of shock<br />

follows a change of<br />

abundance distribution.<br />

⋅<br />

A<br />

A−1<br />

log Abundance<br />

<strong>10</strong><br />

⎛<br />

⋅<br />

⎜<br />

⎝<br />

0<br />

-5<br />

-<strong>10</strong><br />

-15<br />

2<br />

2π<br />

⋅h<br />

m ⋅ kT<br />

u<br />

NSE <strong>in</strong> Si-Burn<strong>in</strong>g<br />

n<br />

n<br />

⎞<br />

⎟<br />

⎠<br />

3<br />

⋅<br />

2<br />

α<br />

p<br />

( A−1)<br />

log Abundance<br />

<strong>10</strong><br />

⋅e<br />

-20<br />

-20<br />

0.8 0.6 0.4 0.2 0.0 -0.2 0.8 0.6 0.4 0.2 0.0 -0.2<br />

log T log T<br />

<strong>10</strong> 9<br />

9<br />

0<br />

-5<br />

-<strong>10</strong><br />

-15<br />

S N<br />

kT<br />

⋅Y<br />

N<br />

⋅Y<br />

Z<br />

p<br />

56Ni<br />

28Si<br />

40Ca<br />

24Mg<br />

<strong>10</strong><br />

44Ti


Explosive burn<strong>in</strong>g <strong>in</strong> shock front<br />

Initial dissociation towards p, n, 4 He<br />

Re-association is stat. equilibrium towards 56 Ni


Dynamical Reaction Network<br />

α-Process<br />

Mass 5 Gap<br />

Mass 8 Gap<br />

r-process ?


Temperature and density <strong>in</strong> shock<br />

Exponential<br />

decl<strong>in</strong>e for<br />

T and ρ with<br />

shock expand<strong>in</strong>g<br />

<strong>in</strong>to outer layers


Supernova shock front nucleosynthesis


Build up of N=Z nuclei from 28 Si, 44 Ti, 56 Ni up to 64 Ge


Supernova Shock Front<br />

Complex mix<strong>in</strong>g of nucleosynthesis patterns<br />

How far up <strong>in</strong> mass does nucleosynthesis proceed?


Supernova light curve 1987 A


Galactic 56 Ni and 44 Ti<br />

radioactivity<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

=<br />

⋅<br />

= −<br />

Δ<br />

=<br />

=<br />

=<br />

⋅Δ<br />

+<br />

+<br />

t<br />

bol<br />

bol<br />

e<br />

L<br />

L<br />

L<br />

L<br />

M<br />

T<br />

dt<br />

dM<br />

d<br />

T<br />

d<br />

T<br />

Fe<br />

Co<br />

e<br />

Ni<br />

λ<br />

ν<br />

β<br />

ν<br />

1<br />

2<br />

2<br />

1<br />

1/2<br />

1/2<br />

1/2<br />

56<br />

56<br />

56<br />

;<br />

log<br />

2.5<br />

0.755<br />

77.7<br />

6.1<br />

)<br />

(<br />

)<br />

,<br />

(


Galactic radioactivity as SN<br />

nucleosynthesis signature<br />

44<br />

Ti and 60 Co radioactivity can be used to determ<strong>in</strong>e mass


44<br />

Ti observations


44<br />

Ti & 60 Co <strong>in</strong> light curve of<br />

SN1987A


Possible consequences of high<br />

neutr<strong>in</strong>o flux <strong>in</strong> shock-front<br />

Neutr<strong>in</strong>o capture on protons<br />

1<br />

H(ν + ,e + )n, neutron production<br />

which <strong>in</strong>fluence the reaction<br />

path by neutron capture.


νp-process <strong>in</strong> hydrogen rich, high<br />

neutron flux environments<br />

On-site neutron production<br />

through neutr<strong>in</strong>o <strong>in</strong>duced<br />

<strong>in</strong>teraction: 1 H(ν + ,e + )n!<br />

By-pass<strong>in</strong>g wait<strong>in</strong>g<br />

po<strong>in</strong>t nuclei 64 Ge,<br />

68<br />

Se by n-capture<br />

reactions.


Production of light p-nuclei<br />

Production of light p-nuclei <strong>in</strong> this model depends strongly on<br />

Y e (e - abundance)<br />

radial position r of νp-process site<br />

entropy S (~T/ρ) <strong>in</strong> shock

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!