13.10.2014 Views

Th l R i ti it f S il Thermal Resistivity of Soils and Engineered Materials

Th l R i ti it f S il Thermal Resistivity of Soils and Engineered Materials

Th l R i ti it f S il Thermal Resistivity of Soils and Engineered Materials

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Th</strong>ermal Resis<strong>ti</strong>v<strong>it</strong>y <strong>it</strong> <strong>of</strong> So<strong>il</strong>s<br />

<strong>and</strong> <strong>Engineered</strong> <strong>Materials</strong><br />

Gaylon S. Campbell, Ph. D.<br />

Decagon Devices, Inc.<br />

Pullman, WA<br />

www.decagon.com


Phoenix Scout Mission to Mars<br />

June 25, 2008 – Oct., 2008<br />

TECP: <strong>Th</strong>ermal <strong>and</strong><br />

electrical<br />

proper<strong>ti</strong>es p probe


TECP Purpose<br />

•Measure thermal <strong>and</strong> electrical<br />

proper<strong>ti</strong>es <strong>of</strong> Mar<strong>ti</strong>an regol<strong>it</strong>h<br />

•From those measurements, infer<br />

liquid water content, ice content, <strong>and</strong><br />

pore size distribu<strong>ti</strong>on


Some geotechnical applica<strong>ti</strong>ons<br />

<strong>of</strong> so<strong>il</strong> thermal proper<strong>ti</strong>es<br />

• Buried power transmission cables<br />

What is the thermal resistance between a buried<br />

power line <strong>and</strong> the external environment?<br />

• Ground source heat pump installa<strong>ti</strong>ons<br />

For a given volume <strong>of</strong> so<strong>il</strong>, how much heat can be<br />

stored? How fast can <strong>it</strong> be stored?<br />

• Burial <strong>of</strong> high level radio-ac<strong>ti</strong>ve ac<strong>ti</strong>ve waste<br />

How hot w<strong>il</strong>l <strong>it</strong> get? How w<strong>il</strong>l <strong>it</strong> affect moisture<br />

patterns?


<strong>Th</strong>ermal Proper<strong>ti</strong>es <strong>of</strong> So<strong>il</strong><br />

Impact Wind Power Genera<strong>ti</strong>on


U. S. Na<strong>ti</strong>onal Electrical<br />

Code: Annex B (2005)<br />

“Typical values <strong>of</strong> thermal resis<strong>ti</strong>v<strong>it</strong>y: rho”<br />

average so<strong>il</strong> (90 percent <strong>of</strong> USA) 90<br />

Concrete 55<br />

Damp so<strong>il</strong> 60<br />

very dry so<strong>il</strong> 120


Outline<br />

•Defini<strong>ti</strong>ons<br />

•<strong>Th</strong>ermal proper<strong>ti</strong>es <strong>of</strong> porous materials<br />

•Measuring so<strong>il</strong> thermal proper<strong>ti</strong>es<br />

•St<strong>and</strong>ards S d d for thermal proper<strong>ti</strong>es<br />

•Correc<strong>ti</strong>ve measures


<strong>Th</strong>e thermal proper<strong>ti</strong>es <strong>of</strong><br />

interest are<br />

•<strong>Th</strong>ermal conduc<strong>ti</strong>v<strong>it</strong>y (k )<br />

Ra<strong>ti</strong>o <strong>of</strong> heat flux dens<strong>it</strong>y to temperature<br />

gradient: 0.1 to 3 W/(m·K)<br />

•<strong>Th</strong>ermal resis<strong>ti</strong>v<strong>it</strong>y ( )<br />

R ip l f th m l nd <strong>ti</strong> <strong>it</strong> :<br />

Reciprocal <strong>of</strong> thermal conduc<strong>ti</strong>v<strong>it</strong>y :<br />

33 to 1000 cm·C/W


Which is best, conduc<strong>ti</strong>v<strong>it</strong>y<br />

or resis<strong>ti</strong>v<strong>it</strong>y?<br />

For so<strong>il</strong>, conduc<strong>ti</strong>v<strong>it</strong>y is almost always<br />

preferable to resis<strong>ti</strong>v<strong>it</strong>y:<br />

•Better sta<strong>ti</strong>s<strong>ti</strong>cal proper<strong>ti</strong>es<br />

•More correct for averaging<br />

•More linear w<strong>it</strong>h water content<br />

•A more correct percep<strong>ti</strong>on <strong>of</strong><br />

significance


More thermal proper<strong>ti</strong>es<br />

•Volumetric specific heat (C )<br />

Heat required to raise the temperature <strong>of</strong><br />

un<strong>it</strong> volume by 1 K (or C):<br />

1 to 3 MJ/(m 3 K)<br />

•<strong>Th</strong>ermal diffusiv<strong>it</strong>y (D )<br />

Ra<strong>ti</strong>o <strong>of</strong> conduc<strong>ti</strong>v<strong>it</strong>y to specific heat;<br />

Ra<strong>ti</strong>o <strong>of</strong> conduc<strong>ti</strong>v<strong>it</strong>y to specific heat;<br />

measure <strong>of</strong> propaga<strong>ti</strong>on rate <strong>of</strong> thermal<br />

disturbances: 0.1 to 0.7 mm 2 /s


Modeling So<strong>il</strong> <strong>Th</strong>ermal<br />

Proper<strong>ti</strong>es<br />

•So<strong>il</strong> is a mixture <strong>of</strong> solid, liquid<br />

(water) <strong>and</strong> gas (air <strong>and</strong> water vapor)<br />

•<strong>Th</strong>e thermal proper<strong>ti</strong>es <strong>of</strong> the so<strong>il</strong><br />

depend on the thermal proper<strong>ti</strong>es <strong>of</strong><br />

the cons<strong>ti</strong>tuents, their volume<br />

frac<strong>ti</strong>ons, <strong>and</strong> how they are mixed


So<strong>il</strong> Moisture Concepts <strong>and</strong><br />

Defini<strong>ti</strong>ons<br />

Air 25%<br />

Water 25%<br />

Solid 50%<br />

• A “saturated” so<strong>il</strong><br />

has no air<br />

• After satura<strong>ti</strong>on so<strong>il</strong>s<br />

typically quickly drain<br />

to “field capac<strong>it</strong>y”<br />

• Further drying is<br />

mainly due to plant<br />

water uptake


<strong>Th</strong>ermal proper<strong>ti</strong>es <strong>of</strong><br />

“pure” so<strong>il</strong> cons<strong>ti</strong>tuents<br />

k<br />

W/(mK)<br />

C<br />

MJ/(m 3 K)<br />

D<br />

mm 2 /s<br />

So<strong>il</strong> Minerals 2.5 2.3 1.09<br />

Gran<strong>it</strong>e 3 2.2 1.36<br />

Quartz 8.8 2.1 4.19<br />

Organic matter 0.25 2.5 0.10<br />

Water 06 0.6 418 4.18 014 0.14<br />

Ice 2.2 1.9 1.16<br />

Air 0.025025 0.001001 20.83<br />

From Campbell <strong>and</strong> Norman (1998)


Volumetric Specific Heat:<br />

varia<strong>ti</strong>on w<strong>it</strong>h water content<br />

(MJ/m3 K )<br />

Vo<br />

l. Sp. Ht.<br />

35 3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

S<strong>and</strong><br />

Clay<br />

Organic<br />

<strong>Th</strong>e specific heat <strong>of</strong> a mixture <strong>of</strong><br />

air, water <strong>and</strong> solids is the sum <strong>of</strong><br />

each volume frac<strong>ti</strong>on, mul<strong>ti</strong>plied by<br />

<strong>it</strong>s specific heat<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Volumetric Water Content


Specific Heat Take-Home<br />

• <strong>Th</strong>e volumetric specific heat <strong>of</strong> so<strong>il</strong>, rock<br />

<strong>and</strong> concrete is about 2 (±1) MJ m -3 K -1<br />

• Volumetric specific heat varies linearly<br />

w<strong>it</strong>h water content<br />

• Volumetric specific heat can <strong>of</strong>ten be<br />

computed more accurately than measured –<br />

you need volumetric water content t <strong>and</strong> bulk<br />

dens<strong>it</strong>y


Temperature dependence <strong>of</strong><br />

so<strong>il</strong> thermal conduc<strong>ti</strong>v<strong>it</strong>y<br />

<strong>Th</strong>ermal Co onduc<strong>ti</strong>v<strong>it</strong>y<br />

- W/(m K)<br />

1.8<br />

1.6<br />

1.4<br />

12 1.2<br />

1<br />

0.8<br />

06 0.6<br />

0.4<br />

0.2<br />

0<br />

50% solids<br />

0 0.1 0.2 0.3 0.4 0.5<br />

90 C<br />

65 C<br />

25 C<br />

No Vap.<br />

Water Content - m 3 /m 3


Liquid Return Flow: so<strong>il</strong> as a<br />

heat pipe<br />

1.8<br />

<strong>Th</strong>er rmal Condu uc<strong>ti</strong>v<strong>it</strong>y - W/(m K)<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

08 0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

liq<br />

90 C<br />

vap<br />

No vapor<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Water Content - m 3 /m 3


Temperature Dependence <strong>of</strong><br />

<strong>Th</strong>ermal Resis<strong>ti</strong>v<strong>it</strong>y<br />

C/W)<br />

<strong>Th</strong>ermal Res sis<strong>ti</strong>v<strong>it</strong>y (cm<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

25 C<br />

65 C<br />

0 0.2 0.4 0.6<br />

Water Content (m3/m3)<br />

U. S. Electrical Code<br />

90 C Average so<strong>il</strong> 90<br />

Concrete 55<br />

Damp so<strong>il</strong> 60<br />

Very dry so<strong>il</strong> 120


Response to <strong>Th</strong>ermal<br />

Conduc<strong>ti</strong>v<strong>it</strong>y <strong>of</strong> Solids<br />

<strong>Th</strong>er rmal Cond duc<strong>ti</strong>v<strong>it</strong>y - W/(mC)<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

quartz s<strong>and</strong><br />

loam<br />

organic<br />

25 C<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Water Content - m3/m3


Resis<strong>ti</strong>v<strong>it</strong>y response to solids<br />

proper<strong>ti</strong>es<br />

<strong>Th</strong> hermal Res sis<strong>ti</strong>v<strong>it</strong>y (c cm C/W)<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

loam<br />

quartz<br />

organic<br />

0 0.1 0.2 0.3 0.4<br />

Water Content (m3/m3)


Response to Compac<strong>ti</strong>on<br />

2<br />

<strong>Th</strong>e ermal Condu uc<strong>ti</strong>v<strong>it</strong>y - W/( (m K)<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

04 0.4<br />

0.2<br />

0<br />

Loam so<strong>il</strong><br />

25C<br />

17% pores<br />

50% pores<br />

60% pores<br />

0 01 0.1 02 0.2 03 0.3 04 0.4 05 0.5 06 0.6<br />

Water Content - m 3 /m 3


Compac<strong>ti</strong>on effects on<br />

thermal resis<strong>ti</strong>v<strong>it</strong>y<br />

s<strong>ti</strong>v<strong>it</strong>y (cm<br />

C/W)<br />

<strong>Th</strong>e ermal Resi<br />

600<br />

400<br />

200<br />

0<br />

60% pores<br />

50% pores<br />

17% pores<br />

0 0.1 0.2 0.3 0.4 0.5<br />

3 3<br />

Water Content (m 3 /m 3 )


Take-home<br />

• <strong>Th</strong>ermal conduc<strong>ti</strong>v<strong>it</strong>y <strong>of</strong> porous material<br />

depends on:<br />

• Composi<strong>ti</strong>on<br />

• Temperature<br />

• Dens<strong>it</strong>y<br />

• Water content<br />

• <strong>Th</strong> i “ ld ” l f <strong>il</strong> th l<br />

• <strong>Th</strong>ere is no “golden” value for so<strong>il</strong> thermal<br />

conduc<strong>ti</strong>v<strong>it</strong>y – you need to measure <strong>it</strong>


How to get values for<br />

<strong>Th</strong>ermal Proper<strong>ti</strong>es<br />

•Compute them from composi<strong>ti</strong>on,<br />

dens<strong>it</strong>y, water content <strong>and</strong><br />

temperature (best for sp. Ht.)<br />

•Measure them using the line heat<br />

source (best for conduc<strong>ti</strong>v<strong>it</strong>y)


Line heat source methods<br />

for thermal proper<strong>ti</strong>es<br />

•Place a line heat source in the sample<br />

•Apply heat to the source <strong>and</strong> measure<br />

<strong>it</strong>s temperature over <strong>ti</strong>me<br />

•From the slope <strong>of</strong> temperature vs.<br />

logar<strong>it</strong>hm <strong>of</strong> <strong>ti</strong>me determine k


<strong>Th</strong>ermal conduc<strong>ti</strong>v<strong>it</strong>y: line<br />

heat source method<br />

ange (C )<br />

Tem pe<br />

ra ture C h<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

01 0.1<br />

0<br />

k = 0.5<br />

k = 1.0<br />

k = 2.0<br />

0.1 1 10 100<br />

Time (s)<br />

k propor<strong>ti</strong>onal to<br />

1/slope


Making a reading on a<br />

sample<br />

• Insert the needle<br />

• May need a p<strong>il</strong>ot hole<br />

• Turn on the controller<br />

• Press Enter<br />

• Wa<strong>it</strong> 5 – 10 minutes –<br />

controller heats needle,<br />

measures temperature,<br />

<strong>and</strong> computes k<br />

• Read the result from<br />

display


Example <strong>of</strong> k measurement<br />

Temp perature Ris se (C)<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

y = 0.0906x + 0.0564<br />

R 2 = 0.9998<br />

=153 C cm/W<br />

y = 0.0853x + 0.008<br />

R 2 = 0.9996<br />

=144 C cm/W<br />

0 1 2 3 4<br />

ln t or ln t/(t-t o<br />

)<br />

hea<strong>ti</strong>ng cooling hea<strong>ti</strong>ng, excluded cooling, excluded


Contact Resistance Errors<br />

•Contact resistance errors occur any<br />

<strong>ti</strong>me there is an air gap around a single<br />

needle probe<br />

•No simple correc<strong>ti</strong>on is possible<br />

•Long read <strong>ti</strong>mes minimize these errors<br />

•Worst W in dry materials<br />

•<strong>Th</strong>ermal grease some<strong>ti</strong>mes helps


St<strong>and</strong>ards for thermal<br />

conduc<strong>ti</strong>v<strong>it</strong>y or resis<strong>ti</strong>v<strong>it</strong>y<br />

• ASTM D 5334-08 (2008) St<strong>and</strong>ard test methods<br />

for determina<strong>ti</strong>on <strong>of</strong> thermal conduc<strong>ti</strong>v<strong>it</strong>y <strong>of</strong> so<strong>il</strong><br />

<strong>and</strong> s<strong>of</strong>t rock by thermal needle probe procedure.<br />

Vol. 04.08, 08 ASTM, 100 Barr-Harbor Dr., West<br />

Conshocken, PA 19428-2059.<br />

• IEEE STD 442-1981 IEEE guide for <strong>Th</strong>ermal<br />

Resis<strong>ti</strong>v<strong>it</strong>y <strong>it</strong> Measurements . <strong>Th</strong>e Ins<strong>ti</strong>tute t <strong>of</strong><br />

Electrical <strong>and</strong> Electronics Engineers, Inc. 345 East<br />

47 Street, New York, NY 10017<br />

• Bristow, K. 2002 . <strong>Th</strong>ermal Conduc<strong>ti</strong>v<strong>it</strong>y <strong>it</strong> . p1209-<br />

1226. Methods <strong>of</strong> So<strong>il</strong> Analysis. Part 4 So<strong>il</strong><br />

Science Society <strong>of</strong> America, Inc. 677 South Segoe<br />

Rd. Madison, WI 53711-1086<br />

1086.


Comparison <strong>of</strong> st<strong>and</strong>ards<br />

ASTM<br />

IEEElab<br />

SSSA<br />

Probe length NS 100 mm NS<br />

Probe diam. NS 2.4 mm “thin”<br />

Record length NS 600 s 60 s<br />

Recording Elect. h<strong>and</strong> Elect.<br />

Analysis Rgr. 2 pt. Rgr<br />

Heat/cool yes no yes


Important points<br />

• Temperature drift during measurement can<br />

cause serious errors in hea<strong>ti</strong>ng-only<br />

analyses (as specified in older st<strong>and</strong>ards)<br />

• Probes can’t be used in layered or<br />

inhomogeneous media<br />

• Probes must be in good contact w<strong>it</strong>h so<strong>il</strong> –<br />

thermal grease can some<strong>ti</strong>mes help. Long<br />

read <strong>ti</strong>mes help a lot


<strong>Th</strong>ermal dryout curves<br />

•<strong>Th</strong>e rela<strong>ti</strong>onship between thermal<br />

conduc<strong>ti</strong>v<strong>it</strong>y (or resis<strong>ti</strong>v<strong>it</strong>y) <strong>and</strong> water<br />

content for a so<strong>il</strong> or other porous<br />

material<br />

al<br />

•Water content is an important<br />

variable, but dens<strong>it</strong>y, mineralogy <strong>and</strong><br />

temperature are also important.<br />

Need to hold these constant.


Dryout Curves –<br />

Measurement <strong>and</strong> Modeling<br />

• Pack a sample<br />

• Saturate w<strong>it</strong>h water<br />

• Measure wet conduc<strong>ti</strong>v<strong>it</strong>y<br />

• Weigh sample<br />

• Oven dry<br />

• Measure dry conduc<strong>ti</strong>v<strong>it</strong>y<br />

• Compute water content<br />

t<br />

• F<strong>it</strong> the model using wet <strong>and</strong><br />

dry conduc<strong>ti</strong>vi<strong>ti</strong>es


Dryout curves on S<strong>and</strong><br />

uc<strong>ti</strong>v<strong>it</strong>y (W /mK)<br />

<strong>Th</strong>e ermal Cond<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

single sample 1<br />

single sample 2<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Volumetric Water Content (m 3 /m 3 )<br />

Data from Dr. G. Todd Vanek


Dryout curves on S<strong>and</strong><br />

uc<strong>ti</strong>v<strong>it</strong>y (W /mK)<br />

<strong>Th</strong>e ermal Cond<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

single sample 1<br />

single sample 2<br />

model singlesample<br />

sample<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Volumetric Water Content (m 3 /m 3 )<br />

Data from Dr. G. Todd Vanek


S<strong>and</strong> data on a resis<strong>ti</strong>v<strong>it</strong>y<br />

scale<br />

<strong>Th</strong>erm mal Resis<strong>ti</strong>v<strong>it</strong>y<br />

4<br />

3<br />

2<br />

1<br />

single sample 1<br />

single sample 2<br />

mul<strong>ti</strong>sample<br />

model single sample<br />

model mul<strong>ti</strong>sample<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Volumetric Water Content


So – What’s needed for the<br />

combined approach?<br />

Wet conduc<strong>ti</strong>v<strong>it</strong>y <strong>and</strong><br />

water content<br />

Dry conduc<strong>ti</strong>v<strong>it</strong>y<br />

Volume frac<strong>ti</strong>on <strong>of</strong> solids<br />

Clay content<br />

Measure on saturated,<br />

compacted sample<br />

Measure on oven dried<br />

sample<br />

Compute from bulk<br />

dens<strong>it</strong>y <strong>of</strong> sample<br />

Measure or es<strong>ti</strong>mate<br />

from texture<br />

See www.Decagon.com for applica<strong>ti</strong>on note


Measuring thermal<br />

conduc<strong>ti</strong>v<strong>it</strong>y <strong>of</strong> concrete


Important points for<br />

concrete<br />

•<strong>Th</strong>e sample must have the same<br />

dens<strong>it</strong>y as the in s<strong>it</strong>u material<br />

•Grease the pin before inser<strong>ti</strong>ng <strong>it</strong><br />

•Air gaps cause serious errors<br />

•Sample can be used for saturated <strong>and</strong><br />

dry measurements


Measuring thermal conduc<strong>ti</strong>v<strong>it</strong>y<br />

<strong>of</strong> cured concrete or rock<br />

•Rotohammer<br />

4 mm hole<br />

•<strong>Th</strong>ermal<br />

grease in<br />

bottom<br />

•Insert<br />

probe


Problem so<strong>il</strong>s – what if I<br />

need lower resis<strong>ti</strong>v<strong>it</strong>y?<br />

•Dens<strong>it</strong>y: compact materials for low<br />

resis<strong>ti</strong>v<strong>it</strong>y<br />

•Water content: low resis<strong>ti</strong>v<strong>it</strong>y when wet<br />

•Mineralogy: high quartz gives low<br />

resis<strong>ti</strong>v<strong>it</strong>y<br />

Fl idi d <strong>Th</strong> l B kf<strong>il</strong>l TM (FTB TM ) l<br />

•Fluidized <strong>Th</strong>ermal Backf<strong>il</strong>l TM (FTB TM ): low<br />

strength concrete, see www.geotherm.net


Conclusions<br />

• “Measure to Know”<br />

• Conduc<strong>ti</strong>v<strong>it</strong>y <strong>and</strong> capac<strong>it</strong>y depend on<br />

moisture, mineralogy, compac<strong>ti</strong>on <strong>and</strong><br />

temperature<br />

• Specific Heat is 2 +/- MJ/m 3 K<br />

• Measure conduc<strong>ti</strong>v<strong>it</strong>y w<strong>it</strong>h a heated needle<br />

• Provide dryout curves w<strong>it</strong>h wet <strong>and</strong> dry k


For Addi<strong>ti</strong>onal Informa<strong>ti</strong>on<br />

•www.decagon.com<br />

•www.thermalresis<strong>ti</strong>v<strong>it</strong>y.com<br />

•www.geotherm.net

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!