23.10.2014 Views

5 lec heterocyclic.pdf

5 lec heterocyclic.pdf

5 lec heterocyclic.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Synthesis of <strong>heterocyclic</strong><br />

compounds<br />

Tapio Nevalainen<br />

Drug synthesis II<br />

2008<br />

Basicities of Nitrogen in Heteroaromatic Five-<br />

Membered Rings (pKa<br />

values)<br />

Azoles (Acidity<br />

of Azole Cations)<br />

N<br />

H<br />

N<br />

N<br />

N<br />

H<br />

pyrazole<br />

N<br />

N<br />

N<br />

H<br />

N<br />

pyrrole imidazole oxazole thiazole triazole<br />

-4 2.5 6.9 0.8 2.5 2.5<br />

Azole Anions (Acidity<br />

of Neutral Azoles)<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N N<br />

N<br />

N<br />

16.5 14,2 14,4 9,3 10 4.9<br />

O<br />

N<br />

S<br />

N<br />

N<br />

N<br />

H<br />

N<br />

1


Basicities of Six-Membered<br />

Heteroaromatics and Non-<br />

Heteroaromatics<br />

Basicities of Azines (pKa<br />

values)<br />

N N N N<br />

N<br />

N<br />

N<br />

N<br />

N N<br />

N<br />

N<br />

N<br />

pyridine pyridazine pyrimidine pyrazine 1,2,4-triazine 1,3,5-triazine<br />

5.1 2.3 1.3 0.6 < 0 < 0<br />

Basicities of Some Neutral Nitrogen Compounds<br />

NH 3<br />

N<br />

H<br />

N<br />

H<br />

NH 2<br />

N<br />

H<br />

N<br />

H<br />

ammonia pyrrolidine piperidine aniline indoline tetrahydroquinoline<br />

9.3 11.3 11.2 4.6 4.9 5.0<br />

Pyrrole synthesis<br />

R<br />

R'<br />

• Knorr pyrrole synthesis: Condensation of α-Aminoketone<br />

and β-<br />

ketoester<br />

O<br />

NH 2<br />

+<br />

O<br />

O<br />

O<br />

O<br />

R O<br />

AcOH R O<br />

O CH O 3<br />

CH 3<br />

R'<br />

R''<br />

R' N R''<br />

N R''<br />

H<br />

H<br />

• Paal-Knorr<br />

Pyrrole-Synthesis<br />

Synthesis: condensation amine and 1,4-ketone<br />

• Example: 1,2-Diarylpyrroles as Inhibitors of Cyclooxygenase-2 2 (J.(<br />

Med. Chem., 40 (11), 1619 -1633, 1997)<br />

CH 3<br />

NH 2<br />

F<br />

+<br />

MeO 2<br />

S<br />

O<br />

O<br />

O<br />

TsOH<br />

OEt<br />

MeO 2<br />

S<br />

TsOH = Toluenesulphonic acid<br />

N<br />

F<br />

O<br />

OEt<br />

2


Pyrrole synthesis<br />

• Hantzsch pyrrole synthesis: from α-holomethyl ketones, β-keto<br />

esters and ammonia or amines<br />

O<br />

O<br />

OEt<br />

H<br />

+ PhNH 2 +<br />

O<br />

O<br />

OEt<br />

O O<br />

EtO<br />

OEt<br />

Br<br />

N CH 3<br />

CH 3<br />

Ph<br />

A. Hantzsch, Ber. 23, 1474 (1890)<br />

• Piloty-Robinson<br />

Pyrrole Synthesis: by heating azines of<br />

enolizable ketones with acid catalysts, ZnCl 2 or HCl<br />

R'<br />

R<br />

N N<br />

R'<br />

R<br />

∆<br />

HCl<br />

R<br />

R'<br />

N<br />

H<br />

R'<br />

R<br />

+<br />

NH 3<br />

Thiophenes<br />

• Hinsberg Synthesis of Thiophene Derivatives<br />

R<br />

R<br />

O<br />

O<br />

• Paal Knorr<br />

R'<br />

R<br />

S CO 2<br />

R'<br />

tBuOK<br />

+<br />

R'O 2<br />

C<br />

R'O 2<br />

C<br />

P 2<br />

S 3<br />

O R<br />

R'<br />

O<br />

S<br />

R<br />

S CO 2<br />

R'<br />

CO 2<br />

R'R<br />

• Gewald reaction<br />

OR''<br />

O<br />

+<br />

O<br />

R'<br />

S 8<br />

R''O<br />

O<br />

R'<br />

N<br />

R<br />

N H 2<br />

S<br />

R<br />

3


Furans<br />

• Paal Knorr<br />

R'<br />

H +<br />

O R<br />

R'<br />

O<br />

O<br />

OH<br />

R<br />

- H 2<br />

O<br />

R'<br />

O<br />

R<br />

• Feist-Benary<br />

CO 2<br />

Et<br />

O<br />

+<br />

OH<br />

Cl<br />

R<br />

R'<br />

EtO 2<br />

C<br />

R<br />

O<br />

Cl<br />

R'<br />

OH<br />

- HCl<br />

- H 2<br />

O<br />

EtO 2<br />

C<br />

R<br />

O<br />

R'<br />

Pyrazoles<br />

• Pyrazoles can be synthesized from 1,3-dicarbonyls<br />

with<br />

hydrazine<br />

CH CH<br />

3<br />

3<br />

H 2<br />

NNH 2<br />

, NaOH<br />

H 3<br />

C O<br />

H N<br />

H 2<br />

O, 15°C<br />

3<br />

C<br />

N<br />

O<br />

H<br />

• Pyrazoles are made also by 1,3-dipolar<br />

cycloaddition of<br />

diazomethane and acetylene.<br />

N<br />

N + CH 2<br />

O<br />

O CH 3<br />

COOCH 3<br />

N C<br />

C<br />

C<br />

N C<br />

H CH2<br />

H<br />

4


Example of pyrazole synthesis:<br />

Rimonabant<br />

Cl<br />

C H 3<br />

O<br />

1. LiHMDS. ether<br />

2. O<br />

EtO<br />

OEt<br />

O<br />

Cl<br />

H 3<br />

Li +<br />

O<br />

C<br />

-<br />

OEt<br />

O<br />

NH<br />

O<br />

2<br />

1. HN<br />

Cl<br />

2. AcOH<br />

Cl<br />

H 3<br />

C<br />

O<br />

N<br />

N<br />

N<br />

N<br />

H<br />

Cl<br />

Cl<br />

Cl<br />

H 3<br />

C<br />

O<br />

N<br />

N<br />

Cl<br />

OEt<br />

Cl<br />

SR-141716A<br />

Rimonabant (Acomplia)<br />

Cl<br />

Pyrazoles: : The synthesis of sildenafil (Viagra)<br />

Retrosynthesis<br />

O<br />

O<br />

O<br />

CH 3<br />

CH 3<br />

CH 3<br />

CH 3<br />

OEt HN<br />

N<br />

O<br />

S<br />

O<br />

N<br />

N<br />

N<br />

CH3<br />

N<br />

OEt HN<br />

N<br />

N<br />

N<br />

OEt<br />

CO 2 H<br />

N H 2<br />

N H 2<br />

CH 3<br />

N<br />

N<br />

CH 3<br />

N H 2<br />

O<br />

H 2 N<br />

CH 3<br />

N<br />

N<br />

CH 3<br />

RO<br />

O<br />

O 2 N<br />

CH 3<br />

N<br />

N<br />

CH 3<br />

RO<br />

O<br />

CH 3<br />

N<br />

N<br />

CH 3<br />

RO<br />

O<br />

O<br />

O<br />

RO<br />

O<br />

OR<br />

O<br />

O<br />

H 3 C<br />

CH 3<br />

CH 3<br />

5


Pyrazoles: : The synthesis of sildenafil (Viagra)<br />

O<br />

H 3 C<br />

CH 3<br />

(CO 2 Et) 2<br />

base<br />

EtO<br />

O<br />

O<br />

O<br />

O<br />

O<br />

H<br />

H 2 N<br />

EtO<br />

NH 2<br />

N 1. (MeO) 2 SO 2 HO<br />

N<br />

N<br />

N<br />

H 2 O<br />

2. NaOH/H 2 O<br />

CH 3<br />

CH 3<br />

CH 3<br />

CH 3<br />

O<br />

O<br />

O<br />

CH 3<br />

CH 3<br />

N<br />

HNO<br />

HO<br />

3<br />

1. SOCl<br />

N<br />

2<br />

H<br />

O 2 N<br />

2 SO 4 2. NH 4 OH<br />

N H 2<br />

O 2 N<br />

CH 3<br />

CH 3<br />

N<br />

N<br />

H 2<br />

Pd/C<br />

N H 2<br />

H 2 N<br />

CH 3<br />

CH 3<br />

N<br />

N<br />

OEt<br />

O<br />

Cl<br />

+<br />

N H 2<br />

O<br />

H 2 N<br />

N<br />

N<br />

pyridine<br />

N H 2<br />

O<br />

HN<br />

N<br />

N<br />

NaOH<br />

O<br />

OEt HN<br />

N<br />

CH 3<br />

CH 3<br />

N<br />

N<br />

CH 3<br />

CH 3<br />

O<br />

ClSO 2 OH<br />

O<br />

OEt HN<br />

N<br />

CH 3<br />

CH 3<br />

CH 3<br />

CH 3<br />

N<br />

N<br />

HN<br />

OEt<br />

O<br />

OEt HN<br />

N<br />

CH 3<br />

CH 3<br />

N<br />

N<br />

N<br />

CH3<br />

N<br />

O S O<br />

Cl<br />

Bioorg. . Med. Chem. Lett. . 6, pp. 1819, 1996<br />

O S<br />

O<br />

N<br />

CH3<br />

Isooxazoles<br />

• Oximation of 1,3-Dicarbonyl<br />

Compounds<br />

HO<br />

NH 2<br />

O O<br />

NaOH<br />

OMe H 2<br />

O/MeOH<br />

O N<br />

OH<br />

Brehm, L.; Johansen, J.S.; Krogsgaard-Larsen, P.; J.<br />

Chem. Soc., Perkin Trans I, 1992, 16, 2059-2063.<br />

• Cycloaddition of Nitrile Oxides to Unsaturated<br />

Compounds<br />

R<br />

N +<br />

O<br />

+<br />

O<br />

OMe<br />

benzene<br />

Chimichi, S.; Cosimelli, B.; Synth. Commun., 1992, 22, 2909-2920<br />

O<br />

N<br />

• Nitrile oxides can be prepared by the γ-elimination<br />

of chlorooximes<br />

or the dehydration of nitroalkanes<br />

R<br />

O<br />

R<br />

OH<br />

N<br />

Cl 2<br />

Cl<br />

OH<br />

R N<br />

Et 3<br />

N<br />

N +<br />

O<br />

R<br />

nitrile oxide<br />

PhNCO<br />

or Ph 3<br />

P, DEAD<br />

R NO 2<br />

6


Azoles<br />

• 1,3-azoles<br />

are made in general from 1,4-dicarbonyls<br />

by Paar-Knorr<br />

cyclization.<br />

R<br />

O<br />

H<br />

N<br />

O<br />

R'<br />

H 2<br />

SO 4<br />

∆<br />

R<br />

N<br />

O<br />

R'<br />

R<br />

O<br />

H<br />

N<br />

R'<br />

O<br />

R''<br />

NH 4+<br />

OAc -<br />

HOAc, 120°C<br />

R<br />

H<br />

N<br />

N<br />

R''<br />

R'<br />

R<br />

O<br />

H<br />

N<br />

O<br />

R'<br />

+ P 2<br />

S 5<br />

120°C<br />

R<br />

N<br />

S<br />

R'<br />

N<br />

H<br />

N<br />

Histamine<br />

NH 2<br />

Cl<br />

Cl<br />

N<br />

N<br />

H<br />

Clonidine<br />

Imidazoles<br />

N<br />

H<br />

HN<br />

CH 3<br />

N<br />

S<br />

Cimetidine<br />

H<br />

N<br />

H<br />

N<br />

CH 3<br />

N<br />

CN<br />

CH 3<br />

H 3<br />

C<br />

CH 3<br />

CH 3<br />

CH 3<br />

Xylometazoline<br />

H<br />

N<br />

N<br />

• Synthesis of 1,2,5-Trisubstituted<br />

Imidazoles from<br />

N-monosubstituted<br />

amidines and 2-halo2<br />

halo-3-alkoxy-<br />

2-propenals<br />

R<br />

R'<br />

NH<br />

NH<br />

Br X<br />

R'<br />

K X<br />

2<br />

CO 3 N<br />

+ X = CHO, CN<br />

R<br />

O CHCl 3<br />

/H 2<br />

O N<br />

O<br />

OH<br />

J. Org Chem. 1997, 62, 8449 N<br />

N<br />

Eprosartan<br />

O<br />

S<br />

OH<br />

7


Imidazoles<br />

• Cimetidine<br />

O<br />

Cl<br />

O<br />

O<br />

2<br />

N H 2<br />

O<br />

H<br />

Bredereck-reaktio*<br />

O +<br />

H<br />

N<br />

HN<br />

H<br />

O<br />

H<br />

O<br />

O<br />

H<br />

N<br />

O +<br />

H<br />

N<br />

O<br />

H<br />

O<br />

O<br />

HN<br />

N<br />

O<br />

O<br />

LiAlH 4<br />

HN<br />

N<br />

HS<br />

OH<br />

NH 2<br />

HN<br />

N<br />

S<br />

NH 2<br />

S<br />

H<br />

N<br />

N<br />

CN<br />

* Bredereck, H.; Theilig, G., Chemische Berichte-Recueil 1953, 86, 88-96.<br />

http://www.chem.yale.edu/~wood/Theses/thesisstu.<strong>pdf</strong><br />

HN<br />

N<br />

S<br />

cimetidine<br />

H<br />

N<br />

H<br />

N<br />

N<br />

CN<br />

Imidazoles<br />

• 2-butyl-4(5)<br />

4(5)-chloro-5(4)<br />

5(4)-hydroxymethyl-1H-<br />

imidazole<br />

HO<br />

Cl<br />

H<br />

N<br />

N<br />

CH 3<br />

HO<br />

Cl<br />

O<br />

OH<br />

N H 2<br />

NH<br />

CH 3<br />

HO<br />

O<br />

+<br />

OH<br />

H 2<br />

N<br />

NH<br />

CH 3<br />

NH 3<br />

, MeOH<br />

HO<br />

N H N<br />

CH 3<br />

HN<br />

N N<br />

N<br />

1. Me 3<br />

SiCl,<br />

2.Chlorosuccinimide<br />

3. Zn, AcOH<br />

HO<br />

Cl<br />

H<br />

N<br />

N<br />

CH 3<br />

Synthetic Communications (1993), 23(18), 2623-30.<br />

N<br />

HO N<br />

Cl<br />

Losartan<br />

CH 3<br />

8


Dihydroimidazoles<br />

Clonidine (anti-hypertensive<br />

agen)<br />

Cl<br />

Cl<br />

NH 2<br />

+<br />

NH 4 S<br />

N<br />

Cl<br />

Cl<br />

N<br />

H<br />

S<br />

C<br />

NH 2<br />

CH 3 I<br />

Oxymetazoline (topical<br />

decongestant)<br />

Cl<br />

Cl<br />

N<br />

H<br />

Cl<br />

CH 3 H N<br />

S<br />

2<br />

N H<br />

C<br />

N<br />

NH 2 H<br />

NH . N<br />

HI<br />

Cl<br />

Clonidine<br />

HO<br />

CH 3<br />

CH 3<br />

CH 2 O/HCl<br />

HO<br />

CH 3<br />

Cl<br />

CH 3<br />

KCN<br />

HO<br />

CH 3<br />

CN<br />

CH 3<br />

H 2 N<br />

H 2 N<br />

235°C, N 2<br />

HO<br />

CH 3<br />

CH 3<br />

H<br />

N<br />

N<br />

Oxymetazoline<br />

Imidazoles<br />

• The reaction of aldehydes, primary amines and<br />

toluenesulphonylmethyl isocyanide (TOSMIC) yield 1,4,5-<br />

trisubstituted imidazoles (A. M. van Leusen, , J. Wildeman, , O.<br />

H. Oldenziel, J. Org. Chem. 1977, 42, , 1153. A. M. van<br />

Leusen, Heterocycl. Chem. 1980, 5, , S-111) S<br />

NH 2<br />

CHO - H R 1<br />

R 1<br />

+<br />

2<br />

O<br />

R 2<br />

N H C<br />

R 3 2<br />

N<br />

R3<br />

Tos<br />

R 1<br />

N R 2<br />

B<br />

N<br />

R3<br />

R 1<br />

N R 2<br />

O<br />

S<br />

O<br />

C H 3<br />

R3<br />

NC<br />

TOSMIC<br />

O<br />

S<br />

OH<br />

http://www.organic-chemistry.org/Highlights/2005/05May.shtm<br />

+<br />

B<br />

CN<br />

R3<br />

Tos<br />

R 1<br />

N R 2<br />

9


R<br />

C H 3<br />

S<br />

H 3 C<br />

N<br />

NH 2<br />

S<br />

+<br />

N<br />

Br<br />

S<br />

O<br />

H 3 C<br />

R'<br />

H<br />

N<br />

N<br />

H<br />

Nizatidine (H 2 -antihistamine)<br />

NO 2<br />

Thiazoles<br />

• Most important method for syntesis of thiazoles is<br />

from thioamides and α-halocarbonyl<br />

compounds<br />

C H 3<br />

R'<br />

H<br />

S<br />

S<br />

- HBr O<br />

R' - H 2<br />

O<br />

R NH R N OH<br />

• Example: synthesis of Nizatidine<br />

N<br />

NH 2<br />

N<br />

R<br />

Cl<br />

S<br />

N<br />

CH 3<br />

N + S<br />

OH<br />

Thiamine (vitamin B 1 )<br />

R'<br />

+<br />

Br<br />

O<br />

CO 2 Et<br />

NaOEt<br />

S<br />

Me<br />

N NH 2<br />

Me<br />

2-dimethylaminothioasetamide<br />

Me<br />

S<br />

CO 2 Et<br />

N N<br />

Me<br />

2-dimethylaminomethylthiazol-4-carboxylic<br />

acid<br />

ethylester<br />

MeS<br />

1. LiAlH 4<br />

2. PBr 3<br />

Me<br />

N<br />

Me<br />

HS<br />

S<br />

NH 2<br />

N<br />

Br<br />

Me<br />

N<br />

Me<br />

S<br />

N<br />

S<br />

Nizatidine<br />

Me<br />

H<br />

N<br />

N<br />

H<br />

NO 2<br />

HN<br />

NO 2<br />

Me<br />

Me<br />

N<br />

Me<br />

S<br />

N<br />

S<br />

NH 2<br />

Oxazoles<br />

• The oxazole ring is constructed by heating an α-haloketone<br />

with amide<br />

O<br />

R NH 2<br />

+<br />

R'<br />

Br<br />

O<br />

R'<br />

H<br />

100 °C O<br />

O<br />

- HBr O<br />

R' - H 2 O R<br />

R NH R N OH<br />

O<br />

O<br />

R'<br />

N<br />

• Oxazole ring can be formed also from amide and vinylene carbonate or acid<br />

chloride and 1,2,3-triazole<br />

O NH 2<br />

O<br />

O<br />

vinylene<br />

carbonate<br />

PPA<br />

Br<br />

H<br />

N<br />

N /K<br />

O Cl 2 CO 3<br />

N<br />

Br<br />

O<br />

N<br />

+<br />

HO<br />

OH<br />

B<br />

R<br />

(Ph 3 P) 4 Pd,<br />

aq Na 2 CO 3 ,<br />

EtOH/toluene<br />

O<br />

N<br />

R<br />

Br<br />

S<br />

O O<br />

Sulfolane<br />

J. Med. Chem., 43 (16), 3111 -3117, 2000<br />

10


1,4-Dihydropyridines<br />

Hantzsch Dihydropyridine (Pyridine) Synthesis<br />

• 4-Aryl-1,4-dihydropyridines (e.g. nifedipine) are calcium channel<br />

modulators for the treatment of cardiovascular diseases such as<br />

hypertension, cardiac arrhythmias, or angina.<br />

CO 2<br />

Me<br />

CHO<br />

NO 2<br />

+<br />

O<br />

CO 2<br />

Me<br />

Me<br />

CO 2 Me<br />

O<br />

NO 2<br />

CO 2<br />

Me<br />

Me<br />

H 2<br />

N<br />

Me<br />

MeO 2<br />

C<br />

Me<br />

N<br />

H<br />

Nifedipine<br />

NO 2<br />

CO 2<br />

Me<br />

Me<br />

NH 3<br />

NH 3<br />

O<br />

Me<br />

MeO 2<br />

C<br />

NO 2<br />

CO 2<br />

Me<br />

Me<br />

O<br />

O<br />

Me<br />

• Thalidomide<br />

O<br />

N<br />

O<br />

O<br />

O<br />

CO 2 H<br />

N H 2<br />

O<br />

CO 2 H<br />

O<br />

2-phthalimido-D-glutaric acid<br />

Glutarimides<br />

O<br />

OH<br />

NH 2<br />

CF 3<br />

O<br />

NH 2<br />

HOBt<br />

EDCCI<br />

O<br />

N<br />

O<br />

O<br />

O<br />

OH<br />

O<br />

NH 2<br />

N<br />

O O<br />

N<br />

H<br />

(R)-Thalidomide<br />

Tetrahedron Letters (1999), 40(19), 3697-3698.<br />

• Aminoglutethimide<br />

Ac 2 O<br />

O<br />

O<br />

N<br />

O<br />

O O<br />

N<br />

H<br />

Thalidomide<br />

HOBt = N-hydroxybenzotriazole<br />

N<br />

N<br />

N<br />

OH<br />

EDCCl = N-(3-dimethylamino)propyl-<br />

N'-ethylcarbodiimide hydrochloride<br />

CH 3<br />

N<br />

+<br />

H 3 C<br />

N Cl<br />

N<br />

H CH 3<br />

O 2 N<br />

CN<br />

O<br />

EtO<br />

O 2 N<br />

O<br />

H 2 SO 4<br />

OE t<br />

Ac OH<br />

Bu 4 N + OH - C<br />

N<br />

O 2 N<br />

O<br />

N<br />

H<br />

O<br />

H 2<br />

Ni<br />

H 2 N<br />

O<br />

N<br />

H<br />

O<br />

Aminoglutethimide<br />

(Aromatase Inhibitor,<br />

breast cancer)<br />

11


Pyrimidines<br />

• From 1,3-dicarbonyl compounds and amidines<br />

• Example: trimethoprim (bacteriostatic antibiotic)<br />

MeO<br />

NH 2<br />

N N<br />

NH 2<br />

NH 2<br />

H<br />

guanidine<br />

2 N NH<br />

O O FGI<br />

MeO<br />

H<br />

NH 2<br />

MeO<br />

EtO<br />

O<br />

O<br />

OEt<br />

O<br />

EtO<br />

MeO<br />

O<br />

OEt<br />

Br<br />

MeO<br />

OMe<br />

MeO<br />

MeO<br />

OMe<br />

MeO<br />

OMe<br />

OMe<br />

O<br />

O<br />

O<br />

O<br />

EtO<br />

MeO<br />

O<br />

OH<br />

OEt<br />

O<br />

1. NaH<br />

2. ArCH 2 Br<br />

OEt<br />

N H 2<br />

MeO<br />

NH 2<br />

MeO<br />

NH<br />

EtO<br />

MeO<br />

OMe<br />

N<br />

OEt<br />

NaCl<br />

DMSO<br />

NH 2<br />

N<br />

OH<br />

MeO<br />

MeO<br />

1. POCl 3<br />

2. NH 3<br />

OMe<br />

MeO<br />

OEt<br />

HCO 2 Et<br />

EtO<br />

NH 2<br />

N N<br />

NH 2<br />

MeO<br />

OMe<br />

MeO<br />

OMe<br />

MeO<br />

OMe<br />

Pyrimidines<br />

• Biginelli Reaction: acid-catalyzed<br />

catalyzed, reaction between an aldehyde,<br />

a,ß-ketoester<br />

and urea constitutes a rapid and facile synthesis of<br />

tetrahydropyrimidones.<br />

EtO 2<br />

C<br />

R<br />

Ph<br />

H O<br />

O<br />

+<br />

N H 2<br />

NH 2<br />

O<br />

• Synthesis of rac-Monastrol (Mitosis blocker by kinase Eg5<br />

inhibition)<br />

OH<br />

H +<br />

EtOH, ∆<br />

EtO 2<br />

C<br />

R<br />

Ph<br />

N<br />

H<br />

NH<br />

O<br />

OH<br />

Biginelli, P. Gazz.<br />

Chim. Ital. 1893, 23, 360.<br />

EtO 2<br />

C<br />

C H 3<br />

O<br />

H<br />

+<br />

O<br />

N H 2<br />

NH 2<br />

S<br />

Yb(OTf)3<br />

THF, reflux<br />

12h<br />

EtO 2<br />

C<br />

C H 3<br />

N<br />

H<br />

NH<br />

S<br />

(+/-) Monastrol<br />

Dondoni, A., et. al.<br />

Tet. Lett. 2001, 43, 5913<br />

12


• Carboxylic acid isostere<br />

• Synthesis<br />

R<br />

N<br />

NaN 3<br />

, NH 4<br />

Cl<br />

LiCl, DMF<br />

100 °C<br />

Tetrazoles<br />

N<br />

N<br />

R<br />

N<br />

NH<br />

• Synthesis of Losartan (antihypertensive)<br />

R<br />

N<br />

N N + N<br />

R<br />

pKa = 5<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

R<br />

H +<br />

N<br />

N<br />

+<br />

H +<br />

R<br />

N<br />

N NH<br />

N<br />

Br<br />

CN<br />

NaN 3 , ZnBr 2<br />

Br<br />

N N<br />

N<br />

N<br />

H<br />

(Ph 3 P) 4 Pd<br />

HN<br />

N N<br />

N<br />

(HO) 2<br />

B<br />

Br<br />

HO<br />

Cl<br />

H<br />

N<br />

N<br />

DMA<br />

CH 3<br />

(HO) 2<br />

B<br />

HO<br />

Cl<br />

N<br />

N<br />

CH 3<br />

N<br />

HO N<br />

Cl<br />

Losartan<br />

CH 3<br />

Indoles<br />

• Fischer Indole Synthesis:<br />

The conversion of aryl hydrazones to<br />

indoles; requires elevated<br />

temperatures and the addition of<br />

Brønsted or Lewis acids<br />

N<br />

H<br />

R<br />

NH<br />

R'<br />

ZnCl 2 , ∆<br />

R<br />

N<br />

H<br />

R'<br />

• Synthesis of Sumatriptan<br />

O<br />

S<br />

HN<br />

O<br />

CH 3<br />

I<br />

NH 2<br />

HNO 2<br />

O<br />

S<br />

HN<br />

O<br />

SnCl 2<br />

CH 3<br />

N<br />

H<br />

NO<br />

O<br />

S<br />

HN<br />

O<br />

CH 3<br />

N<br />

H<br />

NH 2<br />

O<br />

CN<br />

O<br />

S<br />

H<br />

HN<br />

O<br />

CH 3<br />

N<br />

H<br />

N<br />

CN<br />

O<br />

S<br />

HN<br />

O<br />

CH 3<br />

O<br />

S<br />

HN<br />

O<br />

CH 3<br />

N<br />

CN<br />

N<br />

H<br />

NH<br />

CN<br />

O<br />

S<br />

HN<br />

O<br />

CH 3<br />

H<br />

CN<br />

NH<br />

NH<br />

O<br />

S<br />

HN<br />

O<br />

CH 3<br />

NH 2<br />

H 2 CH 2 O/ Na BH 4<br />

O<br />

O<br />

S<br />

Pd- C<br />

S<br />

HN<br />

O<br />

HN<br />

O<br />

CH N<br />

CH N<br />

3<br />

H<br />

3<br />

H<br />

Sumatriptan<br />

H +<br />

N<br />

H<br />

CN<br />

NH 3<br />

+<br />

Me<br />

N Me<br />

13


Quinolines<br />

• Quinoline nucleus is usually formed in one of<br />

two ways<br />

N NH 2<br />

H 3<br />

C C<br />

+<br />

CH 3<br />

Skraup. Döbner von Miller and<br />

Conrad-Limpach syntheses<br />

• Skraup-reaction<br />

reaction<br />

N NH 2<br />

CH 3<br />

CH 3<br />

+<br />

CH 3<br />

Friedländer and Pfitzinger synthesis<br />

NH 2<br />

+<br />

HO<br />

OH<br />

OH<br />

H 2<br />

SO 4<br />

As 2<br />

O 5<br />

, ∆<br />

N<br />

• Mechanism:<br />

HO<br />

OH<br />

OH<br />

H +<br />

C H 2<br />

H<br />

O<br />

NH 2<br />

N<br />

H<br />

CHO<br />

[O]<br />

N<br />

H<br />

N<br />

Quinolines<br />

• α,β-unsaturated<br />

ketone or aldehyde can be used instead of glycerol<br />

CH 3<br />

+<br />

CH<br />

H 3<br />

2<br />

C<br />

NH 2<br />

O<br />

FeCl 3<br />

ZnCl 2<br />

N<br />

• Saturated aldehyde can aldolcondensate to α,β-unsaturated<br />

aldehyde to form<br />

a quinoline (Doebner-Miller<br />

-reaction)<br />

conc. HCl R' CH<br />

R' CH 2<br />

CHO<br />

2<br />

CH C CHO<br />

100 °C<br />

R'<br />

NH 2<br />

N<br />

R'<br />

CH 2<br />

R'<br />

14


Quinolines<br />

• Conrad-Limpach<br />

reaction<br />

reaction: Synthesis of 4-<br />

oxyquinolines by condensation of esters of beta-keto<br />

acids with aromatic amines Skraup-reaction<br />

reaction<br />

EtO 2<br />

C<br />

+<br />

NH 2<br />

O CH 3<br />

< 100 °C<br />

- H 2 O<br />

∆<br />

- EtOH<br />

O<br />

N<br />

H<br />

EtO 2<br />

C<br />

CH 3<br />

O<br />

N CH 3<br />

H +<br />

- H 2 O<br />

260 °C<br />

- EtOH<br />

O<br />

N<br />

H<br />

CH 3<br />

N<br />

H<br />

O<br />

CH 3<br />

Quinolines<br />

• Friedländer-quinoline<br />

synthesis<br />

CHO<br />

NH2<br />

+<br />

H 3<br />

C<br />

O<br />

CH 3<br />

pH 12<br />

N CH 3<br />

Mechanism:<br />

CHO<br />

NH2<br />

+<br />

H 3<br />

C<br />

O<br />

OH<br />

CH 3<br />

O<br />

CH 2<br />

N CH 3<br />

H<br />

O<br />

N + CH 3<br />

H<br />

-H 2<br />

O<br />

N CH 3<br />

N CH 3<br />

15


Isoquinolines<br />

• The general synthetic routes to<br />

isoquinolines involve the following skeletal<br />

types:<br />

N NH 2<br />

+<br />

C<br />

Pictet-Spengler and<br />

Bischler-Napieralski syntheses<br />

N<br />

C<br />

+<br />

C C<br />

NH 2<br />

Pomeranz-Fritsch synthesis<br />

N<br />

NH 2<br />

+<br />

C C<br />

Schlittler-Müller synthesis<br />

Isoquinolines<br />

• Bischler-Napieralski<br />

Reaction:<br />

• β-Phenylethylamine<br />

is<br />

acylated then<br />

cyclodehydrated using<br />

phosphoryl chloride,<br />

phosphorous pentoxide or<br />

other lewis acids. This gives<br />

the dihydroisoquinoline,<br />

which can be aromatised by<br />

dehydrogenation with<br />

palladium. E.g. in the<br />

synthesis of papaverine<br />

MeO<br />

N<br />

MeO<br />

Pd, 250<br />

-H 2 O<br />

P<br />

HN O 2<br />

O 5<br />

, ∆<br />

CH 3<br />

MeO<br />

H 2<br />

, Raney-Ni<br />

CN<br />

MeO<br />

MeO<br />

MeO<br />

H 2 SO 4<br />

MeO<br />

MeO<br />

CO 2 H SOCl 2<br />

MeO<br />

MeO<br />

MeO<br />

N<br />

MeO<br />

POCl 3<br />

Cl<br />

O<br />

MeO<br />

MeO<br />

CH 3<br />

N<br />

NH 2<br />

NH<br />

O<br />

Papaverine<br />

OMe<br />

OMe<br />

OMe<br />

OMe<br />

MeO<br />

Bischler-Napieralski<br />

OMe<br />

16


Isoquinolines<br />

• Pictet-Spengler<br />

synthesis: β-Arylethylamine<br />

is heated in the presence<br />

of an aldehyde and acid.<br />

• A special case of the Mannich reaction.<br />

NH 2<br />

O H<br />

HCl<br />

N<br />

R<br />

R<br />

A. Pictet and T. Spengler, Ber. 44, 2030 (1951)<br />

+<br />

R<br />

N<br />

Synthesis of Tadalafil<br />

N<br />

H<br />

CO 2 Me<br />

NH 2<br />

D-(-)-tryptophan<br />

methyl ester<br />

+<br />

CHO<br />

O<br />

O<br />

CF 3 CO 2 H,<br />

CH 2 Cl 2<br />

N<br />

H<br />

CO 2 Me<br />

NH<br />

O<br />

J. Med. Chem. 2003; 46(21); 4525-4532<br />

O<br />

N<br />

H<br />

O<br />

N<br />

CH 3<br />

N<br />

O<br />

O<br />

O<br />

Tadalafil (Cialis)<br />

• Pomeranz-<br />

Fritsch<br />

Reaction<br />

Isoquinolines<br />

R<br />

EtO<br />

O +<br />

H 2<br />

N<br />

C. Pomeranz, Monatsh. 14, 116 (1893)<br />

P. Fritsch, Ber. 26, 419 (1893)<br />

OEt<br />

OEt<br />

- H 2<br />

O H 3<br />

O +<br />

OEt<br />

R<br />

N<br />

R<br />

N<br />

- H 2<br />

O<br />

O<br />

N<br />

R<br />

OH<br />

N<br />

R<br />

• Schlittler-<br />

Müller<br />

Reaction<br />

NH 2 OH<br />

O<br />

NOH<br />

NH 2<br />

R<br />

R<br />

R<br />

E. Schlittler and J. Muller, Helv. Chim. Acta 31,914,1119(1948)<br />

EtO<br />

O<br />

OEt<br />

OEt<br />

OEt<br />

N<br />

R<br />

H 3 O +<br />

EtO OEt<br />

KMnO 4<br />

EtO OEt<br />

EtO<br />

Pb(OAc) 4<br />

H 2 C<br />

HO<br />

OH<br />

O<br />

OEt<br />

R<br />

N<br />

17


Quinolones<br />

F<br />

O<br />

CO 2 H<br />

• Retrosynthesis<br />

C H 3<br />

N<br />

N<br />

N<br />

O<br />

CH 3<br />

ofloxacin (antibiotic)<br />

• Synthesis<br />

O<br />

N<br />

H<br />

CO 2<br />

H<br />

NH 2<br />

EtO<br />

O<br />

O<br />

O<br />

H<br />

OEt<br />

EtO<br />

O<br />

EtO<br />

OH<br />

OEt<br />

OEt<br />

OEt<br />

- EtOH<br />

EtO<br />

O<br />

O<br />

ethyl orthoformate O<br />

HC(OEt) 3<br />

EtO<br />

OEt Ac 2<br />

O<br />

EtO<br />

O<br />

OEt<br />

Ph NH 2<br />

O<br />

EtO<br />

H<br />

EtO<br />

O<br />

OEt<br />

OEt<br />

EtO<br />

O<br />

N<br />

H<br />

O<br />

OEt<br />

1. Heat<br />

2.NaOH,<br />

3. H +<br />

O<br />

N<br />

H<br />

CO 2<br />

H<br />

O<br />

EtO<br />

EtO<br />

- EtOH<br />

O<br />

OEt<br />

• Synthesis of Timolol (β-<br />

blocker<br />

O<br />

N<br />

cyanamide NH 2<br />

+<br />

Cl<br />

S S<br />

Cl<br />

sulfur chloride<br />

Thiadiazoles<br />

Cl<br />

N<br />

O<br />

N<br />

H<br />

S<br />

Cl<br />

O<br />

Cl<br />

N<br />

N<br />

O<br />

N N<br />

S<br />

O<br />

NH<br />

S<br />

Cl<br />

HO<br />

N H CH 3<br />

timolol<br />

Cl<br />

N<br />

CH 3<br />

CH 3<br />

S<br />

O<br />

NH<br />

Cl<br />

O<br />

O<br />

Cl<br />

Cl<br />

O<br />

OH<br />

CH 3<br />

H 2 N<br />

OH<br />

CH<br />

Cl<br />

3<br />

CH Cl O<br />

3<br />

N H CH 3<br />

N<br />

S<br />

NH<br />

N<br />

S<br />

N<br />

N<br />

S<br />

N<br />

CH<br />

H 3 C 3<br />

O<br />

N<br />

H<br />

O<br />

N<br />

O<br />

OH<br />

H<br />

N<br />

CH 3<br />

N<br />

S<br />

N<br />

CH<br />

H 3 C 3<br />

18


Benzodiazepines<br />

• The retrosynthesis of diazepam<br />

Cl<br />

N<br />

N<br />

O<br />

NH<br />

Cl<br />

O<br />

+ +<br />

Cl<br />

O<br />

Diazepam<br />

Cl<br />

N H 2<br />

• The synthesis of diazepam (Sternbach et al, 1961).<br />

O<br />

CH 3<br />

CH 3<br />

NH<br />

Ac 2 O<br />

O<br />

O<br />

N Ph<br />

CH 3<br />

C<br />

AlCl 3<br />

Cl<br />

Cl<br />

N<br />

CH 3 NaOH, H 2 O<br />

O<br />

Cl<br />

N<br />

H<br />

O<br />

Cl<br />

Cl<br />

O<br />

CH 3<br />

N<br />

O<br />

CH 3<br />

N<br />

O<br />

Cl<br />

Cl<br />

Cl<br />

N<br />

NH 3<br />

Cl<br />

O<br />

Cl<br />

Diazepam<br />

Benzodiazepines<br />

• Ugi Reaction (Ugi, I., et. al. Angew. Chem.<br />

1959, 71, 386)<br />

R3<br />

O<br />

NH<br />

R<br />

2<br />

+ + +<br />

OH<br />

R2<br />

H O<br />

CN<br />

R4<br />

R3<br />

O<br />

N<br />

R2<br />

R<br />

O<br />

H<br />

N<br />

R4<br />

• Concise synthesis of benzodiazepines with Ugi<br />

Reaction (Hulme, C., et. al. J. Org. Chem.<br />

1998, 63, 8021)<br />

R4<br />

O<br />

OH<br />

Boc<br />

N<br />

R3<br />

R<br />

H O<br />

NH 2 NC<br />

R2<br />

R4<br />

O R<br />

N<br />

R2<br />

N<br />

Boc<br />

R3<br />

O<br />

H<br />

N<br />

AcCl/MeOH<br />

∆<br />

R4<br />

O<br />

R3<br />

N<br />

R2<br />

N<br />

R<br />

N<br />

O<br />

19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!