24.10.2014 Views

Design of two-span trapezoidal roof sheeting - Steel-stainless.org

Design of two-span trapezoidal roof sheeting - Steel-stainless.org

Design of two-span trapezoidal roof sheeting - Steel-stainless.org

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Job No. Sheet 1 <strong>of</strong> 6 Rev A<br />

CALCULATION SHEET<br />

Job Title<br />

Subject<br />

Client<br />

RFCS Stainless <strong>Steel</strong> Valorisation Project<br />

<strong>Design</strong> Example 11 – <strong>Design</strong> <strong>of</strong> a <strong>two</strong>-<strong>span</strong> <strong>trapezoidal</strong><br />

ro<strong>of</strong> <strong>sheeting</strong><br />

Made by JG/AO Date Feb 2006<br />

RFCS<br />

Checked by GZ Date March 2006<br />

DESIGN EXAMPLE 11 – DESIGN OF A TWO-SPAN TRAPEZOIDAL ROOF SHEETING<br />

This example deals with a <strong>two</strong>-<strong>span</strong> <strong>trapezoidal</strong> ro<strong>of</strong> <strong>sheeting</strong> with a thickness <strong>of</strong> 0,6<br />

mm from <strong>stainless</strong> steel grade 1.4401 CP500, i.e. cold worked to a yield strength <strong>of</strong><br />

500 N/mm 2 . Comparisons will be made to a similar <strong>sheeting</strong> <strong>of</strong> grade 1.4401 in the<br />

annealed condition, i.e. fy = 240 N/mm 2 (see also <strong>Design</strong> Example 3).<br />

If the nominal yield strength in all directions <strong>of</strong> the sheet is not guaranteed by the<br />

producer it should be reduced to 80% <strong>of</strong> its value. In this example it is assumed that<br />

the strength was not guaranteed in order to demonstrate this.<br />

Section 3.2.4<br />

The dimensions <strong>of</strong> the ro<strong>of</strong> <strong>sheeting</strong> are shown below.<br />

212,5 212,5 212,5 212,5<br />

70<br />

65 57<br />

850<br />

A detailed sketch <strong>of</strong> the ro<strong>of</strong> <strong>sheeting</strong> is given in the figure below. The lower flange<br />

will be in compression over the mid support and therefore this case will be checked in<br />

this example.<br />

b u0 /2<br />

h 0<br />

b r /2<br />

h r<br />

b r0 /2<br />

Mid line dimensions:<br />

h0 = 70 mm<br />

w0 = 212,5 mm<br />

bu0 = 57 mm<br />

br = 20 mm<br />

hr = 6 mm<br />

br0 = 8 mm<br />

bl0 = 65 mm<br />

h r<br />

b r0 /2<br />

b r /2<br />

r<br />

radius, r = 3 mm<br />

angle, ϕ = 57,1°<br />

b l0 /2<br />

w 0 /2<br />

177


Job No. Sheet 2 <strong>of</strong> 6 Rev A<br />

CALCULATION SHEET<br />

Job Title<br />

Subject<br />

Client<br />

RFCS Stainless <strong>Steel</strong> Valorisation Project<br />

<strong>Design</strong> Example 11 – <strong>Design</strong> <strong>of</strong> a <strong>two</strong>-<strong>span</strong> <strong>trapezoidal</strong><br />

ro<strong>of</strong> <strong>sheeting</strong><br />

Made by JG/AO Date Feb 2006<br />

RFCS<br />

Checked by GZ Date March 2006<br />

Data<br />

Span length<br />

L = 3,5 m<br />

Load q = 1,4 kN/m 2<br />

Self weight g = 0,07 kN/m 2<br />

Sheeting thickness<br />

t = 0,6 mm<br />

Width <strong>of</strong> support<br />

ss = 100 mm<br />

Yield strength fy = 0 ,8× 500 = 400 N/mm 2<br />

Modulus <strong>of</strong> elasticity E = 200 000 N/mm 2<br />

Partial factor γM0 = 1,1<br />

Partial factor γM1 = 1,1<br />

Load factor<br />

γG = 1,35 (permanent loads)<br />

Load factor γQ = 1,5 (variable loads)<br />

Table 3.5<br />

Table 2.1<br />

Table 2.1<br />

Section 2.3.2<br />

Section 2.3.2<br />

Effective section properties<br />

Maximum width-to-thickness ratios<br />

Table 4.1<br />

max( bl0 / t, bu0 / t) = bl0<br />

/ t = 108 < 400<br />

h / t = 117 < 400<br />

0<br />

Location <strong>of</strong> the centroidal axis when the web is fully effective<br />

Effective width <strong>of</strong> the compression flange Section 4.4.1<br />

bl0<br />

− br<br />

235 E<br />

bp<br />

= = 22,5 mm ε = = 0,75<br />

Table 4.2<br />

2<br />

fy<br />

210000<br />

bp<br />

/ t<br />

Table 4.3<br />

k<br />

σ<br />

= 4<br />

λp<br />

= = 0,883<br />

Eq. 4.2<br />

28, 4ε<br />

kσ<br />

0,772 0,125<br />

ρ = 0,714<br />

2<br />

λ<br />

− λ<br />

= b = ρb<br />

= 16,1 mm<br />

Eq. 4.1a<br />

eff,l p Table 4.3<br />

p<br />

p<br />

Reduced thickness <strong>of</strong> the flange stiffener: Section 4.5.3<br />

The lower compressed flange is shown in detail below.<br />

b p b eff,l /2<br />

t sl<br />

Intermediate stiffener<br />

e s<br />

A s , I s<br />

b s<br />

178


Job No. Sheet 3 <strong>of</strong> 6 Rev A<br />

CALCULATION SHEET<br />

Job Title<br />

Subject<br />

Client<br />

RFCS Stainless <strong>Steel</strong> Valorisation Project<br />

<strong>Design</strong> Example 11 – <strong>Design</strong> <strong>of</strong> a <strong>two</strong>-<strong>span</strong> <strong>trapezoidal</strong><br />

ro<strong>of</strong> <strong>sheeting</strong><br />

Made by JG/AO Date Feb 2006<br />

Effective thickness <strong>of</strong> the inclined part <strong>of</strong> the stiffener<br />

⎛<br />

2<br />

br<br />

b<br />

⎞<br />

r0 2<br />

⎜<br />

⎛ − ⎞<br />

+ h ⎟<br />

r<br />

t<br />

⎜<br />

⎜<br />

2<br />

⎟<br />

⎝ ⎠ ⎟<br />

trl<br />

=<br />

⎝<br />

⎠<br />

= 0,85 mm<br />

h<br />

A b b t ht<br />

r<br />

RFCS<br />

Checked by GZ Date March 2006<br />

2<br />

s<br />

= (<br />

eff,l<br />

+<br />

r0) + 2<br />

r rl<br />

= 24,62 mm<br />

Figure 4.3<br />

hr<br />

bht<br />

r0 r<br />

+ 2hr trl<br />

e<br />

2<br />

s<br />

= = 2, 41 mm<br />

A<br />

s<br />

The second moment <strong>of</strong> area for the stiffener is calculated with <strong>two</strong> strips <strong>of</strong> width 15t<br />

adjacent to the stiffener (smaller terms neglected)<br />

2 3<br />

2 2 2 ⎛hr ⎞ trlhr<br />

4<br />

Is = 2× 15 t es + br0t( hr − es) + 2ht r rl⎜<br />

− es⎟<br />

+ 2 = 159,1 mm<br />

⎝ 2 ⎠ 12<br />

2<br />

2 ⎛br − br0<br />

⎞<br />

s r r0<br />

b = 2 h + ⎜ + b = 24,97 mm<br />

2<br />

⎟<br />

⎝ ⎠<br />

2<br />

4 s p p s<br />

b 3<br />

l<br />

s<br />

Figure 4.3<br />

Ib (2b + 3 b)<br />

= 3,07 = 251,0 mm<br />

Eq. 4.9<br />

t<br />

2<br />

⎛w0 −bu0 −bl0<br />

⎞ 2<br />

w<br />

= + h0 = 83,4 mm<br />

⎜<br />

⎝<br />

d p s<br />

2<br />

⎟<br />

⎠<br />

b = 2b + b = 70,0 mm<br />

Eq. 4.11<br />

k<br />

s<br />

+ 2b<br />

w d<br />

wo<br />

= =<br />

sw<br />

+ 0,5bd<br />

1, 37<br />

Eq. 4.10<br />

lb s<br />

w<br />

= 3, 01> 2 kw = kwo = 1,37 Eq. 4.7<br />

4, 2k E I t<br />

σ = = 557,5 N/mm<br />

4 (2 3 )<br />

λ<br />

3<br />

w<br />

s<br />

cr,s 2<br />

As bp bp + bs<br />

f<br />

y<br />

d<br />

= = 0,85 <br />

d d<br />

σ<br />

cr,s<br />

2<br />

Eq. 4.3<br />

χ = 1, 47 − 0, 723λ<br />

= 0,86<br />

Eq. 4.16<br />

tred = χdt<br />

= 0,51 mm<br />

Optionally iterate to refine the value <strong>of</strong> the reduction factor for buckling <strong>of</strong> the<br />

stiffener.<br />

prEN 1993-<br />

1-3, clause<br />

5.5.3.3 (3)<br />

179


Job No. Sheet 4 <strong>of</strong> 6 Rev A<br />

CALCULATION SHEET<br />

Job Title<br />

Subject<br />

Client<br />

RFCS Stainless <strong>Steel</strong> Valorisation Project<br />

<strong>Design</strong> Example 11 – <strong>Design</strong> <strong>of</strong> a <strong>two</strong>-<strong>span</strong> <strong>trapezoidal</strong><br />

ro<strong>of</strong> <strong>sheeting</strong><br />

Made by JG/AO Date Feb 2006<br />

RFCS<br />

Checked by GZ Date March 2006<br />

Distance to the neutral axis from the compressed flange (fully effective web)<br />

2<br />

A = A i<br />

= 84,0 mm<br />

e<br />

c<br />

tot<br />

∑<br />

∑<br />

Ae<br />

i i<br />

= = 36,3 mm<br />

A<br />

tot<br />

Effective cross-section <strong>of</strong> the web Section 4.4.1<br />

h0 − ec<br />

2<br />

ψ =− =− 0,929<br />

k σ<br />

= 7,81− 6,29ψ + 9,78ψ<br />

= 22,1<br />

e<br />

Table 4.3<br />

c<br />

bp,w = sw = 83,4 mm<br />

0,772 0,125<br />

ρ = 0, 490<br />

λ<br />

− λ<br />

= <br />

s<br />

p<br />

2<br />

p<br />

λ<br />

b<br />

/ t<br />

p,w<br />

p<br />

= = 1,391<br />

Eq. 4.2<br />

28,4ε<br />

kσ<br />

b<br />

b<br />

1−ψ<br />

p,w<br />

eff,w<br />

= ρ =<br />

eff,1<br />

= 0, 4beff,w<br />

= 8, 47 mm seff,2 beff,w<br />

21,2 mm<br />

Eq. 4.1a,<br />

Table 4.3<br />

= 0,6 = 12,7 mm<br />

Table 4.3<br />

Effective cross section properties per half corrugation<br />

∑<br />

∑<br />

Aeff,tot = Aeff, i<br />

= 70,8 mm<br />

e<br />

A<br />

e<br />

eff, i eff, i<br />

eff,c<br />

= =<br />

Aeff,tot<br />

∑ ∑<br />

2<br />

40,0 mm<br />

( ) 2 4<br />

Itot = Ieff,i + Aeff,i ec − eeff,i = 51710 mm<br />

Bending resistance per unit width (1m) Section 4.7.4<br />

1000 mm<br />

I = Itot<br />

= 486685 mm<br />

0,5w<br />

W<br />

eff,l<br />

I<br />

= = 12165 mm<br />

e<br />

c<br />

0<br />

3<br />

4<br />

W<br />

eff,u<br />

= I<br />

16227 mm<br />

h − e<br />

=<br />

0 c<br />

3<br />

Weff,l < Weff,u Weff,min = Weff,l<br />

Mc,Rd = Weff,min fy γ<br />

M0<br />

= 4, 42 kNm<br />

Eq. 4.29<br />

180


Job No. Sheet 5 <strong>of</strong> 6 Rev A<br />

CALCULATION SHEET<br />

Job Title<br />

Subject<br />

Client<br />

RFCS Stainless <strong>Steel</strong> Valorisation Project<br />

<strong>Design</strong> Example 11 – <strong>Design</strong> <strong>of</strong> a <strong>two</strong>-<strong>span</strong> <strong>trapezoidal</strong><br />

ro<strong>of</strong> <strong>sheeting</strong><br />

Made by JG/AO Date Feb 2006<br />

RFCS<br />

Checked by GZ Date March 2006<br />

Resistance to local transverse forces at intermediate support<br />

Resistance to local transverse forces per unit width (1 m)<br />

α = 0,15 (for <strong>sheeting</strong> pr<strong>of</strong>iles) and la = ss<br />

1000 mm<br />

R = αt f E − r t + l t + ϕ γ<br />

2<br />

( 1 0,1 / ) ⎡0,5 0,02 / ⎤( 2,4 ( /90)<br />

)<br />

2<br />

w,Rd y ⎣<br />

a ⎦<br />

M1<br />

0,5w0<br />

Rw,Rd = 20,9 kN<br />

prEN 1993-<br />

1-3, Eq.<br />

6.20c, 6.19b<br />

and 6.18<br />

Interaction between bending moment and transverse force<br />

The maximum bending moment will appear at the intermediate support where it will<br />

interact with the support reaction and therefore the following checks must be<br />

performed.<br />

M<br />

Ed<br />

1<br />

M ≤ FEd<br />

MEd<br />

FEd<br />

≤ 1<br />

+ ≤ 1, 25<br />

R<br />

M R<br />

c,Rd<br />

w,Rd<br />

c,Rd<br />

w,Rd<br />

prEN 1993-<br />

1-3, Eqs.<br />

6.28a-c<br />

<strong>Design</strong> load per unit width (1 m) Section 2.3.2<br />

qd = γ<br />

Gg+ γ<br />

Qq= 2,20 kN/m<br />

Eq. 2.3<br />

The design load, qd, gives the following bending moment and support reaction at the<br />

intermediate support.<br />

2<br />

qL<br />

5<br />

M<br />

Ed<br />

= = 3,37 kNm FEd<br />

= qL=<br />

9,63 kN<br />

8<br />

4<br />

M<br />

Ed<br />

0,76<br />

M = FEd<br />

MEd<br />

FEd<br />

= 0, 46<br />

+<br />

R<br />

M R<br />

= 1, 22 OK<br />

c,Rd<br />

w,Rd<br />

c,Rd<br />

w,Rd<br />

Deflection at serviceability limit state<br />

For verification in the serviceability limit state the effective width <strong>of</strong> compression<br />

elements should be based on the compressive stress in the element under serviceability<br />

limit state loading. The maximum compression stress is calculated as follows. A<br />

conservative approximation is made based on Weff,min from ultimate limit state.<br />

( q+<br />

g) L<br />

2<br />

prEN 1993-<br />

1-3, clause<br />

5.5.1(4)<br />

M<br />

Ed,ser<br />

= = 2, 25 kNm<br />

Section 2.3.4<br />

8<br />

M<br />

Ed,ser 2<br />

σ<br />

com,Ed,ser<br />

= = 186 N/mm<br />

W<br />

eff,min<br />

Now, the effective section properties are determined as before but with fy replaced by<br />

σcom,Ed,ser. The calculations will not be shown here but the interesting results are:<br />

I = 573 150 mm 4<br />

Wu = 15 866 mm 3<br />

Wl = 16 919 mm 3<br />

181


Job No. Sheet 6 <strong>of</strong> 6 Rev A<br />

CALCULATION SHEET<br />

Job Title<br />

Subject<br />

Client<br />

RFCS Stainless <strong>Steel</strong> Valorisation Project<br />

<strong>Design</strong> Example 11 – <strong>Design</strong> <strong>of</strong> a <strong>two</strong>-<strong>span</strong> <strong>trapezoidal</strong><br />

ro<strong>of</strong> <strong>sheeting</strong><br />

Made by JG/AO Date Feb 2006<br />

RFCS<br />

Checked by GZ Date March 2006<br />

Determination <strong>of</strong> the deflection:<br />

Secant modulus corresponding to the stresses in the tension and compression flange<br />

respectively.<br />

M<br />

Ed,ser 2<br />

σ<br />

1,Ed,ser<br />

= = 142 N/mm<br />

W<br />

u<br />

M<br />

σ<br />

2,Ed,ser<br />

= = 133 N/mm<br />

W<br />

E<br />

E<br />

Ed,ser 2<br />

l<br />

E<br />

= = 199 604 N/mm<br />

s,1 n−1<br />

E ⎛σ<br />

⎞<br />

1,Ed,ser<br />

1+ 0,002<br />

f ⎜<br />

y<br />

f ⎟<br />

⎝ y ⎠<br />

E<br />

= = 199 730 N/mm<br />

n−<br />

E ⎛σ<br />

⎞<br />

2,Ed,ser<br />

1+ 0,002<br />

f ⎜<br />

y<br />

f ⎟<br />

⎝ y ⎠<br />

s,2 1<br />

Es,1 + Es,2 2<br />

Es<br />

= = 199 667 N/mm<br />

2<br />

2<br />

2<br />

n = 7,0<br />

As a simplification, the variation <strong>of</strong> Es along the length <strong>of</strong> the member may be<br />

neglected and the minimum value <strong>of</strong> Es <strong>of</strong> that member may conservatively be used<br />

throughout its length, i.e.<br />

Es = Es,1 = 199 603 N/mm 2<br />

The permitted deflection is L/300 = 11,7 mm<br />

1+<br />

33<br />

x= L= 1, 47 m (location <strong>of</strong> maximum deflection)<br />

16<br />

( ) 4 3 4<br />

g+ q L ⎛ x x x ⎞<br />

δ = ⎜ − 3 + 2 10,4 mm<br />

3 4 ⎟=<br />

48Es,1I ⎝L L L ⎠<br />

OK<br />

Appendix C<br />

Appendix C<br />

Table C.1<br />

Appendix C<br />

Comparison with <strong>sheeting</strong> in grade 1.4401 in the annealed condition<br />

The bending resistance per unit width <strong>of</strong> identical <strong>sheeting</strong> in grade 1.4401 in the<br />

annealed condition (fy = 240 N/mm 2 ) is:<br />

Mc,Rd = 3,22 kNm<br />

and the resistance to local transverse forces is:<br />

Rw,Rd = 16,2 kN<br />

With <strong>sheeting</strong> made from grade 1.4401 in the annealed condition, the <strong>span</strong> must be<br />

reduced to 2,9 m compared to 3,5 m for material in the cold worked strength<br />

condition. Hence, <strong>sheeting</strong> made from cold worked material enables the <strong>span</strong> to be<br />

increased, meaning that the number <strong>of</strong> secondary beams or purlins could be reduced,<br />

leading to cost reductions.<br />

182

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!