27.10.2014 Views

4 Chopper-Controlled DC Motor Drive

4 Chopper-Controlled DC Motor Drive

4 Chopper-Controlled DC Motor Drive

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4 <strong>Chopper</strong>-<strong>Controlled</strong> <strong>DC</strong> <strong>Motor</strong> <strong>Drive</strong><br />

• <strong>Chopper</strong>: The variable dc voltage is controlled<br />

by varying the on- and off-times of a converter.<br />

• Fig. 4.1 is a schematic diagram of the chopper.


• Its frequency of operation is<br />

f<br />

1<br />

+ t<br />

c =<br />

=<br />

(ton<br />

off )<br />

1<br />

T<br />

and its duty cycle is defined as<br />

d<br />

=<br />

t<br />

T<br />

on<br />

• Assuming that the switch is ideal, the<br />

average output is<br />

t<br />

V<br />

on<br />

dc = Vs<br />

=<br />

T<br />

dV<br />

s<br />

• varying the duty cycle changes the output<br />

voltage.


• The duty cycle d can be changed in two ways:<br />

(i) varying the on-time (constant switching<br />

frequency).<br />

(ii) varying the chopping frequency.<br />

• Constant switching frequency has many<br />

advantages in practice.


4.3 Four-Quadrant <strong>Chopper</strong> Circuit<br />

• Fig. 4.2 is the chopper circuit with transistor<br />

switches.


• Fig. 4.3 is first-quadrant operation.


• Fig. 4.4 is first-quadrant operation with zero<br />

voltage across the load.


• Fig. 4.5 voltage and current waveforms in<br />

first-quadrant operation.


• Fig. 4.6 second-quadrant operation


• Fig. 4.7 voltage and current waveforms in<br />

second-quadrant operation.


• Fig. 4.8 Modes of operation in the third<br />

quadrant.


• Fig. 4.9 waveform in third-quadrant operation


• Fig. 4.10 Waveforms in fourth-quadrant<br />

operation.


4.4 <strong>Chopper</strong> for inversion<br />

• Converter: <strong>DC</strong> ⇒ <strong>DC</strong> (different voltage)<br />

• The chopper is the building block for that:<br />

AC ⇒ <strong>DC</strong> ⇒ <strong>DC</strong>(different voltage)


4.5 <strong>Chopper</strong> with other power devices<br />

• MOSFETs, IGBTs, GTOs, or SCRs are<br />

used for different power level.<br />

• The MOSFET and transistor choppers are<br />

used at power levels up to 50kW.


4.6 Model of The <strong>Chopper</strong><br />

• The transfer function of the chopper is<br />

G<br />

r<br />

K<br />

(s) =<br />

r<br />

sT<br />

1+<br />

2<br />

where K r = V s /V cm , V s is the source voltage,<br />

and V cm is the maximum control voltage.<br />

• Increasing the chopping frequency decreases<br />

the delay time, and its becomes a simple gain.


4.7 Input to the chopper<br />

• The chopper input: a battery or a rectified ac<br />

supply.<br />

• Fig. 4.11 is the chopper with rectified circuit.


• Its disadvantage: it cannot transfer power from<br />

dc link into ac mains.<br />

• Fig. 4.12 <strong>Chopper</strong> with regeneration capability


• The generating converter has to be operated<br />

at triggering angles greater that 90.


4.8 Other <strong>Chopper</strong> Circuits<br />

• Fig. 4.13 one- and two-quadrant operation.


4.9 Steady-state analysis ...<br />

• 4.9.1 Analysis by averaging<br />

• The average armature current is<br />

I<br />

av<br />

Vdc<br />

− E<br />

=<br />

R<br />

a<br />

where V dc = dV s<br />

• The electromagnetic torque is<br />

T av = K b I av = K b (dV s -K b w m )/R a (N·m)


• The normalized torque is<br />

T<br />

en<br />

=<br />

T<br />

T<br />

av<br />

b<br />

/ V<br />

/ V<br />

b<br />

b<br />

=<br />

K<br />

b<br />

(dV<br />

K<br />

s<br />

b<br />

− K<br />

I R<br />

b<br />

a<br />

b<br />

ωm<br />

) /<br />

/ V<br />

b<br />

V<br />

b<br />

=<br />

dVn<br />

− ω<br />

R<br />

an<br />

mn<br />

,<br />

p.u.<br />

I<br />

R<br />

where R<br />

b a<br />

an = , p.u. V<br />

s<br />

V<br />

n = , p.u. ω<br />

m<br />

mn = , p.u.<br />

b<br />

Vb<br />

ωb<br />

• 4.9.2 Instantaneous steady-state computation<br />

(including harmonics)<br />

• The equations of the motor for on and off times<br />

(continuous current conduction)<br />

di<br />

V E R i L<br />

a<br />

s = + a a + a<br />

dt<br />

di<br />

0 = E + R i L<br />

a<br />

a a + a ,<br />

dt<br />

,<br />

0<br />

dT<br />

≤<br />

≤<br />

t<br />

t<br />

V<br />

≤<br />

≤<br />

dT<br />

T<br />

ω


• Fig. 4.15 The waveform of applied voltage<br />

and armature current.


• The solutions of the above equations:<br />

t<br />

V E<br />

i (t)<br />

s − T<br />

(1 e a T<br />

) I e a<br />

a = − + a0 , 0 < t <<br />

R<br />

i<br />

a<br />

(t)<br />

= −<br />

a<br />

E<br />

R<br />

a<br />

(1 − e<br />

−<br />

1<br />

t<br />

−<br />

T<br />

a<br />

) +<br />

I<br />

a1<br />

e<br />

where T a = L a /R a (Armature time constant)<br />

t 1 = t - dT<br />

• By using boundary condition<br />

I<br />

a1<br />

=<br />

V (1 − e<br />

s<br />

R<br />

a<br />

(1 − e<br />

−dT / T<br />

−T / T<br />

a<br />

a<br />

)<br />

)<br />

−<br />

E<br />

R<br />

−<br />

1<br />

t<br />

−<br />

T<br />

a<br />

a<br />

t<br />

,<br />

I<br />

dT<br />

a0<br />

≤<br />

=<br />

t<br />

≤<br />

V (e<br />

s<br />

R<br />

a<br />

dT<br />

dT<br />

(e<br />

dT / T<br />

T / T<br />

a<br />

a<br />

−1)<br />

−1)<br />

−<br />

E<br />

R<br />

a


• The critical duty cycle: the limiting or<br />

minimum value of duty cycle for<br />

continuous current; I a0 equates to zero.<br />

• The relevant equations for discontinuous<br />

current-conduction mode<br />

V<br />

s<br />

=<br />

E<br />

+<br />

R<br />

a<br />

i<br />

a<br />

+<br />

L<br />

di<br />

dt<br />

di<br />

0 = E + R i L<br />

a<br />

a + a , dT ≤ t ≤ tx<br />

dt<br />

with i a (t x + dT) = 0; i a (0) = 0<br />

a<br />

a<br />

,<br />

0<br />

≤<br />

t<br />

≤<br />

a +<br />

dT<br />

dT


• Hence,<br />

i<br />

a<br />

I<br />

a1<br />

(t<br />

x<br />

=<br />

Vs<br />

−<br />

R<br />

a<br />

+ dT) = −<br />

E<br />

(1 − e<br />

E<br />

R<br />

a<br />

−dT /<br />

(1 − e<br />

Ta<br />

t<br />

−<br />

T<br />

x<br />

a<br />

)<br />

) +<br />

• tx is evaluated from (4.25) and the above<br />

eqs. as<br />

tx = Ta<br />

loge[1<br />

+<br />

I<br />

a1<br />

R<br />

E<br />

a<br />

]<br />

I<br />

a1<br />

e<br />

t<br />

−<br />

T<br />

x<br />

a


• The solution for the armature current in<br />

three time segments is<br />

V E<br />

i (t)<br />

s −<br />

(1 e a<br />

a = − ), 0 < t <<br />

R<br />

i<br />

a<br />

(t)<br />

=<br />

I<br />

a1<br />

e<br />

a<br />

(t−dT)<br />

−<br />

T<br />

a<br />

−<br />

−<br />

t<br />

T<br />

E<br />

R<br />

a<br />

(1 − e<br />

dT<br />

(t−dT)<br />

−<br />

T<br />

ia (t) = 0, (tx<br />

+ dT) < t <<br />

a<br />

),<br />

T<br />

dT<br />

≤<br />

t<br />

≤<br />

t<br />

x<br />

- dT


4.10 Rating of the device<br />

• The rms value of the power switch current<br />

I<br />

t<br />

=<br />

2<br />

max<br />

I<br />

2T<br />

(T + dT) =<br />

1+<br />

d<br />

2<br />

max<br />

• The average diode current<br />

I<br />

1−<br />

d<br />

= ( ) ⋅<br />

2<br />

d I max<br />

⋅ I


• Transistor and diode currents for motoring<br />

operation in the continuous-conduction mode.


4.11 Pulsating Torque<br />

• The average of the harmonic torque is zero.<br />

• High-performance applications require the<br />

pulsating torque to be minimum.<br />

• The applied voltage is resolved into Fourier<br />

components as<br />

V<br />

where<br />

= V +<br />

∞ a ∑ n=1<br />

A<br />

sin(nω<br />

a (t)<br />

n c t n )<br />

dT<br />

V a = Vs<br />

= dV<br />

T<br />

A<br />

n<br />

2V<br />

=<br />

s<br />

nπ<br />

s<br />

nω<br />

dT<br />

sin<br />

c<br />

2<br />

ω<br />

θ<br />

c<br />

n<br />

2π<br />

= 2πf<br />

c =<br />

T<br />

π nωcdT<br />

= −<br />

2 2<br />

+<br />

θ


• The armature current is expressed as<br />

i<br />

a<br />

A<br />

(t) = I<br />

n<br />

av +<br />

∞<br />

∑n<br />

= 1 sin(nωct<br />

+ θn<br />

− φ<br />

Zn<br />

Va<br />

− E<br />

Iav<br />

Zn<br />

= R<br />

Ra<br />

−1<br />

R<br />

φ cos {<br />

a<br />

n =<br />

}<br />

2 2 2<br />

R + n ω L<br />

where<br />

= a c a<br />

a<br />

c<br />

2<br />

a<br />

n<br />

)<br />

+<br />

jnω<br />

L<br />

• The input power is<br />

P<br />

i<br />

=<br />

V<br />

a<br />

⎧V aI<br />

⎪<br />

= ⎨<br />

⎪+<br />

V<br />

⎩<br />

a<br />

(t)i<br />

av<br />

a<br />

+ I<br />

(t)<br />

av<br />

∑<br />

∞<br />

n = 1<br />

sin(nω<br />

t + θ<br />

∞ An<br />

∑ = ω + θ − φ +<br />

∞<br />

n 1 sin(n ct<br />

n n)<br />

∑n<br />

=<br />

Z<br />

n<br />

A<br />

n<br />

c<br />

n<br />

)<br />

1<br />

A<br />

(<br />

Z<br />

2<br />

n<br />

n<br />

sin(nω<br />

c<br />

t + θ<br />

n<br />

)sin(nω<br />

c<br />

t + θ<br />

n<br />

− φ<br />

n<br />

⎫<br />

⎪<br />

⎬<br />

)) ⎪<br />


4.12 Closed-loop operation<br />

• Fig. 4.20 is the closed-loop speed-controller<br />

dc motor drive.


• The current controller can be<br />

(i) Pulse-Width-Modulation (PWM) controller<br />

(ii) Hysteresis controller<br />

Fig. 4.21 shows on- and off-time for PWM


• Fig. 4.22 is the implementation of PWM<br />

current controller.


• Fig. 4.24 shows hysteresis-controlled operation<br />

a<br />

*<br />

a<br />

i ≤ i − ∆i,<br />

set v =<br />

*<br />

a<br />

a<br />

V<br />

i a ≥ i + ∆i,<br />

reset va<br />

=<br />

s<br />

0


• Fig. 4.23


• Fig. 4.25 is realization of hysteresis controller.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!