28.10.2014 Views

Universität Karlsruhe (TH) - am Institut für Baustatik

Universität Karlsruhe (TH) - am Institut für Baustatik

Universität Karlsruhe (TH) - am Institut für Baustatik

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

with b Iα = T T I x, α , b M = T T I x M , ξ<br />

to the corner nodes is given by<br />

and b L = T T I x L , η . The allocation of the midside nodes<br />

(I,M,L) ∈{(1,B,A); (2,B,C); (3,D,C); (4,D,A)} . (30)<br />

To alleviate the notation the subscript h is omitted in the matrix.<br />

3.3 Second variation of the functional<br />

Assuming conservative external loads ¯p and ¯t the second variation of the functional yields<br />

∫<br />

Dg · Δθ h = [δε hT (C Δε h − Δσ h )+δσ hT (Δε h G − Δε h )+δε hT<br />

G Δσ h +Δδε hT<br />

G σ h ] dA (31)<br />

(Ω)<br />

with C := ∂ 2 εW . The linearized strains Δε h G are defined with (22) replacing the operator δ<br />

by Δ whereas the linearized virtual shell strains are given with<br />

⎡<br />

Δδε h ⎤ ⎡<br />

11<br />

δx h , 1 ·Δx h ⎤<br />

, 1<br />

Δδε h 22<br />

δx h , 2 ·Δx h , 2<br />

2Δδε h 12<br />

δx h , 1 ·Δx h , 2 +δx h , 2 ·Δx h , 1<br />

Δδκ h Δδε h 11<br />

δx h , 1 ·Δd h , 1 +δd h , 1 ·Δx h , 1 +x h , 1 ·Δδd h , 1<br />

G =<br />

Δδκ h =<br />

22<br />

δx h , 2 ·Δd h , 2 +δd h , 2 ·Δx h , 2 +x h , 2 ·Δδd h , 2<br />

(32)<br />

2Δδκ h δx h ,<br />

12<br />

1 ·Δd h , 2 +δx h , 2 ·Δd h , 1 +δd h , 1 ·Δx h , 2 +δd h , 2 ·Δx h , 1<br />

+x h , 1 ·Δδd h , 2 +x h , 2 ·Δδd h , 1<br />

⎧ ⎢ Δδγ1<br />

h ⎥ ⎢ ⎨ 1<br />

⎣ ⎦ ⎣ J [(1 − ⎫<br />

−1 2 η)ΔδγB ξ +(1+η)Δδγξ<br />

D ⎬<br />

⎥<br />

⎦<br />

Δδγ2<br />

h ⎩ 1<br />

[(1 − 2 ξ)ΔδγA η +(1+ξ)Δδγη C ] ⎭<br />

with<br />

Δδγξ M = [δx, ξ ·Δd +Δx, ξ ·δd + x, ξ ·Δδd] M M = B,D<br />

Δδγη L = [δx, η ·Δd +Δx, η ·δd + x, η ·Δδd] L (33)<br />

L = A, C<br />

The second variation of the current orthogonal base system has been derived in [30], see<br />

appendix A. In the following representation the constants c i introduced in [30] are simplified<br />

and the Taylor series expansion is given. With an arbitrary vector h I ∈ R 3 and b I = d I × h I<br />

we obtain<br />

h I · Δδd I = δw I · M I Δw I<br />

M I (h I ) = 1 2 (d I ⊗ h I + h I ⊗ d I )+ 1 2 (t I ⊗ ω I + ω I ⊗ t I )+c 10 1<br />

t I = −c 3 b I + c 11 (b I · ω I ) ω I c 10 = ¯c 10 (b I · ω I ) − (d I · h I )<br />

c 3 = ω I sin ω I +2(cosω I − 1)<br />

ω 2 I (cos ω I − 1)<br />

¯c 10 =<br />

sin ω I − ω I<br />

2ω I (cos ω I − 1)<br />

c 11 = 4(cosω I − 1) + ω 2 I + ω I sin ω I<br />

2 ω 4 I (cos ω I − 1)<br />

10<br />

= 1 6 (1 + 1 60 ω2 I)+O(ω 4 I)<br />

= 1 6 (1 + 1 30 ω2 I)+O(ω 4 I)<br />

= − 1<br />

360 (1 + 1 21 ω2 I)+O(ω 4 I)<br />

(34)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!