28.10.2014 Views

Universität Karlsruhe (TH) - am Institut für Baustatik

Universität Karlsruhe (TH) - am Institut für Baustatik

Universität Karlsruhe (TH) - am Institut für Baustatik

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

esultants σ is approximated as follows<br />

σ h = N σ ˆσ N σ = [1 8 , Ñσ]<br />

Ñ σ =<br />

N m σ =<br />

⎡<br />

⎢<br />

⎣<br />

N m σ 0 0<br />

0 N b σ 0<br />

0 0 N s σ<br />

⎡<br />

J11J 0 11(η 0 − ¯η)<br />

⎢<br />

⎣ J12J 0 12(η 0 − ¯η)<br />

J11J 0 12(η 0 − ¯η)<br />

⎤<br />

⎥<br />

⎦ N m σ = N b σ<br />

J21J 0 21(ξ 0 − ¯ξ) ⎤<br />

J22J 0 22(ξ 0 − ¯ξ) ⎥<br />

J21J 0 22(ξ 0 − ¯ξ)<br />

⎦ N s σ =<br />

[<br />

J<br />

0<br />

11 (η − ¯η) J21(ξ 0 − ¯ξ)<br />

]<br />

J12(η 0 − ¯η) J22(ξ 0 − ¯ξ)<br />

Here, we denote by 1 8 an eight order unit matrix. The vector ˆσ contains 8 par<strong>am</strong>eters for<br />

the constant part and 6 par<strong>am</strong>eters for the varying part of the stress field, respectively. The<br />

interpolation of the membrane forces and bending moments corresponds to the procedure in<br />

[31], see also the original approach for plane stress problems with ¯ξ =¯η =0in[32]. The<br />

transformation coefficients Jαβ<br />

0 = J αβ (ξ =0,η = 0) are the components of the Jacobian<br />

matrix J (14) evaluated at the element center. Due to the constants<br />

¯ξ = 1 ∫<br />

ξdA ¯η = 1 ∫<br />

∫<br />

ηdA A e =<br />

A e<br />

A e<br />

dA (39)<br />

(Ω e)<br />

the linear functions are orthogonal to the constant function which yields partly decoupled<br />

matrices. In this context we refer also to [33] in the case of a plate formulation.<br />

The independent shell strains are approximated with 14 par<strong>am</strong>eters in ˆε<br />

ε h = N ε ˆε N ε = [1 8 , Ñε]<br />

Ñ ε =<br />

N m ε =<br />

⎡<br />

⎢<br />

⎣<br />

N m ε 0 0<br />

0 N b ε 0<br />

0 0 N s ε<br />

⎡<br />

J11J 0 11(η 0 − ¯η)<br />

⎢<br />

⎣ J12J 0 12(η 0 − ¯η)<br />

2J11J 0 12(η 0 − ¯η)<br />

⎤<br />

(Ω e)<br />

(Ω e)<br />

⎥<br />

⎦ N m ε = N b ε<br />

J21J 0 21(ξ 0 − ¯ξ) ⎤<br />

J22J 0 22(ξ 0 − ¯ξ) ⎥<br />

2J21J 0 22(ξ 0 − ¯ξ)<br />

⎦ N s ε = N s σ .<br />

Thus, the independent stresses and strains are interpolated with the s<strong>am</strong>e shape functions. We<br />

remark that (38) and(40) contain a transformation of the contravariant tensor components<br />

to the local cartesian coordinate system at the element center.<br />

3.5 Linearized variational formulation<br />

Inserting above interpolations for the displacements, stresses and strains into the linearized<br />

stationary condition yields<br />

L [g(θ h ,δθ h ), Δθ h ]:=g(θ h ,δθ h )+Dg · Δθ h<br />

=<br />

numel ∑<br />

e=1<br />

⎡<br />

⎢<br />

⎣<br />

δv<br />

δˆε<br />

δ ˆσ<br />

⎤T<br />

⎧⎡<br />

⎪⎨<br />

⎥ ⎢<br />

⎦ ⎣<br />

⎪⎩<br />

e<br />

k g 0 G T<br />

0 H −F<br />

G −F T 0<br />

12<br />

⎤ ⎡<br />

⎥<br />

⎦<br />

⎢<br />

⎣<br />

Δv<br />

Δˆε<br />

Δˆσ<br />

⎤<br />

⎥<br />

⎦ +<br />

⎡<br />

⎢<br />

⎣<br />

f i − f a<br />

f e<br />

f s<br />

⎤⎫<br />

⎪⎬<br />

⎥<br />

⎦<br />

⎪⎭<br />

e<br />

(38)<br />

(40)<br />

(41)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!