31.10.2014 Views

Title: Long-Period Grating Couplers

Title: Long-Period Grating Couplers

Title: Long-Period Grating Couplers

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Long</strong>-<strong>Period</strong> <strong>Grating</strong> <strong>Couplers</strong><br />

__________________________________________________<br />

Kin Seng Chiang<br />

Department of Electronic Engineering<br />

City University of Hong Kong, Hong Kong, China<br />

E-mail: eeksc@cityu.edu.hk<br />

Acknowledgement:<br />

Y. Bai, F. Y. M. Chan, Q. Liu, Y. Liu, K. P. Lor, M. N. Ng<br />

12 June 2007<br />

NGLC CUHK 1


Outline<br />

‣ <strong>Long</strong>-period<br />

fiber grating (LPFG)<br />

‣ LPFG couplers<br />

‣ <strong>Long</strong>-period waveguide grating (LPWG)<br />

‣ LPWG couplers<br />

‣ Conclusion<br />

12 June 2007<br />

NGLC CUHK 2


Core mode<br />

(Effective index N 01<br />

<strong>Long</strong><br />

ng-<strong>Period</strong><br />

Fiber<br />

<strong>Grating</strong><br />

(LPFG)<br />

01 )<br />

Band rejection filter<br />

Λ : pitch (~100 µm)<br />

Λ<br />

Cladding mode<br />

(Effective index N 0m<br />

0m )<br />

Transmission (dB)<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

Resonance wavelength:<br />

λ o = (N 01 – N 0m )Λ<br />

<strong>Long</strong>-period grating<br />

1120 1220 1320 1420 1520 1620<br />

Wavelength (nm)<br />

[A. M. Vengsarkar et al., J. Lightwave Technol., 14 (1996) 58]<br />

12 June 2007<br />

NGLC CUHK 3


<strong>Long</strong><br />

ng-<strong>Period</strong><br />

Fiber<br />

<strong>Grating</strong><br />

(LPFG)<br />

UV radiation<br />

single-mode<br />

fiber<br />

cylindrical<br />

lens<br />

amplitude<br />

mask<br />

broadband<br />

optical source<br />

optical spectrum<br />

analyzer<br />

12 June 2007<br />

NGLC CUHK 4


<strong>Long</strong><br />

ng-<strong>Period</strong><br />

Fiber<br />

<strong>Grating</strong><br />

(LPFG)<br />

Photos taken at the output ends of several fabricated LPFGs<br />

LP 03<br />

(Λ = 590 µm) LP 06<br />

(Λ = 410 µm) LP 08<br />

(Λ = 295 µm) LP 016<br />

(Λ = 100 µm)<br />

[Q. Liu, K. S. Chiang, Y. Liu., J. Lightwave Technol., (2007) accepted]<br />

12 June 2007<br />

NGLC CUHK 5


Four-Port LPFG Coupler<br />

Input<br />

L<br />

Λ<br />

Band-rejection output<br />

d<br />

Band-pass output<br />

L<br />

z = 0<br />

z 1<br />

z 2 z 3<br />

Broadband Optical Add/Drop Multiplexer (OADM)<br />

[K. S. Chiang, Y. Liu, M. N. Ng, S. Li, Electron. Lett., 36 (2000) 1408]<br />

[K. S. Chiang, F. Y. M. Chan, M. N. Ng, J. Lightwave Technol., 22 (2004) 1358]<br />

[F. Y. M. Chan, K. S. Chiang, J. Lightwave Technol., 24 (2006) 1008]<br />

12 June 2007<br />

NGLC CUHK 6


Coupling Between Cladding Modes<br />

Photo taken at the fiber output ends<br />

PS1250/1500 Fiber<br />

External index<br />

1.377 (589 nm)<br />

<strong>Grating</strong> pitch:<br />

320 µm<br />

<strong>Grating</strong> length:<br />

32 mm<br />

Interaction length:<br />

58 nm<br />

Wavelength:<br />

1550 nm<br />

Cladding mode:<br />

LP 08<br />

mode<br />

12 June 2007<br />

NGLC CUHK 7


LPFG OADM<br />

-30<br />

n ex = 1 (air) n ex = 1.440<br />

-10<br />

Transmission(dB)<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

-100<br />

-30 -20 -10 0 10 20 30<br />

λ ο<br />

−λ (nm)<br />

Transmission (dB)<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-30 -20 -10 0 10 20 30<br />

λ ο<br />

−λ (nm)<br />

L = 30 mm, Λ = 400 µm, d = 0<br />

[K. S. Chiang, Y. Liu, M. N. Ng, S. Li, Electron. Lett., 36 (2000) 1408]<br />

12 June 2007<br />

NGLC CUHK 8


η (dB)<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

LPFG OADM<br />

Coupling efficiency η at λ 0<br />

simulation<br />

experiment<br />

0 1 2 3 4 5 6<br />

z 1<br />

(cm)<br />

n 1<br />

= 1.4499<br />

n 2<br />

= 1.4443<br />

n ex<br />

= 1.333 (water)<br />

a = 4.05 µm<br />

ρ = 62.5 µm<br />

Λ = 205 µm<br />

L = 30 mm<br />

d = 0<br />

C = 12.54 m -1<br />

κ = 42.8 m -1<br />

λ 0 = 1545 nm (air)<br />

12 June 2007<br />

[K. S. Chiang, F. Y. M. Chan, M. N. Ng, J. Lightwave Technol., 22 (2004) 1358]<br />

NGLC CUHK 9


Six-Port LPFG Coupler<br />

Tapping<br />

fiber 1<br />

Tapping fiber 2<br />

L<br />

Input<br />

Transmission fiber<br />

s<br />

L<br />

<strong>Grating</strong>s<br />

Outputs<br />

I II III<br />

z<br />

z = 0 z = s z = L z = s +L<br />

Multi-port<br />

OADM<br />

<strong>Grating</strong>s with κL = π/2<br />

should be used.<br />

[Y. Liu, K. S. Chiang, IEEE Photon. Technol. Lett., 18 (2006) 229]<br />

12 June 2007<br />

NGLC CUHK 10


LPFG OADM<br />

Coupling at λ 0<br />

LP 08 mode<br />

L = 35 mm, Λ = 300 µm<br />

λ 0<br />

= 1562.5 nm (in air)<br />

Contrast: 18 dB<br />

3-dB bandwidth: 17 nm<br />

κL: ∼π/2<br />

Coupling (dB)<br />

-2<br />

-5<br />

-8<br />

-11<br />

-14<br />

-17<br />

-20<br />

n =1.420<br />

Experimental results:<br />

Tapping fiber 1(●); tapping fiber 2(▲);<br />

Simulation results:<br />

d = 0 (yellow); d = 0.2 µm (green); d = 0.5 µm (red)<br />

0 10 20 30 40 50 60<br />

Offset Distance (mm)<br />

The peak coupling efficiencies at s = 50 mm are −3.73 dB (42.4%) and −3.69<br />

dB (42.8%) for the two tapping fibers, respectively. The maximum total<br />

power transfer reaches 85.2%.<br />

12 June 2007<br />

NGLC CUHK 11


0<br />

LPFG OADM<br />

Output spectra from tapping fiber 1 and the transmission fiber<br />

Transmission (dB)<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

s = 0, 10, 20, 30, 40, 50 mm<br />

(n = 1.420)<br />

-60<br />

1510 1530 1550 1570 1590 1610<br />

Wavelength (nm)<br />

12 June 2007<br />

NGLC CUHK 12


0<br />

LPFG OADM<br />

Output spectra from tapping fiber 2 and the transmission fiber<br />

Transmission (dB)<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

s = 0, 10, 20, 30, 40, 50 mm<br />

(n = 1.420)<br />

-60<br />

1510 1530 1550 1570 1590 1610<br />

Wavelength (nm)<br />

12 June 2007<br />

NGLC CUHK 13


LPFG 3 x 3 Coupler<br />

Equal power outputs at λ 0 regardless which fiber light is launched into<br />

Three well-aligned<br />

LPFGs to maintain symmetry – no offset allowed<br />

Fiber 3<br />

Fiber 2<br />

L<br />

Input<br />

Outputs<br />

Fiber 1<br />

<strong>Grating</strong>s<br />

Strong gratings with κL ∼ π should be used.<br />

[Y. Liu, K. S. Chiang, Q. Liu, Optics Express, 15 (2007) 6494]<br />

12 June 2007<br />

NGLC CUHK 14


LPFG 3 x 3 Coupler<br />

Transmission (dB)<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

λ 0<br />

Fiber 2: red<br />

Fiber 3: yellow<br />

Fiber 1: white<br />

n = 1.448<br />

1480 1500 1520 1540 1560 1580<br />

Wavelength (nm)<br />

12 June 2007<br />

NGLC CUHK 15


LPFG 3 x 3 Coupler<br />

Transmission (dB)<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

λ 0<br />

Fiber 1: white<br />

Fiber 3: yellow<br />

Fiber 2: red<br />

n = 1.448<br />

1480 1500 1520 1540 1560 1580<br />

Wavelength (nm)<br />

12 June 2007<br />

NGLC CUHK 16


LPFG 3 x 3 Coupler<br />

Transmission (dB)<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

λ 0<br />

Fiber 1: white<br />

Fiber 2: red<br />

Fiber 3: yellow<br />

n = 1.448<br />

1480 1500 1520 1540 1560 1580<br />

Wavelength (nm)<br />

12 June 2007<br />

NGLC CUHK 17


0<br />

LPFG 3 x 3 Coupler<br />

Power Ratio (dB)<br />

-3<br />

-6<br />

-9<br />

-12<br />

-15<br />

-18<br />

Simulation (d = 0 µm)<br />

Simulation (d = 0.5 µm)<br />

1.40 1.41 1.42 1.43 1.44 1.45<br />

Refractive Index<br />

Using three 32-mm<br />

mm-long over-coupled gratings and a suitable surrounding refractive index,<br />

we achieved a total coupling efficiency of ~72%, which is equivalent to a total loss of ~1.4 dB<br />

or a loss of ~0.46 dB/port. The non-uniformity in the splitting ratios obtained was ~1%.<br />

12 June 2007 NGLC CUHK 18


<strong>Long</strong><br />

ng-<strong>Period</strong><br />

Waveguide <strong>Grating</strong><br />

(LPWG)<br />

Phase grating<br />

Cladding<br />

Corrugation<br />

<strong>Grating</strong><br />

Cladding<br />

Core<br />

Core<br />

‣ More flexible designs<br />

‣ Wider range of materials available<br />

‣ Easier realization of active devices<br />

[V. Rastogi, K. S. Chiang, Appl. Opt., 41 (2002) 6351]<br />

[Q. Liu , K. S. Chiang, V. Rastogi, J. Lightwave Technol., 21 (2003) 3399]<br />

12 June 2007<br />

NGLC CUHK 19


Fabrication of LPWG<br />

Photolithography and reactive ion etching (RIE)<br />

[K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, Y. M. Chu, PTL, 15 (2003) 1094]<br />

[K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, K. P. Lor, EL, 40 (2004) 422]<br />

Double ion-exchange process<br />

[M. Christophe, H. Bertrand, C. Laurent, O. Jacquin, G. Cyril, Opt. Commun., 233 (2004) 97]<br />

Laser/UV writing<br />

[K. P. Lor, Q. Liu, K. S. Chiang, PTL, 17 (2005) 594]<br />

Nano-imprint lithography<br />

[A. Perentos, G. Kostovski, A. Mitchell, PTL, 17 (2005) 1458]<br />

Thermo-optically optically induced gratings<br />

[M. S. Kwon, S. Y. Shin, PTL, 17 (2005) 145]<br />

[K. S. Chiang, C. K. Chow, Q. Liu, H. P. Chan, K. P. Lor, PTL, 18 (2006) 1109]<br />

12 June 2007<br />

NGLC CUHK 20


LPWG<br />

Devices<br />

Band rejection filter<br />

Band-pass filter<br />

Epoxy<br />

BCB<br />

Epoxy<br />

BCB<br />

[PTL, 15 (2003) 1094; EL, 40 (2004) 422; APL, 86 (2005)<br />

241115; Opt. Exp. 13 (2005) 1150; OL, 31 (2006) 2716]<br />

PDL compensator/Variable attenuator<br />

Chromium Electrode<br />

(Metal <strong>Grating</strong>)<br />

Epoxy 3505<br />

[Appl. Opt., 45 (2006) 2755]<br />

Add/drop multiplexer<br />

BCB<br />

12 June 2007<br />

Epoxy 3507<br />

Si<br />

[PTL, 18 (2006) 1109]<br />

y<br />

Temperature Controller<br />

(Heat Pump)<br />

z<br />

x<br />

[Opt. Exp., 14 (2006) 12644]<br />

NGLC CUHK 21


LPWG Coupler<br />

LPWG1<br />

LPWG2<br />

Epoxy 3505<br />

BCB<br />

BCB<br />

SiO 2<br />

Si<br />

y<br />

z<br />

x<br />

Coupling between the guided modes of individual cores through coupling to the<br />

cladding mode of the composite structure by pure grating effects<br />

Applications: <strong>Long</strong>-range coupler, power distributor, add/drop multiplexer<br />

[Y. Bai, K. S. Chiang, J. Lightwave Technol., 23 (2005) 4363]<br />

12 June 2007<br />

NGLC CUHK 22


LPWG Coupler<br />

LPWG1<br />

LPWG2<br />

1.8 µm<br />

3 3 µm<br />

BCB<br />

Epoxy 3505<br />

BCB<br />

7 7 µm<br />

8 µm<br />

8 µm<br />

9 µm 11 µm<br />

SiO 2<br />

/Si<br />

SiO 2<br />

<strong>Grating</strong> pitch Λ: : 107 µm; Corrugation depth: ∼100 nm; <strong>Grating</strong> length : 11 mm<br />

[Y. Bai, Q. Liu, K. P. Lor, K. S. Chiang, Optics Express, 14 (2006) 12644]<br />

12 June 2007<br />

NGLC CUHK 23


LPWG Coupler<br />

Transmission (dB)<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

-14<br />

1545<br />

17.8 o C<br />

21.8 o C<br />

25.2 o C<br />

29.2 o C<br />

LPWG1 in, LPWG1 out<br />

LPWG2 in, LPWG2 out<br />

1560 1575 1590 1605 1620<br />

Wavelength (nm)<br />

Coupling efficiency<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

LPWG1 in, LPWG2 out<br />

LPWG2 in, LPWG1 out<br />

21.8 o C<br />

25.2 o C<br />

17.8 o C<br />

29.2 o C<br />

1545 1560 1575 1590 1605 1620<br />

Wavelength (nm)<br />

The two channels show different characteristics, which is due to the<br />

fact that the fabricated waveguide structure is slightly asymmetrical.<br />

Calculated coupling efficiency at λ 0 : ~18%<br />

12 June 2007<br />

NGLC CUHK 24


LPWG Coupler<br />

Resonance wavelength (nm)<br />

1620<br />

1610<br />

1600<br />

1590<br />

1580<br />

1570<br />

1560<br />

Band-rejection (LPWG1)<br />

Band-rejection (LPWG2)<br />

Band-pass (LPWG2)<br />

Band-pass (LPWG1)<br />

4.7 nm/ o C<br />

16 18 20 22 24 26 28 30<br />

Temperature ( o C)<br />

The operating wavelength of the coupler can be tuned over the (C+L)<br />

+L)-band<br />

with a temperature control of only ~20 °C.<br />

12 June 2007<br />

NGLC CUHK 25


LPWG Array<br />

LPWG1<br />

LPWG2<br />

LPWG10<br />

Epoxy 3505<br />

BCB BCB BCB<br />

SiO 2<br />

Si<br />

y<br />

z<br />

x<br />

Applications: Multi-port add/drop multiplexer, long-range coupler, power distributor<br />

[K. S. Chiang, K. P. Lor, Q. Liu, C. K. Chow, Y. M. Chu, H. P. Chan, Japanese<br />

Journal of Applied Physics, 43 (2004) 5690]<br />

[Y. Bai, K. S. Chiang, J. Lightwave Technol., 24 (2006) 3856]<br />

12 June 2007<br />

NGLC CUHK 26


LPWG Array<br />

10-grating array with a core separation of 80 µ m<br />

<strong>Grating</strong> pitch Λ: : 83 µm; Corrugation depth: ∼80 nm; <strong>Grating</strong> length : 10 mm<br />

BCB core: 2 µm m thick 5.5 µm m wide; Nominal cladding thickness: ~4.7 µm<br />

[Y. Bai, Q. Liu, K. P. Lor, K. S. Chiang, Optics Express, 14 (2006) 12644]<br />

12 June 2007<br />

NGLC CUHK 27


LPWG Array<br />

Transmission (dB)<br />

0<br />

-3<br />

-6<br />

-9<br />

-12<br />

-15<br />

-18<br />

35.9°C<br />

Ch10<br />

Ch8<br />

Ch1<br />

Ch2<br />

Ch9<br />

-21<br />

1500 1520 1540 1560 1580 1600 1620<br />

Wavelength (nm)<br />

Cladding thickness (µm)<br />

4.8<br />

4.7<br />

4.6<br />

4.5<br />

4.4<br />

4.3<br />

4<br />

5 6<br />

7<br />

3<br />

8<br />

2<br />

1<br />

9<br />

10<br />

0 100 200 300 400 500 600 700 800 900<br />

x (µm)<br />

A good matching in the resonance wavelength is found between LPWG1 and<br />

LPWG9 and, to a less extent, between LPWG2 and LPWG8. The other gratings<br />

do not show obvious resonance dips in the (C+L)-band.<br />

12 June 2007<br />

NGLC CUHK 28


LPWG Array<br />

Coupling efficiency<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

9<br />

2<br />

3<br />

LPWG1 input<br />

35.9°C<br />

(a)<br />

8<br />

0.00<br />

1500 1520 1540 1560 1580 1600 1620<br />

Wavelength (nm)<br />

12 June 2007<br />

NGLC CUHK 29


LPWG Array<br />

Coupling efficiency<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

10<br />

3<br />

1<br />

LPWG9 input<br />

35.9°C<br />

8<br />

2<br />

5<br />

(b)<br />

0.00<br />

1500 1520 1540 1560 1580 1600 1620<br />

Wavelength (nm)<br />

The coupling between LPWG1 and LPWG9 reaches ~11%. The array allows effective<br />

power transfer between two waveguides that are separated by as much m<br />

as 640 µm<br />

using pure grating effects.<br />

12 June 2007<br />

NGLC CUHK 30


Resonance wavelength (nm)<br />

1620<br />

1600<br />

1580<br />

1560<br />

1540<br />

1520<br />

LPWG Array<br />

Band-rejection (LPWG1)<br />

Band-pass (LPWG9)<br />

-3.8 nm/ o C<br />

20 25 30 35 40 45<br />

Temperature ( o C)<br />

The resonance wavelength can be tuned over the (C+L)-band with a<br />

temperature control of only ~25 °C.<br />

12 June 2007<br />

NGLC CUHK 31


Conclusion<br />

‣ A wide variety of coupling devices can be realized<br />

with LPGs in fibers and waveguides (OADMs(<br />

OADMs, , multi-<br />

port couplers, widely tunable couplers, etc.).<br />

‣ Narrow-band couplers could be formed by using<br />

high index contrast waveguides (e.g., silicon optics).<br />

‣ Packaging issues (especially for fiber devices).<br />

12 June 2007<br />

NGLC CUHK 32


Thank You!<br />

_____________<br />

Q & A<br />

12 June 2007<br />

NGLC CUHK 33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!