07.01.2015 Views

Title: Nonlinear Optical Processing Of DPSK Communication Signals

Title: Nonlinear Optical Processing Of DPSK Communication Signals

Title: Nonlinear Optical Processing Of DPSK Communication Signals

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

p.1<br />

<strong>Nonlinear</strong> <strong>Optical</strong> <strong>Processing</strong> of <strong>DPSK</strong><br />

<strong>Communication</strong> <strong>Signals</strong><br />

Chester Shu and Mable P. Fok<br />

Department of Electronic Engineering<br />

The Chinese University of Hong Kong<br />

The Chinese University of Hong Kong<br />

Department of Electronic Engineering<br />

International Symposium on Next-Generation<br />

Lightwave <strong>Communication</strong>s 2007


<strong>DPSK</strong> Format Introduction<br />

p.2<br />

Field<br />

0 1 1 0 1 0 1 1<br />

Time<br />

<strong>DPSK</strong> format has constant amplitude for bit “0” and bit “1”<br />

<br />

<br />

<br />

<br />

Larger tolerance to degradation caused by channel-tochannel<br />

interaction through XPM<br />

Less pattern dependent gain modulation in SOAs<br />

smaller pulse-to-pulse intensity fluctuation<br />

3 dB improvement in receiver sensitivity with balanced<br />

detection<br />

When used with ASK, orthogonal modulation format can<br />

be supported<br />

The Chinese University of Hong Kong<br />

Department of Electronic Engineering<br />

International Symposium on Next-Generation<br />

Lightwave <strong>Communication</strong>s 2007


Outline<br />

p.3<br />

1. <strong>DPSK</strong> optical signal processing<br />

2. All-optical wavelength conversion<br />

3. FWM wavelength conversion in highly nonlinear bismuth oxide fiber<br />

- single pump<br />

- dual pump<br />

- polarization-diversity<br />

- polarization-multiplexed ASK-<strong>DPSK</strong> signal<br />

4. XPM wavelength conversion in SG-DBR laser integrated SOA-MZI<br />

5. Wavelength multicasting<br />

6. Summary<br />

The Chinese University of Hong Kong<br />

Department of Electronic Engineering<br />

International Symposium on Next-Generation<br />

Lightwave <strong>Communication</strong>s 2007


All-<strong>Optical</strong> <strong>Processing</strong> of <strong>DPSK</strong> signals<br />

p.4<br />

<br />

<br />

Signal regeneration<br />

- amplitude noise reduction (Fok et al., CLEO 2007, ECOC 2006)<br />

- phase noise reduction (Fok et al., OECC2007)<br />

- extinction ratio improvement (Fok et al., CLEO 2006)<br />

Wavelength conversion<br />

- dual-pump broadband (Fok et al., OFC 2007)<br />

- polarization diversity (Fok et al., CLEO 2007)<br />

- multicast wavelength conversion (Fok et al., PTL 2007)<br />

Logic operation (Fok et al., CLEO/Europe 2007)<br />

Tunable optical delay (Fok et al., OFC 2007, ECOC 2006)<br />

The Chinese University of Hong Kong<br />

Department of Electronic Engineering<br />

International Symposium on Next-Generation<br />

Lightwave <strong>Communication</strong>s 2007


Wavelength Conversion<br />

p.5<br />

Important in a wavelength routed optical network<br />

<br />

<br />

Utilization of fiber bandwidth<br />

Prevention of network blocking<br />

Examples of wavelength conversion using<br />

<br />

<br />

<br />

<br />

<br />

<br />

Sum and difference frequency generation<br />

Cross-gain modulation<br />

Cross-phase modulation<br />

Cross-absorption modulation<br />

Cross-polarization rotation<br />

Four-wave mixing<br />

The Chinese University of Hong Kong<br />

Department of Electronic Engineering<br />

International Symposium on Next-Generation<br />

Lightwave <strong>Communication</strong>s 2007


Characteristic of Four-Wave Mixing<br />

p.6<br />

Advantages:<br />

<br />

<br />

Transparent to data modulation format and bit rate<br />

Allows simultaneous conversion of multiple wavelengths<br />

Disadvantages:<br />

<br />

<br />

Narrow conversion bandwidth<br />

Polarization sensitive<br />

The Chinese University of Hong Kong<br />

Department of Electronic Engineering<br />

International Symposium on Next-Generation<br />

Lightwave <strong>Communication</strong>s 2007


Four-Wave Mixing Basic<br />

p.7<br />

signal pump 1<br />

ω 4<br />

ω ω<br />

s ω p1 ω 3<br />

E 3<br />

= (E p1 · E s<br />

*)E p1<br />

γ(ω p1<br />

– ω s<br />

) exp[i(ω 3<br />

t + ∆Φ 3 )]<br />

E 4<br />

= (E s · E p1<br />

*)E s<br />

γ(ω s<br />

– ω p1<br />

) exp[i(ω 4<br />

t + ∆Φ 4 )]<br />

field amplitudes of<br />

signal, pump 1 complex coupling coefficient<br />

∆Φ 3<br />

= 2Φ p1 – Φ s<br />

Interaction between the pump 1<br />

(ω p1<br />

) and signal (ω s<br />

)<br />

creates index grating<br />

scatters pump 2<br />

transfer phase and amplitude information<br />

signalpump 1<br />

E 6<br />

= (E p1 · E s<br />

*)E p2<br />

γ(ω p1<br />

– ω s<br />

)<br />

exp[i(ω 6<br />

t + (Φ p1<br />

– Φ s<br />

+ Φ p2<br />

))]<br />

pump 2<br />

ω<br />

ω s<br />

ω p1 ω 3 ω 7<br />

ω p2 ω 6<br />

The Chinese University of Hong Kong<br />

Department of Electronic Engineering<br />

International Symposium on Next-Generation<br />

Lightwave <strong>Communication</strong>s 2007


Highly <strong>Nonlinear</strong> Bismuth Oxide Fiber (Bi-NLF) Basic<br />

p.8<br />

<strong>Nonlinear</strong> coefficient<br />

γ = 1100 (W·km) -1 at 1550 nm<br />

2πn<br />

2<br />

γ =<br />

λA eff<br />

result from: (1) highly nonlinear nature of Bi 2 O 3<br />

(2) small effective core area<br />

Ref.: Juliet T. Gopinath,et al., JLT<br />

vol. 23, no. 11, pp. 3591-3596<br />

(2005)<br />

n 2 (m 2 /W)<br />

MFD (µm)<br />

BiO fiber 30 to 110x10 -20 1.97<br />

SiO 2 fiber 3x10 -20 10.4<br />

Short length of fiber is sufficient for four-wave mixing<br />

High SBS threshold<br />

Acknowledgement: N. Sugimoto and S. Ohara, Asahi Glass<br />

The Chinese University of Hong Kong<br />

Department of Electronic Engineering<br />

International Symposium on Next-Generation<br />

Lightwave <strong>Communication</strong>s 2007


Single Pump Four-Wave Mixing<br />

p.9<br />

<strong>DPSK</strong><br />

Signal<br />

32-cm<br />

Bi-NLF<br />

Laser<br />

BPF<br />

3-dB bandwidth = 12 nm<br />

Input Signal<br />

Converted Signal<br />

Power penalty ≤ 3 dB<br />

Signal (a.u.)<br />

Time (50 ps/div.)<br />

Signal (a.u.)<br />

Time (50 ps/div.)<br />

The Chinese University of Hong Kong<br />

Department of Electronic Engineering<br />

International Symposium on Next-Generation<br />

Lightwave <strong>Communication</strong>s 2007


Dual-Pump Four Wave Mixing for Wavelength Conversion<br />

p.10<br />

<strong>DPSK</strong> signal:<br />

Pump 1 Signal Pump 2 10-Gb/s 10 31 -1 PRBS<br />

<br />

<br />

Signal power: 17 dBm<br />

Pump power: 20 dBm<br />

Signal: 1550 nm<br />

Pump 1 : 1548 nm<br />

Pump 2 : 1543 to 1573 nm<br />

<br />

<br />

3-dB bandwidth<br />

Single-pump: 12 nm<br />

Dual-pump: >30 nm<br />

Conversion efficiency<br />

Single-pump: -20 dB<br />

Dual-pump: -18 dB<br />

Ref.: M. P. Fok et al., JThA52, OFC/NFOEC 2007<br />

The Chinese University of Hong Kong<br />

Department of Electronic Engineering<br />

International Symposium on Next-Generation<br />

Lightwave <strong>Communication</strong>s 2007


Dual-Pump Four Wave Mixing for Wavelength Conversion<br />

p.11<br />

Signal (a.u.)<br />

B2B 1545 nm 1557 nm 1568 nm<br />

Signal (a.u.)<br />

Signal (a.u.)<br />

Time (50 ps/div.) Time (50 ps/div.) Time (50 ps/div.) Time (50 ps/div.)<br />

Signal (a.u.)<br />

At BER of 10 -9<br />

Power penalty


Polarization Diversity Loop for Wavelength Conversion<br />

p.12<br />

<strong>DPSK</strong><br />

signal<br />

TL<br />

32-cm<br />

Bi-NLF<br />

output<br />

Signal (a.u.)<br />

<strong>DPSK</strong> input<br />

Time (50 ps/div.)<br />

Signal (a.u.)<br />

<strong>DPSK</strong> output<br />

Time (50 ps/div.)<br />

Ref.: M. P. Fok et al., CLEO 2007<br />

The Chinese University of Hong Kong<br />

Department of Electronic Engineering<br />

International Symposium on Next-Generation<br />

Lightwave <strong>Communication</strong>s 2007


Polarization Multiplexed ASK-<strong>DPSK</strong> Wavelength Conversion<br />

Polarization A Polarization B<br />

p.13<br />

LD<br />

ASK-<strong>DPSK</strong><br />

Generation<br />

Polarization<br />

multiplexing<br />

DL<br />

Signal (a.u.)<br />

Signal (a.u.)<br />

Time (50 ps/div.) Time (50 ps/div.)<br />

Signal (a.u.)<br />

Polarization A<br />

Time (50 ps/div.)<br />

Signal (a.u.)<br />

Polarization B<br />

Time (50 ps/div.)<br />

Ref.: M. P. Fok et al., CLEO/Europe 2007<br />

The Chinese University of Hong Kong<br />

Department of Electronic Engineering<br />

Pol B<br />

32 cm<br />

Bi-NLF<br />

Pol A<br />

BPF<br />

CW<br />

International Symposium on Next-Generation<br />

Lightwave <strong>Communication</strong>s 2007


Integrated Approach – XPM in SOA Based Device<br />

Tunable<br />

Laser<br />

CLK<br />

10 Gb/s<br />

PM<br />

<strong>DPSK</strong><br />

decoder<br />

DATA<br />

p.14<br />

DATA#<br />

Input SOA 1<br />

SG-DBR Laser<br />

Input SOA 2<br />

SOA<br />

SOA<br />

MZI SOA<br />

MZI SOA<br />

Phase<br />

Phase<br />

Signal (a.u.)<br />

Time (100 ps/div.)<br />

DATA<br />

DATA#<br />

SG-DBR Laser<br />

integrated<br />

SOA-MZI<br />

BPF<br />

Converted<br />

<strong>DPSK</strong> signal<br />

Signal (a.u.)<br />

Ref.: M. P. Fok et al., CLEO/Europe 2007<br />

Time (50 ps/div.)<br />

The Chinese University of Hong Kong<br />

Department of Electronic Engineering<br />

International Symposium on Next-Generation<br />

Lightwave <strong>Communication</strong>s 2007


DBR Laser Integrated SOA-MZI<br />

p.15<br />

Input SOA<br />

Mirror<br />

Laser SOA<br />

SG-DBR<br />

Input SOA<br />

Signal (a.u.)<br />

1548.6 nm<br />

1553.9 nm<br />

1559.1 nm<br />

1569.9 nm<br />

MZI-SOA<br />

phase<br />

Laser SOA<br />

MZI-SOA<br />

Time (200 ps/div.)<br />

<br />

By controlling the mirror<br />

of the SG-DBR<br />

wavelength tuning over 32 nm<br />

The Chinese University of Hong Kong<br />

Department of Electronic Engineering<br />

International Symposium on Next-Generation<br />

Lightwave <strong>Communication</strong>s 2007


Wavelength Multicasting<br />

p.16<br />

Wavelength multicast of <strong>DPSK</strong> signal<br />

WDM<br />

source<br />

λ pump1<br />

λ pump2<br />

λ pump3<br />

SOA<br />

BPF<br />

Ch 1<br />

6 x 10 GHz output<br />

Ch 3<br />

Ch 2<br />

Ch 5<br />

Ch 4<br />

Ch 6<br />

λ signa<br />

l<br />

TL<br />

PM<br />

BERT<br />

Output<br />

Ref.: M. P. Fok et al., PTL 2007<br />

50 ps DI<br />

The Chinese University of Hong Kong<br />

Department of Electronic Engineering<br />

Intensity (a.u.)<br />

Intensity (a.u.)<br />

Input signal<br />

Time (50 ps/div.)<br />

Multicast output<br />

Time (50 ps/div.)<br />

International Symposium on Next-Generation<br />

Lightwave <strong>Communication</strong>s 2007


Summary<br />

p.17<br />

<br />

<br />

Demonstrated all-optical processing of <strong>DPSK</strong> signals:<br />

signal regeneration, wavelength conversion, logic operation,<br />

and tunable optical delay.<br />

Achieved compact fiber and semiconductor-based approaches<br />

for tunable <strong>DPSK</strong> wavelength conversion<br />

- FWM in 32-cm Bi-NLF<br />

- XPM in SG-DBR laser integrated SOA-MZI<br />

<br />

Developed efficient <strong>DPSK</strong> wavelength multicast approaches<br />

using FWM in SOA and nonlinear PCF<br />

The Chinese University of Hong Kong<br />

Department of Electronic Engineering<br />

International Symposium on Next-Generation<br />

Lightwave <strong>Communication</strong>s 2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!