02.11.2014 Views

Chemical Reactions

Chemical Reactions

Chemical Reactions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chemical</strong> <strong>Reactions</strong><br />

Objectives:<br />

•Apply the conservation of mass to reacting systems to<br />

determine balanced reaction equations.<br />

•Defined the parameters used in combustion analysis, such<br />

as air-fuel ratio, percent theoretical air, and dew point<br />

temperature.<br />

•Apply energy balance to reacting systems for both steady-<br />

flow control volumes and fixed mass systems.<br />

•Calculate enthalpy of reaction, enthalpy of combustion,<br />

and the heating value of fuels.<br />

•Determine the adiabatic flame temperature for reacting<br />

mixture.<br />

Combustion of fuel Heat Heat Engine Work<br />

Combustion of fuel <strong>Chemical</strong> Reaction<br />

How much fuel is needed? How about the air used?<br />

How high the combustion flame temperature will be?<br />

Steam Generator<br />

Rocket Engine<br />

Jet Engine<br />

Piston Engine<br />

1


Fuels<br />

• Fossil Fuels: Coal, Petroleum, Natural Gases (LNG:<br />

liquid natural gas, CNG: Compressed Natural Gas)<br />

• Petroleum: Gasoline, Kerosene, Diesel, Fuel Oil ,<br />

Liquid Petroleum Gas (LPG)<br />

Fuel<br />

Approx. single Hydrocarbon<br />

Gasoline ~ Octane (C 8<br />

H 18 )<br />

Diesel<br />

~ Dodecane (C 12 H 26 )<br />

Methanol ~ Methyl Alcohol (CH 3<br />

OH)<br />

Natural gas~ Methane (CH 4<br />

)<br />

Combustion Air<br />

• Combustion is a chemical reaction during which a fuel is<br />

oxidized and a large quantity of energy is released.<br />

• Oxidizer = Oxygen<br />

• Commonly AIR is used as oxidizer (free)<br />

• By volume: AIR = 21% O 2<br />

+ 79% N 2<br />

• Therefore, 1 mole of O 2<br />

N 2<br />

= 79/21 = 3.76 mole<br />

1 kmol O 2 + 3.76 kmol N 2 = 4.76 kmol of Air<br />

Assumption at normal combustion :<br />

• N 2 absolutely inert (no reaction)<br />

• Water is also inert<br />

2


1 kmol C + 1 kmol O 2 1 kmol of CO 2<br />

C + O 2 CO 2 (15.2)<br />

Reactants<br />

Combustion<br />

Products<br />

To have combustion reaction, it must:<br />

• T > ignition temp<br />

• Fuel : air ratio must proper<br />

• To get good combustion 3T<br />

– Temperature (high)<br />

– Turbulent (good mixing between fuel and air)<br />

– Time (enough to reach complete combustion)<br />

•Balancing of chemical reaction: Conservation of mass<br />

principle<br />

• Air fuel ratio, AF = m air<br />

air /m fuel<br />

fuel (15.3)<br />

3


Example 15.1 Balancing the combustion equation<br />

One kmol of octane (C 8 H 18 ) is burned with air that<br />

contains 20 kmol of O 2 , Assuming the products<br />

contain only CO 2 , H 2 O, O 2 , and N 2 , determine the<br />

mole number of each gas in the products and the airfuel<br />

ratio for this combustion process.<br />

Solution <strong>Chemical</strong> reaction equation:<br />

C 8 H 18 +20 (O 2 + 3.76 N 2 ) xCO 2 + yH 2 O + zO 2 + wN 2<br />

Balance of each element : @ ReactantS = @ ProductS<br />

C: 8 = x x = 8<br />

H: 18 = 2y y = 9<br />

O: (20x2) = 2x +y + 2z z = 7.5<br />

N 2 : 20*3.76 = w w = 75.2<br />

Air Fuel Ratio, AF = m air /m fuel = (NM) air /(NM) fuel<br />

= 24.2 kg air/kg fuel<br />

Theoretical and Actual Combustion<br />

Processes<br />

Complete combustion: 1) all C burns to CO 2<br />

, and 2) all<br />

HC burns to H 2<br />

O<br />

Incomplete combustion: Products contains Unburned<br />

fuel or components สาเหตุหลัก: 1)Insufficient O 2<br />

2)<br />

Insufficient mixing. 3) Dissociation<br />

Stoichiometric Air or Theoretical Air:<br />

• = minimum amount of air needed for complete<br />

combustion.<br />

• no unburned and no O 2<br />

left in products<br />

• = <strong>Chemical</strong>ly correct amount of air or 100%<br />

theoretical air<br />

4


Theoretical and Actual Combustion<br />

Processes<br />

Stoichiometric Combustion or Theoretical Combustion:<br />

• Complete combustion with 100% theoretical air ; ex<br />

CH 4<br />

+ 2(O 2<br />

+ 3.76N 2<br />

) CO 2<br />

+ 2H 2<br />

O + 7.52N 2<br />

Actual combustion processes: need excess air to<br />

complete combustion<br />

% Excess air: = % more air needed than theoretical air<br />

80% excess air = 180% theoretical air<br />

Deficiency of air: = amount of air used < theoretical air<br />

(10% deficiency of air = 90% theoretical air)<br />

Theoretical and Actual Combustion<br />

Processes<br />

Equivalent Ratio = (AF actual<br />

)/(AF stoich<br />

)<br />

การประเมิน/ตรวจสอบความสมบูรณของการการเผาไหม<br />

Orsat Gas Analyzer = อุปกรณวิเคราะหองคประกอบของ combustion<br />

gas (products) ปจจุบันไมคอยนิยมใชแลว – ใช gas analyzer<br />

5


Example 15.2 dew point temperature of combustion products<br />

Ethane (C 2 H 6 ) is burned with 20% excess air during<br />

combustion process. Assuming complete combustion<br />

and a total pressure of 100 kPa, determine (a) the<br />

air fuel ratio and (b) the dew point temperature of<br />

the products.<br />

Solution<br />

(a) write the chemical reaction<br />

equation at 120% theoretical air<br />

C 2 H 6 +1.2a (O 2 + 3.76 N 2 )2CO 2 + 3H 2 O + 0.2aO 2 +(1.2x3.76)aN 2<br />

From O 2 : 1.2a = 2+ 3/2+0.2a then a = 3.5<br />

C 2 H 6 +4.2(O 2 + 3.76 N 2 ) 2CO 2 + 3H 2 O + 0.7O 2 + 15.79N 2<br />

Air Fuel Ratio, AF = m air /m fuel = (NM) air /(NM) fuel<br />

= (4.2x4.76 kmol)(29 kg/kmol)/[(2kmolx12 kg/kmol)x(3 kmol x 2 kg/kmol)]<br />

= 19.3 kg air/kg fuel<br />

C 2 H 6 +4.2(O 2 + 3.76 N 2 ) 2CO 2 + 3H 2 O + 0.7O 2 + 15.79N 2<br />

(b) T dp = T sat @ P v (H 2 O)<br />

Ideal gas mixture P i /P m = N i /N m<br />

P v = (3 kmol/21.49 kmol)(100 kPa)<br />

P v = 13.96 kPa T dp = 52.3 o C<br />

6


Example 15.3 combustion of gasous fuel with moist air<br />

A certain natural gas has the following volumetric analysis:<br />

72% CH 4 , 9% H 2 , 14%N 2 , 2%O 2 and 3%CO 2 . The gases is<br />

now burn with stochiometic amount of air that enters<br />

combustion chamber at 20 o C, 1 atm, and 80%RH. Assume<br />

complete combustion and a total pressure of 1 atm,<br />

determine the dew point temperature of the products.<br />

Solution<br />

0.72CH 4 +0.09H2+ 0.02O 2 + 0.14N 2 + 0.03CO 2<br />

ath(O 2 +3.76N 2 )+ xCO 2 + yH 2 O+zN 2<br />

Example 15.3<br />

1. write the chemical reaction equation<br />

at 100% theoretical air (use dry air)<br />

2. moles of air per kmol of fuel can be determined<br />

3. then extra moles water vapor (20%RH at inlet conditions)<br />

can be calculated<br />

4. Rewrite the chemical reaction by adding the water vapor<br />

into both side.<br />

5. N of each component in products are known<br />

6. T dp = T sat @ P v (H 2 O) (Ideal gas mixture P i /P m = N i /N m )<br />

P v = 20.88 kPa T dp = 60.9 o C<br />

7


<strong>Chemical</strong> Energy from Process<br />

This session deal with the chemical energy within the<br />

molecules of a closed system that involve a chemical<br />

reaction. During a chemical reaction, some chemical<br />

bonds that bind the atoms into molecules are broken<br />

and new ones are formed. The chemical energy<br />

associated with this process is usually different for the<br />

reactants and products.<br />

393,520 kJ<br />

1 kmol C<br />

at 25 o C, 1 atm<br />

Combustion<br />

Chamber<br />

CO 2<br />

at 25 o C, 1 atm<br />

1 kmol H<br />

at 25 o C, 1 atm<br />

241,820 kJ<br />

Combustion<br />

Chamber<br />

H 2<br />

O (g)<br />

at 25 o C, 1 atm<br />

1 kmol O 2<br />

at 25 o C, 1 atm<br />

1 kmol O 2<br />

at 25 o C, 1 atm<br />

First Law of Thermodynamics<br />

The first law of thermodynamics states that in any<br />

closed system, energy is conserved. Which means that<br />

energy cannot be created nor destroyed, but it can only<br />

change forms. Meaning:<br />

∆E sys = 0 and ∆E products =-∆E reactants<br />

The molecules of a closed system possess energy in<br />

various forms such as sensible and latent energy,<br />

chemical energy, and nuclear energy. All of these forms<br />

must balance out in the reactants and products to give<br />

the system a net energy of zero.<br />

8


Enthalpy Change<br />

Enthalpy is the system we use to measure that change<br />

in energy of a closed system due to chemical bonds<br />

being broken. Reaction enthalpies are real physical<br />

quantities for which numeric values can be calculated or<br />

measured. In order to put the calculation into algebraic<br />

form, chemists use the defined equation:<br />

∆H = Σ∆H f (products) -Σ∆H f (reactants)<br />

The reaction enthalpy, which is the enthalpy change that<br />

occurs in the reaction, is always calculated as the sum<br />

of the enthalpies of the products minus the sum of the<br />

enthalpies of the reactants.<br />

Standard Reference State<br />

Since composition of a system at the end of a process is<br />

no longer the same as that at the beginning of the<br />

process, there’s a need to use a standard condition in<br />

which to make the measurements from. This standard<br />

condition is called the standard reference point, which<br />

are 25 o C and 1 atm.<br />

The superscript “ ° ” is used to indicate property values at<br />

the standard state. The defined equation above, under<br />

standard conditions, becomes:<br />

∆H ° = Σ∆H ° f(products) -Σ∆H ° f(reactants)<br />

9


Enthalpy of Combustion<br />

The enthalpy of reaction in a combustion process is called<br />

the enthalpy of combustion (symbolized by h c ). The<br />

calculation for an enthalpy of combustion is done for 1<br />

kmol (1 kg) of fuel is burned completely at a specified<br />

temperature and pressure and can be expressed:<br />

h c =H prod –H react<br />

Example 15.5 Evaluation of the Enthalpy of Combustion<br />

Determine the enthalpy of combustion of liquid octane<br />

(C 8 H 18 ) at 25 o C and 1 atm, using enthalpy-of-formation data<br />

from table A-26. Assume the water in the products is in the<br />

liquid form.<br />

Solution<br />

1. Write chemical reaction equation<br />

based on 1 kmol of octane<br />

C 8<br />

H 18 +a(O 2<br />

+ 3.76 N 2<br />

) 8 CO 2<br />

+ 9H 2<br />

O(l) + 3.76aN 2<br />

Balance of oxygen : get a = 12.5<br />

2. Energy analysis h C = H P –H<br />

_ _ R<br />

o<br />

o<br />

H R = ∑N h f ,R = (Nh<br />

_ _ f ) C8H18<br />

_<br />

o<br />

o<br />

o<br />

H P = ∑N h f = Nh f ) + Nh f )<br />

,P<br />

(Nh CO2<br />

(Nh<br />

,P<br />

H2O<br />

10


Table A-26 A<br />

Enthalpy of Formation<br />

_<br />

o<br />

h f ,CO 2<br />

= -393,520 kJ/kmol<br />

kmol<br />

_<br />

= -285,830 kJ/kmol<br />

kmol<br />

h f<br />

o<br />

_<br />

h f<br />

o<br />

,H2O<br />

,C8H18<br />

= - 249,950 kJ/kmol<br />

kmol<br />

Enthalpy of combustion = - 5,471,100 kJ/kmol C 8 H 18<br />

= -47,891 kJ/kg C 8 H 18<br />

Disscussion: This is the HHV of liquid C 8 H 18 in Table A-27<br />

Enthalpy of formation has 2 values : 1. for vapor vapor phase 2. for liquid vapor<br />

phase -the different = laten heat of vaporization<br />

11


Enthalpy of Formation<br />

The enthalpy of formation is defined as the<br />

enthalpy of a substance at a specified state due<br />

to its chemical composition. This property makes<br />

analyzing easier because it represents chemical<br />

energy of an element or a compound at the<br />

standard reference state.<br />

The property values are obtained by first<br />

assigning all of the elements in its chemically<br />

stable form at the standard reference state a<br />

value of zero (such N2, O2, N2, C).<br />

Enthalpy of Formation<br />

So we can use this concept to find the enthalpy of<br />

formation of individual compounds by adding up the<br />

enthalpy for each reaction it takes to react some of<br />

the chemically stable elements to get the compound.<br />

•Consider the formation of CO 2 (a compound) from<br />

elements C and O 2 at 25 o C, 1 atm. during SSSF<br />

process<br />

1 st law: Q cv + ΣH i = ΣH e<br />

Q cv = H P –H R<br />

Q cv = - 393,520 kJ<br />

H R = 0 ; elements @ ref. state<br />

Enthalpy of Formation of CO 2<br />

= - 393,520 kJ/kmol<br />

12


Heating Value of Fuel<br />

= the amount of heat released when a fuel is burned completely in<br />

SSSF process and the products returned to the state of the<br />

reactants…..<br />

= absolute value of the enthalpy of combustion of the fuel:<br />

Heating value = |h C | kJ/kg fuel<br />

Higher heating value, HHV,:<br />

H 2 O in products is in LIQUID form<br />

Lower heating value, LHV,:<br />

H 2 O in products is in Vapor form<br />

HHV = LHV + (mh fg ) H2O (15.7)<br />

m = mass fo water in the products per unit mass of fuel<br />

h fg = the enthalpy of vaporization of water at the specified temp.<br />

13


15.4 First Law Analysis of Reacting System<br />

SSSF Process: (see Chapter 4 the first law) ∆KE~0,<br />

∆PE~0<br />

Q<br />

Q<br />

o<br />

cv<br />

cv<br />

(i = Reactants, and<br />

where<br />

(scrip<br />

Q<br />

cv<br />

o<br />

o<br />

+ Σ n<br />

i<br />

+ ΣN<br />

_<br />

_<br />

i<br />

_<br />

h<br />

_<br />

i<br />

h<br />

i<br />

_<br />

o<br />

f<br />

h = h<br />

_<br />

o<br />

f<br />

h = h<br />

= W<br />

o<br />

cv<br />

= W<br />

+ ( h−<br />

h<br />

e = Products)<br />

)<br />

stand for reference state which is 25 C,1atm)<br />

_<br />

Pr od<br />

cv<br />

_<br />

_<br />

+ ∆ h<br />

o<br />

+ Σ n<br />

_<br />

o<br />

e<br />

+ ΣN<br />

e<br />

Ract<br />

_<br />

T →To<br />

−Wcv<br />

= ΣNe<br />

he<br />

- ΣNi<br />

hi<br />

= H − H<br />

h ........(15-8) per rate of mole eqn.<br />

_<br />

e<br />

_<br />

h ......(15-9) per unit mole eqn.<br />

e<br />

o<br />

.........(15 -11)<br />

Closed System ∆KE~0,<br />

∆PE~0<br />

from<br />

Then<br />

or<br />

Q<br />

Q<br />

12<br />

12<br />

Q there is no u<br />

= W<br />

= W<br />

U = N{ h<br />

U = N{ h<br />

_<br />

o<br />

f<br />

12<br />

12<br />

+ ( U<br />

+ ( U<br />

U = H − PV<br />

_<br />

o<br />

f<br />

_<br />

o<br />

f<br />

Prod<br />

+ ( h−<br />

h<br />

_<br />

2<br />

_<br />

−U<br />

_<br />

o<br />

+ ( h−<br />

h<br />

_<br />

o<br />

)} − PV<br />

Provided in tables<br />

1<br />

)<br />

−U<br />

React<br />

_<br />

)........(15.....)<br />

) − P v}...........(15....)<br />

14


Example 15.6 First Law Analysis of Steady-Flow Combustion<br />

Liquid propane (C 3 H 8 ) enters a combustion chamber at 25 o C<br />

at a rate of 0.05 kg/min where it is mixed and burned with<br />

50% excess air that enters the combustion chamber at 7 o C,<br />

as shown in the figure. An analysis of the combustion gases<br />

reveals that all the hydrogen in the fuel burns to H 2 O but<br />

only 90% of carbon burns to CO 2 , with the remaining 10%<br />

forming CO. If the exit temperature of the combustion<br />

gases is 1,500 K, determine (a) the mass flow rate of the air<br />

and (b) the rate of heat transfer from the combustion<br />

chamber.<br />

Solution: Concepts<br />

1. Write chemical reaction equation based on 1 kmol of propane<br />

1.1 Theoretical Air-Fuel ratio (Stochiometic)<br />

1.2 with 150% theoretical air<br />

+ incomplete burned CO AF mass flow rate of air<br />

2. Energy balance: SSSF Q = H P –H R<br />

- Stochiometic combustion equation based on 1 kmol of propane<br />

C 3<br />

H (l)+a(O 8 2<br />

+ 3.76 N 2<br />

) 3CO 2<br />

+ 4H 2<br />

O + 3.76aN 2<br />

Balance of oxygen : get a = 5<br />

- 150% theoretical air combustion equation based on 1 kmol of propane<br />

with 90%CCO 2 + 10%CCO<br />

C 3<br />

H (l)+(1.2*5)(O<br />

8 2 + 3.76 N 2 ) (0.9*3)CO<br />

2<br />

+ (0.1*3)CO + 2.65O 2<br />

+ 4H 2<br />

O + 28.2N 2<br />

(a) AF = m air /m fuel = (NM) air /(NM) fuel = ………………. = 25.53 kg air/kg fuel<br />

mass flow rate of air, m dot,air = m dot,fuel AF<br />

= (0.05 kg fuel/min)(25.53 kg air/kg fuel) = 1.18 kg air/min<br />

Answer<br />

15


Q<br />

(i = Reactants, and<br />

Q<br />

cv<br />

cv<br />

where<br />

2<br />

_<br />

+ ΣN<br />

h = W<br />

i<br />

_<br />

_<br />

= ΣN<br />

h − ΣN<br />

h<br />

_<br />

o<br />

f<br />

Remark : h<br />

e<br />

i<br />

e<br />

_<br />

o<br />

f<br />

cv<br />

+ ΣN<br />

i<br />

_<br />

e = Products, W<br />

_<br />

_<br />

o<br />

h = h + ( h−<br />

h ),<br />

_<br />

o<br />

f<br />

_<br />

o<br />

f<br />

( g)<br />

= h<br />

_<br />

i<br />

298K<br />

_<br />

( l)<br />

+ h<br />

e<br />

_<br />

h<br />

e<br />

_<br />

o<br />

( h<br />

cv<br />

= 0)<br />

_<br />

= h<br />

Assume air and combustion gases are ideal gases, get data from the property tables<br />

h<br />

h<br />

Substitute, Q cv<br />

= 363,880 kJ/kmol fuel 8,270 kJ/kg fuel Q dot<br />

= m dot<br />

Q = 6.89 kW<br />

_<br />

280K<br />

_<br />

298K<br />

1500K<br />

Substance (kJ/kmol) (kJ/kmol) (kJ/kmol) (kJ/kmol)<br />

C3H8(<br />

l)<br />

-118,910 0 NA NA<br />

O2<br />

0 8,682 8,150 49,292<br />

N2<br />

0 8,669 8,141 47,073<br />

H 2O(<br />

g)<br />

- 241,820 9,904 NA 57,999<br />

CO -393,520 9,364 NA 71,078<br />

CO -110,530 8,669 NA 47,517<br />

fg<br />

h<br />

h<br />

)<br />

Example 15.7 First Law Analysis of Combustion in a Bomb<br />

Constant volume tank contains 1 kmol of methane (CH 4 ) gas<br />

and 3 kmol of O 2 at 25 o C and 1 atm. The contents of the<br />

tank are ignited, and the methane gas burns completely. If<br />

the final temperature is 1,000K, determine (a) the final<br />

pressure in the tank and (b) the heat transfer during this<br />

process.<br />

Solution: Concepts<br />

1. Write chemical reaction equation<br />

Assume ideal gas for both reactants and<br />

products: PV = NR u T P 2<br />

2. Energy balance: SSSF<br />

Q = U P –U R<br />

= (H p -P P V) - (H R -P R V)<br />

16


(a) Combustion equation:<br />

CH 4 (g)+ 3O 2 CO 2 + 2H 2 O + O 2<br />

N react = 1 + 3 = 4 kmol, N react = 1 + 2 + 1 = 4 kmol, N 1 = N 2<br />

Assume ideal gas for all gases:<br />

State 1 (Reactants) P 1 V = N 1 R u T 1 (1)<br />

State 2 (Products) P 2 V = N 2 R u T 2 (2)<br />

eqn(2)/eqn(1) P 2 = (T 2 /T 1 )*P 1 = (1,000K/298K)(1atm) = 3.36 atm<br />

answer<br />

First law :<br />

W<br />

12<br />

from<br />

or<br />

Ideal gas P v = R T<br />

then<br />

= 0 :<br />

U = N{ h<br />

U = N{ h<br />

from property tables get valus of h f , h<br />

substitute in equation above - - ><br />

Amount of heat transfer out = - Q<br />

or = 717,590/16 =<br />

= ( U<br />

U = H − PV = N{ h<br />

_<br />

u<br />

Q<br />

Q<br />

_<br />

o<br />

f<br />

12<br />

12<br />

+ ( h−<br />

h<br />

_<br />

o<br />

f<br />

= W<br />

_<br />

_<br />

12<br />

_<br />

o<br />

+ ( h−<br />

h<br />

+ ( U<br />

_<br />

) − P v}<br />

_<br />

o<br />

44,850 kJ/kg CH<br />

+ ( h−<br />

h<br />

)<br />

Pr React<br />

odo<br />

f<br />

) − R T}<br />

_<br />

o<br />

12<br />

2<br />

−U<br />

−U<br />

_<br />

_<br />

_<br />

o<br />

)<br />

)} − PV<br />

of each gas and hat each state<br />

= 717,590 kJ/kmol CH<br />

4<br />

u<br />

1<br />

_<br />

o<br />

_<br />

Answer<br />

4<br />

17


15.5 Adiabatic Flame Temperature<br />

Adiabatic Flame Temperature = Maximum limit of combustion<br />

gas temperature of each Air – Fuel mixture<br />

(Adiabatic Flame Temperature = Combustion Temperature)<br />

Q cv =0,W cv =0 ,∆KE=,<br />

KE=∆PE=0 :<br />

1 st law<br />

_<br />

_<br />

Qcv<br />

+ ΣNi<br />

hi<br />

= Wcv<br />

+ ΣNe<br />

he<br />

ΣN<br />

R<br />

{<br />

_<br />

o<br />

h f<br />

_<br />

ΣN<br />

i<br />

_<br />

o<br />

_<br />

h<br />

+ ( h−<br />

h )}<br />

i<br />

= ΣN<br />

R<br />

e<br />

= ΣN<br />

_<br />

h<br />

P<br />

e<br />

{<br />

_<br />

o<br />

h f<br />

To Calculate the adiabatic flame temperature, T P<br />

1. Write the combustion equation<br />

2. Apply energy balance (1 st law)<br />

3. Solving by trial-and<br />

and-error technique by assume a value of T P<br />

get values…and<br />

and<br />

substitute in (2) ….LHS = RHS ..if not try new T P<br />

….. (in good procedure we can<br />

interporate the former value to get the right value of T P<br />

_<br />

_<br />

o<br />

+ ( h−<br />

h )}<br />

P<br />

• What is your first guess of T<br />

• What should be the 2 nd trial.<br />

• How about the 3 rd , 4 th ......<br />

• When/how to interporate<br />

a<br />

b<br />

<br />

Trail and error procedure<br />

LHS - RHS = Error<br />

T<br />

T 2<br />

T c<br />

Interporation<br />

T b<br />

T a<br />

c<br />

T 2<br />

E 2<br />

T a -E a<br />

T b -E b<br />

T 2<br />

0.0<br />

T c +E c<br />

T 2 = 342 o C<br />

m i =1.263 kg<br />

-E a -E b E = 0<br />

+E c<br />

Error<br />

18


Example 15.8 Adiabatic Flame Temperature in Steady Combustion<br />

Liquid octane (C 8 H 18 ) enters the combustion chamber of a<br />

gas turbine steadily at 1 atm and 25 o C, and it is burns with<br />

air that enters the combustion chamber at the same state,<br />

as shown in the figure. Determine the adiabatic flame<br />

temperature for (a) complete combustion at 100%<br />

theoretical air, (b) complete combustion at 400%<br />

theoretical air and (c) incomplete combustion (some CO in<br />

the products) with 90% theoretical air.<br />

Asumptions:<br />

1. SSSF process<br />

2. Adiabatic<br />

3. No work<br />

4. ∆KE=∆PE=0<br />

5. Air and combustion gases are ideal gas<br />

1. Combustion equation equation based on 1 kmol of octane<br />

C 8<br />

H 18<br />

+12.5(O 2<br />

+ 3.76 N 2<br />

) 8 CO 2<br />

+ 9H 2<br />

O + 47N 2<br />

at T R = 298K at T P = ?<br />

P<br />

_<br />

_<br />

Qcv<br />

+ ΣNi<br />

hi<br />

= Wcv<br />

+ ΣNe<br />

he<br />

_ _<br />

ΣNi<br />

hi<br />

= ΣNe<br />

he<br />

_ _ _<br />

_ _ _<br />

o o<br />

o o<br />

ΣN<br />

R { h f + ( h−<br />

h )} R = ΣN<br />

P { h f + ( h−<br />

h )} P<br />

_ _<br />

o<br />

Qreactants<br />

are at referencestate ( h−<br />

h ) R = 0<br />

_<br />

_ _ _<br />

o o o<br />

ΣN<br />

R { h f } R = ΣN<br />

P { h f + ( h−<br />

h )}<br />

2. Energy balance: H R = H P<br />

19


(b) 400% theoretical air : combustion equation:-.<br />

Combustion equation equation based on 1 kmol of octane<br />

C 8<br />

H 18<br />

+4.0x12.5(O 2<br />

+ 3.76 N 2<br />

) 8CO 2<br />

+ 9H 2<br />

O + (3.0x12.5)O 2<br />

+ 4.0x47N 2<br />

at T R = 298K at T P = ?<br />

by trial and error of T P<br />

Adiabatic flame temperature = 962 K ……………………..answer<br />

(C) 90% theoretical air : combustion equation:-.<br />

Combustion equation equation based on 1 kmol of octane<br />

C 8<br />

H 18<br />

+0.9x12.5(O 2<br />

+ 3.76 N 2<br />

) aCO 2<br />

+bCO + 9H 2<br />

O + 0.9x47N 2<br />

at T R = 298K at T P = ?<br />

C and O balance a = 5.5 and b = 2.5<br />

by trial and error of T P<br />

Adiabatic flame temperature = 2,236K ……………………..answer<br />

• What is your first guess of T<br />

• What should be the 2 nd trial.<br />

• How about the 3 rd , 4 th ......<br />

• When/how to interporate<br />

a<br />

b<br />

<br />

Trail and error procedure<br />

LHS - RHS = Error<br />

T<br />

T 2<br />

T c<br />

Interporation<br />

T b<br />

T a<br />

c<br />

T 2<br />

E 2<br />

T a -E a<br />

T b -E b<br />

T 2<br />

0.0<br />

T c +E c<br />

T 2 = 342 o C<br />

m i =1.263 kg<br />

-E a -E b E = 0<br />

+E c<br />

Error<br />

20


Assume air and combustion gases are ideal gases, get data from the property tables<br />

Substance (kJ/kmol) (kJ/kmol) (kJ/kmol) (kJ/kmol)<br />

C8H18(<br />

l)<br />

- 249,950 0 NA NA<br />

O2<br />

0 8,682 ............ ............<br />

N2<br />

0 8,669 ............ ............<br />

H 2O(<br />

g)<br />

- 241,820 9,904 ............ ............<br />

CO -393,520 9,364 ............ ............<br />

2<br />

CO -110,530 8,669 ............. ............<br />

Remark : h<br />

ΣN<br />

_<br />

o<br />

f<br />

( Nh<br />

)<br />

_<br />

o<br />

f<br />

_<br />

o<br />

R { h f } R<br />

C8H18<br />

_<br />

o<br />

f<br />

h<br />

_<br />

o<br />

f<br />

( g)<br />

= h<br />

P<br />

_<br />

o<br />

f<br />

= { N(<br />

h<br />

( l)<br />

+ h<br />

_<br />

o<br />

f<br />

= ΣN<br />

{ h<br />

+ ( h−<br />

h )}<br />

+ h−<br />

h )}<br />

CO2<br />

1x(<br />

−249,950)<br />

= {8( −393,520)<br />

+ h−<br />

9,364)<br />

_<br />

_<br />

h<br />

_<br />

298K<br />

_<br />

o<br />

_<br />

o<br />

+ {47(0 + h−<br />

8,669)}<br />

_<br />

_<br />

fg<br />

_<br />

_<br />

P<br />

_<br />

h<br />

+ { N(<br />

h<br />

N2<br />

xxxxK<br />

_<br />

o<br />

f<br />

CO2<br />

_<br />

_<br />

h<br />

yyyyK<br />

_<br />

o<br />

+ h−<br />

h )}<br />

H 2O<br />

+ { N(<br />

h<br />

+ h−<br />

h )}<br />

+ {9( −241,820)<br />

+ h−<br />

9,904)}<br />

_<br />

_<br />

o<br />

f<br />

_<br />

_<br />

o<br />

N2<br />

H 2O<br />

(a) Adiabatic flame temperature = 2,395 K ………………..answer<br />

21

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!