11.11.2014 Views

Atomic structure, bonding

Atomic structure, bonding

Atomic structure, bonding

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 2: <strong>Atomic</strong> Structure & Interatomic Bonding<br />

These notes have been prepared by Jorge Seminario from the textbook material<br />

1


• Basic idea … properties of materials are a<br />

consequence of<br />

– Identity of the atoms<br />

– Spatial arrangement of the atoms<br />

– Interactions between the atoms<br />

• Thus, we need to study atomic <strong>structure</strong>/<strong>bonding</strong>!


Chapter 2: <strong>Atomic</strong> Structure &<br />

Interatomic Bonding<br />

ISSUES TO ADDRESS...<br />

• What promotes <strong>bonding</strong>?<br />

• What types of bonds are there?<br />

• What properties are inferred from <strong>bonding</strong>?


2.2 <strong>Atomic</strong> Structure (Freshman Chem.)<br />

• atom – electrons – 9.11 x 10 -31 kg<br />

protons<br />

} neutrons 1.67 x 10 -27 kg<br />

• atomic number = # of protons in nucleus of atom<br />

= # of electrons of neutral species<br />

• A [=] atomic mass unit = amu = 1/12 mass of 12 C<br />

<strong>Atomic</strong> wt = wt of 6.022 x 10 23 molecules or atoms<br />

C 12.011<br />

H 1.008 etc.<br />

1 amu/atom = 1g/mol<br />

4


<strong>Atomic</strong> Structure<br />

• Some of the following properties<br />

1) Chemical<br />

2) Electrical<br />

3) Thermal<br />

4) Optical<br />

are determined by electronic <strong>structure</strong>


2.2 Fundamental Concepts<br />

• Atoms consist of a small nucleus<br />

containing<br />

• Protons<br />

+1.60 x 10 -19 C = e<br />

1.67 x 10 -27 kg<br />

• Neutrons<br />

0 C (neutral)<br />

1.67 x 10 -27 kg<br />

• Electrons (which circle the<br />

nucleus)<br />

-1.60 x 10 -19 C = -e<br />

9.11 x 10 -31 kg


2.2 Fundamental Concepts<br />

• <strong>Atomic</strong> Number (Z)<br />

• Number of protons in the nucleus<br />

• Electrically neutral or complete<br />

atom: Z = # electrons<br />

• <strong>Atomic</strong> Mass (A)<br />

• Sum of the masses of protons and<br />

neutrons; atomic mass unit = amu =<br />

1/12 mass of 12 C<br />

• Isotopes<br />

• Atoms of the same element with<br />

different atomic masses due to varying<br />

number of neutrons (e.g. 12 C, 13 C, 14 C


Basic concepts<br />

– Atoms are made of protons, neutrons and electrons<br />

• m e = 0.00091094x10 -27 = 9.1094x10 -31 kg = 0.511 MeV<br />

• m p = 1.6726 x 10 -27 kg = 938.272 MeV<br />

• m n = 1.6749 x 10 -27 kg = 939.566 MeV = m p + 1.293 MeV<br />

– Charge of a proton and electron are the same: 1.6022x10 -19 C<br />

– However p are +’ve and e are –’ve<br />

– Since J = C x V (1 joule = 1 coulomb x 1 volt),<br />

1 eV = 1.6022x10 -19 J<br />

– mass is related to energy by E = mc 2


2.3 Electrons In Atoms<br />

Bohr <strong>Atomic</strong> Model<br />

• Early outgrowth of<br />

quantum mechanics<br />

• Electrons revolve<br />

around nucleus in<br />

discrete orbitals<br />

• Electrons closer to<br />

nucleus travel faster<br />

then outer orbitals<br />

• Principal quantum<br />

number (n); 1 st shell,<br />

n=1; 2 nd shell, n=2;<br />

3 rd shell, n=3


c02f02<br />

Quantum Numbers<br />

For the H atom<br />

Scaled for<br />

hydrogen-like<br />

atoms<br />

Degenerate states<br />

Same energy


Bohr Atom<br />

Wave-mechanical atom<br />

c02f03


<strong>Atomic</strong> Models<br />

• Wave-Mechanical<br />

Model<br />

• Electron exhibits both<br />

wave-like and particle-like<br />

characteristics<br />

• Position is now considered<br />

to be the probability of an<br />

electron being at various<br />

locations around the<br />

nucleus, forming an<br />

electron cloud


Electron Configuration<br />

• Pauli Exclusion Principle<br />

• Stipulates that electron states (orbital or shell) can have no<br />

more than two electrons, must have opposite spins<br />

• Ground state<br />

• All electrons occupy the lowest energies<br />

• Electrons can move to higher states<br />

• Filled shells are more stable


Electronic Structure<br />

• Electrons have wave-like and particle-like properties (old view)<br />

• We can better say that the wave-particle nature is the real<br />

thing; individual wave and particle states are limiting cases,<br />

observed in measurements (collapse of the wave function)<br />

• To better understand electronic <strong>structure</strong>, we assume<br />

– Electrons “reside” in orbitals.<br />

– Each orbital, at a discrete energy level, is determined by<br />

quantum numbers.<br />

c<br />

Quantum numbers<br />

n = principal (energy level-shell)<br />

Designation<br />

K, L, M, N, O (1, 2, 3, etc.)<br />

l = angular (orbitals) s, p, d, f (0, 1, 2, 3,…, n -1)<br />

m l = magnetic<br />

m s = spin ½, -½<br />

1, 3, 5, 7 (-l to +l)<br />

14


c\2f04<br />

Quantum Numbers<br />

Relative electrons<br />

energies (E) for shells<br />

and subshells<br />

if n↓ then E↓<br />

Within each shell E↑<br />

with quantum number<br />

Overlapping in energy<br />

of a state in one shell<br />

with states in adjacent<br />

shells, true of d and f<br />

states


c02tf01


Electron Configurations<br />

• Valence electrons – those in unfilled shells<br />

• Filled shells more stable<br />

• Valence electrons are most available for<br />

<strong>bonding</strong> and tend to control the chemical<br />

properties<br />

– example: C (atomic number = 6)<br />

1s 2 2s 2 2p 2<br />

valence electrons<br />

17


<strong>Atomic</strong> Models<br />

Quantum numbers<br />

• Principal quantum number n, represents a<br />

shell<br />

• K, L, M, N, O correspond to n=1, 2, 3, 4,<br />

5....<br />

• Quantum number l, signifies the subshell<br />

• Lowercase italics letter s, p, d, f; related to<br />

the shape of the subshell<br />

• Quantum number m l<br />

, represents the<br />

number of energy states<br />

• s, p, d, f have 1, 3, 5, 7 states respectively<br />

• Quantum number m s<br />

, is the spin moment<br />

• Each electron is a spin moment<br />

• (+1/2) and (-1/2)


Electron Configuration<br />

Silicon (Si)<br />

• Electron configuration<br />

represents the manner in<br />

which the states are<br />

occupied<br />

• Valence electrons<br />

• Occupy the outermost<br />

shell<br />

• Available for <strong>bonding</strong><br />

• Tend to control chemical<br />

properties


Electron Configurations - Pauli Exclusion Principle<br />

c02f05<br />

Na Atom<br />

Z = 11


c02tf02<br />

When some elements covalently<br />

bond, they form sp hybrid bonds,<br />

e.g., C, Si, Ge


Examples<br />

Give the electron configurations for the following:<br />

C<br />

1s 2 2s 2 2p 2<br />

Br<br />

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5<br />

Mn +2<br />

1s 2 2s 2 2p 6 3s 2 3p 6 3d 5<br />

F - 1s 2 2s 2 2p 6<br />

Cr<br />

1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5


Electronic Configurations<br />

ex: Fe - atomic # = 26<br />

1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2<br />

4d<br />

4p<br />

3d<br />

4s<br />

N-shell n = 4<br />

valence<br />

electrons<br />

Energy<br />

3p M-shell n = 3<br />

3s<br />

2p<br />

2s<br />

Adapted from Fig. 2.4,<br />

Callister & Rethwisch 3e.<br />

L-shell n = 2<br />

1s<br />

K-shell n = 1<br />

Notice that 2s and 2p do not have the same energy<br />

23


Electron Configuration<br />

• “Stable electron configurations”<br />

• States within the outermost or valence electron shell are<br />

completely filled<br />

• Some atoms of elements with unfilled shells assume<br />

stable electron configurations by gaining or losing<br />

electrons to form charged ions<br />

• Sometimes s and p orbitals form hybrid sp n orbitals<br />

• 3A, 4A, and 5A group elements typically<br />

• Lower energy state for the valence electrons


SURVEY OF ELEMENTS<br />

• Most elements: Electron configuration not stable.<br />

Element<br />

Hydrogen<br />

Helium<br />

Lithium<br />

Beryllium<br />

Boron<br />

Carbon<br />

...<br />

Neon<br />

Sodium<br />

Magnesium<br />

Aluminum<br />

...<br />

Argon<br />

...<br />

Krypton<br />

<strong>Atomic</strong> #<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

10<br />

11<br />

12<br />

13<br />

18<br />

...<br />

36<br />

Electron configuration<br />

1s 1<br />

1s 2<br />

(stable)<br />

1s 2 2s 1<br />

1s 2 2s 2<br />

1s 2 2s 2 2p 1<br />

1s 2 2s 2 2p 2<br />

...<br />

1s 2 2s 2 2p 6 (stable)<br />

1s 2 2s 2 2p 6 3s 1<br />

1s 2 2s 2 2p 6 3s 2<br />

1s 2 2s 2 2p 6 3s 2 3p 1<br />

...<br />

1s 2 2s 2 2p 6 3s 2 3p 6 (stable)<br />

...<br />

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 (stable)<br />

Adapted from Table 2.2,<br />

Callister & Rethwisch 3e.<br />

25


STABLE ELECTRON CONFIGURATIONS<br />

Stable electron configurations...<br />

• have complete s and p subshells<br />

• tend to be unreactive.<br />

Adapted from Table 2.2,<br />

Callister 6e.<br />

4


2.4 Periodic Table<br />

• Elements classified according to electron configuration<br />

• Elements in a given column or group have similar valence electron<br />

<strong>structure</strong>s as well as chemical and physical properties<br />

• Group 0 – inert gases, filled shells and stable<br />

• Group VIIA – halogen<br />

• Group IA and IIA - alkali and alkaline earth metals<br />

• Groups IIIB---IIB – transition metals<br />

• Groups IIIA, IVA and VA – characteristics between the metals and<br />

nonmetals


2.4


Electronegativity Values<br />

• Electropositive:<br />

• Capable of giving up their<br />

valence electrons to become<br />

positively charged<br />

• Electronegative:<br />

• Readily accept electrons to form<br />

negatively charged ions<br />

• Sometimes share electrons with<br />

other atoms


<strong>Atomic</strong> Bonding<br />

• Valence electrons determine all of the<br />

following properties<br />

1) Chemical<br />

2) Electrical<br />

3) Thermal<br />

4) Optical<br />

5) Deteriorative<br />

6) etc.<br />

30


<strong>Atomic</strong> Bonding in Solids


When 0 = F A + F R ,<br />

equilibrium exists.<br />

The centers of the<br />

atoms will remain<br />

separated by the<br />

equilibrium spacing<br />

r o .<br />

2.5 Bonding Forces and<br />

Energies<br />

This spacing also<br />

corresponds to the<br />

minimum of the<br />

potential energy<br />

curve. The energy<br />

that would be<br />

required to<br />

separate two<br />

atoms to an infinite<br />

separation is E o<br />

F N = F A + F R<br />

Figure 2.8<br />

E N = E A + E R


2.5 Bonding Forces and Energies<br />

• A number of material properties depend on E o ,<br />

the curve shape, and <strong>bonding</strong> type<br />

– Material with large E o typically have higher melting<br />

points<br />

– Mechanical stiffness is dependent on the shape of its<br />

force vs. interatomic separation curve (F vs r)<br />

– A material’s linear coefficient of thermal expansion<br />

is related to the shape of its E vs. r curve


Bonding in Solids<br />

• 2.5 Bonding forces and energies<br />

– Far apart: atoms don’t know about each other<br />

– As they approach one another, start to exert force on one<br />

another<br />

• two types of forces<br />

– Attractive (F A ) – slowly changing with distance<br />

– Repulsive (F R ) – typically short-range<br />

– Net force is the sum of these<br />

F N = F A + F R<br />

– At some point the net force is zero; at that position a state of<br />

equilibrium exists


Bonding forces and energies<br />

F<br />

E<br />

E<br />

dE<br />

F <br />

dr<br />

F A<br />

F R<br />

N<br />

N<br />

<br />

<br />

r<br />

<br />

<br />

E<br />

F<br />

A<br />

A<br />

<br />

dr<br />

E<br />

<br />

R<br />

r<br />

<br />

<br />

F<br />

R<br />

Bonding in Solids<br />

dr<br />

E<br />

<br />

The interatomic separation at that point (r o ) corresponds<br />

to the potential energy at that minimum<br />

E o , it is also the <strong>bonding</strong> energy<br />

E o is the energy needed to separate the atoms<br />

<br />

Fdr<br />

<br />

<br />

r<br />

<br />

Fdr<br />

& setting our ZERO ENERGY reference at ∞<br />

<br />

<br />

r<br />

<br />

Fdr<br />

The point where the forces<br />

are zero also corresponds<br />

to the minimum potential<br />

energy for the two atoms,<br />

which makes sense because<br />

-dE/dr = F = 0 at a minimum.


Examples<br />

(book wrong sign of the F)<br />

Calculate the force of attraction between ions X + and an Y - , the<br />

centers of which are separated by a distance of 2.01 nm.<br />

&


2.6 Primary Interatomic Bonds<br />

• Types of chemical bonds found in solids<br />

– Ionic<br />

– Covalent<br />

– Metallic<br />

• As you might imagine, the type of <strong>bonding</strong> influences<br />

properties – why?<br />

• Bonding involves the valence electrons!!!


2.6 Primary Interatomic Bonds<br />

• Ionic Bonding<br />

– Compounds composed of metallic and nonmetallic<br />

elements<br />

– Coulombic Attractive Forces: positive and negative ions,<br />

by virtue of their net electrical charge, attract one another<br />

• E A = -A/r<br />

• E R = B/r n<br />

Coulombic <strong>bonding</strong> Force<br />

A, B, n are<br />

Cl<br />

Na<br />

constants -<br />

+<br />

– Bonding is nondirectional: the magnitude of the bond is<br />

equal in all directions around an ion<br />

– Properties: generally large <strong>bonding</strong> energies (600-1500<br />

kJ/mol) and thus high melting temperatures, hard, brittle,<br />

and electrically and thermally insulative


c02f09<br />

2.6 Primary Interatomic Bonds


2.6 Primary Interatomic Bonds<br />

• Ionic <strong>bonding</strong><br />

– Prototype example – sodium chloride (NaCl)<br />

• Sodium gives up one its electrons to chlorine – sodium becomes<br />

positively charged, chlorine becomes negatively charged<br />

– The attraction energy is electrostatic in nature in ionic solids<br />

(opposite charges attract)<br />

– The attractive component of the potential energy (for 2 point<br />

charges) is given by<br />

– The repulsive term is given by<br />

E<br />

E<br />

A<br />

R<br />

<br />

<br />

<br />

B<br />

n<br />

r<br />

Z eZ<br />

e<br />

1 2<br />

<br />

4<br />

o<br />

1<br />

r<br />

, n ~ 8 12


Ionic bond: metal + nonmetal<br />

donates<br />

electrons<br />

accepts<br />

electrons<br />

Dissimilar electronegativities<br />

ex: MgO Mg 1s 2 2s 2 2p 6 3s 2 O 1s 2 2s 2 2p 4<br />

[Ne] 3s 2<br />

Mg 2+ 1s 2 2s 2 2p 6 O 2- 1s 2 2s 2 2p 6<br />

[Ne]<br />

[Ne]<br />

41


Ionic Bonding<br />

• Occurs between + and - ions.<br />

• Requires electron transfer.<br />

• Large difference in electronegativity required.<br />

• Example: NaCl<br />

Na (metal)<br />

unstable<br />

electron<br />

Cl (nonmetal)<br />

unstable<br />

Na (cation)<br />

stable<br />

+ -<br />

Coulombic<br />

Attraction<br />

Cl (anion)<br />

stable<br />

42


Ionic Bonding<br />

• Energy – minimum energy most stable<br />

– Energy balance of attractive and repulsive terms<br />

E N = E A + E R =<br />

<br />

A<br />

r<br />

<br />

B<br />

r n<br />

Repulsive energy E R<br />

Interatomic separation r<br />

Net energy E N<br />

Adapted from Fig. 2.8(b),<br />

Callister & Rethwisch 3e.<br />

Attractive energy E A<br />

43


Examples: Ionic Bonding<br />

• Predominant <strong>bonding</strong> in Ceramics<br />

NaCl<br />

MgO<br />

CaF 2<br />

CsCl<br />

Give up electrons<br />

Acquire electrons<br />

Adapted from Fig. 2.7, Callister & Rethwisch 3e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the<br />

Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.<br />

44


2.6 Primary Interatomic Bonds<br />

• Covalent Bonding<br />

– Stable electron configurations are assumed by<br />

the sharing of electrons between adjacent atoms<br />

– Bonding is directional: between specific atoms<br />

and may exist only in the direction between one<br />

atom and another that participates in electron<br />

sharing<br />

– Number of covalent bonds for a particular<br />

molecule is determined by the number of<br />

valence electrons<br />

– Bond strength ranges from strong to weak<br />

• Rarely are compounds purely ionic or<br />

covalent but are a percentage of both.<br />

Sharing 2<br />

electrons<br />

Sharing<br />

4<br />

electrons<br />

%ionic character = {1 – exp[-(0.25)(X A -X B ) 2 ]} x 100<br />

X A and X B are electronegatives


Covalent <strong>bonding</strong><br />

– Sharing of electrons between adjacent atoms<br />

– Most nonmetallic elements and molecules containing<br />

dissimilar elements have covalent bonds<br />

– Polymers!<br />

– Bonding is highly directional!<br />

– Number of covalent bonds possible is guessed by the<br />

number of valence electrons<br />

• Typically is 8 – N, where N is the number of valence<br />

electrons<br />

• Carbon has 4 valence e’s – 4 bonds (ok!)


H<br />

2.1<br />

Li<br />

1.0<br />

Na<br />

0.9<br />

K<br />

0.8<br />

Rb<br />

0.8<br />

Cs<br />

0.7<br />

Fr<br />

0.7<br />

EXAMPLES: COVALENT BONDING<br />

Be<br />

1.5<br />

Mg<br />

1.2<br />

Ca<br />

1.0<br />

Sr<br />

1.0<br />

Ba<br />

0.9<br />

Ra<br />

0.9<br />

H2<br />

Ti<br />

1.5<br />

Cr<br />

1.6<br />

Fe<br />

1.8<br />

H2O<br />

C(diamond)<br />

SiC<br />

Ni<br />

1.8<br />

Zn<br />

1.8<br />

Ga<br />

1.6<br />

column IVA<br />

C<br />

2.5<br />

Si<br />

1.8<br />

As<br />

2.0<br />

GaAs<br />

Adapted from Fig. 2.7, Callister 6e. (Fig. 2.7 is<br />

adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright<br />

1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.<br />

Ge<br />

1.8<br />

Sn<br />

1.8<br />

Pb<br />

1.8<br />

O<br />

2.0<br />

F<br />

4.0<br />

Cl<br />

3.0<br />

Br<br />

2.8<br />

I<br />

2.5<br />

At<br />

2.2<br />

He<br />

-<br />

Ne<br />

-<br />

Ar<br />

-<br />

Kr<br />

-<br />

Xe<br />

-<br />

Rn<br />

-<br />

F2<br />

Cl2<br />

• Molecules with nonmetals<br />

• Molecules with metals and nonmetals<br />

• Elemental solids (RHS of Periodic Table)<br />

• Compound solids (about column IVA)<br />

11


Covalent Bonding<br />

• similar electronegativity share electrons<br />

• bonds determined by valence – s & p orbitals<br />

dominate <strong>bonding</strong><br />

• Example: CH 4<br />

shared electrons<br />

C: has 4 valence e - ,<br />

needs 4 more<br />

CH 4<br />

H<br />

from carbon atom<br />

H: has 1 valence e - ,<br />

needs 1 more<br />

Electronegativities<br />

are comparable.<br />

H<br />

C<br />

H<br />

H<br />

shared electrons<br />

from hydrogen<br />

atoms<br />

Adapted from Fig. 2.10, Callister & Rethwisch 3e.<br />

48


Bonding in Solids<br />

• Many materials have <strong>bonding</strong> that is both ionic and<br />

covalent in nature (very few materials actually exhibit pure<br />

ionic or covalent <strong>bonding</strong>)<br />

• Easy (empirical) way to estimate % of ionic <strong>bonding</strong><br />

character:<br />

%ionic character<br />

<br />

<br />

<br />

2<br />

1exp<br />

(0.25)(<br />

X ) x<br />

100<br />

A<br />

X B<br />

X A , X B are the electronegativities of atoms A and B involved<br />

Notice: this is a very very very empirical formula


Primary Bonding<br />

• Ionic-Covalent Mixed Bonding<br />

% ionic character =<br />

x ( 100 %)<br />

where X A & X B are Pauling electronegativities<br />

<br />

Ex: MgO X Mg = 1.3<br />

X O = 3.5<br />

<br />

1 e (X AX B ) 2 <br />

<br />

<br />

4<br />

<br />

<br />

<br />

<br />

<br />

<br />

(3.5<br />

<br />

% ionic character 1<br />

e 4<br />

<br />

<br />

1.3)<br />

2<br />

<br />

<br />

<br />

<br />

<br />

x (100%) <br />

70.2%ionic<br />

50


Example<br />

Compute the percentage ionic character of the interatomic bond for<br />

zinc oxide (ZnO). Refer to the periodic Table for electronegativity<br />

values. Note: Electronegativity values in slides differ slightly from<br />

those in book.<br />

% ionic character = {1-exp[-(0.25)*(X Zn -X O ) 2 ]}*100<br />

= {1-exp[-(0.25)*(1.7-3.5) 2 ]}*100<br />

= 55.51%


2.6 Primary Interatomic Bonds<br />

• Metallic Bonding<br />

– Found in metals and their alloys<br />

– 1 to 3 valence electrons that form a<br />

“sea of electrons” or an “electron<br />

cloud” because they are more or<br />

less free to drift through the entire<br />

metal<br />

– Nonvalence electrons and atomic<br />

nuclei form ion cores<br />

– Bonding energies range from weak<br />

to strong<br />

– Good conductor of both electricity<br />

and heat<br />

– Most metals and their alloys fail in<br />

a ductile manner<br />

+<br />

+<br />

+<br />

Ion<br />

Cores<br />

+<br />

- -<br />

+<br />

- -<br />

+<br />

Sea of Valence<br />

Electrons<br />

+<br />

+<br />

+


METALLIC BONDING<br />

• Arises from a sea of donated valence electrons<br />

(1, 2, or 3 from each atom).<br />

Adapted from Fig. 2.11, Callister 6e.<br />

• Primary bond for metals and their alloys<br />

12


• Metallic <strong>bonding</strong><br />

Bonding in Solids<br />

– Most metals have one, two, or at most three valence electrons<br />

– These electrons are highly delocalized from a specific atom – have<br />

a “sea of valence electrons”<br />

– Free electrons shield positive core of<br />

ions from one another (reduce E R )<br />

– Metallic <strong>bonding</strong> is also nondirectional<br />

– Free electrons also act to hold<br />

<strong>structure</strong> together<br />

– Wide range of <strong>bonding</strong> energies,<br />

typically good conductors (why?)


2.7 Secondary Bonding or van der<br />

Walls Bonding<br />

• Also known as physical bonds<br />

• Weak in comparison to primary or chemical<br />

bonds<br />

• Exist between virtually all atoms and molecules<br />

• Arise from atomic or molecular dipoles<br />

– <strong>bonding</strong> that results from the coulombic attraction<br />

between the positive end of one dipole and the<br />

negative region of an adjacent one<br />

– a dipole may be created or induced in an atom or<br />

molecule that is normally electrically symmetric


2.7 Secondary Bonding or van der<br />

Waals Bonding<br />

• Fluctuating Induced Dipole Bonds<br />

– A dipole (whether induced or instantaneous)<br />

produces a displacement of the electron distribution<br />

of an adjacent molecule or atom and continues as a<br />

chain effect<br />

– Liquefaction and solidification of inert gases<br />

– Weakest Bonds<br />

– Extremely low boiling and melting point<br />

<strong>Atomic</strong> nucleus<br />

Electron<br />

cloud<br />

Instantaneous<br />

Fluctuation<br />

<strong>Atomic</strong> nucleus<br />

Electron<br />

cloud


2.7 Secondary Bonding or van der Waals Bonding<br />

• Polar Molecule-Induced Dipole Bonds<br />

– Permanent dipole moments exist by virtue of an<br />

asymmetrical arrangement of positively and negatively<br />

charged regions<br />

– Polar molecules can induce dipoles in adjacent nonpolar<br />

molecules<br />

– Magnitude of bond greater than for fluctuating induced<br />

dipoles<br />

+ -<br />

<strong>Atomic</strong> nucleus<br />

Electron Cloud<br />

Polar<br />

Molecule<br />

Induced<br />

Dipole


2.7 Secondary Bonding or van der<br />

Waals Bonding<br />

• Permanent Dipole Bonds<br />

– Stronger than any secondary <strong>bonding</strong> with induced<br />

dipoles<br />

– A special case of this is hydrogen <strong>bonding</strong>: exists<br />

between molecules that have hydrogen as one of the<br />

constituents<br />

Hydrogen Bond<br />

H Cl H Cl


Permanent dipoles<br />

Hydrogen-bonds<br />

These interactions are fairly strong, very<br />

complex, and surprisingly not well understood!<br />

van der Waals<br />

interactions between<br />

polar molecules<br />

2.82 Å<br />

109.47°<br />

Best known example<br />

hydrogen <strong>bonding</strong>


c02tf03


MATERIAL OF IMPORTANCE<br />

Water<br />

Many molecules do not have a<br />

symmetric distribution/arrangement<br />

of positive and negative charges<br />

(e.g. H 2 O, HCl)<br />

c02f16


c02uf01

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!